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Abstract
Co-Creative Intelligence research area

Graduate School of Advanced Science and Technology

Knowledge science

An evidence-based framework to reveal uncertainties for decision support in
materials discovery

by Minh-Quyet HA

Searching for new materials is challenging and multifaceted, with countless po-
tential candidates to explore. While data-driven approaches have shown promise
in narrowing down the search space, their effectiveness is limited by certain factors.
This doctoral thesis addresses these limitations and proposes a data-driven frame-
work for quantitatively measuring the similarities between materials while account-
ing for uncertainty. The framework focuses on two scenarios: binary properties
and continuous properties. For binary properties, the material similarity is assessed
by evaluating the differences in compositions and their impact on the property of
interest. For continuous properties, the similarity is determined by examining the
correlation between occurrences of specific physical properties in the materials. The
goal is to identify materials that exhibit similar behavior and characteristics, despite
variations in composition. This framework provides a basis for informed decision-
making in materials discovery and offers insights into the underlying mechanisms
governing material behavior. This research contributes to more reliable and ro-
bust material discovery processes by incorporating uncertainty in similarity mea-
surements. The proposed framework offers a valuable tool for materials science re-
searchers, aiding in identifying and understanding materials with desirable proper-
ties and paving the way for advancements in materials discovery and development.

Keywords: Materials discovery, Decision-making, Data-driven approach, Simi-
larity measurement, Dempster-Shafer theory
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Chapter 1

Introduction

1.1 Materials discovery

Throughout the history of humankind, extending from the Stone Age to the contem-
porary era, the evolution of humanity has been inextricably intertwined with our
utilization of materials and tools (Hong et al., 2021). It is indisputable that the dis-
covery of new materials has served as a cornerstone in shaping human civilization
when the most advanced material of a given era frequently emerges as a defining
factor of historical periods. This is evident in naming historical periods, such as
the Stone Age, Bronze Age, Iron Age, or Silicon Age, in which primary prehistoric
phases of our civilization are named after the engineering materials of the era rather
than our linguistic abilities, social interactions, or economic achievements. This em-
phasis on materials underscores the progressively accelerated pace at which they
have transformed society. To illustrate, while the Stone Age encompasses millions
of years (from 2.6 million years ago to 3,300 BC), subsequent ages are delineated in
tens of millennia, with the duration of each era successively diminishing. This pat-
tern persisted until the onset of the Industrial Revolution, a period characterized by
the rapid introduction of innovative processes and materials. As a result, the en-
gineering age during this time can be measured in mere decades. Ultimately, this
escalating pace highlights the crucial role of material discoveries in propelling the
progress and development of human civilization.

The journey from discovery to practical use is crucial in advancing technology
and improving society. The duration it takes for an innovative material to move
from its initial discovery in the lab to its application in the industry can significantly
vary, depending on the material and its intended use. Nonetheless, it is widely rec-
ognized that this process can be time-consuming and may take anywhere from 10
to 20 years or longer (White, 2012). The timeline is influenced by various factors
such as the complexity of the material, the establishment of scalable manufacturing
techniques, comprehensive assessment of safety and efficacy, regulatory endorse-
ments, and market acceptance. Consequently, materials crucial to tackling some of
society’s most pressing challenges might have already been discovered, yet they are
still awaiting implementation in manufactured products. For instance, graphene,
a single layer of carbon atoms arranged in a hexagonal lattice structure, forms a
two-dimensional (2D) material with outstanding mechanical, electrical, and thermal
properties. The material was discovered in 2007 by Geim and Novoselov, who were
awarded the Nobel Prize for their groundbreaking work. However, despite its ex-
ceptional properties and potential applications, graphene’s deployment is hampered
by high production costs.
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FIGURE 1.1: Challenge of discovering new materials from an endless
space of unconfirmed candidates.

1.1.1 Materials informatics: a new paradigm for discovering new materi-
als

Pursuing materials discovery poses a formidable challenge as researchers navigate
through an extensive array of candidates have not confirmed yet (Fig. 1.1). The most
crucial task in this ambitious journey is identifying and selecting materials that merit
further exploration and expensive validations. However, materials scientists face a
significant limitation: their expertise typically extends to specific domains, leaving a
vast pool of potential candidates beyond their immediate knowledge. For instance, a
materials scientist specializing in ceramics may encounter difficulties when attempt-
ing to discover novel ceramic materials with enhanced mechanical properties. While
their expertise in ceramics is extensive, their knowledge of polymers, which pos-
sess unique mechanical characteristics, might be limited. However, correlations or
relationships between specific ceramic compositions and polymer structures could
provide valuable insights into the design of new materials. By embracing inter-
disciplinary collaboration and seeking insights from other domains, such as poly-
mers, materials scientists can broaden their understanding of materials and enhance
the efficiency of materials discovery. By leveraging collective expertise and explor-
ing uncharted territory, researchers can identify promising materials with superior
properties, ultimately propelling scientific advancement to new frontiers.

Throughout human history, to discover advanced materials, the progression of ma-
terials science has been closely intertwined with scientific and technological ad-
vancements. As identified by Agrawal (Agrawal and Choudhary, 2016), four dis-
tinct scientific paradigms have emerged within materials science: empirical science,
model-based theoretical science, computational science, and data-driven science.
Initially, the field predominantly relied on empirical approaches to acquire knowl-
edge about material extraction, purification, and processing. However, as time went
on, with the vigorous development of mathematics, including algebra and differen-
tial calculus, theoretical physics built a solid foundation for deductive studying and
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FIGURE 1.2: The four paradigms of materials science: empirical, the-
oretical, computational, and data-driven. (Agrawal and Choudhary,

2016)

modeling natural behaviors. Consequently, the research field of materials shifted to-
wards theoretical models and generalizations characterized by mathematical equa-
tions, such as the laws of thermodynamics. Subsequently, the rise of computational
science allowed scientists to simulate complex real-world phenomena using sophis-
ticated algorithms and computer programs, as exemplified by the density functional
theory and molecular dynamics simulations. In recent decades, the vast amount
of data generated by experiments and simulations have given rise to the fourth
paradigm—(big) data-driven science—which unifies theory, experimentation, and
computation/simulation. This paradigm has gained traction in materials science,
leading to a new field of materials informatics. Figure 1.2 illustrates these four
paradigms of materials science. By bridging the gap between domain expertise and
exploring uncharted territory, such approaches hold the key to accelerating materi-
als discovery and unlocking new frontiers in scientific advancement.

Several promising projects, such as the Materials Genome Initiative1 (MGI) or
Materials research by Information Integration (MI2I), have been launched to acceler-
ate the process of discovering and applying these new materials. Such projects en-
compass both computational methodologies based on high performance computing
and high throughput experiments founded on combinatorial techniques. The Ma-
terials Genome Initiative (MGI) is a continuation of a movement that began in the
1980s, focusing on designing materials using computation (Potyrailo et al., 2011).
The MGI takes this further, using advanced computational capabilities and high-
throughput experimental techniques to revolutionize the materials development pro-
cess. By integrating experimental and computational tools, as well as digital data,
the MGI aims to speed up the process of discovering and deploying new materials,
leading to a higher number of novel materials being brought to market in a shorter
timeframe (Drosback, 2014). This will lead to more incredible innovation and faster
development of novel materials to meet the needs of various industries and society

1About the Materials Genome Initiative, https://www.mgi.gov
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as a whole. Machine learning has shown great promise in various fields, and ma-
terials science is no exception. In this domain, numerous challenges addressed by
data-driven approaches hinge on the effective utilization of existing material data to
predict new materials’ properties and comprehend the underlying physicochemical
mechanisms (Kailkhura et al., 2019).

1.1.2 Challenge in material Informatics

From an engineering perspective, developing a data-driven model capable of rapidly
and accurately predicting the physical properties of potential materials from accu-
mulated data can expedite the material development process. By employing a data-
driven model for in-silico material screening, the number of candidates necessitating
expensive calculations and experimental validation can be reduced. When sufficient
independent supervised data is available from the distribution of target material
data, state-of-the-art data-driven techniques can be employed to build a highly ac-
curate predictive model. However, given that materials research and development
aims to create materials with superior properties, the distribution of target predic-
tion data may differ significantly from the distribution of the original training data.
This discrepancy raises concerns about the ability of data-driven models for extrap-
olation, to predict the physical properties of novel materials accurately.

In the past decade, research using data-driven approaches in materials science
has grown significantly, with each study employing a variation of the materials in-
formatics workflow (Saal et al., 2013; Ward et al., 2016; Li et al., 2020). Data-driven
methods have gained recognition as powerful tools for accelerating material discov-
ery by reducing the number of candidates to investigate. However, these methods
face three critical challenges in the materials research field:

1. Quality of material data: The data quality often limits the effectiveness of
data-dependent methods. Experimental or computational datasets for ma-
terials might need essential information, such as missing or heavily biased
data since researchers tend to report successful materials while overlooking
unsuccessful attempts. For example, suppose a dataset only contains high-
performing materials for a specific purpose without data on low-performing
or failed materials. In that case, the machine learning (ML) model may not
accurately capture the complete range of material properties and could over-
estimate new materials’ performance.

2. Inconsistency of material datasets: Integrating non-comparable datasets de-
rived from various calculation methods or experiments presents a significant
challenge for data-driven approaches. Inconsistencies may arise between two
datasets of the same material property, collected using different experimental
setups or computational methods, leading to discrepancies in reported values.
This inconsistency makes it difficult for ML models to learn a reliable relation-
ship between material descriptors and properties.

3. Difficulty designing suitable material descriptors: Data-driven approaches
often rely on descriptors derived from condensed matter theory and parame-
ters fitted from experimental or computational data to predict potential ma-
terials. Descriptors calculated from constituent atomic properties are com-
monly used, but assessing similarities between materials with varying num-
bers of compositions remains challenging. For instance, a descriptor that accu-
rately captures the electronic properties of binary alloys may not be suitable for
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ternary or more complex alloys, leading to practical limitations in predicting
material properties.

In material science, data-driven approaches are faced with significant challenges
due to limitations in design descriptors, lack of data, and inconsistent data. These
limitations introduce uncertainty into the prediction process, impacting the learned
models’ accuracy and reliability. Addressing these issues requires innovative ap-
proaches to enhance the quality and quantity of material data and develop robust
descriptors that capture the intricate relationships between composition, structure,
and properties.

1.2 Decision-making in material discovery

Decision-making is an integral part of our daily lives, as we frequently encounter
situations that require us to make choices. Some of these decisions are relatively
straightforward, such as deciding what to wear in the morning or choosing a meal
from a restaurant menu. In contrast, other choices are more complex and require
careful consideration, like deciding on a career path, making an investment, or choos-
ing a medical treatment. This fundamental life process has garnered considerable
interest and has been the subject of numerous studies since prehistory, leading to a
plethora of perspectives, assessment methods, and theoretical models across scien-
tific disciplines and subdisciplines (Thaler and Sunstein, 2009; Mcfall, 2015).

When discovering new materials, decision-making involves choosing candidates
for experimental validation from an infinite pool. It’s crucial to make effective deci-
sions to allocate limited resources properly. With numerous potential candidates and
costly experiments, it’s essential to develop rational strategies for decision-making.
One crucial aspect is identifying the scenarios that require decision-making, such as
selecting candidates for experimental validation, material prioritization, or identify-
ing exploration opportunities. By defining these scenarios, researchers can establish
clear objectives and criteria for material evaluation and optimizing resource alloca-
tion. This approach reduces the risk of wasted resources, increasing the chances
of uncovering novel materials or gaining valuable insights. Ultimately, strategic
decision-making plays a critical role in advancing our understanding of materials
science and driving progress. It is imperative for researchers to distinguish between
risk and uncertainty when making decisions, as suggested by Knight (Knight, 1921).
This differentiation is of utmost importance.

1.2.1 Scenarios of decision-making

According to Knight, risk and uncertainty are fundamental concepts that shape
the processes, providing a framework for understanding and managing the com-
plexities associated with making choices under uncertain conditions. Therefore,
distingusihing between risk and uncertainty is crucial in understanding the com-
plexities of decision-making in various contexts, including the business world. As
Knight described, risk refers to situations where we do not know the specific out-
come but can accurately measure the odds. It arises when there are multiple pos-
sible outcomes, each associated with a certain level of probability. In this context,
decision-makers can assess and quantify the potential consequences and make in-
formed choices based on the probability of various outcomes. This process often
involves weighing each option’s potential benefits and drawbacks, considering the
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likelihood of success and the potential consequences of failure. Probability is a mea-
sure of the likelihood of a specific outcome or event occurring, expressed as a num-
ber between 0 (impossible) and 1 (certain). In decision-making, probability provides
a quantitative way to assess and compare the chances of different outcomes, helping
decision-makers make more informed choices under uncertain conditions. Proba-
bility theory plays a significant role in developing models and tools to analyze and
manage risk in decision-making processes. Decision-makers can use probabilistic
models to assess the potential impact of various factors, estimate the likelihood of
specific outcomes, and optimize their choices accordingly.

Contrasting with risk, uncertainty pertains to situations where acquiring all es-
sential information to determine probabilities of outcomes or even identify possi-
ble outcomes accurately is unachievable. This renders predicting future outcomes
exceedingly difficult, if not outright impossible. Previous research suggests that
many real-world problems exhibit ill-structured and challenging-to-formalize qual-
ities, with humans facing cognitive limitations when processing the complexities
arising from such information (Simon, 1990). This leads to the concept of bounded
rationality, where individuals make decisions based on limited information and cog-
nitive capacity. Consequently, decision-makers often resort to heuristics and approx-
imate strategies when uncertain (Gigerenzer and Gaissmaier, 2011; Brighton and
Gigerenzer, 2012; Selten, Pittnauer, and Hohnisch, 2012). Although not always opti-
mal, these methods can offer satisfactory and pragmatic solutions in scenarios where
comprehensive information and boundless processing capabilities are absent. Nev-
ertheless, it is important to acknowledge that using mental shortcuts may give rise
to biases in judgement under uncertainty, potentially leading to errors in decision-
making.

Although some economists argue that this distinction is overblown, as real-world
events are often so complex that they involve "true uncertainty" rather than risk,
Knight’s distinction remains relevant in examining decision-making behavior in var-
ious domains, such as finance. An instance of this would be investment banks that
once relied on their accurate risk assessments, assuming they were working under
conditions of Knightian risk and could determine the chances of future outcomes.
However, they later realized the insufficiency of their assessments and that they
were operating under Knightian uncertainty conditions. This change in perspective
could result in them being hesitant to make trades or offer capital, thereby contribut-
ing to the further slowdown of the economy. In various fields, including finance or
material discovery, Knight’s differentiation between risk and uncertainty sheds light
on the intricacies of decision-making processes. Distinguishing between the two can
have a significant impact on the decisions made by both individuals and organiza-
tions. The key to Knight’s differentiation lies in assessing how well one compre-
hends the possible outcomes of their decisions and the probabilities of each outcome.

Building on Knight’s distinction, Meder (Meder, Le Lec, and Osman, 2013) has
introduced two most popular scenarios of decision-making that individuals can en-
counter: decision-making under risk and decision-making under uncertainty (Fig. 1.3).
The first scenario refers to situations where the distribution of the outcomes is known,
meaning we have an idea of what could happen and how likely each outcome is. In
the first scenario, decisions under risk, decision-makers do not know the certain out-
comes of their decisions; however, they still assess probabilities to potential conse-
quences. Despite the risk, decision-makers can evaluate their options by considering
each outcome’s probabilities and potential utility, allowing them to derive prefer-
ences in their choices (Neumann, Morgenstern, and Rubinstein, 1944). For instance,
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tal validation under uncertainty and risk. (Meder, Le Lec, and Os-

man, 2013)

random factors, such as the presence of bacteria or wild yeasts, can introduce off-
flavors or spoilage present in the fermentation process and introduce unexpected
consequences for wine production. Consequently, winemakers must consider the
risks associated with various factors in the fermentation process to make rational
decisions. By understanding and managing these risks, winemakers can optimize
their production processes, minimize potential losses, and improve the overall qual-
ity of productions. This method of making decisions when facing risks is useful in
different industries and scenarios, where decision-makers aim to balance risk man-
agement with informed choices that are in line with their objectives.

In contrast, the second scenario involves situations where we are unaware of
the distribution of outcomes, leaving us uncertain about what could happen and
how likely each outcome is. This uncertainty makes it challenging to predict mate-
rial behavior and select candidates for validation in materials science. This scenario
is expected when the number of confirmed materials is relatively small compared
to the large pool of candidates. For instance, the discovery of high-entropy alloys
(HEAs), which are disordered alloys of multiple elements, typically more than four,
requires predictive models to assess the likelihood of forming a HEA phase (Yeh et
al., 2004). However, the reliability of these models is limited due to the scarcity of
confirmed materials data (Ha et al., 2021). The small number of available materi-
als data makes it challenging to assess the likelihood of desired material properties
accurately. Therefore, developing robust models to address this type of uncertainty
and predict material behavior in the context of HEAs is a crucial area of research in
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materials science.

1.2.2 Trade-offs between exploitation and exploration in each scenario

Researchers must balance two crucial decision-making criteria in materials discov-
ery: exploitation and exploration. Exploitation involves prioritizing candidates with
a higher chance of success, using existing knowledge and models to narrow the
search space efficiently. This criteria optimizes resource utilization and increases the
chances of finding materials that meet predetermined criteria. On the other hand,
exploration goes beyond existing knowledge to uncover new materials and phe-
nomena with untapped potential. By embracing exploration, researchers can drive
innovation and push the boundaries of materials science, leading to significant ad-
vancements. Balancing the criteria of exploitation and exploration is essential for
making informed decisions, optimizing research efforts, and accelerating the pace
of materials discovery.

When making decisions under risk, we may have enough information to assess
the likelihood of outcomes accurately. In such cases, we prioritize selecting candi-
dates with a high chance of success in discovering new materials. Based on existing
knowledge and models, these candidates have a higher certainty in their predicted
properties, as shown in the red region of Figure 1.4. On the other hand, if we are un-
certain about predicting the properties of a material, we favor candidates with a 50-
50 chance of success. However, it’s important to note that selecting such candidates
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with high uncertainty does not necessarily reduce the uncertainty in prediction. This
is because it may arise from random factors not adequately captured by the available
descriptor spaces. The upcoming section will discuss the specific challenges related
to this issue in detail (Section 2.1).

In situations where uncertainty reigns, relying solely on the exploitation crite-
ria is insufficient as we lack sufficient information to predict a decision’s outcome
accurately. Instead, it is imperative to concentrate on selecting candidates that will
increase our knowledge and understanding of the materials space. We can effec-
tively reduce uncertainty and make better-informed decisions by actively exploring
and gathering more data. This approach is crucial in providing valuable insights,
enabling us to refine our models and ultimately enhance our ability to discover new
materials.

1.3 The rising need for interpretable data-driven methods in
materials discovery

Materials science is transforming as data-driven approaches become increasingly
integral to the field. These approaches leverage advanced statistical and machine
learning algorithms to analyze extensive datasets, revealing hidden patterns and
relationships. This shift aligns seamlessly with the ongoing digitization of mate-
rials data, offering new avenues for expediting materials discovery. Interpretable
data-driven approaches are emerging as particularly invaluable. Beyond merely de-
signing algorithms for learning from data, these approaches focus on constructing
systems that reason, elucidate their reasoning, and evolve. Such dynamic systems
promise to enhance decision-making in materials discovery, particularly crucial in
managing the inherent uncertainty in materials data and streamlining the path to
discoveries.

A critical facet of these data-driven approaches is interpretability, which bridges
the multifaceted nature of data-driven models and the instincts of materials scien-
tists. Interpretability is indispensable because it enables materials scientists to un-
derstand how these models make predictions or reach conclusions. In a field where
experimental and computational validation can be exceedingly costly, having an in-
terpretable model allows for a more informed decision-making process, even in the
presence of uncertainties. Without interpretability, materials scientists might rely on
a "black box," which provides no understanding or insight into the studied mate-
rials. This would severely limit the scientist’s ability to extrapolate beyond known
materials and inhibit innovation.

Material similarity is central to interpretable data-driven approaches in materials
science. The concept of similarity is rooted in analogy-based reasoning, where estab-
lished principles are applied to novel scenarios. This cognitive process is intimately
connected with the ability to identify patterns in data that suggest similarities in ma-
terial compositions and structures. Materials science has recognized the importance
of similarities in compositions and structures, as materials with analogous attributes
often exhibit comparable properties. However, exploring advanced materials intro-
duces staggering diversity in compositions and structures, presenting opportunities
for unprecedented physical properties.

The challenge lies in the diversity and novelty, the sheer number of variables,
and the complexity of relationships between compositions, structures, and proper-
ties. Discerning material similarities becomes vital for hypothesizing mechanisms
behind structure-property relationships, yet the multitude of variables makes this
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task arduous. Therefore, the data-driven approaches developed for materials sci-
ence are essential in this complex landscape. Incorporating material similarity and
analogy-based reasoning within data-driven strategies is effective in tackling chal-
lenges and bridging the intuition-data divide. Consequently, this fusion is paving
the way for groundbreaking discoveries in advanced materials, with interpretability
as the keystone for informed and innovative advancements.

1.3.1 Analogy-based reasoning: Bridging the gap between human intu-
ition and data-driven approach

Traditionally, scientific intuition has played a pivotal role in identifying and compre-
hending novel materials. A prime example of this intuition in action is employing
analogy-based reasoning, a cognitive process that scientists frequently utilize to ap-
ply established principles to new situations. This intuitive approach to reasoning is
crucial in experimental materials science and frequently results in fortuitous discov-
eries.

In materials science, analogy-based reasoning requires carefully identifying sim-
ilarities between materials. This process relies heavily on human intuition, explicit
and implicit knowledge, and abductive reasoning. We must recognize similarities
among compositions, structures, and desired properties to transfer knowledge from
available systems (source analogs) to unexplored ones (target analogs). However,
determining the similarity between materials requires a deep understanding of the
correlations between compositions, structures, and outcome properties that deter-
mine the physical property of interest. With many features available to describe a
material, identifying the relevant attributes that define similarity is a complex and
challenging task that varies depending on the target property. This complexity adds
an additional layer of difficulty to the identification of material analogs.

Moreover, this form of intuitive, analogy-based reasoning fits naturally with the
quest for an interpretable data-driven approach in materials science. Data-driven
models strive to identify underlying patterns and structures driving input-output re-
lationships, mirroring the process of finding connections between known and novel
materials. By integrating analogy-based reasoning into data-driven models, we can
bring the often elusive ’black box’ of these models into the light, turning them into
transparent, intuitive systems that resonate with a materials scientist’s intuitive ap-
proach [11]. This inductive reasoning can significantly support high-stakes decisions
in materials discovery. It aligns data-driven methodologies with the mindset and
goals of materials scientists, making these models more relatable and trusted tools
in materials science.

1.4 Research objectives

In the previous section, I highlighted the various decision-making scenarios encoun-
tered in the material discovery process and emphasized the importance of identify-
ing the appropriate scenarios to facilitate rational decision-making. Furthermore,
considering that human decision-making behavior is sensitive to heuristics and bi-
ases, it is crucial to quantitatively evaluate our understanding of the underlying
mechanisms in material discovery. Researching new materials is an arduous task
due to the immense number of potential candidates that scientists must sort through.
While data-driven approaches have shown promise in narrowing down the candi-
date space, they also face several limitations that hinder their effectiveness:
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FIGURE 1.5: Data-driven framework for measuring similarities be-
tween materials with respect to correlations of their compositions and

a binary property (a) or a continuous property (b).

• Designing appropriate descriptors for materials is a challenging task, as it re-
quires capturing the essential features that govern material properties.

• The availability of experimental data is often limited and biased, which can
introduce uncertainties and inaccuracies in the analysis.

• Computational data suffers from inconsistencies, as different calculation meth-
ods can yield varying results for the same materials.

• Accurately evaluating prediction uncertainty, even when achieving high pre-
diction accuracy is difficult, remains a significant challenge in material discov-
ery research.

To address these limitations, I have developed a data-driven framework that
quantitatively measures the similarities between materials while accounting for un-
certainty. The similarities between materials are assessed based on the correlation
of their compositions and physicochemical properties of interest. Specifically, the
framework is designed to focus on two different scenarios, depending on the type
of property being examined:

• For binary property (Error of substitution): the similarity is determined by
evaluating whether the differences in compositions of materials allow for sub-
stitution without affecting the property of interest (Fig. 1.5 a).
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• For continuous property (Correlation between occurrences): the similarity is
determined by examining the correlation between occurrences of specific phys-
ical properties observed in the materials. Materials in the dataset are deemed
to be alike if their physical characteristics can be traced back to equivalent un-
derlying mechanisms. Conversely, materials are categorized as dissimilar if
the same mechanisms cannot account for their properties (Fig. 1.5 b).

