JAIST Repository

https://dspace.jaist.ac.jp/

(GRS F] G E 7O Raft DR kkE

Title e

Author(s) A6, FH

Citation

Issue Date 2023-09

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/18758
Rights

_ Supervisor: # /3 FI1#, SeimPl 2 pfsimt, &1 (R
Description

BF)

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Formal Specification and Model Checking of the Distributed Consensus
Protocol Raft

2030405 Takanori Ishibashi

In this master’s research project report, we report on a case study in
which Raft is formally specified in Maude and model checking experiments
are conducted based on the formal specification. The model checking ex-
periments say that Raft enjoys properties that it is expected to guarantee.
Raft is widely known as one of the distributed consensus protocols and is
used to build highly available and strongly consistent services. Raft divides
a distributed consensus problem into two independent sub-problems: leader
election and log replication. In the leader election, Raft chooses at most one
leader in each logical time called a term. There is one and only one leader
in a Raft cluster in regular operations and all the other servers are then fol-
lowers. In the log replication, the leader accepts requests from clients, saves
such requests in its log, and forwards them to all the other servers. On re-
ceipt of such requests, each server saves them in its log. When the leader
receives positive replies for a client request from the majority of servers, it
commits (or consents to) the request. Each server has a state machine in
which clients’ requests are processed. When a follower receives a message
saying that a client request has been committed, the follower commits the
clients’ request up to the client request (inclusive).

In this master’s research project report, we concentrate on the leader
election and the log replication, which are basic mechanisms in Raft. We for-
mally specify the leader election and the log replication in Raft using Maude,
which is a rewriting logic-based specification/programming language. In the
leader election, we model check with Maude that Raft enjoys the Election
Safety Property. In the log replication, we model check with Maude that Raft
enjoys the Log Matching Property and the State Machine Safety Property.
The Election Safety Property is that at most one leader can be elected in
each logical time. The Log Matching Property is that if two logs contain an
entry with the same index and term, then the logs are identical in all entries
up through the given index. The State Machine Safety Property is that if
any two servers have applied two entries to their state machines at a same
index, the two entries must always be the same. The first property is ex-
pressed as an invariant property of the state transition system formalizing the
leader election, and the last two properties are expressed as invariant prop-
erties of the state transition system formalizing the log replication. Maude is
equipped with a linear temporal logic (LTL) model checker and a reachabil-
ity analyzer (called the search command) as model checking facilities. The



search command can be used as an invariant model checker. Because the
three properties are invariant properties, we use the search command for the
model checking experiments. In the leader election, our model checking ex-
periments show that the protocol enjoys the Election Safety Property under
the condition that we limit the logical time and the number of servers. In
the log replication, our model checking experiments show that the protocol
enjoys the Log Matching Property and the State Machine Safety Property
under the condition that we limit the length of the server’s log and the num-
ber of servers.

We assume that a server in a Raft cluster conducts unexpected operations,
which is different from the log replication in Raft. A server failure can result
not only in a simple shutdown, but also in incorrect behavior. It is preferable
to be able to handle the latter as well. Our model checking experiments also
show that servers except for a server that conducts unexpected operations
enjoy the the Log Matching Property and the State Machine Safety Property.

keyword: distributed consensus protocols, invariant properties, Maude,
model checking, Raft, search command, state transition systems



