Title	Elucidating the degradation mechanism of a self-				
	degradable dextran-based medical adhesive				
	Hyon, Woogi; Shibata, Shuji; Ozaki, Etsuo; Fujimura,				
Author(s)	Motoki; Hyon, Suong-Hyu; Matsumura, Kazuaki				
	Woloki, Hyon, Suong-Hyu, Walsumura, Kazuaki				
Citation	Carbohydrate Polymers, 278: 118949				
Issue Date	2021-12-03				
Туре	Journal Article				
Text version	author				
URL	http://hdl.handle.net/10119/18767				
	Copyright (C) 2021, Elsevier. Licensed under the				
	Creative Commons Attribution-NonCommercial-				
Rights	NoDerivatives 4.0 International license (CC BY-NC-				
	ND 4.0). [http://creativecommons.org/licenses/by-				
	nc-nd/4.0/] NOTICE: This is the author's version of				
	a work accepted for publication by Elsevier. Woogi				
	Hyon, Shuji Shibata, Etsuo Ozaki, Motoki Fujimura,				
	Suong-Hyu Hyon, Kazuaki Matsumura,				
	Carbohydrate Polymers, 278, 2021, 118949,				
	https://doi.org/10.1016/j.carbpol.2021.118949				
Description					

Supplementary data

Elucidating the degradation mechanism of a selfdegradable dextran-based medical adhesive

Woogi Hyon^{a,b}, Shuji Shibata^b, Etsuo Ozaki^b, Motoki Fujimura^b, Suong-Hyu Hyon^b, Kazuaki Matsumura*^a

- a. School of Materials Science, Japan Advanced Institute of Science and Technology
 - 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- b. BMG Incorporated,
 - 45 Minamimatsunoki-cho, Higashikujo, Minami-ku, Kyoto 601-8023, Japan

* Corresponding author: Kazuaki Matsumura

E-mail: mkazuaki@jaist.ac.jp

TEL: +81-76-51-1680 FAX: +81-76-51-1149

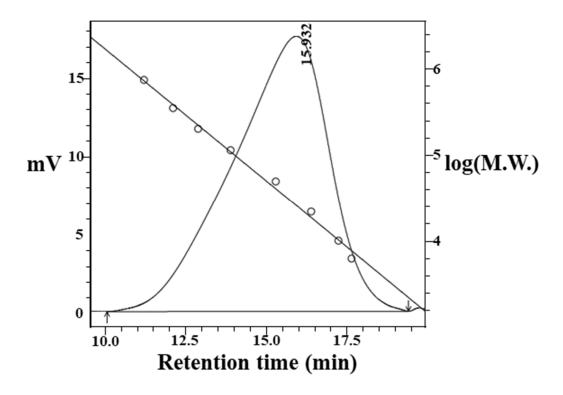
Amino acid

$$R_1-NH_2$$
 + $C-C-C-R_2$
O OHOH Aldehyde saccharide

H H H H

 $R_1-N-C-C-C-C-R_2$
H OHOH

 $R_1-N-C-C-C-R_2$
H H OHOH


 $R_1-N-C-C-C-C-R_2$
H D OHOH

 $R_1-N-C-C-C-C-R_2$
D Dexyosone

(B) Aldehyde Dextran

Figure S1. (A) Maillard reaction pathway of aldehyde saccharides with amino acids. (B) Molecular scission mechanism of oxidized dextran via reaction with an amine.

 $\label{eq:solution} Figure~S2.~Differential~refractometry~profile~of~aldehyde-functionalized~dextran~using~a~G4000PW_{XL}$ column.~M.W.,~molecular~weight.~mV,~millivolt.$

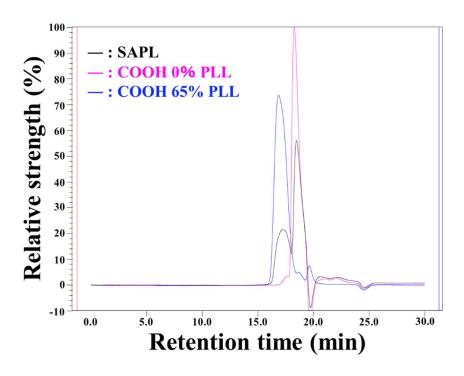


Figure S3. Refractive index spectra of succinic anhydride-treated poly-L-lysine (SAPL), poly-L-lysine (COOH 0% PLL), and 65% carboxylated poly-L-lysine (COOH 65% PLL), obtained using a $G4000PW_{XL}$ column.

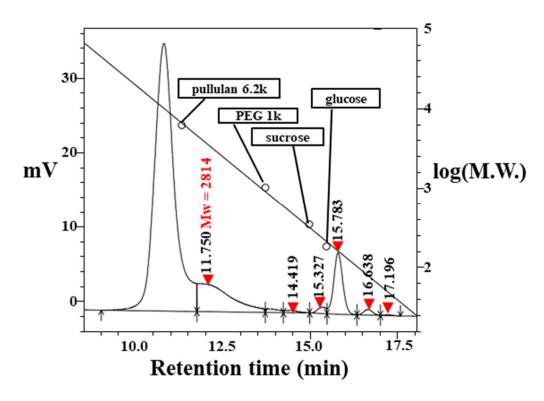


Figure S4. Gel permeation chromatogram of degradation solution (1 wk), obtained using a $G2500PW_{XL}$ column. Mw, molecular weight; PEG, polyethylene glycol.

Table S1. Changes in the molecular weight distribution (weight-average molecular weight $(M_{\rm w})$ / number-average molecular weight $(M_{\rm n})$) of the major gel permeation chromatography peaks of LYDEX gel over time.

		Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6
1 d	$M_{ m w}$ $/M_{ m n}$	1.06	2.24	1.35	1.05	1.22	1.01
3 d	$M_{ m w}$ / $M_{ m n}$	1.06	2.36	1.35	1.04	1.24	1.01
1 wk	$M_{ m w}$ / $M_{ m n}$	1.03	2.45	1.35	1.04	1.34	1.01
2 wk	M_{w} / M_{n}	_	2.69	1.35	1.03	1.23	1.01
1 mo	$M_{\rm w}$ / $M_{\rm n}$	_	2.26	1.36	1.04	1.22	1.01

 $G4000PW_{XL}$ and $G2500PW_{XL}$ columns were used for peaks 1–4 and peaks 5 and 6, respectively.