The purpose of this analysis is to identify materials that display similar traits
and behaviors, even with variations in their composition. This information can be
applied to make decisions in materials discovery and gain insight into the hidden
mechanisms that govern the behavior of these materials. Our proposed methods
are highly effective, as demonstrated by the creation of a recommender system for
exploring new materials (Chapter 3) and utilizing the material similarities to un-
cover underlying mechanisms (Chapter 4). Additionally, we apply the framework
to create a map of candidates that shows the degree of knowledge about the material
space, which helps decision-makers select candidates for further validation (Chapter
5).
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Chapter 2

Concept of uncertainty in machine
learning

In this chapter, we will explore two primary machine learning (ML) techniques
based on Bayesian and Dempster-Shafer (DS) theories that assist learners in un-
derstanding their level of uncertainty when making predictions. These techniques
vary in the type of predictions they produce and how they represent uncertainty.
Therefore, it is crucial to examine whether these methods can distinguish between
aleatoric and epistemic uncertainty and measure the degree of uncertainty in terms
of aleatoric and epistemic uncertainties. In addition, the difficulty in specifying epis-
temic uncertainty in these approaches stems from the broader challenge in probabil-
ity theory to define the lack of knowledge. This issue will be more detailed in the
subsequent section.

In the first part of this chapter, we explore the intricacies of Bayesian machine
learning techniques, such as Bayesian Neural Networks and Gaussian Processes.
These methods offer a convenient way to represent and measure uncertainty by uti-
lizing probability distributions to encode uncertainty in model parameters. How-
ever, it is essential to note that they may not be able to completely capture the con-
cept of epistemic uncertainty or lack of knowledge due to their dependence on prior
knowledge, which can be subjective and may not reflect the true state of knowledge.

The Dempster-Shafer theory, also known as evidence theory, is a more versatile
version of the Bayesian approach, especially for situations that involve incomplete
or imperfect information. Instead of assigning probabilities to individual elements,
this theory assigns non-negative weights to subsets of possibilities, called the frame
of discernment. The DS theory can handle both aleatoric and epistemic uncertain-
ties by combining evidence from different sources and allowing for various types
of uncertainty representations. However, implementing and computing the DS the-
ory may be more complex, especially when handling large sets of possibilities or
evidence. To learn more about these evidence-based approaches, please refer to the
third section of the chapter.

2.1 Chance versus imprecision: Aleatory and Epistemic un-
certainties

In life and across different industries like finance, engineering, and healthcare, un-
certainty is unavoidable and plays a significant role in decision-making. To handle
uncertainties better, it is crucial to differentiate between two main types: aleatory
uncertainty, which arises from randomness, and epistemic uncertainty, which comes
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scenarios of decision-making in materials discovery. (Hüllermeier

and Waegeman, 2021)

from incomplete knowledge. This section of my dissertation will explore the distinc-
tions between these two types of uncertainty and their impact on decision-making
and risk management.

The utilization of probability theory has long been the standard approach for
evaluating uncertainty. It is widely regarded as the most efficient method for han-
dling uncertainty in fields such as statistics and machine learning. In the realm of
probabilistic modeling, relying on a single probability distribution through tradi-
tional methods is insufficient in distinguishing between two distinct types of uncer-
tainty: aleatoric and epistemic (Hora, 1996; Der Kiureghian and Ditlevsen, 2009).
Aleatoric uncertainty, also known as statistical uncertainty, refers to the natural ran-
dom factors that bring about randomness or variability in the results of an exper-
iment. (Fig. 2.1). Coin flipping is a perfect example of aleatoric uncertainty. The
stochastic element involved in the results of tossing a coin cannot be reduced by re-
peating the attempt unless one possesses the abilities of Laplace’s demon. Therefore,
accurately representing this uncertainty is a difficult task. Due to the complexity of
this process, even the most precise model can only offer the likelihood of two prob-
able outcomes - heads or tails, without a definite answer.

In contrast, epistemic (also known as systematic) uncertainty originates from a
scantiness of knowledge regarding the optimal model (Fig. 2.1). Epistemic uncer-
tainty is a type of uncertainty that arises from the agent or decision-maker’s lack of
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knowledge, rather than any random phenomenon. Unlike uncertainty due to ran-
domness, epistemic uncertainty can be minimized by acquiring additional informa-
tion. For instance, the question, "Can you please tell me the meaning of the Swahili
word ’kichwa’? Does it refer to the head or the tail?" might prompt the same un-
certainty as a coin flip, but the nature of the uncertainty is different. It can be easily
resolved with additional knowledge. In this context, epistemic uncertainty refers to
the part of the total uncertainty that can be lessened, while aleatoric uncertainty ac-
counts for the part that cannot be minimized. Recognizing the distinction between
aleatoric and epistemic uncertainties is essential for developing appropriate mod-
els and strategies in various domains, as it allows decision-makers to focus on the
aspects of uncertainty that can be reduced and managed more effectively.

In the application of data-driven approaches to material discovery, it is common
for the distinct types of uncertainty, aleatoric and epistemic, to be improperly iden-
tified. Sometimes, making a distinction might appear unnecessary, especially when
we need to make a decision or prediction, and the origin of uncertainty is imma-
terial. Bayesians often use this viewpoint to support a probabilistic approach and
classical Bayesian decision theory. Nevertheless, it is essential to note that this sce-
nario does not always apply. For example, in some situations, the final decision
can be delayed or refused, like in a classification process that includes a rejection
option (Chow, 1970; Hellman, 1970). Additionally, actions can be explicitly taken
to reduce uncertainty, as in active learning (Aggarwal et al., 2014). In these cases,
recognizing the difference between aleatoric and epistemic uncertainties becomes
more relevant, as it can help guide the decision-making process more effectively.
For example, strategies to reduce epistemic uncertainty may involve collecting more
data or refining the learning algorithm, while managing aleatoric uncertainty might
require the development of more robust models or incorporating domain knowl-
edge. By distinguishing between the two types of uncertainty and understanding
their implications, researchers and decision-makers in material discovery can better
allocate resources, develop targeted strategies, and ultimately make more informed
decisions.

Motivated by scenarios that emphasize the importance of distinguishing between
aleatoric and epistemic uncertainties, Senge et al. explicitly address this distinction
in their data-driven approach to decision support (Senge et al., 2014). They propose
methods to measure such uncertainties and illustrate the effectiveness of their ap-
proach in the field of medical decision-making. Similarly, Kull and Flach suggest
using trustworthiness maps to differentiate between predicted probability scores
and the level of uncertainty in those predictions (Kull and Flach, 2014). They il-
lustrate this distinction using a weather forecasting example, wherein the aleatoric
uncertainty refers to the 50% chance of rain, while the uncertainty in the 20% esti-
mate is related to epistemic uncertainty. In a more practical context, Varshney and
Alemzadeh discuss the importance of understanding epistemic uncertainty in AI-
assisted systems, using the example of a self-driving car accident that resulted in the
driver’s death (Varshney and Alemzadeh, 2017). They attribute the failure of cars to
exceptionally infrequent circumstances and emphasize the importance of epistemic
uncertainty in such systems. Such examples underscore the value of differentiating
between aleatoric and epistemic uncertainties, as doing so can provide more accu-
rate and trustworthy representations of uncertainty in decision-making processes.
By accounting for both types of uncertainty, researchers and practitioners can de-
velop more reliable models and predictions, ultimately leading to better-informed
decisions in various fields, including material discovery, healthcare, and AI-assisted
systems.



16 Chapter 2. Concept of uncertainty in machine learning

In recent years, the discrepancy between aleatoric and epistemic uncertainties
has gained attention in the field of ML (Kendall and Gal, 2017). One of the main
concerns with deep learning models, particularly neural networks, is their limited
awareness of their own competence. Experiments on image classification have re-
vealed instances where trained models fail in specific situations, despite being ex-
tremely confident in their predictions. It is crucial to note that these models lack
resilience and are highly susceptible to being misled by "adversarial examples" (Pa-
pernot and McDaniel, 2018). It is surprising how even small changes in the input
can greatly affect the predictions of a model. This makes it vulnerable to adversarial
attacks, not just in images but also in natural language text and other data types.
To improve the model’s performance and protect it from such attacks, researchers
are now incorporating the difference between aleatoric and epistemic uncertainty in
deep learning models. This approach aims to enhance the model’s understanding
of its own capabilities and increase its reliability and trustworthiness, particularly in
applications that require safety and precision, such as autonomous vehicles, health-
care, and other AI-driven systems.

To differentiate between aleatoric and epistemic uncertainty, one can examine
whether the uncertainty can be reduced with additional information (Hüllermeier
and Waegeman, 2021). Aleatoric uncertainty is the fundamental part of the uncer-
tainty that arises from the unpredictable correlation of input instances (x) and out-
comes (y). The relationship between x and y can be seen in the probability of one
variable occurring given the occurrence of the other, known as conditional proba-
bility. Aleatoric uncertainty arises from the inherent randomness of the process and
cannot be reduced by gathering more data. On the other hand, epistemic uncer-
tainty arises when there is insufficient knowledge about the optimal model, such
as uncertainty about a model’s parameters. Unlike aleatoric uncertainty, epistemic
uncertainty can be decreased by obtaining more information, refining the model, or
gathering more data. This type of uncertainty represents the limitations in our un-
derstanding of the underlying processes or relationships, and it can be minimized
as our knowledge and modeling capabilities improve. At first glance, this character-
ization seems clear, but it becomes less straightforward upon further examination.
What does it mean for uncertainty to be "reducible"?

One obvious way to obtain more information is through additional training data
(D), which can decrease the learner’s uncertainty while maintaining the same learn-
ing problem settings, such as the instance space (X ), output space (Y), hypothesis
space (H), and joint probability (P) on X × Y . However, this is not always the case
in practice. An example of how a learner can enhance instance descriptions is by
adding extra features. This integration of the current instance space (X ) results in
the creation of a new instance space (X ′). This alteration may affect the level of
uncertainty. In the given illustration of Figure 2.2 a, we can see the overlap of two
class distributions of stable and unstable materials in a two-dimensional space de-
fined by descriptor 1 and descriptor 2. This overlap creates aleatoric uncertainty in
the overlapping region of the instance space. Incorporating the data into a higher-
dimensional space (achieved by adding a third descriptor) makes the two classes
discernible, and the uncertainty can be resolved (Fig. 2.2 b). Typically, when data
is placed in a higher-dimensional space, the level of aleatoric uncertainty decreases.
However, it also leads to an increase in epistemic uncertainty. This is because the
process of fitting a model becomes more complex and requires a greater amount of
data.

Previous example demonstrates that the two uncertainties (aleatoric and epis-
temic) are not fixed concepts but context-dependent, relying on the specific setting
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of problem (X , Y , H, P). Altering the circumstance can then modify the origins of
uncertainty. It is within the realm of possibility for aleatoric uncertainty to convert
into epistemic uncertainty, and the reverse can also occur. As a result, when learn-
ers have the ability to modify settings, it can lead to uncertainties that may create
confusion between the two types of uncertainty, ultimately affecting their accurate
measurement. According to Der Kiureghian and Ditlevsen, the connection between
aleatoric and epistemic uncertainty can only be clearly established within a specific
analytical framework. They assert that what might be categorized as aleatory uncer-
tainty in one model may be considered as epistemic uncertainty in another model.
(Der Kiureghian and Ditlevsen, 2009).

In a decision-making context, overall uncertainty can arise from both aleatoric
and epistemic uncertainties. Knowing and understanding the differences between
them can assist decision-makers in devising effective strategies to address each type
of uncertainty. Revisiting the five decision-making scenarios mentioned earlier; we
find that the second and third scenarios, decision-making under risk and black-swan
events, exhibit high aleatoric uncertainty and low epistemic uncertainty. On the
other hand, the remaining scenarios, decision-making under Knightian uncertainty
and radical uncertainty, demonstrate high epistemic uncertainty. By distinguishing
between these two types of uncertainty, decision-makers can better comprehend the
sources of variability and imprecision in their systems, allowing them to create suit-
able strategies to tackle them for accelerate the process of material discovery and ma-
terial development. To mitigate aleatoric uncertainty, decision-makers often revise
their models reprenseting hypothesis about nature mechanisms, while addressing
epistemic uncertainty usually involves gathering additional information.
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2.2 Representation of uncertainty by using probability the-
ory

2.2.1 Scoring, calibration, and ensembling to enhance probability estima-
tion

Several ML methods can be employed to induce probabilistic predictors, which are
hypotheses h that produce probability estimates ph(.|x) = p(.|x, h) instead of point
predictions h(x) ∈ Y . For classification tasks, this involves predicting a sole con-
ditional probability ph(y|x) = p(y|x, h) for each label y ∈ Y . Meanwhile, regres-
sion tasks involve predicting a density function p(.|x, h) on R. Such estimators can
be trained discriminatively, i.e., as a mapping x → p(.|x), or generatively, which
basically implies estimating a joint distribution on X × Y . There are two types
of approaches to data analysis: parametric and non-parametric. Parametric ap-
proaches assume specific families of probability distributions, while non-parametric
approaches do not make such assumptions. Examples of these approaches include
logistic and linear regression for classical statistical techniques, Bayesian networks
and Gaussian processes for Bayesian approaches, and multifarious methods in the
domain of (deep) neural networks. These probabilistic models provide a powerful
way to model uncertainty in machine learning tasks by generating complete proba-
bility distributions on Y, enabling more informed decision-making and a better un-
derstanding of the underlying uncertainties.

To train probabilistic predictors, the usual approach is to minimize loss functions
that ensure the predicted conditional probabilities are correct. Proper scoring rules
take a significant part in this process, and the log-loss is a well-known example of
such rules, as mentioned in Gneiting’s work (Gneiting and Raftery, 2007). These
loss functions are essential in guiding the learning process and ensuring accurate
probability estimates from the predictor. In certain cases, probability estimates are
obtained through simple frequentist techniques like Naïve Bayes or nearest neigh-
bor classification. These methods rely on counting occurrences and calculating rela-
tive frequencies to generate probability estimates. Although not as sophisticated as
proper scoring rule methods, they can be effective in specific situations and provide
a baseline for advanced probabilistic prediction approaches.

Some predictive methods generate "pseudo-probabilities" that may not be en-
tirely accurate. Additionally, certain methods produce natural scores that express a
level of confidence but cannot be considered probabilities. An example of this is the
usage of the distance from the separating hyperplane in support vector machines,
which indicates the level of confidence in the prediction obtained from the hyper-
plane. To address this, scaling or calibration methods transform these scores into
proper, well-calibrated probabilities by learning a mapping from scores to the unit
interval. This mapping can then be applied as a post-processing step to the predic-
tor’s output. (Flach, 2017). There are various methods of calibration such as binning
(Zadrozny and Elkan, 2001), isotonic regression (Zadrozny and Elkan, 2002), logis-
tic scaling (Platt et al., 1999), as well as the use of Venn predictors (Johansson et al.,
2018). The field of calibration remains an active area of research, with ongoing efforts
to develop and refine techniques that ensure the resulting probability estimates are
more accurate and reliable. These calibrated probabilities can provide a more mean-
ingful measure of uncertainty and improve decision-making processes in various
applications.

In machine learning, ensemble learning methods like bagging and boosting have
become increasingly popular. This is because they have the ability to enhance the
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FIGURE 2.3: When the hypothesis space is very complex and can pro-
duce almost any decision boundary, areas with few training examples
tend to have high epistemic uncertainty. In the left picture, the lower
query point could be classified as either red (middle picture) or black
(right picture), while the second query is located in a region where the
two class distributions overlap, leading to high aleatoric uncertainty.

(Hüllermeier and Waegeman, 2021)

precision of point predictions. In addition, these methods generate a vast set of esti-
mators (h1, . . . , hM) instead of a single one, which may lead to the desire to generate
probability estimates through fundamental frequentist principles. In basic classifica-
tion, each prediction for a class can be seen as a vote indicating a preference. These
preferences can be expressed as probabilities using relative frequencies. However,
it is important to know that this method can result in biased probabilities requiring
further calibration. In addition, tree-based methods like random forests (Kruppa
et al., 2014; Breiman, 2001), are particularly significant in this field. These methods
create ensembles of decision trees, leveraging the wisdom of the crowd to produce
more accurate and robust predictions. While ensemble learning methods can pro-
vide better predictions, it is crucial to ensure that the resulting probability estimates
are well-calibrated to deliver meaningful measures of uncertainty and to support
informed decision-making processes in various applications.

Indeed, standard probability estimation is a useful approach for representing
uncertainty in predictions. Nonetheless, it fails to explicitly differentiate between
two types of uncertainty. Most techniques in this group focus on aleatoric uncer-
tainty, which is the inherent randomness or noise present in the data. Aleatoric
uncertainty arises due to the variability in the observed data, and it is generally con-
sidered irreducible. On the other hand, epistemic uncertainty arises due to insuffi-
cient knowledge or information regarding the fundamental process or associations
between variables. Reducing epistemic uncertainty is possible by either acquiring
additional data or enhancing the model’s assumptions and structure.

In order to quantify epistemic uncertainty, an intuitive idea is to consider gen-
erative models. Usually, these methods analyze the densities of p(x) to identify if
input points are situated in areas with high or low density, where the latter serves
as a substitute for high epistemic uncertainty. (Fig. 2.3). Traditional methods like
kernel density estimation or Gaussian mixtures can be used to estimate the den-
sity p(x). However, newer methods for density estimation are constantly emerging
in the field of machine learning. Such recent approaches are isolation forests (Liu,
Ting, and Zhou, 2008), auto-encoders (Goodfellow, Bengio, and Courville, 2016), and
radial basis function networks (Hossein Zadeh Bazargani and Mac Namee, 2020).
These methods demonstrate that density estimation is also prominent in anomaly
and outlier detection. Usually, a threshold of the density p(x) is assigned to identify
whether a data point is considered as an outlier. A prime example is the utilization
of auto-encoders to create a compressed version of the input data and then scruti-
nize the reconstruction error to establish its position within the distribution. These
techniques are considered semi-supervised outlier detection methods due to their



20 Chapter 2. Concept of uncertainty in machine learning

independence from annotated outliers for training.
Several semi-supervised outlier detection techniques are influenced by the con-

cept of one-class support vector machines (SVMs). These SVMs create a hyper-
plane that distinguishes outliers from other regular data points in a latent space
with higher dimensionals. (Khan and Madden, 2014). Variations of this approach
exist, such as fitting a hypersphere instead of fitting a hyperplane for the data (Tax
and Duin, 2004). Using generative models and density estimation techniques makes
it possible to better quantify and understand epistemic uncertainty in various ap-
plications. Detecting outliers can be compared to a classification scenario where
the option to discard data is available. For example, in situations where a classifier
decides not to predict a label in areas with low density (Perello Nieto et al., 2016).
Outliers are not tolerated when predicting data as they can significantly affect accu-
racy. This approach prioritizes epistemic uncertainty above all else. It’s important to
note that papers on classification using a reject option often rely on reasoning based
on conditional class probabilities, represented by p(y|x), and specific utility scores.
Many methods focus on estimating aleatoric uncertainty. However, it is crucial to
understand that different papers may have varying interpretations of uncertainty.
To adequately address uncertainty, it’s essential to differentiate between epistemic
and aleatoric uncertainty and identify their sources.

In addition, epistemic and aleatoric uncertainty can be estimated by generative
models in a simple way. The difference between such two uncertainties is known
as conflict, which means overlapping distributions, and ignorance, which refers to
sparsely populated regions with no evidence for any class (Hullermeier and Brinker,
2008). Similarly to other methods that have been mentioned, generative models also
come with drawbacks. Implementing semi-supervised outlier detection methods
can pose some challenges, such as adequately establishing the threshold to identify
outliers and selecting an appropriate model class for the generative model. Den-
sity estimation, a complex problem, often requires a considerable amount of data
to ensure precise results. It can be difficult to accurately determine the appropriate
model class when working with a small sample size, resulting in increased model
uncertainty. Despite these challenges, generative models can still provide valuable
insights into epistemic and aleatoric uncertainties, especially when combined with
other approaches or when the sample size is sufficiently large. By considering the
strengths and weaknesses of different methods, researchers can develop more effec-
tive strategies for handling uncertainty in machine learning tasks.

In summary, when using standard probability estimation techniques, it is essen-
tial to recognize their limitations in distinguishing between aleatoric and epistemic
uncertainty. To better understand and quantify the different types of uncertainty,
alternative approaches, such as Bayesian methods or Dempster-Shafer theory, may
be more appropriate. These methods can help provide a more nuanced understand-
ing of uncertainty, thereby supporting more informed decision-making processes in
various applications.

2.2.2 Bayesian inference

Some deep learning techniques use probabilistic approaches to estimate the likeli-
hood of an individual model output or adjust the calibration after the fact (Jiménez-
Luna, Grisoni, and Schneider, 2020a). Various techniques involve treating neural
networks as Bayesian models, where a prior distribution is considered over their
learnable weights. Inference is then performed over their posterior distribution
using different methods, such as Markov chain Monte Carlo (Zhang et al., 2020)
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or variational inference (Graves, 2011). Gal and Ghahramani, 2016 suggested us-
ing dropout regularization to perform approximate Bayesian inference (Kendall and
Gal, 2017), which was later extended to compute both epistemic (caused by model
misspecification) and aleatoric uncertainty (inherent to data noise). Batch normal-
ization can also make similar approximations (Teye, Azizpour, and Smith, 2018).

Mean-variance estimation is another approach where a neural network is de-
signed to output both a mean and variance value (Nix and Weigend, 1994). To train
the model, a negative Gaussian log-likelihood loss function is utilized. Addition-
ally, some approaches involve making Gaussian distributional assumptions about
prediction errors and using asymptotic approximations, like the delta technique
(Chryssolouris, Lee, and Ramsey, 1996; Hwang and Ding, 1997). These methods
aim to provide more reliable and robust predictions by accounting for both aleatoric
and epistemic uncertainties in deep learning models.

The Bayesian approach is an absolute necessity for deep learning techniques that
deal with uncertainty, particularly in relation to neural networks. These methods are
specifically tailored for neural networks as a model class. When utilizing a standard
neural network for classification, the final layer commonly produces a probability
distribution on the set of classes Y for a given query x ∈ X , utilizing techniques like
softmax. This distribution is based on a set of classes. For regression problems, a
distribution like a Gaussian is placed over a point prediction h(x) ∈ R, which is typ-
ically regarded as the distribution expectation. While neural networks can execute
maximum likelihood inference and produce probabilistic predictions, they are inca-
pable of providing information about the confidence in these probabilities. In other
words, neural networks merely capture aleatoric uncertainty and not epistemic un-
certainty (Hüllermeier and Waegeman, 2021).

2.3 Representation of ignorance: Sets versus Distributions

Methods based on probability theory offer various ways to represent aleatoric and
epistemic uncertainty. However, these methods might not be entirely accurate when
it comes to representing total ignorance. In situations of complete ignorance, probability-
based methods often rely on the assumption of maximizing entropy, which implies
that the probability is uniformly distributed. The uniform distribution represents
a state of maximum uncertainty, where every outcome is considered equally likely.
While this assumption may serve as a convenient starting point in some cases, it
may not accurately represent the actual state of knowledge or lack thereof in many
real-world situations.

Knowledge in traditional probabilistic modeling and Bayesian inference is con-
veyed via a distribution p on Ω. However, it can be challenging to determine how
to modify or "dilute" this knowledge. Belief is distributed among elements in a unit
mass fixed in terms of the total amount of belief in ω ∈ Ω. Unlike sets, adding or
removing a candidate ω does not affect the plausibility of other candidates. This is
because increasing the weight of one alternative ω means decreasing the weight
of another alternative ω by the same amount. Measuring uncertainty for prob-
ability distributions, such as Shannon entropy for finite Ω, primarily capture the
distribution’s shape (its "peakedness" or non-uniformity) and inform about the pre-
dictability of a random experiment’s outcome (Hullermeier and Brinker, 2008). From
this perspective, these measurements are more closely connected to aleatoric uncer-
tainty.However, the set-based method, where knowledge is represented through a
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subset C ⊆ Ω of potential options, is thought to be more effective in estimating epis-
temic uncertainty. By explicitly representing the set of plausible candidates, it more
directly reflects the lack of knowledge about the actual underlying model or state,
offering a more intuitive way to express uncertainty in situations where knowledge
is incomplete or uncertain.

Indeed, some researchers consider the representation of ignorance or lack of
knowledge using probability distributions problematic (Dubois, Prade, and Smets,
1996). A significant problem arises when probability theory uses a uniform distri-
bution to represent complete ignorance, as it fails to differentiate between having
precise probabilistic knowledge about a random event and not having any knowl-
edge due to an incomplete experiment description. This limitation was highlighted
by Ronald Fisher, who argued that not knowing the chance of mutually exclusive events
and knowing the chance to be equal represent two different states of knowledge.

Recognizing the impact of probability, one must acknowledge that its measure-
theoretic foundation and the risk of addiction can present significant challenges. No-
tably, it’s essential to understand that the uniform distribution, even after reparametriza-
tion, may not maintain its consistency. A uniform distribution on a parameter ω
does not decode to a uniform distribution on 1/ω, even though ignorance about ω
should imply ignorance about 1/ω. Similarly, expressing ignorance about a cube’s
length x using a uniform distribution on an interval [l, u] does not result in a uni-
form distribution of x3 on[l3, u3], which implies some degree of informedness about
its volume. These problems raise questions about using the uniform prior distribu-
tions, often interpreted as representing epistemic uncertainty in Bayesian inference,
and whether they are the most appropriate way to model ignorance. There is a belief
that one probability distribution is not enough to represent uncertain knowledge, re-
sulting in the creation of alternative versions of standard probability theory. These
include imprecise probability (Walley, 1991), evidence theory(Shafer, 1976; Kennes,
R, and Smets, 1994), and possibility theory (Dubois and Prade, 2012). The aim of
these formalisms is to seamlessly combine the distinct characteristics of sets and dis-
tributions.

Uncertainty representation and reasoning are essential in various fields, such as
artificial intelligence, engineering, and the natural sciences. A common approach
to describe uncertain situations involves using a reference set Ω, also known as the
frame of discernment (Shafer, 1976). The set Ω comprises all hypotheses or pre-
cise information that must be distinguished in a particular context. The elements
ω ∈ Ω are exhaustive and mutually exclusive, with one of them, ω?, representing
the truth. Various examples can illustrate the concept of the frame of discernment.
In the case of coin tossing, Ω = {H, T}, where H represents heads, and T represents
tails. In predicting the result of a football match, Ω = {win, loss, tie}. In estimat-
ing the parameters (expected value and standard deviation) of a normal distribution
from data, Ω = R×R+, where R represents real numbers and R+ represents pos-
itive real numbers. In subsequent discussions, we will assume that Ω is a discrete
set (finite or countable) for simplicity and to avoid measure-theoretic complications.
This assumption allows for easier exposition and understanding of the concepts re-
lated to uncertainty representation and reasoning.

The assumption of Ω exhaustiveness is only sometimes applicable in certain sit-
uations. For instance, in problems related to machine learning classification, it is
possible that not all classes are known beforehand, or new classes may come up in
the future (Liang, Li, and Srikant, 2018; DeVries and Taylor, 2018). This scenario
is referred to as the "open world assumption," in contrast to the "closed world as-
sumption," where only possibility options is accounted for Ω (Deng, 2014). Though



2.4. Dempster–Shafer theory 23

this distinction may seem technical, it has significant implications for handling and
representing uncertain information, particularly in the context of the empty set. As-
suming a closed world means that an empty set is not valid information. However,
if you assume an open world, an empty set may indicate that the natural state ω?

is outside of Ω. This concept makes managing uncertain information in fields like
artificial intelligence and machine learning more complex. Therefore, it is crucial for
researchers and practitioners to carefully examine their assumptions regarding the
comprehensiveness of their frame of discernment and the potential consequences of
such assumptions on the handling of uncertainty.

There are two main ways to express uncertain information about ω?: subsets and
distributions. When we use a subset C ⊆ Ω, we are suggesting that ω? is included
in that set. This method of expressing information or knowledge allows us to dif-
ferentiate between possible values and those that are definitely not an option. This
approach is suitable for capturing uncertainty that arises due to imprecision, as seen
in examples where incomplete information about a numerical quantity is specified
as an interval C = [l, u].

In contrast, a distribution provides a weight, known as p(ω), to each element ω.
This weight represents a degree of belief. This approach is a suitable extension of
the set-based method. Any subset C can be described by its indicator function IC
on Ω, assuming no restrictions on the weights. This function assigns a weight of 1
to each ω? element in C and 0 to ω? elements not in C. However, this view is not
valid for the specifically important case of probability distributions. The reason is
that probability distributions adhere to specific constraints, such as normalization
(summing up to 1). Consequently, a probability distribution cannot fully capture
the same sense of uncertainty as a set-based representation. For example, the cur-
rent approach to handling uncertainty may not consider the level of confidence in
a model or knowledge about a situation, known as epistemic uncertainty. Alterna-
tive frameworks like imprecise probabilities, evidence theory, and possibility theory
have been developed to address this limitation. These frameworks aim to combine
set-based and distribution-based representations of uncertainty to capture better the
different types of uncertainties that may occur in different contexts.

2.4 Dempster–Shafer theory

Quantifying and representing uncertainty are essential aspects of decision-making
and reasoning in many fields, including artificial intelligence, engineering, and nat-
ural sciences. Several theories have been proposed to handle uncertainty, including
probability theory, evidence theory (Shafer, 1976; Kennes, R, and Smets, 1994), im-
precise probability (Walley, 1991), and possibility theory (Dubois and Prade, 2012).
Evidence theory, also known as Dempster-Shafer theory, has gained prominence due
to its expressive representation and ability to handle partial and conflicting informa-
tion. This essay discusses the advantages of evidence theory and why it is often
chosen over its alternatives, namely imprecise probability and possibility theory.

One of the significant advantages of evidence theory is its explicit representation
of uncertainty. Evidence theory employs essential probability assignments (BPAs)
and mass functions to represent uncertain knowledge. These representations al-
low mass assignment to all subsets ω of the frame of discernment Ω, excluding
the empty set (ω 6= ∅). This flexibility in mass assignment enables evidence the-
ory to capture both partial and conflicting information, which is often difficult to
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FIGURE 2.4: Representation of ignorance by using Bayesian theory
(a) and Dempster-Shafer theory (b).

achieve with other uncertainty representation frameworks like imprecise probabil-
ity and possibility theory. Evidence theory is particularly well-suited for handling
ignorance or incomplete information (Fig. 2.4). Unlike probability theory, which
models complete ignorance using a uniform distribution, evidence theory explicitly
represents ignorance by assigning mass to the subsets of the frame of discernment.
This feature is advantageous when dealing with situations where there needs to be
more knowledge or complete information about the problem. In contrast, imprecise
probability and possibility theory may need help to capture and represent ignorance
as effectively as evidence theory.

Evidence theory is an excellent method for systematically combining evidence
from multiple sources. With Dempster’s rule of combination, one can effectively
combine evidence while considering any potential conflicts and uncertainties. This
approach is beneficial when dealing with evidence from sources that may not be en-
tirely reliable. While imprecise probability and possibility theory are viable options
for combining evidence, Dempster’s rule of combination in evidence theory is more
robust and systematic. Furthermore, evidence theory provides belief and plausibil-
ity functions that aid in interpreting and comprehending the uncertainty related to
a specific event or outcome. Belief and plausibility functions provide lower and up-
per bounds on the probability of events, respectively, facilitating decision-making
processes by making it easier to understand the implications of uncertain informa-
tion. In comparison, imprecise probability and possibility theory may not provide as
straightforward or easy-to-understand measures of uncertainty as evidence theory
does.

In summary, evidence theory presents several advantages over imprecise proba-
bility and possibility theory, making it a popular choice for representing and reason-
ing with uncertainty in various applications. Its expressive representation, ability to
handle ignorance, a systematic combination of evidence from multiple sources, and
interpretable uncertainty measures all contribute to its superiority over other uncer-
tainty representation frameworks. However, it is essential to note that choosing the
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best framework ultimately depends on the specific problem and the nature of the un-
certainties involved. In some cases, imprecise probability or possibility theory may
be more appropriate for the task. Nonetheless, evidence theory remains a versatile
and powerful tool for representing uncertainty and should be carefully considered
when dealing with partial or conflicting information from multiple sources.

2.4.1 Overview

Recognizing the value of the Dempster-Shafer theory, commonly known as evidence
theory, is crucial as it is often considered a superior approach to representing and
merging beliefs in comparison to traditional probability theory. The main ideas
behind Dempster–Shafer theory are: 1) using subjective probabilities for a related
question to obtain beliefs for a given question, and 2) applying Dempster’s rule to
combine independent, evidence-based beliefs (Shafer, 1976). Degrees of belief in this
framework are represented as belief functions, also known as mass functions assign-
ing masses to sets of possibilities rather than single events. This approach has the
advantage of encoding evidence in favor of propositions more naturally and provid-
ing a more expressive representation of uncertainty (Smets, 1993).

Shafer’s formalism, or evidence theory, provides a framework for representing
belief and uncertainty about propositions by assigning belief and plausibility values
as intervals. Based on the available evidence, these intervals capture the lower and
upper bounds of the possibility of a proposition being true. In Shafer’s framework,
a set of possibilities, known as the frame of discernment Ω, is considered. A subset
of this frame represents a possible outcome. Subjective probabilities, or masses, are
assigned to all frame subsets, with non-zero masses typically assigned to a restricted
number of sets called focal elements.

In Dempster–Shafer theory, belief functions assign masses to all nonempty sub-
sets of the Ω, frame of discernment, meaning they operate on the power set of the
states. For instance, consider a situation with two possible states. In this case, a
belief function would assign mass to the first state, the second state, both states.
This way of representing uncertainty allows for a more nuanced representation of
epistemic plausibilities, sometimes leading to answers that contradict those derived
using probability theory. Dempster–Shafer theory is often used as a method of sen-
sor fusion, combining information from multiple sensors or sources to obtain a more
accurate and reliable estimation. The theory’s appeal lies in its ability to encode evi-
dence naturally in favor of propositions and its flexibility in handling different types
of uncertainties.

The belief in a hypothesis is determined by the combined mass of all its subsets.
Belief, also known as Bel, represents the degree of evidence supporting a proposi-
tion and can range between 0 (no evidence) and 1 (certainty). On the other hand,
plausibility serves as the maximum likelihood of the hypothesis being accurate. It is
one minus the sum of the masses of all sets whose intersection with the hypothesis
is empty. Plausibility is related to Belief through the equation Pl(p) = 1 - Bel(¬p),
and it also ranges from 0 to 1. Plausibility measures the extent to which evidence
supporting a proposition’s negation affects the ability to believe in it.

Suppose there is a belief that the cat inside the box has a 50% chance of being
dead. However, evidence also indicates a 20% chance that the cat is alive. The re-
maining 30% is considered as epistemic uncertainty, which means we cannot be sure
whether the cat is dead or alive. The difference between these two subsets represents
the aleatoric uncertainty from the randomness factors in the hypothesis about the
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cat’s life. Shafer’s formalism can help us better understand uncertainty and how it
relates to evidence in complicated situations.

In this scenario, there are two possible outcomes in the frame of discernment:
Ωcat = {"Alive", "Dead"}. From these outcomes, we establish three subsets that rep-
resent hypotheses about the cat’s life: "Alive", "Dead", and "Either". The "neither"
situation is automatically assigned a value of zero as a result of the closed-world as-
sumption. The hypotheses "Alive" and "Dead" are orthogonal, and their probabilities
are 0.2 and 0.5, respectively. These probabilities may correspond to the dependabil-
ity of a "Live/Dead Cat Detector" signal. The "Either" hypothesis includes all possi-
bilities and ensures that the sum of all probabilities adds up to 1. Belief in "Alive" and
"Dead" is equivalent to their corresponding probabilities, as they have no subsets.
Conversely, the belief for "Either" is the total of all three probabilities (Alive, Dead,
and Either), as "Alive" and "Dead" are both subsets of "Either". The plausibility for
"Alive" is 1−m(Dead) = 0.5, and the plausibility for "Dead" is 1−m(Alive) = 0.8.
Alternatively, the plausibility for "Alive" is m(Alive) + m(Either), and the plausi-
bility for "Dead" is m(Dead) + m(Either). Finally, the plausibility for "Either" is the
sum of m(Alive), m(Dead), and m(Either). The universal outcomes ("Either") will
always have 100% belief and plausibility, acting as a sort of checksum. This example
demonstrates how the Dempster-Shafer theory can calculate belief and plausibility
values for various hypotheses. This representation captures the uncertainty and in-
terplay between evidence in the system, providing a more expressive representation
of uncertainty than traditional probability distributions.

Dempster-Shafer theory is a helpful framework for combining beliefs from differ-
ent sources using various fusion operators. Dempster’s rule of combination (Demp-
ster, 1968) is a widely recognized fusion operator that combines belief constraints
from different independent belief sources. In merging clues or personal preferences,
one can utilize probability masses to gauge the level of disagreement between dif-
ferent sources of belief. Additionally, various fusion operators can be employed to
replicate other situations, such as the cumulative fusion of beliefs from independent
sources through the use of the cumulative fusion operator.

Dempster’s rule of combination is sometimes seen as an approximate general-
ization of Bayes’ rule. While traditional Bayesian methods require specifying priors
and conditionals, Dempster-Shafer theory allows for the expression of ignorance
in situations where prior probabilities cannot be assigned (Denœux, Dubois, and
Prade, 2020). This distinction between risk and ignorance has been a topic of exten-
sive debate among statisticians and economists, with contrasting views from notable
figures such as Kenneth Arrow, and Frank Knight (Knight, 1921; Arrow, 1971).

2.4.2 Formal definition

Let define a frame of discernment Ω, which is the universe set representing all possible
outcomes of a system, the question under consideration. Then, the power set of Ω is
the set of all subsets of Ω. For example, reconsider the example of Schrodinger’s cat:

Ωcat = {”Alive”, ”Dead”}

2Ωcat = {∅, {”Alive”}, {”Dead”}, {”Alive”, ”Dead”}}

The power set 2Ωcat in the theory of evidence denotes actual states of the problem
where the proposition is true. The theory of evidence assigns a belief mass to each
element in the power set through a mass function.
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m : 2Ωcat → [0, 1], m(∅) = 0

The mass of a given member of a power set, represented as m(A) where A be-
longs to 2Ωcat , expresses the amount of relevant and available evidence supporting
the claim that the actual state belongs to A but not to any particular subset of A.
The value of m(A) is exclusive to the set A and does not make any additional claims
about its subsets, each of which has its own mass. Based on these mass assignments,
belief (or support) and plausibility are two non-additive continuous measures that
can define the upper and lower bounds of a probability interval. This interval con-
tains the precise probability of a set of interests in the classical sense.

bel(A) ≤ P(A) ≤ pl(A)

, where bel(A) = ∑B|B⊆A m(B) expresses the belief for a set A and is defined as the
sum of all the masses of subsets of the set of interest, meanwhile, the plausibility
pl(A) = ∑B|B∩A 6=∅ m(B) is the sum of all the masses of the sets B that intersect the
set of interest A. The two measures are related to each other as follows: pl(A) =
1− bel(A).

In specific scenarios, merging two sets of probability mass assignments becomes
imperative. When multiple sources convey their beliefs through belief constraints
such as hints or preferences, we utilize Dempster’s rule of combination (Dempster,
1967; Dempster, 1968) to serve as the suitable fusion operator. Using a normalization
factor, this rule extracts shared beliefs from multiple sources and disregards any
conflicting (non-shared) beliefs. However, employing this rule in situations other
than combining belief constraints has been criticized, such as fusing different belief
estimates from multiple sources that must be accumulated cumulatively rather than
as constraints. In cumulative fusion, all probability masses from various sources are
incorporated in the resulting belief, ensuring no probability mass is neglected.

Specifically, the combination (called the joint mass) is calculated from the two
sets of masses m1 and m2 in the following manner:

m1,2(∅) = 0

m1,2(A) = (m1 ⊕m2)(A) =
1

1− K ∑
B∩C=A 6=∅

m1(B)m2(C)

, where K = ∑B∩C=∅ m1(B)m2(C) is a measure of the amount of conflict between
the two mass sets. The normalization factor, 1 - K, effectively disregards any conflict
by allocating the mass associated with the conflict to the empty set. Consequently,
the combination rule for evidence may lead to counterintuitive outcomes, as will be
demonstrated subsequently.

The following example illustrates how Dempster’s rule can yield intuitive results
when used for preference fusion, even in situations with high conflict. Imagine two
friends, Alice and Bob, planning to watch a movie at the cinema one evening, with
only three options available: X, Y, and Z. Alice has a 0.99 probability preference
for film X and a 0.01 probability preference for film Y. Bob has a 0.99 probability
preference for film Z and a 0.01 probability preference for film Y. When combining
their preferences using Dempster’s rule of combination, their joint preference results
in a 1.0 probability for film Y, as it is the only film they both agree on.

Dempster’s rule can still yield sensible outcomes despite conflicting beliefs. Con-
sider the scenario where Alice is fully certain of film X and Bob is certain of film Z.
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When applying Dempster’s rule to combine their preferences, the result is unde-
fined, indicating an absence of any resolution. Consequently, they opt not to go
to the cinema that evening. However, the meaning of preference as probability is
ambiguous: if it refers to the likelihood of watching film X tonight, it assumes the
fallacy of the excluded middle where the probability of not watching any films is 0.

In 1979, Lotfi Zadeh presented an example that highlights the unexpected con-
sequences of Dempster’s rule when there is a high level of disagreement (Zadeh,
1984). Let’s imagine that two doctors, who are equally reliable, are examining a pa-
tient. The first doctor believes that the patient has a brain tumor with a probability
(basic belief assignment, or mass of belief) of 0.99 or meningitis with a probability of
0.01. The second doctor believes that the patient has a concussion with a probability
of 0.99 and meningitis with a probability of 0.01. When we apply Dempster’s rule to
combine these two sets of belief masses, the result is m(meningitis) = 1, which im-
plies that meningitis is diagnosed with 100% confidence. This outcome is contrary
to common sense since both doctors agree that there is only a very small chance that
the patient has meningitis. This example has motivated many research studies that
aim to either establish a solid justification for Dempster’s rule and the foundations
of the Dempster-Shafer theory or to expose the inconsistencies of the theory.

In the following scenario, we can see how Dempster’s rule can lead to unex-
pected outcomes despite a low level of disagreement. To illustrate, let’s imagine two
doctors with differing opinions on a patient’s condition. One doctor believes the
patient has a 99% chance of having a brain tumor and only a 1% chance of having
meningitis. The other doctor thinks the patient has a 99% chance of having a brain
tumor and a 1% chance of having a concussion. When we apply Dempster’s rule to
determine the likelihood of a brain tumor, the resulting calculation is as follows:

m(brain tumor) = Bel(brain tumor) = 1

Based on the results, there is strong evidence that supports the likelihood of a
brain tumor diagnosis, which both doctors have agreed is highly probable. This
agreement is due to the similarity of the evidence presented by both doctors. Given
this information, it is reasonable to assume that:

m(brain tumor) < 1 and Bel(brain tumor) < 1,

since the existence of non-zero belief probabilities for alternative diagnoses indicates
a lack of endorsement for the brain tumor diagnosis.
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Chapter 3

Quantifying material similarity
with uncertainty with respect to
binary properties

3.1 Introduction

In the past decade, research using data-driven approaches in materials science has
grown significantly, with each study employing a variation of the materials infor-
matics workflow. Data-driven methods have gained recognition as powerful tools
for accelerating material discovery by reducing the number of candidates to investi-
gate. However, these methods face three critical challenges in the materials research
field:

1. Quality of material data: The data quality often limits the effectiveness of
data-dependent methods. Experimental or computational datasets for ma-
terials might need essential information, such as missing or heavily biased
data since researchers tend to report successful materials while overlooking
unsuccessful attempts. For example, suppose a dataset only contains high-
performing materials for a specific purpose without data on low-performing
or failed materials. In that case, the machine learning (ML) model may not
accurately capture the complete range of material properties and could over-
estimate new materials’ performance.

2. Inconsistency of material datasets: Integrating non-comparable datasets de-
rived from various calculation methods or experiments presents a significant
challenge for data-driven approaches. Inconsistencies may arise between two
datasets of the same material property, collected using different experimental
setups or computational methods, leading to discrepancies in reported values.
This inconsistency makes it difficult for ML models to learn a reliable relation-
ship between material descriptors and properties.

3. Difficulty designing suitable material descriptors: Data-driven approaches
often rely on descriptors derived from condensed matter theory and parame-
ters fitted from experimental or computational data to predict potential ma-
terials. Descriptors calculated from constituent atomic properties are com-
monly used, but assessing similarities between materials with varying num-
bers of compositions remains challenging. For instance, a descriptor that accu-
rately captures the electronic properties of binary alloys may not be suitable for
ternary or more complex alloys, leading to practical limitations in predicting
material properties.
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Considering the challenges associated with material data, material scientists must
make decisions under uncertainty, which includes both aleatoric and epistemic un-
certainties. Therefore, developing data-driven methods that can effectively distin-
guish and accurately measure these uncertainties is crucial. To solve these issues
and pay attention to predicting whether particular combinations of elements exhibit
properties of interest, we adopted the Dempster–Shafer theory (Dempster, 1968;
Shafer, 1976; Denœux, Dubois, and Prade, 2020), referred to as the evidence the-
ory, to develop a descriptor-free recommender system, called evidence-based rec-
ommender system (ERS), for exploring potential advanced material. The proposed
system measures the similarity between materials with respect to the correlation of
their compositions and binary target property. It then utilizes the similarity to decide
on selecting the following candidates for evaluation.

Details of the proposed system are introduced in section 3.2. The applications
of the proposed system to explore high-entropy alloys (HEA) and solvent mixtures
that exfoliate graphite to produce graphene are shown in sections 3.3 and 3.4, re-
spectively. Note that the HEA and solvent mixture are represented by a set of items
(elements or solvents).

3.2 Evidence-based recommender system (ERS)

In high-entropy alloys and solvent mixtures, the combinations are represented sim-
ilarly, with alloys being combinations of elements and solvent mixtures being sol-
vents. Generally, each material A in datasetD is represented by a set of components.
The binary property of interest yA for the material A can be either Y or ¬Y (not Y).

3.2.1 Methodology

Our proposed recommendation system is based on the widely used elemental sub-
stitution method, which is used to synthesize various materials. This method in-
volves replacing an element or group of elements with a similar chemical counter-
part in order to maintain the properties of the target material. However, determining
the similarity between the chemical functions of alloy metal combinations or solvent
combinations to find potential HEAs can be challenging. To overcome this chal-
lenge, we examine each observed combination to compare the contribution of its
constituent elements to the target property of interest (i.e. forming HEA phase or
exfoliating graphite). This evidence is then used to generate hypotheses about the
properties of candidates. Our ERS involves three main steps:

1. Measure the similarity between element combinations: All the pieces of evi-
dence obtained from the data are modeled and combined to conclude the sim-
ilarity between the element combinations by using evidence theory.

2. Evaluate the hypothesis on the properties of the substituted alloys: The
pieces of evidence for the substituted alloys are modeled and combined to
evaluate the hypothesis about the target property by using evidence theory.

3. Rank substituted alloys: The candidates are ranked according to various cri-
teria based on the combined evidence of their target properties.

Each combination of elements A in data set D is represented by a set of its com-
ponents. The property of interest yA for the combinations A (alloy), which can be
either Y or ¬Y (not Y). We first assess the similarity between element combinations
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by applying the evidence theory to model and combine all pieces of evidence col-
lected form the dataset D.

Various forms show the similarity between objects, as stated by Tversky (Tver-
sky, 1977). These include rating pairs, object sorting, associations, substitutabil-
ity, and correlation between occurrences. In this discussion, we explore the solid-
solution formability for element combinations and how substitutability measures
their similarity (Fig. 3.1). Each nondisjoint pair of materials Ai = {a, b, e, f } and
Aj = {a, b, i, k} in D is a source of evidence for measuring the substitutability be-
tween two element combinations Ct = Ai − (Ai ∩ Aj) = Ai − Aj = {e, f } and Cv =
Aj − (Ai ∩ Aj) = Aj − Ai = {i, k}. The nonempty intersection set Ai ∩ Aj = {a, b}
is considered as the context for the similarity measurement. If yAi = yAj then Ct and
Cv are substitutable, otherwise Ct and Cv are not substitutable.

To model evidence about the similarity between any pair of element combi-
nations, we first define a frame of discernment (Shafer, 1976) Ωsim = {similar,
dissimilar} containing all possible values. The evidence collected from alloys Ai
and Aj is then represented by a mass function (Shafer, 1976) (or a basic probability
assignment), mCt,Cv

Ai ,Aj
, which assigns probability masses to all the nonempty subsets

of Ωsim (i.e., {similar}, {dissimilar}, and {similar, dissimilar}), as follows:

mCt,Cv
Ai ,Aj

({similar}) =
{

α if yAi = yAj

0 otherwise
, (3.1)
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mCt,Cv
Ai ,Aj

({dissimilar}) =
{

α if yAi 6= yAj

0 otherwise
, (3.2)

mCt,Cv
Ai ,Aj

({similar, dissimilar}) = 1− α (3.3)

Note that the masses assigned to {similar} and {dissimilar} indicate the degrees of
belief exactly committed to Ai and Aj to support the similarity and dissimilarity be-
tween Ct and Cv, respectively. The weight assigned to subset {similar, dissimilar}
expresses the degree of belief that Ai and Aj provide no information about the sim-
ilarity (or dissimilarity) between Ct and Cv. Here, the parameter α is determined by
an exhaustive search (0<α<1) for the best cross-validation score (Section 3.2.3). We
retain some degree of uncertainty (1− α) about the similarities collected from each
piece of evidence for dealing with the inconsistencies in the data set. The sum of the
masses assigned to all three nonempty subsets of Ωsim is 1.

Suppose that we can collect multiple pieces of evidence from D to compare
two element combinations Ct and Cv, all obtained mass functions corresponding
to those pieces of evidence are then combined using the Dempster rule of combina-
tions (Dempster, 1968) to assign the final mass mCt,Cv

D (Section 3.2.2). Similar analyses
are performed for all pairs of element combinations of interest to obtain a symmet-
ric matrix M consisting of all the similarities between them (M[t, v] = M[v, t] =

mCt,Cv
D ({similar})).

For hypothesizing whether a potential combinations of elements (or solvents)
Anew forms an HEA phase (or exfoliate graphite), we apply the substitution method
using the obtained matrix M. We replace a combination of elements, Ct, in an exist-
ing alloy, Ak, (Ct ⊂ Ak) with a combination of elements, Cv, adequate to obtain alloy
Anew showing a property (label yAnew ) similar to that of Ak (label yAk ). On the basis
of the label of Ak and the similarity between Ct and Cv, the basic beliefs on the label
of Anew are quantified (Figure 1 b). If Ct and Cv are substitutable (non-substitutable),
this serves as a piece of evidence that the labels of Anew and Ak are the same (differ-
ent).

To model evidence about existence of HEA phase in a particular alloy, we first
define a frame of discernment (Shafer, 1976) ΩY = {Y,¬Y}.The evidence collected
from Ak, Ct, and Cv is then represented by the mass function mAnew

Ak ,Ct←Cv
, which as-

signs probability masses to all the nonempty subsets of ΩY (i.e., {Y}, {¬Y}, and
{Y,¬Y}), as follows:

mAnew
Ak ,Ct←Cv

({Y}) =
{

M[t, v] if yAk = Y
0 otherwise

, (3.4)

mAnew
Ak ,Ct←Cv

({¬Y}) =
{

M[t, v] if yAk = ¬Y
0 otherwise

, (3.5)

mAnew
Ak ,Ct←Cv

({Y,¬Y}) = 1−M[t, v], (3.6)

Note that the masses assigned to {Y} and {¬Y} reflect the levels of confidence
whereby Ak and the substitution of Cv for Ct support the probabilities that Anew is
or is not an HEA, respectively. The mass assigned to subset {Y, ¬Y}, expresses the
probability that Ak, Ct, and Cv provide no information about the property of Anew.
The sum of the probability masses assigned to all three nonempty subsets of ΩY is 1.

We assume that for a specific hypothetical alloy, Anew, we can collect pieces of
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evidence about its properties from D (pair of Ak and the corresponding substitution
to obtain Anew from Ak). The obtained mass functions for Anew are then combined
using the Dempster rule (Dempster, 1968) to obtain a final mass function mAnew (Sec-
tion 3.2.2). Similar analyses are performed for all the possible alloys (Anew) that are
not included in the observed data. We then use the final value of mAnew

D ({Y}) for
sorting the ranking of recommendation. The proposed recommender system con-
siders the alloys with a higher value of mAnew

D ({Y}) to have the greater potential of
having property of interest Y.

3.2.2 Combining multiple pieces of evidence

We assume that we can collect q pieces of evidence fromD to compare a specific pair
of element combinations, Ct and Cv. If no evidence is found, the mass function mCt,Cv

none
is initialized, which assigns a probability mass of 1 to subset {similar, dissimilar}.
mCt,Cv

none models the condition under which no information about the similarity (or
dissimilarity) between Ct and Cv is available. Any two pieces of evidence a and b
modeled by the corresponding mass functions mCt,Cv

a and mCt,Cv
b can be combined

using the Dempster rule (Dempster, 1968) to assign the joint mass mCt,Cv
a,b to each

subset ω of Ωsim (i.e. {similar}, {dissimilar}, or {similar, dissimilar}) as follows:

mCt,Cv
a,b (ω) =

(
mCt,Cv

a ⊕mCt,Cv
b

)
(ω)

=

∑
∀ωk∩ωh=ω

mCt,Cv
a (ωk)×mCt,Cv

b (ωh)

1− ∑
∀ωk∩ωh=∅

mCt,Cv
a (ωk)×mCt,Cv

b (ωh)
,

(3.7)

where ω, ωk and ωh are subsets of Ωsim. Note that the Dempster rule is commutative
and yields the same result by changing the order of mCt,Cv

a and mCt,Cv
b . All the q

obtained mass functions corresponding to the q collected pieces of evidence from D
are then combined using the Dempster rule to assign the final mass mCt,Cv

D as follows:

mCt,Cv
D (ω) =

(
mCt,Cv

1 ⊕mCt,Cv
2 ⊕ · · · ⊕mCt,Cv

q

)
(ω). (3.8)

Multiple pieces of evidence about the label of each new alloy are combined using
the similar manner. We assume that for a specific hypothetical alloy, Anew, we can
collect pieces of evidence about its properties fromD (pair of Ak and the correspond-
ing substitution to obtain Anew from Ak). If no evidence is found, mAnew

none is initialized
and a probability mass of 1 is applied to set {Y,¬Y}. mAnew

none models the condition that
no information about the label of Anew can be obtained from D. The obtained mass
functions for Anew are then combined using the Dempster rule (Dempster, 1968) to
obtain a final mass function mAnew

D on ΩY.

3.2.3 Tuning hyper-parameter of the ERS

Because data sets used in this work are the output of calculation prediction meth-
ods, we add some degree of uncertainty α in the mass function which models sim-
ilarity evidence. In each data set, we use grid search to determine the α that best
reproduced the alloy labels in the data set (achieving best cross-validation score).
The search space of α is from 0.01 to 0.9 with a step of 0.01. However, the relative
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magnitudes of (degree of belief HEA ) and (degree of belief not HEA ) are almost un-
changed. In summary, the absolute value of alpha has little effect on the final result
of the recommender system.

3.2.4 Illustrative examples

The following examples provide explanations of how the evidence theory work to
learn the similarity and infer the HEA formation for new element combinations,
identifying equiatomic alloys.

Example 1: Suppose we have collected four pairs of alloys from experiments.
Three of those pairs are alloys that both form HEA phase: pair1 = ({A1, B1, C1, D}, {A1, B1, C1, E})
; pair2 = ({A2, B2, C2, D}, {A2, B2, C2, E}) ; and pair3 = ({A3, B3, C3, D}, {A3, B3, C3, E}).
The fourth pair pair4 = ({A4, B4, C4, D}, {A4, B4, C4, E}) is different from the other
three, in which {A4, B4, C4, D} forms HEA phase while {A4, B4, C4, E} does not form
HEA phase. We consider each pair as a source of evidence support that {D} is simi-
lar to {E} in term of substitutability to form the HEA phase. Each evidence is mod-
eled using mass function as follows:

m{C},{D}pair1
({similar}) = 0.1,

m{C},{D}pair1
({dissimilar}) = 0,

m{C},{D}pair1
({similar, dissimilar}) = 0.9

m{C},{D}pair2
({similar}) = 0.1,

m{C},{D}pair2
({dissimilar}) = 0,

m{C},{D}pair2
({similar, dissimilar}) = 0.9

m{C},{D}pair3
({similar}) = 0.1,

m{C},{D}pair3
({dissimilar}) = 0,

m{C},{D}pair3
({similar, dissimilar}) = 0.9

m{C},{D}pair4
({similar}) = 0,

m{C},{D}pair4
({dissimilar}) = 0.1,

m{C},{D}pair4
({similar, dissimilar}) = 0.9

The three pieces of evidence are combined using the Dempster’ rule of combina-
tion to accumulate the believe that {D} is similar to {E}:

m{C},{D}({similar}) = 0.25,

m{C},{D}({dissimilar}) = 0.075,

m{C},{D}({similar, dissimilar}) = 0.675

Next, if we observed (included in the data) that the HEA phase exists for alloy
{G, H, I, D}, the ERS (which focuses on finding some chance for discovering new
combination of elements that the HEA phase exist and ignores the belief regarding
¬HEA) will consider that there is some believe that the HEA phase also exists for
{G, H, I, E} (by substituting {D} with {E}). The evidence is modeled using mass
function as follows:
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m{G,H,I,E}
{G,H,I,D},{D}←{E}({¬HEA}) = 0,

m{G,H,I,E}
{G,H,I,D},{D}←{E}({HEA}) = mC,D({similar}) = 0.25,

m{G,H,I,E}
{G,H,I,D},{D}←{E}({HEA,¬HEA}) = 1−mC,D({similar}) = 0.75

Example 2: In a same manner but for an extrapolative recommendation: if the
HEA phases exist for all the alloys in the three following pairs: pair1 = ({A1, B1, C}, {A1, B1, D, E}),
pair2 = ({A2, B2, C}, {A2, B2, D, E}), pair3 = ({A3, B3, C}, {A3, B3, D, E}). In the
fourth pair pair4 = ({A4, B4, C}, {A4, B4, D, E}), {A4, B4, C} forms HEA phase while
{A4, B4, D, E} does not form HEA phase. The algorithm will accumulate the believe
that {C} is similar to {D, E} as follows:

m{C},{D,E}({similar}) = 0.25,

m{C},{D,E}({dissimilar}) = 0.075,

m{C},{D,E}({similar, dissimilar}) = 0.675

Consequently, if we observed (included in the data) that the HEA phase exists
for {G, H, I, C}, the algorithm (which focuses on finding some chance for discover-
ing new combination of elements that the HEA phase exist and ignores the belief
regarding ¬HEA) will consider that there is some believe that the HEA phase also
exists for {G, H, I, D, E} (by substituting {C} with {D, E}).

m{G,H,I,D,E}
{G,H,I,C},{C}←{D,E}({¬HEA}) = 0,

m{G,H,I,D,E}
{G,H,I,C},{C}←{D,E}({HEA}) = mC,D({similar}) = 0.25,

m{G,H,I,D,E}
{G,H,I,C},{C}←{D,E}({HEA,¬HEA}) = 1−mC,D({similar}) = 0.75

3.3 Case study 1: Exploring high-entropy alloys

Multi-principle element alloys (MPEAs), also known as high-entropy alloys (HEAs)
when comprising five or more elements, represent a novel development concept of
alloy Yeh et al., 2004; Cantor et al., 2004; Senkov et al., 2015. These alloys consist of
multiple elements forming highly disordered solid-solution phases. Since their dis-
covery, MPEAs, and HEAs have garnered significant interest in the scientific com-
munity due to their promising properties and potential applications Rickman et al.,
2019; Tsai and Yeh, 2014. These alloys exhibit exceptional strength-to-weight ratios,
tensile strengths, and corrosion and oxidation resistance. For the sake of consistency
with the published data utilized in this study, the term "HEA" refers to random al-
loys comprising equiatomically combined elements that form a solid-solution phase.

Approaches to recommend specific element combinations likely to form single-
phase HEAs vary between deductive and inductive methods based on distinct con-
cepts. In the deductive approach, understanding the mechanisms governing HEA
formation or starting with quantum-mechanical equations derived from extensive
first-principles calculations is necessary. Previous HEA research hypothesized that
configurational entropy-induced stabilization results in the formation of single-phase
solid solutions. However, this hypothesis holds only for certain multicomponent al-
loys, as most have experimentally demonstrated the formation of multiple phases
(GUO and LIU, 2011). While significant attention has been devoted to understand-
ing the mechanisms driving HEA stability, the key factors governing the formation
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of single-phase HEAs remain unknown (Zhang et al., 2016). Using first-principles
calculations to construct phase diagrams for multicomponent alloys can predict which
alloys will form solid solutions. Still, the computational demands of this method,
which involves energy calculations for numerous configurations and the implemen-
tation of statistical mechanical models, are significant (Huhn and Widom, 2013).
Therefore, exploring HEAs through first-principles calculations becomes crucial.

Inductive screening methods have been developed, employing descriptors de-
rived from condensed matter theory and fitted parameters based on available ex-
perimental data to predict possible HEAs or their structural phases (Zhang et al.,
2008; Ye et al., 2015; Tsai, 2016; Tsai et al., 2019; Huang, Martin, and Zhuang, 2019).
However, the inductive approach relies on sufficient and balanced data to ensure
prediction accuracy, which is often challenging due to limited or biased experimen-
tal data skewed towards positive results (George, Raabe, and Ritchie, 2019; Konno et
al., 2021). Additionally, quantitatively evaluating prediction uncertainty remains an
ongoing challenge, even in cases of high prediction accuracy. Designing appropri-
ate material descriptors to represent alloys with varying numbers of elements poses
another obstacle. Descriptors calculated from atomic properties of constituent ele-
ments, such as mean, variance, and differences in atomic sizes, are commonly used
(Pham et al., 2016a; Kobayashi et al., 2017; Tamura et al., 2017; Seko et al., 2017;
Huang, Martin, and Zhuang, 2019; Kobayashi, 2021). However, accurately assessing
similarity or dissimilarity between alloys with different compositions is mathemat-
ically complex, leading to limitations in the results obtained through data-driven
approaches using these descriptors (Pham et al., 2016a; Nguyen et al., 2018a). One
potential solution is describing the alloy using one-hot vectors of constituent ele-
ments. However, this approach presents its own challenge of designing an appro-
priate metric in this vector space (Pham et al., 2017).

The Dempster-Shafer theory is a superior approach to the Bayesian method for
dealing with incomplete information and insufficient data. This approach is partic-
ularly beneficial for solving material data problems. Evidence theory assigns non-
negative weights to subsets of possibilities, known as the "frame of discernment,"
instead of individual elements like the Bayesian approach. This allows for the mod-
eling, collection, and combination of evidence from multiple alloy data without the
need for material descriptors. Consequently, this system can confidently suggest
advanced materials by learning from multiple observed materials with fewer con-
stituent elements.

3.3.1 Alloys data sets

In our evaluation tests, we use eight data sets consisting of binary, ternary, quater-
nary, and quinary alloys comprising multiple equiatomically combined elements.
The datasets include data from experiments and calculations. The alloys contained
in the data sets comprise E = { Fe, Co, Ir, Cu, Ni, Pt, Pd, Rh, Au, Ag, Ru, Os, Si, As,
Al, Tc, Re, Mn, Ta, Ti, W, Mo, Cr, V, Hf, Nb, and Zr}. Figure 3.2 shows the propor-
tion of 27 elements in the data sets. Any alloy included in the following data sets is
considered as HEA if its disordered transition temperature is lower than its melting
point.

• DASMI16: The order-disorder transition temperatures (Texp
c ) and melting tem-

peratures (Texp
m ) of the alloys are both experimentally evaluated (Okamoto,

Schlesinger, and Mueller, 2016). All of the alloys contained inDASMI16 show an
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TABLE 3.1: Summary of the eight alloy data sets used in evaluation
experiments. No. alloys: number of alloys included in each data set;
No. HEAs: number of the alloys confirmed or estimated to form HEA
phase in each data set; No. candidates: number of possible alloys
generated using the set of all elements in the data sets. The "HEA
rate" is the ratio of No. HEA to No. alloys, whereas the "Observation

rate" is the ratio of No. alloys to No. candidates.

Data set No. alloys No. HEAs No. candidates
(HEAs rate) (Observation rate)

DASMI16
1 45 binary alloys 45 351

(100%) (13%)

DCALPHAD
2 243 ternary alloys 243 2925

(100%) (9%)

DAFLOW
3 117 binary alloys 60 351

(51%) (33%)
441 ternary alloys 234 2925

(53%) (15%)

DLTVC
4 117 binary alloys 58 351

(49%) (33%)
441 ternary alloys 148 2925

(33%) (15%)

Dquaternary
AFLOW

3 1,110 quaternary alloys 754 17,550
(68%) (6%)

Dquaternary
LTVC

4 1,110 quaternary alloys 480 17,550
(43%) (6%)

Dquinary
AFLOW

3 130 quinary alloys 129 80,730
(99%) (0.16%)

Dquinary
LTVC

4 130 quinary alloys 91 80,730
(70%) (0.16%)

1 Okamoto, Schlesinger, and Mueller, 2016; 2 Zhang et al., 2014; 3 Nyshadham et al.,
2017; 4 Lederer et al., 2018;

order-disorder transition temperature below their melting temperature (Texp
c <

Texp
m ).

• DCALPHAD: The order-disorder transition temperatures (T?
c ) and melting tem-

peratures (T?
m) of the alloys are both predicted using calculated-phase-diagram

(CALPHAD) calculations (Senkov et al., 2015; Alman, 2013; Zhang et al., 2014)
based on the temperatures for some binary alloys (three possible for each ternary
alloy) found in the Thermo-Calc software SSOL5 database Andersson et al.,
2002. Similar to the DASMI16 data set, the DCALPHAD data set only contains the
alloys satisfying T?

c < T?
m.

• DAFLOW, Dquaternary
AFLOW , and Dquinary

AFLOW: The order-disorder transition temperatures
(TAFLOW

c ) of the alloys contained in these data sets are estimated using the
automatic flow (AFLOW) convex-hull database (Nyshadham et al., 2017). The
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(a) (b)

FIGURE 3.2: Proportions of 27 elements in DASMI16, DCALPHAD,
DAFLOW, Dquaternary

AFLOW , Dquinary
AFLOW, DLTVC, Dquaternary

LTVC , and Dquinary
LTVC data

sets.

melting temperatures Texp
m and T?

m are applied to the binary and ternary alloys,
respectively. The alloy is considered as an HEA if TAFLOW

c < Texp
m for binary

alloys and TAFLOW
c < T?

m for ternary, quaternary, and quinary alloys).

• DLTVC, Dquaternary
LTVC , and Dquinary

LTVC : These data sets contain the same alloys as
those contained in data sets DAFLOW, Dquaternary

AFLOW , and Dquinary
AFLOW, respectively.

However, the properties of the alloys contained in these data sets are predicted
using the method of Lederer, Toher, Vecchio, and Curtarolo (LTVC) (Lederer
et al., 2018). Ab-initio calculations are used to estimate the order-disorder tran-
sition temperatures (TLTVC

c ) of the alloys contained in these data sets. In addi-
tion, the Tm values are the same as those of the alloys contained in the AFLOW
data sets. Any alloy in these data sets is predicted as an HEA if TLTVC

c < Texp
m

for binary alloys and TLTVC
c < T?

m for ternary, quaternary, and quinary alloys

Note that DASMI16 and DCALPHAD contain only experimental confirmed and cal-
culated HEAs, respectively. Therefore, although we assume that the properties of all
other binary or ternary alloys (not included in the data set) remain unconfirmed, we
do not assume that such alloys do not form HEA phase.

3.3.2 Materials descriptors

Descriptors play a crucial role in developing a recommender system for exploring
potential new high-entropy alloys (HEAs). In this research, we employ various de-
scriptors to represent the raw data of alloys, represented as combinations of ele-
ments. Several descriptors have been studied in materials informatics to represent
compounds (Seko, Togo, and Tanaka, 2018). For this work, we utilize a composi-
tional descriptor (Seko et al., 2017), a rating matrix representation (Seko et al., 2018),
and binary elemental descriptors (Seko, Togo, and Tanaka, 2018).

The compositional descriptor represents an alloy using a set of 135 features, in-
cluding means, standard deviations, and covariances of atomic representations that
constitute the alloy. This descriptor can be applied to both crystalline and molecu-
lar systems. We adopted 15 atomic representations: (1) atomic number, (2) atomic
mass,(3) period and (4) group in the periodic table, (5) first ionization energy, (6) sec-
ond ionization energy, (7) Pauling electronegativity, (8) Allen electronegativity, (9)
van der Waals radius, (10) covalentradius, (11) atomic radius, (12) melting point, (13)
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boiling point, (14) density, and (15) specific heat. However, the compositional de-
scriptor struggles to differentiate compounds with different numbers of atoms since
it treats the atomic representations as data distributions. Consequently, the compo-
sitional descriptor is not suitable for cases involving extrapolation in the number of
components.

The rating matrix representation, a descriptor-free approach, has demonstrated
robust performance in recommendation systems across various data sets in the ma-
chine learning community. Seko et al. employed this representation to build a
recommender system for exploring chemically relevant compositions (Seko et al.,
2018). In their work, a composition data set is transformed into two feature sets
corresponding to users and items in a user-item rating matrix. Missing element rat-
ings are approximated based on feature similarity provided by the representation.
To build a recommender system for HEAs, we define the candidate alloys as AB,
where A and B represent the elemental components. We introduce two types of
matrix representations for the eight alloy data sets, decomposing an alloy into two
elementary components:

• Type 1: |A| ∈ 1, 2 and |B| ∈ 1, 2, 3. The number of possible components for A
and B are 378 and 3303, respectively. The size of the rating matrix is (378×
3303).

• Type 2: |A| = 1 and |B| ∈ 1, 2, 3, 4. The number of possible components for
A and B are 27 and 20853, respectively. The size of the rating matrix is (27×
20853).

Binary elemental descriptors represent the presence or absence of chemical ele-
ments using binary digits. The number of binary elemental descriptors corresponds
to the number of element types included in the training data. In our work, the al-
loy data sets comprise 27 kinds of elements; thus, an alloy is described by a 27-
dimensional binary vector with elements of either one or zero.

3.3.3 Learning about the similarity between elements

By applying the proposed ERS to the DASMI16, DCALPHAD, DAFLOW, and DLTVC data
sets (Table 3.1), we assess the similarity between the E elements and all the pos-
sible binary combinations obtained therein. Figure 3.3 (a, b, c, and d) show the
MASMI16, MCALPHAD, MAFLOW, and MLTVC similarity matrices obtained for all the E
elements in the first four experiments. These similarity matrices are then properly
transformed into distance matrices to which Ward’s hierarchical agglomerative clus-
tering (Murtagh and Legendre, 2014) can be applied to construct the corresponding
hierarchically clustered structures of these elements (Figure 3.3 e, f, g, and h).

The similarity matrix MASMI16 reveals three distinct element groups (Figure 3.3
e) consisting of Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, and W; Fe, Co, Ni, Cu, Rh, Pd,
Ir, Pt, and Au; and Al, Ag, Tc, Si, Ru, As, Re, and Os, where the first two groups
correspond to the early and late transition metals, respectively. Given the similar
physical and chemical properties of these elements, the high degree of similarity
between the elements within the same group, as revealed by the ERS, is rational.
Interestingly, the matrix MASMI16 shows a remarkable similarity between Mn (an
earlier transition metal) and Au (a late transition metal). Furthermore, the similarity
matrix MASMI16 indicates none of the belief about the similarity among the elements
in the third group and between the elements of the third group and the other two
groups because the binary alloys contained inDASMI16 do not contain these elements
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FIGURE 3.3: Visualization of similarities between elements. Top:
Heat maps for similarity matrices (a) MASMI16, (b) MCALPHAD, (c)
MAFLOW, and (d) MLTVC. Each matrix element is the probability mass
that the similarity mass function of the corresponding element pair
is assigned to subset {similar} of Ωsim. These matrix elements indi-
cate the degree of belief learned from the similarity data of the corre-
sponding element pairs. In these figures, the degrees of belief are il-
lustrated using colormap. Bottom: Hierarchically clustered structures
of all elements in E constructed using hierarchical agglomerative
clustering and these similarity matrices (e) MASMI16, (f) MCALPHAD,
(g) MAFLOW, and (h) MLTVC data sets. The blue, green, and gray re-
gions indicate groups of early and late transition metals, and elements

without similarity evidence, respectively.

(Figure 3.2 a). Therefore, no evidence of similarities can be collected from DASMI16
for these elements.

The similarity matrix MCALPHAD also reveals three somewhat modified element
groups (Figure 3.3 f) compared to those obtained from DASMI16. Because DCALPHAD
contains some Tc- and Re-containing alloys, these elements join the group of early
transition metals. Similarly, DCALPHAD contains more Ag- and Au-containing alloys,
and these elements join the group of late transition metals. Therefore, only Al, Si, As,
and Os remain in the third group. Although no evidence of any similarities between
Si and As can be collected from DCALPHAD (Figure 3.2 a), Os and Al are somewhat
similar to the first and second groups, respectively.

In contrast, it is difficult to divide all the elements contained in E into groups
according to the matrix MAFLOW. However, some characteristic groups of metallic
elements are distinct. Although two distinct groups of early or late transition met-
als are observed(Figure 3.3 g), there are some notable differences between these re-
sults obtained from experiments withDCALPHAD andDAFLOW. The similarity matrix
learned from DAFLOW shows that Au and Ag are very similar (Figure 3.3 c). Further-
more, both are similar to V, Mn, and Al but not to other late transition metals (Figure
3.3 g). Mn is also similar to Tc, Re, and Cr but not to the other early transition metals.
However, Tc and Re are somewhat similar to the other early transition metals. Fur-
thermore, Zr is somewhat similar to the late transition metals, but different from the
early transition metals. Clearly, these results are different from that obtained from
DCALPHAD owing to the difference between the predicted label (HEA or ¬HEA) for
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TABLE 3.2: Comparison of the properties of alloys containing Zr in
the two datasets DASMI16 and DCALPHAD to those predicted in DLTVC

and DAFLOW.

DASMI16 DCALPHAD
4 alloys 19 alloys

# in agreement with DAFLOW 4 10
# disagreement with DAFLOW 0 9

# in agreement with DLTVC 3 10
# disagreement with DLTVC 1 9

(a) (b) (c) (d)

FIGURE 3.4: Correlation between pairwise similarity and difference
in group index (∆group) of elements. Sub-figures illustrate the dis-
tribution of pairwise similarities, which are obtained from (a, b)
DAFLOW and (c, d) DLTVC data sets, according to the ∆group of these
element pair. Colormap illustrates the estimated density of the distri-

bution of pairwise similarity.

the Zr-containing alloys recommended based on CALPHAD and AFLOW calcula-
tions, as listed in Table 3.2. Al, Si, and As are all similar to each other and to Fe and
Co (Fig. 3.3 c). However, Al is similar to V, Cr, and Mn but not to Ti, whereas Si and
As are very similar to Ti but not to V or Cr.

In addition, the similarity matrix MAFLOW does not show any similarity between
Os and any of the other elements because very few Os-containing alloys are con-
tained in the data set (Figure 3.2 a). Furthermore, the similarity matrices MLTVC and
MAFLOW are approximately similar. However, the hierarchically clustered structure
constructed from DLTVC indicates that Cu, Ag, and Au form a distinct subgroup
(Figure 3.3 h).

Figure 3.4 shows the correlation between the pairwise similarities learned from
theDAFLOW andDLTVC data sets and the corresponding difference between the periodic-
table group index obtained for each of the transition metal pairs contained in E .
Clearly, the elements showing the same periodic-table group index (∆group = 0) tend
to show high similarity scores (Figure 3.4 a and c) and low dissimilarity scores (Fig-
ure 3.4 b and d). Therefore, the elements in the same group similarly contribute to
HEA formation and are substitutable for each other. However, it should be noted
that several pairs of elements have a similarity with a low degree of belief even
though they belong to the same groups, i.e. {(Ti, Zr), (Cu, Ag), (Fe, Ru)} in DAFLOW
and {(Ti, Zr), (Mn, Re), (Ni, Pd)} in DLTVC (Figure 3.3 c and d).

Furthermore, as the difference in the group index increases from 0 to 4, the simi-
larity between the elements decreases (∆group : 0 → 4). The results learned from the
DAFLOW and DLTVC data sets both show that the elements are the least similar when
the difference between their group indices is three or four. However, the elements
become slightly more similar as ∆group increases from 5 to 7, which is consistent with
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FIGURE 3.5: Evaluation of HEA-recommendation capability. Prob-
ability density functions of the rank of the HEAs in the test sets in
(a) DASMI16, (b) DCALPHAD, (c) DAFLOW, (d) DLTVC, (e) Dquaternary

AFLOW , (f)

Dquaternary
LTVC , (g) Dquinary

AFLOW, and (h) Dquinary
LTVC experiments. The ranks of

HEAs in the test sets are expressed on a base-10 logarithmic scale. The
HEAs with higher ranking order are recommended materials with a

firmer belief in the formation of the HEA phase.

the domain knowledge about the differences between early and late transition met-
als.

3.3.4 Evaluation of recommendation capability by cross-validation

We apply k-fold cross-validation to theDASMI16,DCALPHAD,DAFLOW, andDLTVC data
sets to assess the HEA-recommendation capabilities of the ERS, the four matrix-
based recommender systems (NMF and SVD, each one with two types of matrix
representations) (Seko et al., 2018). These two matrix representations (type 1 and type
2) decompose an alloy into two elementary components A and B with different sizes
(Section 3.3.2). We also compare the ERS with the four supervised-learning-method-
based (i.e., decision tree, Naïve-Bayes, logistic-regression, and SVM) recommender
systems.

The learned similarity matrix is used to rank all the alloys contained in the test
set and all the possible combinatorial alloys other than those used to train the sim-
ilarity matrix. The resulting alloy rankings are then used to evaluate the HEA-
recommendation performance. We designed a virtual experiment that sequentially
identifies the alloys on the basis of the order in which they were previously ranked.
To evaluate the HEA-recommendation capability of the proposed ERS, we monitor
the rank of HEAs in the test set and the HEA recall depending on the number of
trials required to identify all possible HEAs. The detailed experimental conditions
are shown in the section 3.3.7.

Figure 3.5 (a–d) illustrate the distributions of the HEA ranks of the test set rec-
ommended by the different systems. The HEAs in the test set are generally recom-
mended with higher rank using the ERS (i.e., the ERS rank distributions are on the
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left of the curves for the other systems). Consequently, the ERS can significantly re-
duce the number of trials required to recover the HEAs in the test set compared to
the competitor systems. Only in the experiment with DASMI16, the distributions of
the rank using the ERS and NMF (type 2) are somewhat similar (Fig. 3.5 a). We also
monitor the dependence of the HEA recall ratio on the number of trials required to
measure the HEA-recommendation performance of the ERS quantitatively. In sum-
mary, the ERS outperforms the other systems in recalling one-half and three-quarters
of the HEAs in the test set (Section A.1). However, the ERS cannot reliably recall the
remaining one-quarter of the HEAs because insufficient evidence is available in the
training data to make inferences about the remaining HEAs. Interestingly, in the
DASMI16 and DCALPHAD experiments, the supervised-method-based recommender
systems either approximately randomly selected possible HEAs (Naïve Bayes and
decision tree) or could not rank any at all (logistic regression and SVM) because
these data sets contain only positively labeled HEAs.

3.3.5 Evaluation of recommendation capability by extrapolation

The cross-validation experiments show the recommendation systems based on su-
pervised learning methods, including SVMs (Hearst, 1998), logistic regression (LaVal-
ley, 2008), decision trees (Quinlan, 1986), and Naïve-Bayes (Yager, 2006) have much
lower recommendation performance. These results are attributed to the inappropri-
ate assessment of the similarity between alloys with different numbers of compo-
sitions (Section 3.3.2). Therefore, to evaluate the HEA-recommendation capability
when extrapolating the number of components, we focus on comparing the perfor-
mances of the ERS with those of matrix-based recommender systems. The detailed
experimental settings are shown in the section 3.3.7.

Figure 3.5 (e–h) illustrate the distributions of the recommended HEA rank of
the quaternary and quinary HEAs in the test set that are extrapolated using recom-
mender systems. The obtained results show that the ERS outperforms the capability
of the competitor systems for recommending quaternary HEAs (Fig. 3.5 e and f)
and substantially outperforms the capability of the other systems for recommend-
ing quinary HEAs (Fig. 3.5 g and h). Interestingly, in the experiments with Dquinary

LTVC

and Dquinary
AFLOW, the numbers of quinary HEAs in the test set, and those found in the

top 100 and top 1,000 HEA candidates recommended by the ERS, are much larger
than those predicted by the competitor systems. These numbers are very high be-
cause the two data sets only contain quinary alloys of the early transition metals.
Much of the evidence of the similarities between these element combinations can be
collected from the corresponding data sets containing binary, ternary, and quater-
nary alloys (Figure 3.2 b). Moreover, to recall 50 and 75% of the quinary HEAs from
these data sets, approximately 10-100 fewer trials are required by the ERS than by
the NMF and SVD-based recommender systems. The results of experiments moni-
toring the dependence of the HEA recall ratio on the number of trials required are
listed in detail in Section A.2. In the absence of sufficient evidence, the answer of the
system, regarding a mixture of many types of elements, will retain a large degree of
uncertainty (m({HEA,¬HEA}) ≈ 1).
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FIGURE 3.6: Recommendation and experimental validation for thin
film of FeCoMnNi HEA. (a) Recommended candidates for Fe-Co-
based HEAs containing first-transition-series elements: FeMnCoTi,
FeMnCoV, FeMnCoCr, FeMnCoNi, and FeMnCoCu. (b) Schematic
illustration of the sample, which includes 200 cycles of 0.5 nm spread
film, was fabricated on SiO2/Si (100) substrate using the combina-
torial method. Each spread film consists of a 0.25 nm FeCoMn sub-
layer and a 0.25 nm 1-x(FeCoMn)-xNi sublayer. (c) 2D-XRD image
of Fe0.25Co0.25Mn0.25Ni0.25 thin film measured by changing the inci-
dent angle of X-rays. (d) Heat map shows the dependence of the X-
ray diffraction intensity of 1-x(FeCoMn)-xNi films on Ni composition

and diffraction angle θ.

3.3.6 Synthesis of recommended FeMnCo-based HEAs

Fe-Co-based film soft-magnetic materials have attracted interest from device com-
munity and will be applied to improve the performance of next-generation high-
power devices (Silveyra et al., 2018). Therefore, we focus on Fe-Co-based quater-
nary alloys containing the first transition-series elements. We combine all evidence
collected from all the data sets to recommend quaternary Fe-Co-based HEAs for ex-
perimental validation.

Figure 3.6 a shows the recommended possible magnetic quaternary HEAs con-
taining Fe, Mn, and Co. Clearly, FeMnCoNi is the only HEA candidate recom-
mended with a belief higher than 0.5. Although FeMnCoCr and FeMnCoCu are
HEA candidates recommended with the next highest belief, some uncertainty still
remains as to their potential as HEAs. Therefore, we chose FeMnCoNi as the target
HEA candidate for the experimental validation. Figure 3.6 b shows the sample struc-
ture of the FeMnCoNi. The composition film layer consists of three layers. One is a
single FeCoMn layer with a thickness of 0.25 nm. The other layers are composition
spread film formed by FeCoMn and Ni layers (Please refer to section B for further
information).

Figure 3.6 c shows a 2D-XRD image of a region of the Fe0.25Co0.25Mn0.25Ni0.25
alloy annealed at 400◦C. A reflection attributed to the (110) plane of the BCC crys-
tal structure appears in the ring pattern at 2θ = 44.7◦ (PDF 03-065-7519 Gates-Rector
and Blanton, 2019). Note that out-of-plane XRD measurements were also performed
to identify the crystal structure in more detail, as shown in Figure B.2 (a), indicat-
ing the formation of a polycrystalline film. Reportedly, the BCC crystal structure
of the FeCoMn alloy is stable (Snow et al., 2018), and previous reports have men-
tioned that FeCoMnNi alloy has an face-centered cubic FCC structure in high tem-
perature synthesized bulk; however, detailed information is still not available (Wu
et al., 2014; Cui et al., 2018). Therefore, to investigate the stability of the crystal
structure, the effect of Ni doping on the crystal structure was analyzed based on the
heat map generated from the X-ray diffraction patterns of FeCoMn films prepared
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with various Ni contents (Fig 3.6 d). For an Ni content above 0.3, the FCC structure
is also observed at 2θ = 43.5◦, corresponding to the (111) reflection [Figure B.2 b]
(PDF 03-065-5131 Gates-Rector and Blanton, 2019). These results suggest that the
Fe0.25Co0.25Mn0.25Ni0.25 HEA shows a BCC structure. In our experiment, the BCC
structure of the starting material, FeCoMn, is considered as an essential reason for
which the thin films produced by this method tend to be in the BCC phase.

3.3.7 Experimental settings for evaluation of recommendation capability

Experimental settings for cross-validation

Cross-validated testing accuracy rates of our method when considered as a super-
vised learning method are 80% and 75% in DAFLOW, and DLTVC data sets, respec-
tively, which are almost at the same level with those in the previous study (Huang,
Martin, and Zhuang, 2019). However, our work pays more attention toward cal-
culating the recall, which is the percentage of the total HEAs correctly classified.
This recall value is a more appropriate evaluation measure compared to supervised
learning accuracy for finding new combinations of elements having HEA phases.

Because the DASMI16 data set only contains binary alloys, we can learn a simi-
larity matrix between the elements from a training set sampled from DASMI16. By
applying the proposed process for recommending substituted alloys, we can rank
all the possible binary alloys other than those in the training set. A total of 351 hy-
pothetical binary alloys showing equivalent components can be generated from the
27 elements in E , 45 of which are contained in DASMI16. Because no information is
available for the other 306 alloys, they are ranked by the constructed model. We ap-
ply 9-fold cross-validation toDASMI16. A total of 40 out of the 45 alloys inDASMI16 are
used as the training set, and the remaining 5 alloys are used as the test set to evaluate
the HEA recall rate. The model learned from the 40 alloys in the training set is then
used to rank the other 311 alloys, including the 5 in the test set. This cross-validation
is repeated 100 times so that the HEA-recommendation performance can be reliably
calculated.

Because the DCALPHAD data set only contains ternary alloys, we can learn a sim-
ilarity matrix between the elements or binary combinations thereof from a training
set sampled from DCALPHAD. We can build a model to rank all the possible ternary
alloys other than those in the training set. There are 2,925 hypothetical ternary alloys
showing equivalent components that can be generated from the 27 elements in E ,
243 of which are contained in DCALPHAD. Because no information is available for the
other 2,682 alloys, they are ranked by the constructed model. We apply 9-fold cross-
validation toDCALPHAD and use 216 of the 243 alloys inDCALPHAD as the training set.
The remaining 27 alloys in DCALPHAD are used as the test set to evaluate the HEA
recall rate. The model learned from the 216 alloys in the training set is used to rank
the other 2,709 alloys, including the 27 in the test set. This cross-validation is also
repeated 100 times to ensure the reliable evaluation of the HEA-recommendation
performance.

In contrast, the DASMI16, DCALPHAD, DAFLOW, and DLTVC data sets contain both
binary and ternary alloys. Owing to the information obtained from both types of
alloys, we can learn a similarity matrix between the various elements, elements and
binary combinations thereof, and binary element combinations obtained from the
training set sampled from DAFLOW and DLTVC. We can build a model to rank all the
possible candidates for binary and ternary alloys other than those in the training set.
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There are 3,276 hypothetical binary and ternary alloys showing equivalent compo-
nents that can be generated from the 27 elements in E , 558 of which are contained
in DAFLOW. Because no information is available for the other 2,718 alloys, they are
ranked by the constructed model. We apply 9-fold cross-validation to DAFLOW and
use 496 of the 558 alloys in DAFLOW as the training set. The remaining 62 alloys in
DAFLOW are used as the test set to evaluate the HEA recall rate. The model learned
from the 496 alloys in the training set is used to rank the other 2,780 alloys including
the 62 in the test set. The same evaluation method is applied to DAFLOW.

A similar experiment is conducted with the DLTVC data set to evaluate the HEA-
recommendation performance of the proposed ERS. Note that although the DLTVC
data set contains the same alloys as the DAFLOW one, the target properties of the
alloys are dissimilar because the values are estimated using different computation
methods (Nyshadham et al., 2017; Lederer et al., 2018).

It should be noted that owing to the computational cost, these experiments do
not use the selected alloys (i.e., those in the test set) to improve the accuracy of the
HEA recommendation model for the next trial. A recommendation model based on
the results of previous trials may work more accurately.

Experimental settings for evaluation of extrapolation capability

Because DAFLOW contains both binary and ternary alloys, we can learn the similar-
ities between the various elements and binary combinations thereof. Consequently,
we can apply the ERS to DAFLOW to rank the 17,550 quaternary alloys comprising
the 27 elements contained in E . Additionally, DAFLOW and Dquaternary

AFLOW are both used
to build a recommender system that ranks all the possible candidates (i.e., 80,730
alloys) for synthesizing quinary HEAs. The 754 quaternary HEAs in Dquaternary

AFLOW and
129 quinary HEAs in Dquinary

AFLOW are used to monitor the HEA recall rate for recom-
mending quaternary and quinary HEAs, respectively. Moreover, similar experi-
ments are conducted on the DLTVC, Dquaternary

LTVC , and Dquinary
LTVC data sets to evaluate

the HEA-recommendation performance of the ERS.

3.4 Case study 2: Solvent screening for efficient chemical ex-
foliation of graphite

Geim and Novoselov demonstrated graphene production by peeling graphite with
Scotch tape Novoselov, 2004. One advantage of graphene over other carbon nano-
materials is its direct production from graphite through a top-down approach. This
indicates that the cost of graphene could be comparable to that of graphite if the
production process becomes highly efficient. Currently, large-scale graphene pro-
duction relies primarily on the graphene oxide (GO) route (Toh et al., 2014; Eigler et
al., 2013; Feng et al., 2013; Zhu et al., 2010; Gu et al., 2018; Dreyer et al., 2010). In this
route, graphite is oxidized by potassium permanganate in a sulfuric acid medium
Hummers and Offeman, 1958, resulting in GO with various oxygen-containing func-
tional groups introduced onto graphene sheets. The thermal or chemical reduction
of GO eventually yields graphene, specifically referred to as reduced GO. However,
the GO route has drawbacks, including the generation of significant amounts of
harmful waste and the introduction of non-negligible chemical and structural de-
fects on graphene sheets (Jiang et al., 2011; Xu et al., 2011; Larciprete et al., 2011; Liu
et al., 2011; Ton et al., 2018).
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As a promising alternative for mass-producing higher-quality graphene, liquid-
phase exfoliation without relying on chemical energy has gained attention (Nicolosi
et al., 2013; Cui et al., 2011; Qian et al., 2009; Hao et al., 2008). Higher quality in
this context refers to graphene with fewer layers and reduced defect density. This
approach requires physical energy for exfoliation and a solvent for stabilizing the
produced graphene sheets as a dispersion. Cavitation, generated by ultrasonica-
tion (Lotya et al., 2010; Khan et al., 2010; Shen et al., 2015), jet cavitation (Shen
et al., 2011; Wang, Shen, and Yi, 2019; Lin, Wu, and Liu, 2018; Yi et al., 2011),
and high-pressure homogenization (Nacken et al., 2015; Qi et al., 2017), is a com-
monly employed physical energy for exfoliation. Various solvents have been re-
ported as effective for the liquid-phase exfoliation of graphite. Among them, N-
methyl pyrrolidone (Hasan et al., 2007; al., 2008b), 1,2-dichlorobenzene (Hamilton
et al., 2009; Sahoo et al., 2013), and benzylamine (Cai et al., 2012; Economopoulos et
al., 2010) are popular solvents initially used to disperse other carbon nanomaterials,
and have proven effective in producing high-quality graphene. Additional solvents
include N,N-dimethylformamide (al., 2008a), dimethyl sulfoxide (Du et al., 2013),
1,3-dimethyl-2-imidazolidinone, N,N-dimethylacetamide, and γ-butyrolactone (al.,
2008b). Early efforts to find exfoliating solvents focused on producing high-quality
graphene with higher yields. Generally, the yield and quality of graphene are not
solely determined by the choice of solvents. Prolonged ultrasonication enhances
graphene yield but at the cost of defect formation, while higher-speed centrifuga-
tion provides thinner graphene sheets at the expense of yield.

Nevertheless, the yield in the literature typically ranges from 0.1 to 1 miligram
(mg) of graphene per milliliter (mL) of solvent (Hasan et al., 2007; al., 2008b; Hamil-
ton et al., 2009; Sahoo et al., 2013; Cai et al., 2012; Economopoulos et al., 2010; al.,
2008a; Du et al., 2013). Another focus of solvent exploration is the development
of a green process. The addition of surfactants or polymers compensates for dif-
ferences in surface tension (Lotya et al., 2010; Bourlinos et al., 2009; Guardia et al.,
2011; Liang and Hersam, 2010; Wajid et al., 2012; Patole et al., 2010; Li et al., 2013),
enabling graphite exfoliation even in water. However, the persistence of additives
during solvent removal remains an important issue to address. Solvent exploration
also aims to diversify the solvent library, providing suitable solvents for specific
applications and understanding the molecular features that determine the yield and
quality of produced graphene. Many exfoliating solvents have surface tensions close
to that of graphene (40 mJ/m˘2) (Bissantz, Kuhn, and Stahl, 2010), yet this does not
fully explain the significant yield deviations observed among solvents with com-
parable surface tension (Shen et al., 2015; al., 2008b). Other features, such as the
Hildebrand and Hansen solubility parameters, also present similar problems (Shen
et al., 2015), resulting from the inability to describe molecular interactions based on
macroscopic parameters. In 2009, Bourlinos et al. reported several new exfoliat-
ing solvents (Bourlinos et al., 2009). They hypothesized that electron-withdrawing
groups enhance π-π interaction through charge transfer, based on the finding of
perfluorinated aromatic molecules as exfoliating solvents. They also suggested that
electron-donating groups may play a similar role, as evidenced by pyridine’s us-
ability as an exfoliating solvent. However, these features, combined with surface
tension matching, still do not completely explain the inability of solvents such as
aniline, pyrrole, and thiophene.

This section describes our research endeavors in further exploring solvents for
the liquid-phase exfoliation of graphite under ultrasonication. We conducted a com-
prehensive solvent screening process while concurrently developing a novel ma-
chine learning method based on the evidence theory, which can effectively learn
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FIGURE 3.7: a) Heat map of the similarity matrix for the 57 solvents,
where the color represents the degree of basic belief to be similar. b)
Hierarchical cluster structure that is constructed from the similarity

matrix using the hierarchical agglomerative clustering method.

from the experimental data obtained. As a result, we identified several new ex-
foliating solvents that showed promising potential. Notably, the combination of
chlorobenzene and benzylamine, known as chlorobenzylamine, exhibited the high-
est graphene yield among the solvents tested. Additionally, we observed that ti-
tanium alkoxide, despite having a much lower surface tension than graphene, still
yielded good results. However, the most significant finding of our study is the im-
portance of utilizing a synergy between different functional groups, mainly through
solvent mixtures. For instance, the chlorobenzene/benzylamine mixture yielded a
higher graphene yield compared to using chlorobenzylamine alone. These findings
highlight the potential of leveraging diverse solvent combinations to enhance the
exfoliation process and improve graphene production.

3.4.1 Solvent dataset

To evaluate the similarity between solvents in the data set D, we employed machine
learning based on the Dempster-Shafer theory of evidence (Shafer, 1976). The sol-
vents, both single solvents (Table 3.3) and their mixtures (Table 3.4), were classified
into two classes based on a threshold value of the graphene yield: exfoliating (≥
0.1 mg mL−1) or non-exfoliating (< 0.1 mg mL−1) solvents (Nu Thanh Ton et al.,
2020). These solvents that exfoliate and do not exfoliate are notated by labels EXF
and ¬EXF, respectively.

3.4.2 Learning similarity between solvents.

Figure 3.7 a illustrates the similarity matrix obtained for the 57 solvents considered
in this study, representing their contribution to the exfoliation of graphite as single
solvents and solvent mixtures. Each element of the matrix represents the degree of a
fundamental belief in the similarity between two solvents based on their properties.
To construct a hierarchical cluster structure, the similarity matrix was transformed
into a distance matrix, and a hierarchical agglomerative clustering method Nielsen,
2016 was applied (Figure 3.7 b).
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FIGURE 3.8: Numbers of exfoliating and non-exfoliating results (EXF
and ¬EXF) for each of the 57 solvents. Note that both single solvents

and solvent mixtures were taken into account.

The resulting hierarchical cluster structure revealed the presence of three dis-
tinct groups of solvents. The first group included solvents such as titanium tetra-
n-butoxide, 4-chlorobenzylamine, N-methylpyrrolidone, 3-phenylpropylamine, 2-
chlorobenzylamine, titanium tetraethoxide, N-methylbenzylamine, and 2-fluorobenzylamine.
The second group comprised solvents like 2-ethylhexanol, benzylamine, N,N-dimethylformamide,
monochlorobenzene, 1,2-dichlorobenzene, and 1,2,4-trichlorobenzene. The third group
encompassed the remaining solvents. In Figure 3.8, the numbers of exfoliating and
non-exfoliating results are presented for each specific solvent, considering both sin-
gle solvents and solvent mixtures. It is evident that the first group corresponds to
the group of strong single solvents with graphene yields above 0.1 mg mL−1 even in
their single form. Conversely, the third group corresponds to the group of single sol-
vents with graphene yields below 0.1 mg mL−1 (mostly yielding no graphene). The
obtained similarity matrix clearly indicates a substantial similarity between ethanol
and methanol. This finding aligns with the fact that none of the solvent mixtures
containing these two solvents achieved a graphene yield above 0.1 mg mL−1. The
second group comprises both strong and weak exfoliating solvents, with graphene
yields above and below 0.1 mg mL−1, respectively. Interestingly, the similarity ma-
trix reveals a significant similarity among monochlorobenzene, 1,2-dichlorobenzene,
and 1,2,4-trichlorobenzene (Figure 3.7). Additionally, N,N-dimethylformamide was
found to be similar to 2-ethylhexanol and benzylamine in terms of their properties.
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(1) 2-ethylhexanol/benzylamine
(2) benzylamine/1,2,4-trichlorobenzene
(3) DMF/benzylamine
(4) DMF/1,2,4-trichlorobenzene
(5) DMF/monochlorobenzene
(6) benzylamine/monochlorobenzene
(7) DMF/1,2-dichlorobenzene
(8) benzylamine/1,2-dichlorobenzene
(9) 2-ethylhexanol/1,2,4-trichlorobenzene
(10) 2-ethylhexanol/2-chlorobenzylamine
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FIGURE 3.9: a) Stem plot of 24 screened binary solvent mixtures. b)
Stem plot of 26 new ternary solvent mixtures that are randomly se-
lected for the sake of experimental validation. The red and blue dia-
monds indicate experimental validation results corresponding to ex-

foliating and non-exfoliating mixtures, respectively.

These three solvents exhibited similar behavior when used as solvent mixtures (Fig-
ure 3.8).

3.4.3 Recommending potential solvent mixtures.

To evaluate the model’s capability, leave-one-out cross-validation was conducted to
recommend new solvent mixtures based on machine learning. Each binary solvent
mixture (Runs 58-81 in Table 3.4) was used for testing while the remaining solvents
were used to learn the similarity. The properties of unconfirmed binary mixtures
were also predicted simultaneously. The results of the testing were used to rank all
possible binary solvent mixtures (Figure 3.9 a). Out of the ten screened binary sol-
vent mixtures with graphene yields above 0.1 mg mL−1, eight were ranked in the
top ten by the proposed method, while the remaining two were ranked at 21st and
22nd. On the other hand, the 11 binary solvent mixtures out of the 14 with exfoliation
yields below 0.1 mg mL−1 had rankings ranging from 200th to 400th. The remaining
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three mixtures were ranked in the top fifty. Solvent mixtures that lacked information
about their properties started with a ranking of 400th. These results clearly demon-
strate the effectiveness of the proposed method in recommending potential binary
solvent mixtures.

Furthermore, the model was used to recommend new potential ternary solvent
mixtures by ranking all possible combinations that could be generated from the
57 solvents. To assess the significance of the ranking, 14 ternary solvent mixtures
ranked within the top 150, and 12 mixtures with lower rankings were selected for
additional experiments. Notably, the 12 mixtures with lower rankings had a low
probability mass assigned to the class EXF. Since most solvent mixtures had limited
data, they were assigned low rankings. Thus, a low-ranked solvent mixture did not
necessarily indicate a lower capability of graphite exfoliation but rather a higher de-
gree of uncertainty in inductively estimating its exfoliation capability based on the
observed data.

Figure 3.9 b overviews the rankings and observed graphene yields for the 26 se-
lected ternary solvent mixtures. The results are summarized in Table 3.5. Out of the
14 ternary solvent mixtures ranked within the top 150, 11 exhibited a graphene yield
above 0.1 mg mL−1. However, the remaining three mixtures did not demonstrate
the capability for graphite exfoliation. Conversely, out of the 12 low-ranked ternary
solvent mixtures, six showed a high graphene yield, while the other six mixtures
did not exhibit the ability to exfoliate graphite. These experimental validation re-
sults highlight the effectiveness of the proposed recommendation model based on
the Dempster-Shafer theory of evidence. Notably, the presence of non-solvents did
not hinder the graphene yield if the other two solvents were chosen appropriately
(Runs 103, 108, and 112). Furthermore, the co-existence of a Lewis base and acid did
not impair their capabilities (Run 94). These findings demonstrate the power of ma-
chine learning in expanding the exploration range beyond human biases acquired
from limited experiences.

3.5 Contributions and limitations

Applying inductive approaches typically requires sufficient and balanced data to
ensure prediction accuracy. However, material data is often scarce or heavily bi-
ased towards positive results (Table 3.1). Building a prediction model with such
limited data and a strong skew toward positive results is challenging. Moreover,
conflicts within and between material datasets are additional obstacles that induc-
tive approaches must overcome. Thus, quantitative assessment of the prediction
uncertainty is crucial. The ERS offers an advantage in handling these situations, and
its effectiveness has been demonstrated in applications for exploring high-entropy
alloys and solvent mixtures. Instead of forcibly merging data from multiple datasets,
our system treats each dataset as an evidence source. It then combines the evidence
to draw reasonable final conclusions for recommending HEAs or solvent mixture,
with the epistemic and aleatoric uncertainties being quantitatively evaluated.

However, to serve the purpose of screening element combinations forming HEA
phases, the ERS focuses on the fundamental question of whether the HEA phase ex-
ists. Therefore, we design a frame of discernment ΩHEA = HEA,¬HEA to model
the existence of HEA phases with mass functions. As a result, the ERS does not ad-
dress essential questions regarding the structure and other properties of the HEAs.
However, by redesigning the frame of discernment to reflect additional properties
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of interest, we can construct a model that can recommend potential alloys forming
HEA phases with desirable properties.

Additionally, the evidence-based recommender system has certain limitations
regarding the target property type. Owing to its foundation in Dempster–Shafer
theory, the system is not equipped to directly model continuous properties, such as
evaluating the yield of graphene in a solvent. Rather than directly modeling the con-
tinuous property, we are required to categorize the property into discrete segments.
This approach may lead to potential loss of information or granularity in the evalu-
ation process. To address this issue, we can utilize the transferable belief functions
theory, which Philippe Smets proposed. This theory offers an alternative frame-
work for dealing with continuous properties and associated uncertainties more flex-
ibly and comprehensively. By incorporating the transferable belief functions theory
into the evidence-based recommender system, we can better accommodate continu-
ous properties and enhance the system’s overall applicability to a broader range of
materials science problems while preserving the nuanced details of the continuous
property under investigation.
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TABLE 3.3: Screening results for single solvents. (Nu Thanh Ton et al.,
2020)

Run Solvent Functional groups Surface tension Yielda

(mJ m−2) (mg mL−1)

1 N-Methylpyrrolidone Cycloalkylamide 40.79 0.2
2 N,N-Dimethylformamide Alkylamide 36.42 < 0.1
3 Benzylamine R–NH2, aromatic 38.82 0.2
4 1,2-Dichlorobenzene Aryl halide (Cl) 36.61 0.1
5 N-Methylbenzylamine R2–NH, aromatic n.d. 0.3
6 N,N-Dimethylbenzylamine R3–N, aromatic 38.81 0
7 3-Phenylpropylamine R–NH2, aromatic 37.6 0.3
8 2,6-Diisopropylaniline Ar–NH2 33.9 < 0.1
9 2,4,6-Trimethylaniline Ar–NH2 33.92 < 0.1
10 Aniline Ar–NH2 43.40 0
11 Triethylamine R3–N 20.22 0
12 Ethylenediamine R–NH2 42 0
13 Benzonitrile Nitrile, aromatic 38.79 0
14 Nitrobenzene Nitro, aromatic 46.34 0
15 1,2,4-Trichlorobenzene Aryl halide (Cl) 39.1 0.2
16 Monochlorobenzene Aryl halide (Cl) 33.60 0.2
17 Bromobenzene Aryl halide (Br) 36.50 0
18 Iodobenzene Aryl halide (I) 39.70 0
19 Chloroform Alkyl halide (Cl) 27.50 0
20 1,2-Dichloroethane Alkyl halide (Cl) 33.30 0
21 Dichloromethane Alkyl halide (Cl) 26.50 0
22 Tetrachloroethylene Alkenyl halide (Cl) 31.74 0
23 2-Chlorobenzylamine R–NH2, aryl halide (Cl) 42.0 0.5
24 4-Chlorobenzylamine R–NH2, aryl halide (Cl) 42.0 0.4
25 2-Fluorobenzylamine R–NH2, aryl halide (F) n.d. 0.3
26 2-Chloroaniline Ar–NH2, aryl halide 43.66 0
27 Benzylalcohol Alcohol 39.00 0
28 2-Ethylhexanol Alcohol 28.00 0.1
29 2-Methoxyethanol Alcohol, ether 30.84 < 0.1
30 Methanol Alcohol 22.70 0
31 Ethanol Alcohol 22.10 0
32 1-Propanol Alcohol 23.75 0
33 2-Propanol Alcohol 23.00 0
34 1-Butanol Alcohol 24.93 0
35 2-Butanol Alcohol 23.0 0
36 2-Methyl-1-propanol Alcohol 23.0 0
37 Acetone Ketone 25.20 0
38 2-Butanone Ketone 23.97 0
39 Methylmethacrylate Ester 28 0
40 Diethylphthalate Aromatic, ester 37.5 0
41 Dibutylphthalate Aromatic, ester 34 0
42 Styrene Aromatic hydrocarbon 32.3 0
43 4-Methylstyrene Aromatic hydrocarbon n.d. 0
44 Benzene Aromatic hydrocarbon 28.88 0
45 Xylene Aromatic hydrocarbon 30.10 0
46 Toluene Aromatic hydrocarbon 28.40 0
47 1-Octene Aliphatic hydrocarbon 21.76 0
48 1-Decene Aliphatic hydrocarbon 24 0
49 Octane Aliphatic hydrocarbon 21.62 0
50 Hexane Aliphatic hydrocarbon 18.43 0
51 Tetradecane Aliphatic hydrocarbon 26.56 0
52 Hexadecane Aliphatic hydrocarbon 27.47 0
53 Cyclohexane Aliphatic hydrocarbon 24.95 0
54 Titanium tetra-n-butoxide Titanium alkoxide 28.0 0.3
55 Titanium tetraethoxide Titanium alkoxide 23.1 0.2
56 Titanium tetrachloride Titanium halide (Cl) n.d. 0
57 Tetraethoxysilane Silicone alkoxide 22.8 0

aThe screening was performed in two steps: When the supernatant looked clear or grayish, the
graphene yield was regarded to be 0 or < 0.1 mg mL˘1, respectively; When black, the graphene
concentration was quantified based on UV/Vis measurements.
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TABLE 3.4: Screening results for solvent mixtures. (Nu Thanh Ton
et al., 2020)

Run Solvent mixturea Surface tensionb Yield
(mJ m−2) (mg mL−1)

58 Benzylamine/1,2-dichlorobenzene 37.73 0.6
59 Benzylamine/monochlorobenzene 36.11 0.5
60 Benzylamine/1,2,4-trichlorobenzene 38.95 0.4
61 2-Ethylhexanol/2-chlorobenzylamine 35.90 0.5
62 2-Ethylhexanol/benzylamine 34.37 0.3
63 2-Ethylhexanol/1,2,4-trichlorobenzene 34.18 0.2
64 N,N-Dimethylformamide/benzylamine 37.42 0.3
65 N,N-Dimethylformamide/monochlorobenzene 35.20 0.1
66 N,N-Dimethylformamide/1,2-dichlorobenzene 36.49 0.3
67 N,N-Dimethylformamide/1,2,4-trichlorobenzene 37.45 0.3
68 Monochlorobenzene/1,2-dichlorobenzene 35.01 0
69 Monochlorobenzene/1,2,4-trichlorobenzene 36.07 0
70 1,2-Dichlorobenzene/1,2,4-trichlorobenzene 37.79 0
71 Ethanol/N,N-dimethylformamide 28.26 < 0.1
72 Ethanol/benzylamine 27.93 < 0.1
73 Ethanol/1,2,4-trichlorobenzene 27.53 0
74 Ethanol/monochlorobenzene 26.30 0
75 Ethanol/2-ethylhexanol 23.70 0
76 Methanol/N,N-dimethylformamide 27.41 0
77 Methanol/benzylamine 26.83 0
78 Methanol/monohlorobenzene 25.81 0
79 Methanol/1,2-dichlorobenzene 26.36 0
80 Methanol/1,2,4-trichlorobenzene 26.73 0
81 Methanol/2-ethylhexanol 23.79 0
82 2-Ethylhexanol/benzylamine/1,2,4-trichlorobenzene 35.98 0.8
83 2-Ethylhexanol/benzylamine/1,2-dichlorobenzene 35.18 0.7
84 2-Ethylhexanol/benzylamine/monochlorobenzene 34.08 0.5
85 2-Ethylhexanol/benzylamine/2-chlorobenzylamine 37.02 0.5
86 Ethanol/1,2-dichlorobenzene/benzylamine 30.11 0
87 Methanol/1,2-dichlorobenzene/benzylamine 29.03 0
88c Aluminum isopropropoxide/1,2-dichlorobenzene n.d. < 0.1

aEquivolume mixtures of two or three solvents.
bThe surface tension of a solvent mixture was derived based on the mole-fraction-weighted average
of the surface tension of individual solvents.
c500 mg of aluminum isopropoxide in a solid state was dissolved in 5.0 mL of 1,2-dichlorobenzene,
and the resultant mixture was used for the exfoliation of graphite.
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TABLE 3.5: Experimental validation of prediction results.

No. Solvent mixture ERS results Yielda

High Low Not sure (mg mL−1)

89 Monochlorobenzene/2-ethylhexanol/N,N-dimethylformamide 0.95 0.00 0.05 0.3
90 2-Ethylhexanol/2-chlorobenzylamine/N,N-dimethylformamide 0.92 0.00 0.08 0.0
91 Monochlorobenzene/1,2-dichlorobenzene/benzylamine 0.65 0.33 0.02 0.5
92 Titanium tetra-n-butoxide/2-ethylhexanol/benzylamine 0.59 0.00 0.41 0.0
93 Monochlorobenzene/2-ethylhexanol/N-methylbenzylamine 0.20 0.00 0.80 0.3
94 2-Chlorobenzylamine/2-ethylhexanol/3-phenylpropylamine 0.20 0.00 0.80 0.3
95 2-Chlorobenzylamine/titanium tetraethoxide/benzylamine 0.20 0.00 0.80 0.4
96 2-Chlorobenzylamine/2-ethylhexanol/4-chlorobenzylamine 0.20 0.00 0.80 0.3
97 2-Chlorobenzylamine/2-ethylhexanol/titanium tetraethoxide 0.20 0.00 0.80 0.1
98 2-Chlorobenzylamine/2-ethylhexanol/titanium tetra-n-butoxide 0.20 0.00 0.80 0.1
99 Monochlorobenzene/2-ethylhexanol/N-methylpyrrolidone 0.20 0.00 0.80 0.2

100 Monochlorobenzene/benzylamine/titanium tetra-n-butoxide 0.20 0.00 0.80 0.4
101 Monochlorobenzene/2-ethylhexanol/4-chlorobenzylamine 0.20 0.00 0.80 0.4

102 2-Chlorobenzylamine/methanol/2-ethylhexanol 0.00 0.91 0.09 0.0
103 Monochlorobenzene/benzylamine/benzylalcohol 0.00 0.00 1.00 0.3
104 Monochlorobenzene/2-ethylhexanol/xylene 0.00 0.00 1.00 0.0
105 2-Chlorobenzylamine/2-methoxyethanol/benzylamine 0.00 0.00 1.00 0.0
106 2-Chlorobenzylamine/iodobenzene/benzylamine 0.00 0.00 1.00 0.2
107 2-Chlorobenzylamine/2-ethylhexanol/dichloromethane 0.00 0.00 1.00 0.0
108 2-Chlorobenzylamine/2-ethylhexanol/2-propanol 0.00 0.00 1.00 0.2
109 2-Chlorobenzylamine/2-ethylhexanol/acetone 0.00 0.00 1.00 0.0
110 Monochlorobenzene/benzylamine/2,6-diisopropylaniline 0.00 0.00 1.00 0.0
111 Bromobenzene/1,2,4-trichlorobenzene/benzylamine 0.00 0.00 1.00 0.2
112 Monochlorobenzene/benzylamine/nitrobenzene 0.00 0.00 1.00 0.3
113 Monochlorobenzene/benzylamine/2-chloroaniline 0.00 0.00 1.00 0.2
114 Monochlorobenzene/2-ethylhexanol/toluene 0.00 0.00 1.00 0.0

aThe experimentally obtained yield.
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Chapter 4

Quantifying material similarity
with uncertainty with respect to
continuous properties

4.1 Introduction

Machine learning has immense potential in materials science, particularly in the dis-
covery of new materials and understanding their properties. In many materials sci-
ence problems, data-driven approaches are used to leverage existing material data
to predict the properties of new materials and uncover underlying physicochemi-
cal mechanisms (Kailkhura et al., 2019). One intuitive and interpretable data-driven
approach is analogy-based inductive reasoning, which involves inferring the prop-
erties of a new instance based on the information from observed instances that are
most similar to it (Tenenbaum, 1996; Tenenbaum, Silva, and Langford, 2000; Yang
et al., 2014; Chen et al., 2019). By applying analogy-based models, researchers can
explain the reasoning process behind predictions and gain insights into the physic-
ochemical mechanisms underlying the observed properties (Letham et al., 2015;
Rudin, 2019). In materials science, researchers have successfully addressed vari-
ous problems by systematically capturing analogies in composition or structure be-
tween materials that exhibit similar physicochemical properties (Goldsmith et al.,
2017; Ramprasad et al., 2017; Nguyen et al., 2018b; Nguyen et al., 2019). These
analogy-based models provide valuable insights into the relationships between ma-
terials, enabling more accurate predictions and targeted experimentation. As a re-
sult, the discovery of new materials with desired properties can be accelerated, the
understanding of material behavior can be enhanced, and the field of materials sci-
ence can advance.

In condensed matter physics, a discipline rooted in fundamental principles, it
is essential to uncover the physical mechanisms underlying specific material prop-
erties. However, despite the discovery of numerous new materials with excep-
tional properties, accurately quantifying material similarities to reveal the under-
lying physicochemical mechanisms remains a challenge. This challenge arises from
the fact that material properties are often interpreted based on relative criteria and
physicochemical concepts. Superconductivity in materials provides a prime exam-
ple of this complexity. The Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity (Bardeen, Cooper, and Schrieffer, 1957) successfully describes the microscopic
mechanisms, attributing superconductivity to electron-phonon interactions. How-
ever, alternative mechanisms, such as electron-electron interactions, are believed to
drive the superconductivity observed in high-TC cuprates. Classifying the super-
conducting mechanism of materials is not straightforward, as multiple mechanisms
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can contribute cooperatively to enhance the critical temperature (TC). Achieving
a consensus on the origin of superconductivity is challenging due to the intricate
interplay of mechanisms. Despite these classification difficulties, inductively quan-
tifying material similarities and grouping similar materials using available observa-
tional data can help uncover the underlying physical mechanisms. By harnessing
data-driven approaches and machine learning techniques, researchers can gain in-
sights into material similarities, leading to a deeper understanding of physicochem-
ical mechanisms and potentially expediting the discovery of materials with desired
properties.

Indeed, inductive reasoning with inefficient similarity assessment can introduce
aleatoric uncertainty, leading to challenges such as misidentification of outliers and
difficulties in explaining underlying physicochemical mechanisms using single mod-
els (Hüllermeier and Waegeman, 2021; Seko, Togo, and Tanaka, 2018). To address
these challenges, it is necessary to conduct an exhaustive examination of all possible
hypotheses about the unknown physicochemical mechanisms to accurately assess
the similarity between materials, considering predefined material descriptors. Fur-
thermore, similarity measures in materials science are often context-dependent, and
they need to be adapted to adequately capture the specific phenomena under study
(Tversky, 1977; Goldstone, Medin, and Halberstadt, 1997). The context-dependent
nature of similarity implies that the measure must account for uncertainty arising
from the context or the measurement process itself, particularly in situations where
material data are limited and heavily biased. It is crucial to consider the uncertainty
associated with the data and the measurement conditions to ensure robust and re-
liable similarity assessments. Moreover, it is essential to note that similarities from
different contexts may not be directly comparable when integrating data to con-
clude material similarity. The integration process should account for the varying
contexts and the associated uncertainties to make meaningful and accurate assess-
ments. These factors contribute to the challenges faced when applying data-driven
approaches to materials science, requiring careful consideration and appropriate
methodologies to overcome them.

To address these challenges and extract knowledge efficiently from the data, we
propose a novel approach that shifts the focus from measuring similarities between
materials to quantitatively measuring the confidence in their similarities. This ap-
proach utilizes the Dempster-Shafer theory (Shafer, 1976; Denœux, Dubois, and
Prade, 2020; Dempster, 1967), also known as evidence theory, to develop an evi-
dential regression-based similarity measurement (eRSM). The objective is to identify
subgroups of materials where the learned models exhibit high correlations between
descriptors and the target property of the constituent materials. Further analysis of
the models describing these subgroups provides valuable insights to extract, inter-
pret, and understand the underlying physical mechanisms. The Dempster-Shafer
theory can be seen as a generalization of the Bayesian approach, specifically de-
signed to handle problems involving incomplete and insufficient information. It is
well-suited for addressing material data problems (Nu Thanh Ton et al., 2020; Ha et
al., 2021). In our approach, the measure of similarity refers to whether the observed
physical properties of the materials under study can be explained by the same hid-
den mechanism that has not yet been revealed. In other words, we consider a pair
of materials in the dataset as similar if the same underlying mechanism can describe
their physical properties; otherwise, the pair of materials is considered dissimilar.

To implement the eRSM, we first generate numerous hypothetical mechanisms
by randomly selecting subsets of data instances and constructing regression mod-
els for each subset. Each of these regression models serves as a source of evidence
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FIGURE 4.1: Workflow of the similarity measurement for materials
with respect to their composition and a continuous property.

regarding the similarities between materials. We then employ the Dempster-Shafer
theory, which provides a framework for modeling and combining the uncertainty of
evidence to integrate the collected pieces of evidence and draw conclusions about
the similarities between materials. The eRSM consists of three main steps as follows
(Fig. 4.1):

1. Collect sources of evidence: Hypothetical mechanisms, which are represented by
reference function fr, are collected from a dataset by applying regression anal-
ysis with single or mixture models. The functions are used as sources of evi-
dence to rationalize the similarity states of materials.

2. Model similarity evidence: An appropriate mass function is designed to model
the obtained evidence within the framework of the evidence theory.

3. Combine pieces of evidence: Dempster’s rule of combination is used to integrate
the pieces of the evidence.

The steps of the eRSM are explained in detail in Section 4.2. Regarding the frame-
work of the evidence theory, the essential contributions of the eRSM are collecting
sources of evidence about the similarities between materials from datasets and de-
signing suitable mass functions to model the pieces of evidence rationally. The effec-
tiveness of obtained similarities using the eRSM for subdividing alloys from datasets
into homogenous subgroups is supported by experiments on 1) a dataset of binary
alloys with their Curie temperature as a target property (Section 4.4); and 2) two
dataset of quaternary alloys with their magnetization (Section 4.4.2) and Curie tem-
perature (Section 4.4.3) as the target properties. Further analysis of the detected sub-
groups to interpret the underlying physical mechanisms is shown in Section 4.4.4

4.2 Evidential regression-based similarity measurement (eRSM)

We consider a dataset D consisting of p data instances. We assume that a data
instance with index i in D is described by n predefined descriptors and is repre-
sented by an n-dimensional numerical vector, xi =

(
x1

i , x2
i , . . . , xn

i
)
∈ Rn. The

target property of the data instance xi is yi ∈ R. Thereafter, the dataset D ={
(x1, y1), (x2, y2) . . . (xp, yp)

}
is represented using a (p× (n + 1)) matrix. In this
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FIGURE 4.2: Illustrative figures of the three possible similarity states
between two data instances (blue circles), including similar (a), dis-
similar (b), and uncertain (c), considering a referential regression
model fr (black line). The gray region is the interval that determines
whether a data instance can be considered to have been generated by

regression model fr.

study, we consider that D may contain pairs of data instances xi and xj, where
xi ≈ xj; however, the value of yi is far from yj.

4.2.1 Collecting sources of similarity evidence

We perform random subset sampling of the data instances without replacement to
collect a large amount of evidence of the similarity between pairs of data instances
in D. Considering each sample, we obtain two datasets: the reference dataset, Dre f ,
and the evaluation dataset, Deval (Dre f ∩Deval = ∅ and Dre f ∪Deval = D). Consider-
ing Dre f , we can generate a single or multiple reference functions fr : Rn → R using
a Gaussian process (GP) (Williams and Rasmussen, 1996) or a mixture of Gaussian
processes (MGP) (Lázaro-Gredilla, Van Vaerenbergh, and Lawrence, 2012), respec-
tively. This study applies GP- or MGP-based models instead of other nonlinear re-
gression models such as kernel ridge regression (Vovk, 2013), random forest regres-
sion (Breiman, 2001), or artificial neural networks (Jain, Mao, and Mohiuddin, 1996)
because GP or MGP can quantify the uncertainty of its prediction without introduc-
ing any other statistical validation. The sampling ratios of Dre f from D are fixed
at 0.3 and 0.7 for the experiments with GP and MGP, respectively. Each reference
function fr is considered as a source to provide pieces of evidence for the similarity
between (xi, yi) and (xj, yj) inDeval . The function fr is not used to provide any infor-
mation about the similarities between the data instances in Dre f or between a data
instance in Dre f and a data instance in Deval . This is to exclude self-evaluation to en-
sure the objectivity of the evidence. Regarding a reference function fr, we consider
the state of the similarity between (xi, yi) and (xj, yj) as:

• Similar: Both data instances can be considered to have been generated by the
function fr (Fig. 4.2 a).

• Dissimilar: Only one of the data instances can be considered to have been
generated by the function fr (Fig. 4.2 b).
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• Uncertain: Neither of the data instances can be considered to have been gen-
erated by the function fr (Fig. 4.2 c). The uncertain state indicates that fr does
not provide any information about the similarity between (xi, yi) and (xj, yj).

To quantitatively evaluate whether (xi, yi) can be considered to have been gen-
erated by the regression function fr, we use the likelihood p(Oi| fr), the probability
of event Oi that a data instance (xi, yi) is observed, considering fr. The likelihood
p(Oi| fr) is modeled using a normal distribution with mean and standard deviation
depending on the predicted target value ŷi = fr(xi) and the corresponding standard
error σxi by fr, respectively. This is expressed as:

p(Oi| fr) =

{
1 if ∆i ≤ 3 σ̄

2×
∫ +∞

∆i−3 σ̄N (u|0, α σxi) du otherwise
, (4.1)

where ∆i = |yi− ŷi| = |yi− fr(xi)| is the deviation from the true to the predicted tar-
get values of data instance i using fr, and σ̄ is the average of the predictive standard
error of all the data instances inDre f . α is the hyperparameter used to adjust the con-
dition that restricts the data instances belonging to the function fr. In other words,
the interval that determines the probability that a data instance (xi, yi) belongs to
fr is α σxi , and if the data instance falls outside this interval, it is determined that it
does not belong to fr. By increasing or decreasing the value of the parameter α, the
condition for determining whether a data instance (xi, yi) belongs to fr is relaxed or
tightened, making p(Oi| fr) larger or smaller, respectively. Optimal values of α can
be chosen using statistical criteria and appropriate validation methods; however, we
set α = 2 for all experiments in this work to reduce model complexity. We consider
p(Oi| fr) as the probability that (xi, yi) is generated by fr, and p(Oi| fr) = 1− p(Oi| fr)
is the probability that (xi, yi) is not generated by fr. Figure 4.3 illustrates the process
of modeling the probability p(Oi| fr).

Events where (xi, yi) or (xj, yj) is generated by the function fr are independent
events. Therefore, considering the function fr, we can evaluate the joint probabilities
of observing:

• Both data instances:

p(Oi, Oj| fr) = p(Oi| fr)× p(Oj| fr); (4.2)

• Only one of the data instances:

p(Oi, Oj| fr) + p(Oi, Oj| fr)

= p(Oi| fr)× p(Oj| fr) + p(Oi| fr)× p(Oj| fr);
(4.3)

• Neither of the data instances:

p(Oi, Oj| fr) = p(Oi| fr)× p(Oj| fr)

= 1− p(Oi, Oj| fr)− p(Oi, Oj| fr)− p(Oi, Oj| fr).
(4.4)

4.2.2 Modeling evidence by mass functions

Considering the Dempster–Shafer theory framework (Shafer, 1976), we begin by
defining the frame of discernment Ω. Let Ω = {s, ds} be the universal set repre-
senting the similarity states of any two data instances (xi, yi) and (xj, yj). s and ds
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FIGURE 4.3: Illustration of probability P(Oi| fr) that a new data in-
stance (xi, yi) is observed, considering fr. We model the probability
using a normal distribution with mean of zero and standard deviation
of α σxi , which are derived by fr. Subplot (a) shows the probability
p(Oi| fr) as deviation (∆i = |yi − ŷi| = |yi − fr(xi)|) from the true
to the predicted target values of data instance i using fr is less than
3 σ̄. The σ̄ is the average of the predictive standard error of all the
training data instances. In contrast, subplot (b) illustrates modeling
the probability as ∆i exceeds 3 σ̄. In each subplot, red area under the
curve indicate 1

2 × P(Oi| fr). Blue area in subplot (b) show cut off of
the probability. In other words, we consider the probability P(Oi| fr)

equal to 1 as its prediction error less than 3 σ̄.

denote the similarity and dissimilarity states between the two data instances, respec-
tively.

According to the Dempster–Shafer theory, the evidence of the similarity states
between these two data instances is represented by a mass function mi,j (or a basic
probability assignment) (Shafer, 1976). This assigns probability masses to all the
nonempty subsets of Ω (X = {{s}, {ds}, {s, ds}}). It is defined as follows:

mi,j : X → [0, 1] with ∑
E∈X

m(E) = 1. (4.5)

The masses assigned to {s} and {ds} reflect the degrees of belief exactly commit-
ted to the evidence to support the similarity and dissimilarity between (xi, yi) and
(xj, yj), respectively. The weight assigned to {s, ds} expresses the degree of belief
that the evidence provides no information about the similarity (or dissimilarity) be-
tween (xi, yi) and (xj, yj).

Therefore, the mass function mi,j
fr

, which models a piece of evidence of the simi-
larity between (xi, yi) and (xj, yj) collected from fr, is defined as follows:

mi,j
fr
({s}) =

p(Oi, Oj| fr)

γi,j
(4.6)

mi,j
fr
({ds}) =

p(Oi, Oj| fr) + p(Oi, Oj| fr)

γi,j
(4.7)

mi,j
fr
({s, ds}) = 1− 1

γi,j
+

p(Oi, Oj| fr)

γi,j
, (4.8)



4.3. Case study 1: Revealing the similarity between transition-rare earth metal
binary alloys

63

where γi,j = (e
σ̄

∆y + 1)× (
σxi
σ̄ + 1)× (

σxj
σ̄ + 1) is a discounting factor (Shafer, 1976;

Smets, 1993), which describes the unreliability of evidence about the similarity be-
tween (xi, yi) and (xj, yj) collected from a source of evidence fr. ∆y is the varia-
tion range of the target variable y in the dataset D. The smaller σ̄ is relative to ∆y,
the more reliable the learned regression function fr is. Also, when σxi and σxj are
smaller than σ̄, fr can provide reliable evidence for the relationship between (xi, yi)
and (xj, yj). By contrast, when σxi and σxj are large compared to σ̄, fr cannot pro-
vide reliable evidence for the relationship between (xi, yi) and (xj, yj). A detailed
explanation of each component in γi,j is provided in Section D.1.

4.2.3 Dempster’s rule in combining evidence

Assuming that we can collect q pieces of evidence from Fr = { f 1
r , . . . , f q

r }, a set of q
reference functions is generated from D to evaluate the similarity between a pair of
data instances with indices i and j. According to the Dempster–Shafer theory frame-
work, any two pieces of evidence collected from the reference functions f l

r and f k
r ,

which are modeled by the corresponding mass functions mi,j
f l
r

and mi,j
f k
r
, respectively,

can be combined using the Dempster rule of combination to assign the joint mass
mi,j
{ f l

r , f k
r }

to each nonempty subset E of Ω as follows:

mi,j
{ f l

r , f k
r }
(E) = (mi,j

f l
r
⊕mi,j

f k
r
)(E)

=

∑
Et∩Ev=E

mi,j
f l
r
(Et)×mi,j

f k
r
(Ev)

1− ∑
Et∩Ev=∅

mi,j
f l
r
(Et)×mi,j

f k
r
(Ev)

,
(4.9)

where E, Et, and Ev are nonempty subsets of Ω. Dempster’s rule is commutative
and associative.

Based on Dempster’s rule, the obtained mass functions corresponding to the q
pieces of evidence are combined to assign the final mass mi,j

Fr
as follows:

mi,j
Fr
(E) =

(
mi,j

f 1
r
⊕mi,j

f 2
r
⊕ · · · ⊕mi,j

f q
r

)
(E). (4.10)

We perform similar analyses for all pairs of data instances inD to construct sym-
metric matrices M comprising the similarities (M[i, j] = M[j, i] = mi,j

Fr
({s})) between

them. Thereafter, the obtained matrix is applied for further unsupervised data min-
ing analysis, such as clustering or data visualization.

4.3 Case study 1: Revealing the similarity between transition-
rare earth metal binary alloys

4.3.1 Binary dataset

Binary alloys dataset Dbinary (Hieu-Chi, 2023): A material dataset containing 100
transition-rare earth metal binary alloys, comprising nickel (Ni), manganese (Mn),
cobalt (Co), or iron (Fe), and the corresponding Curie temperatures (TC). This dataset
was collected from the Atomwork database of the National Institute of Materials Sci-
ence (Villars et al., 2004; Xu, Yamazaki, and Villars, 2011). Each binary alloy inDbinary
is represented using seven descriptors: (1,2) the atomic number of transition metal
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(a) (b)

FIGURE 4.4: (a) Observed and predicted Curie temperature of alloys
in the dataset Dbinary using model generated for nickel (Ni), iron (Fe),
and manganese (Mn)-based alloys. The blue and gray points indicate
cobalt (Co)-based alloys and alloys of other transition metals (Ni, Fe,
Mn), respectively. (b) Prediction error of Co-based alloys when ex-
cluding (top) or including (bottom) data of other Co-based alloys to

the training dataset.

(ZT) and rare-earth (ZR) constituents; (3) projection of the spin magnetic moment
onto the total angular moment of the 4 f elections (J4 f

(
1− gj

)
); (4, 5) covalent ra-

dius (rcovT) and first ionization (IPT) of the transition metal; (6, 7) concentration of
the transition metal (CT) and rare-earth metal (CR). The selection of these seven de-
scriptors has been discussed in detail in previous studies (Nguyen et al., 2018b; Dam
et al., 2018).

4.3.2 Assessment of the similarity between transition-rare earth metal bi-
nary alloys based on mechanisms of Curie temperature

In the first experiment, we demonstrate the versatility of the eRSM in detecting out-
liers and identifying mixtures of mechanisms. We apply the eRSM to assess the
similarities between 100 transition rare earth metal binary alloys comprising nickel
(Ni), manganese (Mn), cobalt (Co), or iron (Fe) based on their Curie temperatures.
We construct a regression model using a Gaussian process by considering the data
instances in Dbinary. This regression model achieves high prediction accuracy, as in-
dicated by an R2 score of 0.963 and a mean absolute error (MAE) of 40 (K) in ten-fold
cross-validation. However, the reliability of this nonparametric regression model
in subsequent exploratory predictions is not guaranteed due to the relatively small
number of observable alloys compared to the number of possible alloys.

Figure 4.4 a illustrates the results of the exploratory prediction of the Curie tem-
perature for Co-based binary alloys in Dbinary using a Gaussian process regression
model constructed from the data of binary alloys of Ni, Mn, and Fe. The regression
model trained on the data of Ni, Mn, and Fe alloys demonstrates high prediction
accuracy in ten-fold cross-validation, with an R2 value of 0.946 and an MAE of 35
(K). However, the model tends to underestimate the Curie temperature of Co-based
alloys with high values while overestimating the Curie temperature of other Co-
based alloys. Significantly, when additional data of Co-based alloys are included in
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FIGURE 4.5: (a) Heatmap illustrating the similarity matrix Mbinary ex-
tracted for all the data instances in the Dbinary. (b) Confusion matri-
ces measuring the regression-based similarities between alloys in four
groups G1-G4 and the dissimilarities between the models generated

for alloys in different groups.

the training set, the prediction error for Co-based alloys is reduced (Figure 4.4 b).
This observation supports the hypothesis that the underlying mechanisms govern-
ing the Curie temperature differ between Co-based alloys and alloys of other tran-
sition metals. The eRSM enables the identification and characterization of mixture
mechanisms within this dataset, providing valuable insights into the similarities and
differences between materials.

After applying the eRSM on the dataset Dbinary, we obtain a similarity matrix
Mbinary that reveals moderately high similarity values among the data instances (Fig-
ure 4.5 a). This indicates that most of the data instances can be effectively regressed
by a relatively smooth function, which aligns with the high prediction accuracy ob-
served in ten-fold cross-validation for all the alloys in the dataset. To facilitate the
exploratory data analysis and avoid false intuitions or misunderstandings, we group
the alloys in Dbinary based on their high similarities within each group. It is impor-
tant to note that an alloy can belong to multiple groups simultaneously or not belong
to any group. By applying a graph-based clustering method, we identify four dis-
tinct groups of alloys denoted as G1, G2, G3, and G4, which exhibit high intra-group
similarities exceeding 0.7 (Figure 4.5 a). However, the similarities between alloys
in group G1 and those in G2, G3, and G4 are significantly dissimilar. Additionally,
a small group of alloys (a gray region in Figure 4.5 a) shows distinct differences
from all the other alloys and can be considered outliers. The remaining alloys are
not assigned to any specific group, indicating uncertainty in the clustering analysis
results.

To quantitatively evaluate the validity of the analysis process, we train regres-
sion models for TC using the data from each of the four groups G1, G2, G3, and G4,
and assess their prediction accuracy on these groups. The confusion matrix in Figure
4.6 summarizes the correlation between the observed and predicted TC values by the
four learned regression models. The diagonal plots represent the cross-validation re-
sults of the models trained on the alloys from the respective groups. The off-diagonal
plot shows the correlation between the observed TC values and the predictions made
by the model trained on alloys from the other groups. The results confirm the high
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FIGURE 4.6: Dependence of TC on the concentration of the transition
metal (CT) in alloys. Red, blue, green and yellow scatters indicate
alloys containing cobalt (Co), iron (Fe), manganese (Mn), and nickel

(Ni). Alloys in G1 are highlighted by triangles.

intra-group similarity among the alloys in groups G1, G2, G3, and G4, respectively,
as well as the dissimilarity between the four groups. Furthermore, the alloys con-
sidered outliers exhibit significant dissimilarity from all the other groups. These
findings suggest that the physical mechanisms governing the TC of alloys in group
G1 may differ from those in groups G2, G3, and G4. However, it remains challenging
to determine the specific differences in the mechanisms of TC among the alloys in
groups G2, G3, and G4.

Moreover, when considering the alloys in G1, a strong linear correlation is ob-
served between TC and the concentration of transition metals in the alloys, with a
Pearson correlation coefficient of 0.95 (Figure 4.6, triangle scatters). This finding
aligns with the observations of previous research (Dam et al., 2018) that investigated
all binary alloys of transition metals and rare earth metals inDbinary. The range of TC
is found to correlate with the transition metals’ composition ratio. Furthermore, out
of the 17 alloys in G1, 13 are Co-based alloys with high Curie temperatures (TC > 600
K). In contrast, most of the other Co-based alloys in Dbinary have lower Curie tem-
peratures (TC < 500 K) and are assigned to groups G2, G3, and G4. These results are
consistent with the observation that the regression model for Fe-, Mn-, and Ni-based
alloys tend to underestimate the TC of Co-based alloys with high TC and overesti-
mate the TC of the remaining Co-based alloys (Figure 4.4 a).
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Additionally, we conducted experiments on synthetic toy datasets that include
outliers and multiple mechanisms to evaluate the performance of the eRSM in as-
sessing similarity. The detailed results of these experiments are summarized in
Appendix C. In summary, the eRSM demonstrates its effectiveness in assessing the
similarity between data instances and successfully detects outliers and mixtures of
mechanisms. These results validate the efficiency of the proposed similarity mea-
sure.

4.4 Case study 2: Revealing the similarity between quater-
nary alloys with respect to Curie temperature and Mag-
netization

4.4.1 Quaternary alloy dataset

Quaternary high-entropy alloys datasets Dquaternary (Hieu-Chi, 2023): A material
dataset contains 990 equiatomic quaternary high-entropy alloys, which comprise 14
transition metals {Ag, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pd, Rh, Ru, Tc, Zn}, and the
corresponding calculated magnetizations and Curie temperatures in the BCC phase.
The dataset was collected from an original dataset of 147, 630 equiatomic quaternary
high-entropy alloys calculated using Korringa-Kohn-Rostoker coherent approxima-
tion method (Fukushima et al., 2022). Each alloy in Dquaternary is represented using
135 compositional descriptors, including the means, standard deviations, and co-
variance of the atomic representations of their constituent elements (Seko, Togo, and
Tanaka, 2018) and four categorical features indicating the elements comprising the
quaternary alloy. We use 15 atomic representations to generate these 135 descriptors:
(1) atomic number, (2) atomic mass, (3) period and (4) group in the periodic table,
(5) first ionization energy, (6) second ionization energy, (7) Pauling electronegativity,
(8) Allen electronegativity, (9) van der Waals radius, (10) covalent radius, (11) atomic
radius, (12) melting point, (13) boiling point, (14) density, and (15) specific heat.

It is desirable to reduce the number of descriptors both to reduce the compu-
tational cost of modeling and, in some cases, to improve model performance. We
adopt a statistics-based feature selection method as a filter to remove redundancy
descriptors. This method evaluates the Pearson coefficient between pairs of descrip-
tors and removes descriptors that exhibit strong relationships with the other ones.
For instance, given a pair of descriptors di and dj, we remove di if the Pearson co-
efficient between di and dj exceeds 0.8 and otherwise. Table 4.1 shows 36 selected
descriptors, which are used to learn regression models in this study.

TABLE 4.1: Descriptors for modeling expert.

Features Definition
µatomic number Mean of atomic numbers of elements compris-

ing the alloy

µgroup index Mean of group index of elements comprising
the alloy

µsecond ionization energies Mean of second ionization energies of elements
comprising the alloy

Continued on next page
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Table 4.1 – Continued from previous page
Features Definition

µpauling electronegativity Mean of pauling electronegativity of elements
comprising the alloy

µallen electronegativity Mean of allen electronegativity of elements
comprising the alloy

µcovalent radius cordero Mean of covalent radius cordero of elements
comprising the alloy

µatomic radius Mean of atomic radius of elements comprising
the alloy

σatomic number Standard deviation of atomic number of ele-
ments comprising the alloy

σgroup index Standard deviation of group index of elements
comprising the alloy

σfirst ionization energies Standard deviation of first ionization energies
of elements comprising the alloy

σsecond ionization energies Standard deviation of second ionization ener-
gies of elements comprising the alloy

σpauling electronegativity Standard deviation of pauling electronegativity
of elements comprising the alloy

σallen electronegativity Standard deviation of allen electronegativity of
elements comprising the alloy

σvan der Waals radius Standard deviation of van der Waals radius of
elements comprising the alloy

σcovalent radius cordero Standard deviation of covalent radius cordero
of elements comprising the alloy

σatomic radius Standard deviation of atomic radius of ele-
ments comprising the alloy

σmelting points Standard deviation of melting points of ele-
ments comprising the alloy

covatomic number
group index Covariance between atomic number and group

index of elements comprising the alloy

covatomic number
second ionization energies Covariance between atomic number and sec-

ond ionization energies of elements comprising
the alloy

covatomic number
pauling electronegativity Covariance between atomic number and paul-

ing electronegativity of elements comprising
the alloy

covatomic number
allen electronegativity Covariance between atomic number and allen

electronegativity of elements comprising the al-
loy

Continued on next page
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Table 4.1 – Continued from previous page
Features Definition

covatomic number
covalent radius cordero Covariance between atomic number and cova-

lent radius cordero of elements comprising the
alloy

covgroup index
second ionization energies Covariance between group index and second

ionization energies of elements comprising the
alloy

covgroup index
allen electronegativity Covariance between group index and allen

electronegativity of elements comprising the al-
loy

covgroup index
covalent radius cordero Covariance between group index and covalent

radius cordero of elements comprising the alloy

covgroup index
atomic radius Covariance between group index and atomic

radius of elements comprising the alloy

covfirst ionization energies
second ionization energies Covariance between first and second ionization

energies of elements comprising the alloy

covfirst ionization energies
atomic radius Covariance between first ionization energies

and atomic radius of elements comprising the
alloy

covsecond ionization energies
pauling electronegativity Covariance between second ionization energies

and pauling electronegativity of elements com-
prising the alloy

covsecond ionization energies
allen electronegativity Covariance between second ionization energies

and allen electronegativity of elements com-
prising the alloy

covsecond ionization energies
covalent radius cordero Covariance between second ionization energies

and covalent radius cordero of elements com-
prising the alloy

covsecond ionization energies
atomic radius Covariance between second ionization energies

and atomic radius of elements comprising the
alloy

covpauling electronegativity
allen electronegativity Covariance between pauling electronegativity

and allen electronegativity of elements com-
prising the alloy

covpauling electronegativity
covalent radius cordero Covariance between covalent radius cordero

and allen electronegativity of elements com-
prising the alloy

covpauling electronegativity
atomic radius Covariance between pauling electronegativity

and atomic radius of elements comprising the
alloy

Continued on next page
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FIGURE 4.7: (a,d) Heatmaps illustrating the similarity matrices
MMag

quaternary (a) and MTC
quaternary (d) extracted from datasets DMag

quaternary

and DTC
quaternary, focusing on mechanisms of magnetization and TC,

respectively. (b,e) The confusion matrix summarizes the differences
between the magnetization (b) or TC (e) mechanisms of alloys in
extracted groups. (c,f) Visualization of quaternary alloys in the
two-dimensional embedding spaces constructed by applying the T-
distributed Stochastic Neighbor Embedding (t-SNE) to MMag

quaternary

(c) and MTC
quaternary (f). Red, blue, and gray contours indicate gaus-

sian models ĜMag
1 (ĜTC

1 ), ĜMag
2 (ĜTC

2 ), and ĜMag
3 (ĜTC

3 ), respectively,
learned by using the Gaussian Mixture Models (Lindsay, 1995) in the
embedding space focusing on mechanisms of magnetization (TC). In
addition, red and blue points in sub-figures b and c (e and f) indicate

the alloys in GMag
1 (GTC

1 ) and GMag
2 (GTC

2 ), respectively.

Table 4.1 – Continued from previous page
Features Definition

covcovalent radius cordero
atomic radius Covariance between covalent radius cordero

and atomic radius of elements comprising the
alloy

4.4.2 Assessment of the similarity between quaternary high-entropy al-
loys based on mechanisms of magnetization

In the next experiment, we apply the eRSM to assess the similarities between 990
quaternary high-entropy alloys comprising 14 transition metals in the datasetDMag

quaternary
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(a)

(c)

(b)

(d)

Gaussian Process Regression Mixture of Experts

R2 score: 0.75
MAE: 0.13 (T)

R2 score: 0.76 
MAE: 0.11 (T)

R2 score: 0.85
MAE: 67 (K)

R2 score: 0.86
MAE: 49 (K)

Mixture of ExpertsGaussian Process Regression

FIGURE 4.8: Prediction accuracies for magnetization (a, b) and Curie
temperature (c, d) of the alloys with 10-fold cross-validations. Predic-
tion validation results with single gaussian process regression mod-
els for magnetization and Curie temperature are shown in sub-figures
(a) and (c), respectively. Prediction validation results with mixtures
of expert models for magnetization and Curie temperature are shown
in sub-figures (b) and (d), respectively. Blue and white circles indicate
magnetic alloys (finite magnetization) and non-magnetic alloys (zero

magnetization), respectively.

based on their magnetization. We aim to construct an optimal Gaussian process re-
gression model using the designed descriptors to predict the magnetization of these
alloys. However, the Gaussian process regression model performs poorly, with an
R2 score of 0.75 and an MAE of 0.13 (T) in ten-fold cross-validation. This suggests
that the magnetization of these alloys may not be accurately described by a single
model in the designed descriptor space. It indicates the presence of outliers or a mix-
ture of models for the magnetization properties of these alloys within the descriptor
space.

Applying the eRSM to the dataset, we obtain a similarity matrix MMag
quaternary that
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reveals two core groups of alloys, denoted as GMag
1 and GMag

2 , showing high intra-
group similarities above 0.5 (Figure 4.7a). Some of the alloys in GMag

1 are similar to
those in GMag

2 ; however, the majority exhibit apparent dissimilarities. Additionally,
a small group of alloys (Figure 4.7 a, yellow region) shows dissimilarities with the
rest and can be considered outliers. The remaining alloys inDMag

quaternary do not exhibit

significant similarities with the alloys in groups GMag
1 and GMag

2 , and therefore they
are not assigned to any group.

To validate the obtained results quantitatively, we trained three regression mod-
els using data from each group, GMag

1 , GMag
2 , and outliers. We monitored the pre-

diction accuracy of the three learned regression models for data in all the groups.
The confusion matrix summarizing the correlations between the observed and pre-
dicted values of the target variable using the learned regression models is shown
in Figure 4.7 c. The diagonal plots illustrate the ten-fold cross-validation results of
the models learned from these three groups of alloys. In contrast, the off-diagonal
plot shows the correlation between the observed magnetization and the predictions
made by the model learned from the alloys of the other groups. The results confirm
the intra-group similarity of the alloys in groups GMag

1 and GMag
2 , respectively, as

well as the dissimilarity between the two groups and the intra-group dissimilarity
of the alloys considered as outliers. Specifically, we observe that group GMag

2 consists
of ferrimagnetic alloys or alloys with magnetization relatively smaller (magnetiza-
tion < 0.1 (T)) compared to the alloys in group GMag

1 . On the other hand, when
using the data from GMag

1 , we can construct a Gaussian process regression model
with high prediction accuracy, yielding an R2 score of 0.992 and an MAE of 0.016 (T)
in the ten-fold cross-validation.

Therefore, we can use the information of the constituent elements of each alloy to
predict which group it belongs to in advance (Ha et al., 2021) and apply an appropri-
ate regression model to improve prediction accuracy for the alloys. We combine the
similarity measured by using the eRSM with the Jaccard similarity coefficient (Mur-
phy, 1996) and apply the T-distributed Stochastic Neighbor Embedding (Maaten and
Hinton, 2008) (t-SNE) to construct a two-dimensional embedding map (Fig. 4.7 c).
Details of the combination method are shown in Section D.2. As a result, we can eas-
ily distinguish the alloys in groups GMag

1 (red) and GMag
2 (blue) when they form two

separate regions with high density in the embedding space. We apply a Gaussian
mixture model (Lindsay, 1995) (GMM) on the embedding space to identify groups
and calculate the probability of an alloy belonging to a particular identified group.
Alloys in different groups are treated differently by using a mixture of experts (Pham
et al., 2016b) (MoE) approach. Figure 4.8 a and b show a reduction of the proposed
mixture of experts in MAE of 18% compared with result of the single model, from
0.13 (T) to 0.11 (T). Further analysis shows that applying the obtained similarities in
MOE improves the prediction accuracy for magnetic alloys (Fig. 4.9 a).

4.4.3 Assessment of the similarity between the quaternary high-entropy
alloys based on mechanisms of Curie temperature

Considering this experiment, the target data are the same as in the previous section
(Dquaternary); however, the physical property of interest is TC. A regression model
can be constructed using a Gaussian process. This shows a rather high prediction
accuracy in ten-fold cross-validation with an R2 score of 0.85 and an MAE of 67
(K). We also observe two distinguishable groups of quaternary alloys in the dataset
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(a) (b)

FIGURE 4.9: Error of prediction (observed value - predicted value) for
magnetization (a) and curie temperature (b) of the magnetic alloys in
Dquaternary. Blue and orange lines in these plots indicate prediction
errors of models learned by using Gaussian Process and Mixture of
Experts, which used the similarities measured by the eRSM, respec-

tively.

DTC
quaternary when applying the eRSM. Figure 4.7 d illustrates the similarity matrix

MTC
quaternary with two groups of alloys denoted as GTC

1 and GTC
2 , showing high intra-

group similarities and exceeding 0.5. Some of the alloys in GTC
1 are similar to those

in GTC
2 . Nonetheless, the others exhibit apparent dissimilarities, which is consistent

with the observation of two high-density regions (red) in the embedding map of
MTC

quaternary (Fig. 4.7 e). Furthermore, a small group of alloys (Fig. 4.7 d, yellow re-
gion) showed dissimilarities with all the others and could be considered as outliers.
The remaining alloys do not show apparent similarities with alloys in groups GTC

1
and GTC

2 ; thus, they are not assigned to any group.
Following the same analysis procedure as in the previous section, we trained re-

gression models for Curie temperature using data from each of the three groups GTC
1 ,

GTC
2 , and outliers and monitored their prediction accuracy on these groups. Figure

4.7 f shows the confusion matrix that summarizes the obtained results. The diago-
nal plots illustrate the ten-fold cross-validation results of the models learned from
these three groups of alloys. The off-diagonal plot shows the correlation between
the observed Curie temperature and the predictions made by the regression model
learned from the alloys of the other groups. We can also confirm the intra-group
similarity of the alloys in groups GTC

1 and GTC
2 , respectively, dissimilarity between

the two groups, and intra-group dissimilarity of the alloys considered as outliers.
Specifically, we observe that the Curie temperatures of approximately all the alloys
in group GTC

2 have a low TC, which is 0 (K) or relatively smaller than that of the other
alloys. Furthermore, using the data in GTC

1 , we can construct a Gaussian process
regression model with a high prediction accuracy with an R2 score of 0.985 and an
MAE of 19 (K) in the ten-fold cross-validation.

Therefore, we utilize the similarity information to design descriptors for quater-
nary alloys due to the effectiveness of the data for detecting the mixture of multiple
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FIGURE 4.10: Proportions of quaternary alloys containing Fe or Co in
group GMag

1 (a) and GTC
1 (b).

mechanisms in the dataset. We apply similar method (Section D.2) as in the pre-
vious experiment to construct a two-dimensional embedding map (Fig. 4.7 f) and
then learn a mixture of experts to predict Curie temperature of quaternary alloys in
the dataset DTC

quaternary. The proposed mixture of models exhibits higher prediction
accuracy than the single model in 10-folds cross-validations (Fig. 4.8 c and d). The
MAE of the proposed mixture of expert reduces approximately 36%, from 67 (K) to
49 (K).

4.4.4 Discussion of the obtained similarities between materials and the
associated physical mechanisms

In the experiments conducted on the datasets DMag
quaternary and DTC

quaternary, which focus
on magnetization and TC respectively, we observed that these datasets provide a
clear example where magnetization and TC are cases sensitive to finite or zero values.
As demonstrated in Sections 4.4.2 and 4.4.3, the prediction accuracy is low when
considering a single regression model for the entire dataset. In this section, we shift
our attention to analyzing the extracted alloy groups GMag

1 , GMag
2 , GTC

1 , and GTC
2 to

identify underlying patterns.
Figure 4.10 reveals that Fe and Co, which possess significant spin moments and

exhibit ferromagnetic interactions with many elements, are dominant elements in
alloys belonging to groups GMag

1 (a) and GTC
1 (b). Furthermore, when considering

the proportion of quaternary alloys with fixed two of their four constituent elements
across the four extracted groups (GMag

1 , GMag
2 , GTC

1 , and GTC
2 ), we observe that the

proportion of Fe-containing and Co-containing alloys in groups GMag
1 (a) and GTC

1
is significantly higher compared to the other groups (Fig. 4.11). Consequently, pre-
diction models constructed using data from alloys in GMag

1 or GTC
1 are better suited
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FIGURE 4.11: Effect of coexistence of the 14 transition metals on mag-
netization and Curie temperature mechanisms. Each pie chart re-
sults from quaternary alloys containing the respective element pair.
They show the percentages of alloys that follow the magnetization
mechanisms (lower-left triangle) and Curie temperature mechanisms
(upper-right triangle), as extracted by the eRSM. Red and blue areas
indicate the percentages of alloys whose magnetization and TC are fi-
nite (GMag

1 and GTC
1 ) and zero (GMag

2 and GTC
2 ), respectively. Yellow

areas indicate the percentages of alloys that are detected as outliers.
By contrast, gray regions indicate the fractions of alloys not assigned

to the extracted groups.

for predicting magnetization or TC of alloys containing these elements, respectively.
The remaining Fe-X and Co-X alloys are considered outliers in terms of the extracted
mechanisms or unassigned high-entropy alloys that do not fall into any of these
mechanisms. Conversely, Mn-X alloys exhibit behavior similar to Fe-X and Co-X
alloys in the context of magnetization mechanisms. However, for Curie tempera-
ture, Mn-X alloys are categorized in group GTC

2 representing low TC, distinct from
the other groups. Notably, among the Fe-X and Co-X alloys, the percentage of Fe-
Mn and Co-Mn alloys considered outliers of the mechanisms extracted from GTC

1 is
relatively high, accounting for 55% and 43% respectively (Fig. 4.11).
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FIGURE 4.12: Correlation between magnetization (T) and Curie tem-
perature (K) of quaternary alloys with non-zero magnetization and
non-zero Curie temperature in datasets DMag

quaternary and DTC
quaternary.

Marginal plots show histogram of the properties of the alloys.

For further investigation, we organized the raw data of the quaternary alloys
by focusing on the presence or absence of Mn. Figure 4.12 displays the correlation
between magnetization and Curie temperature for 556 (56%) alloys with non-zero
properties. Out of the total 990 data instances, 413 (42%) correspond to alloys with
zero values for both TC and magnetization, while there are twenty-one (2%) alloys
with zero TC but finite magnetization. We made several observations based on these
findings. Alloys containing all three elements, Mn, Fe, and Co, exhibit high Curie
temperatures (TC > 900 (K)). On the other hand, alloys containing pairs of Mn-
Fe or Mn-Co show moderate Curie temperatures. In contrast, Mn-containing alloys
without Fe or Co display low Curie temperatures (TC < 250 (K)). Furthermore, these
trends do not correlate significantly between magnetization and Curie temperature.
However, a clear positive correlation between magnetization and Curie temperature
can be observed in the group of Mn-free alloys.

To interpret these results, we considered a hypothesis regarding the origin of
the observed data. The estimated magnetization is determined by the sum of all lo-
cal magnetic moments divided by the unit volume. These local magnetic moments



4.5. Contributions and limitations 77

are influenced by the spin configurations of atomic sites, which stabilize the struc-
ture of alloys. Conversely, the TC can be estimated from the spin-spin exchange en-
ergy given a specific structure and spin configuration. First-principles calculations
and exhaustive calculations in high-entropy alloys have revealed that early transi-
tion metals and late transition metals often exhibit antiferromagnetic interactions
(Akai et al., 1990; Fukushima et al., 2022). Mn, being situated between early and late
transition metals, requires cautious consideration of the spin configuration (ferro-
magnetic or antiferromagnetic) in Mn-containing alloys, especially in high-entropy
alloys where elements can stochastically occupy the same atomic site. Based on
this consideration, we hypothesize that alloys containing Mn may follow different
rules for magnetization compared to those grouped into GMag

2 . Conversely, Mn-
containing alloys may follow the same rules as alloys grouped into GTC

2 regarding
TC, albeit with a spin configuration that yields magnetization. While further analysis
is beyond the scope of this paper and will not be discussed here, these preliminary
findings indicate promising avenues for future investigation.

4.5 Contributions and limitations

In this study, we developed a method called the evidetial regression-based similarity
measure (eRSM) that can rationally transform material data from multiple sources
into evidence of similarities between materials and combine the evidence to con-
clude the similarities. The extracted similarity-dissimilarity information has signif-
icant potential for application in the subgroup discovery of materials. We demon-
strated the effectiveness of the eRSM in detecting homogenous subgroups of mate-
rials using two experiments on two datasets of magnetic materials.

Our method successfully revealed differences in the mechanisms of the Curie
temperature of Co-based binary alloys when applied to a dataset of 100 transition-
rare earth metal binary alloys comprising Ni, Mn, Co, and Fe. Furthermore, we ex-
plored the mechanisms of ferrimagnetic and low Curie temperature alloys from the
magnetic dataset of calculated quaternary alloys. These results illustrate the poten-
tial of our method in extracting valuable information for describing and interpreting
the underlying physical mechanisms in material datasets.

In addition, this approach can identify material subgroups in data that exhibit
homogeneities in multivariate statistical relationships, providing hints for experts
to adjust the current instance space X by analyzing and elucidating the underlying
physical mechanisms. Therefore, we can reduce the effect of the aleatoric uncertainty
in each decision. According to Hüllermeier and Waegeman, aleatoric and epistemic
uncertainties are not fixed concepts, but rather depend on the specific setting (in-
stance space X , output space Y , hypothesis space H, and joint probability P on
X ×Y). Changing the context can alter the sources of uncertainty, enabling aleatoric
uncertainty to become epistemic uncertainty and thus reducible. This distinction be-
tween the two types of uncertainty becomes less clear when the learner is allowed
to modify the setting, making their quantification more complex. Der Kiureghian
and Ditlevsen also share this perspective on the relationship between aleatoric and
epistemic uncertainty. They contend that these concepts can only be unambigu-
ously defined within a particular analytical model, and uncertainties classified as
aleatory in one model might be considered epistemic in another (Der Kiureghian
and Ditlevsen, 2009). One possible approach to address aleatoric uncertainty is to
extend the description of instances by incorporating additional features, effectively
replacing the current instance space X with another space X ’. This change could
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impact the uncertainty and contribute a more accurate understanding of materials
and their properties.

While the proposed method provides valuable information for understanding
the underlying mechanisms in datasets, it requires human involvement and further
analysis of the detected groups to design additional features for the instance space.
Moreover, our method’s application faces computational resource challenges when
the number of data instances increases. For example, the experiment on the quater-
nary alloy dataset was conducted on a cluster of 288 cores, 2.3 TB RAM, CPU Intel(R)
Xeon(R) CPU E5-2697A v4 @ 2.60GHz, and it took 2.5 months to complete.

The eRSM method shows great promise in transforming material data into ev-
idence of similarities between materials, subgroup discovery, and elucidating un-
derlying mechanisms. However, it is essential to address the challenges in compu-
tational resources and further involve human expertise in analyzing the detected
groups. Future research should focus on improving the method’s scalability and
automating the analysis of detected subgroups for more efficient discovery of mate-
rial properties and mechanisms. By overcoming these challenges, our method can
significantly contribute to materials science and accelerate the discovery of new ma-
terials with desired properties.
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Chapter 5

Evidence-based method for
visualizing materials with respect
to physical properties

5.1 Introduction

In the previous chapters of my thesis, I proposed data-driven methods to mea-
sure the similarities between materials by considering the correlations between their
compositions and target properties. These methods involve a rational transforma-
tion of materials data into evidence of similarities between materials. The evidence
is then modeled and combined to conclude the similarities between materials based
on their correlations with compositions and properties of interest. For binary prop-
erties, we employed the errors of substitutions as a measure of similarity. This ap-
proach quantifies the similarity between materials based on the extent to which their
compositions align with each other. On the other hand, we used the correlations of
occurrences for continuous properties as a measure of similarity. This measurement
captures the degree of correlation between the compositions of materials and their
corresponding properties. These similarity measurements have demonstrated their
capability to quantitatively assess the similarities between materials while consid-
ering the associated uncertainty. Furthermore, they have been successfully applied
in exploring new materials, aiding in identifying materials with desired properties
based on their similarities to existing materials.

However, rationalizing the estimated uncertainty in predictions through the struc-
ture of the query molecule or constituent elements of materials remains a challeng-
ing task (Kendall and Gal, 2017; Ha et al., 2021). In practice, attributing prediction
failure to a specific material is often performed manually and relies on human intu-
ition. Nonetheless, human decision-making under uncertainty is often subject to bi-
ases and heuristics (Tversky and Kahneman, 1974), which can negatively impact the
decision-making process and impede the discovery of advanced materials (Gigeren-
zer and Gaissmaier, 2011). Given those predictions from black-box models, such
as deep learning methods, are difficult to interpret and analyze due to their lack of
transparency (Koh and Liang, 2017; Rudin, 2019), Explainable Artificial Intelligence
(XAI) has recently garnered considerable attention (Linardatos, Papastefanopoulos,
and Kotsiantis, 2020; Barredo Arrieta et al., 2020). Explainability refers to the capac-
ity to elucidate why an artificial intelligence model has reached a specific decision
or prediction (Barredo Arrieta et al., 2020).

To increase trust and comprehension in AI models used for safety-critical tasks,
it’s important to incorporate explainability that aligns with human intuition, ac-
cording to experts (Linardatos, Papastefanopoulos, and Kotsiantis, 2020). In the
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field of material property predictions, researchers have made progress in under-
standing model behaviors by analyzing material graphs, compounds, atoms, or fea-
ture representations (Rodríguez-Pérez and Bajorath, 2021; Rao et al., 2022; Jiménez-
Luna, Grisoni, and Schneider, 2020b). To better understand the reasons behind pre-
diction failures, it’s desirable to rationalize estimated uncertainty through material
structures or components. This approach can help identify unrecognized functional
groups or rare chemical structures in the dataset, and also assist in determining out-
of-domain materials. These techniques are being explored in active learning (Li et
al., 2019; Nguyen et al., 2022) and drug discovery (Soleimany et al., 2021; Eyke,
Green, and Jensen, 2020; Gubaev, Podryabinkin, and Shapeev, 2018). By developing
explainable models that can rationalize uncertainty concerning material structures,
researchers can improve the understanding of the sources of uncertainty and further
optimize the decision-making process in materials discovery.

Nowadays, embedding maps have emerged as a popular method for explain-
ing the predictions of machine learning models, making these explanations more
transparent and intuitive for human understanding. Embeddings represent com-
plex, high-dimensional data in lower-dimensional spaces, making it easier to visu-
alize and interpret the relationships between data points. For instance, in natural
language processing, word embeddings like Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington, Socher, and Manning, 2014) have revolutionized the way text
is analyzed by representing words as continuous vectors in a lower-dimensional
space. These embeddings capture semantic and syntactic relationships between
words, enabling more advanced text analysis and understanding. Similarly, mate-
rial embeddings have been developed to represent materials in a continuous lower-
dimensional space, capturing meaningful relationships and similarities between ma-
terials based on their composition, structure, or properties (Jaeger, Fulle, and Turk,
2018; Tshitoyan et al., 2019; Nguyen et al., 2022). These embeddings can be obtained
directly or indirectly through various techniques, such as autoencoders (Kingma and
Welling, 2019; Jaeger, Fulle, and Turk, 2018; Tshitoyan et al., 2019), or dimensional-
ity reduction methods (Borg, 1997; Kruskal, 1964; McInnes, Healy, and Melville,
2020). By utilizing embeddings, researchers can gain a more comprehensive under-
standing of the intricate relationships between materials. Embeddings allow for the
visualization of material data and the identification of factors that contribute to un-
certainties in material discovery. Moreover, embeddings provide a means to input
material data into machine learning models, resulting in highly accurate and easily
interpretable predictions of material properties. Additionally, embedding maps en-
able researchers to explore the material space visually, identify trends and patterns,
and uncover previously unknown relationships between materials. This empowers
researchers to focus on the most promising candidates, thus reducing the time and
resources required for material discovery.

Moreover, constructing such maps to visualize data plays a crucial role not only
in the initial and but also in final stages of data-driven studies in computational
physics, chemistry, and materials science (Cheng et al., 2020). It enables researchers
to understand complex datasets’ structure and relationships better, ultimately en-
hancing their ability to make informed decisions and identify meaningful patterns.
In the initial stage, low-dimensional maps provide a condensed view of the dataset,
revealing underlying patterns such as clusters, outliers, and correlations (Isayev et
al., 2015; Ceriotti, 2019). This allows researchers to gain insights from visual in-
spections, helping them formulate hypotheses and plan further analyses. Advanced
visualization techniques like PCA, MDS, t-SNE, and UMAP can be used to create
these low-dimensional representations, preserving essential characteristics of the
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data while reducing its complexity. Visualization is essential for effectively commu-
nicating results to a broader audience during the final stage. Clear and informative
visualizations enable researchers to convey their findings, making it easier for others
to understand the significance and implications of the study. This facilitates knowl-
edge dissemination and promotes collaboration within the scientific community, ul-
timately accelerating the pace of discovery and innovation. In conclusion, data vi-
sualization is vital to data-driven studies in computational physics, chemistry, and
materials science. It serves as both an initial exploration tool and a final communica-
tion medium, allowing researchers to extract meaningful insights, develop a deeper
understanding of complex datasets, and effectively share their findings with others.

The primary objective of this chapter is to address the disconnect between quan-
titative evaluations and the underlying rationale behind them, empowering scien-
tists to gain insights into the reasoning process and fostering a more profound un-
derstanding of the mechanisms governing material properties. This is of paramount
importance, as it helps researchers to not only make informed decisions but also to
develop a comprehensive grasp of the driving forces behind the properties of in-
terest. By incorporating these explanations into the data-driven method, we aim to
refine the decision-making process, enabling scientists to navigate the complex land-
scape of materials discovery with increased confidence and precision. Furthermore,
integrating these explanations into the data-driven model will bolster the overall re-
liability and adoption of the recommender system within the materials science com-
munity, as it addresses the critical need for transparency and interpretability in the
field (Goldsmith et al., 2017; Yang and Li, 2023). By striking a balance between quan-
titative evaluations and their rationale, this study seeks to provide researchers with
an indispensable tool that not only facilitates the discovery of novel materials but
also promotes a deeper comprehension of the underlying mechanisms, ultimately
contributing to the advancement of materials science as a whole.

This chapter presents a data-driven approach that visualizes quantitative uncer-
tainty evaluations into transparent and interpretable maps for supporting scientists
in rational decision-making. By expressing both aleatoric and epistemic uncertain-
ties in a manner that is intuitive for human understanding, our method enables sci-
entists to make more informed decisions, reducing the influence of biases that might
otherwise lead to suboptimal choices. Furthermore, the embedding maps provide
valuable information to reveal insights into the underlying mechanisms involved
in the properties of materials. Our approach consists of three main components:
1) measuring the distance between materials, 2) constructing the embedding map
based on the calculated distances, and 3) inferring the properties and uncertainties
of new materials. We demonstrate the effectiveness of our approach through var-
ious case studies, illustrating how increased transparency and understanding con-
tribute to more effective materials discovery and a better comprehension of the driv-
ing mechanisms behind material properties. In Section 5.2 of the chapter, we explain
the components of the proposed method in detail. We discuss the various techniques
and algorithms used to measure distances between materials and construct the em-
bedding maps and the methods employed to infer properties and uncertainties for
new materials. Through the case studies, we highlight the practical applications
of our approach and showcase its potential for assisting scientists in the materials
discovery process. Overall, developing this data-driven approach for visualizing
uncertainties in material discovery promises to facilitate better decision-making, en-
abling scientists to explore new materials more effectively and gain a deeper under-
standing of the underlying mechanisms governing material properties. By offering
a transparent and interpretable means of representing uncertainty, our method can
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become an indispensable tool for researchers in the quest for new materials and un-
raveling the complex relationships between materials and their properties.

5.2 Methodology

We consider a set E of n elements and a corresponding dataset Dpool that contains
m possible combinatorial materials comprised of the elements in E . The materials
in Dpool are represented by sets of their constituent elements that form the materi-
als. For each material A ∈ Dpool , the categorical variable yA denotes the property
of interest. The yA is assigned the label "Unknown" if we do not know the state
of the property of material A. In other words, the property of A has not been calcu-
lated or experimentally determined yet. Therefore, we denoteDobserved (⊆ Dpool) and
Dunobserved (⊆ Dpool) as datasets containing materials with property yA 6= Unknown
and yA = Unknown, respectively. It should be noted that Dobserved ∪ Dunobserved =
Dpool and Dobserved ∩Dunobserved = ∅.

In order to create a visual representation of the materials in Dpool , we first es-
tablish a way to measure the distance between them based on their properties and
composition, specifically the property yA. This distance measurement allows us to
determine how similar or dissimilar materials are to each other. We then use dimen-
sionality reduction techniques to generate a map based on these calculated distances.
These techniques aim to maintain the relationships between materials in the reduced
space as closely as possible, resulting in a meaningful representation of the original
data. Finally, we use nearest neighbor methods within the map to aid in material
synthesis decisions. By identifying materials that are close together in the map, we
can infer that they have similar properties or composition. This information can be
used to guide the selection of materials for further investigation, prioritizing those
that are the most promising based on their position in the map. By using the em-
bedding map as a decision-making tool, scientists can make more informed choices
when it comes to material synthesis, ultimately leading to more efficient and effec-
tive discovery of new materials.

5.2.1 Distance measurement between materials

One of the most popular approaches to assess the dissimilarity between two sets is
to analyze the differences and commonalities in their constituent elements (Tversky,
1977). Jaccard distance is one of the widely used measurements that implements the
form of dissimilarity between the sets (LEVANDOWSKY and WINTER, 1971). The
Jaccard distance measures dissimilarity between finite sample sets and is defined as
the complement of the Jaccard similarity coefficient, which is a ratio of the intersec-
tion sizes and union of the two sets. Mathematically, given two material combina-
tions A and B (∈ Dpool), the Jaccard distance between these materials is calculated as
follows:

djaccard(Ai, Aj) = 1−
|Ai ∩ Aj|
Ai ∪ Aj

, (5.1)

where |Ai ∩ Aj| represents the size of the intersection between sets Ai and Aj, and
|Ai ∪ Aj| represents the size of the union of the two sets. The Jaccard distance ranges
between 0 and 1, with a value of 0 indicating that the two sets are identical (i.e., they
share all constituent elements) and a value of 1 indicating that the two sets have no
common elements.
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Moreover, given a property of interest, the materials that exhibit difference prop-
erties should be considered more dissimilar and vice versa. For detail, consider-
ing the three materials A, B and C, such that djaccard(A, B) = djaccard(A, C) 6= 0, if
yA = yB 6= yC we should be considered the material A is much similar to B than C.
Therefore, we propose a distance metric ders with respect to the property of interest,
as follows:

ders(A, B) = mCt,Cv
Dobserved({dissimilar}) +

mCt,Cv
Dobserved({similar, dissimilar})

2
, (5.2)

where Ct = A− (A ∩ B), Cv = B− (A ∩ B), and the mCt,Cv
Dobserved is the combined mass

function about the similarity in terms of substitutability between Ct and Cv. The
mass function is modeled and combined from evidence collected from the dataset
Dobserved. Details of the method are introduced in section 3.2 of chapter 3.

Finally, the distance between the two materials A and B is derived by integrate
the djaccard(A, B) and ders(A, B), as follow:

d(A, B) =
√

djaccard(A, B)× ders(A, B). (5.3)

It should be noted that if the substitution operator between the two materials A and
B is unobserved in the dataset Dobserved, the mCt,Cv

Dobserved({similar, dissimilar}) equal to
one and considers no information about the dissimilarity between the material A
and B (ders(A, B) = 1). Therefore, the combined distance d(A, B) = djaccard(A, B).

Similar analyses are performed for all pairs of materials in Dpool to obtain a
symmetric matrix M that comprises all of the distances between them (M[a, b] =
M[b, a] = d(A, B)).

5.2.2 Dimensionality reduction methods

In order to preserve the distance between materials, we utilize manifold learning,
a non-linear dimensionality reduction approach, to create a lower-dimensional em-
bedding map. This involves using algorithms that recognize that the dimensionality
of many datasets is artificially high. Visualizing high-dimensional datasets can be
challenging, whereas data in two or three dimensions can be easily plotted to show
the inherent structure of the data. To help visualize the structure of the dataset,
the dimension must be reduced. In our study, we utilized two different methods
of manifold learning: multi-dimensional scaling (MDS) and t-distributed Stochastic
Neighbor Embedding (t-SNE).

Multi-dimensional Scaling (MDS): MDS is a classical dimensionality reduction
technique that strives to represent high-dimensional data in a lower-dimensional
space while preserving the pairwise distances between data points as closely as
possible (Borg, 1997; Kruskal, 1964). The primary goal of MDS is to produce a
low-dimensional representation of the data where the Euclidean distances between
points in the reduced space closely resemble the original distances in the high-dimensional
space. MDS is particularly well-suited for visualizing dissimilarity data, such as
distances between cities or similarities between texts. However, MDS might face
difficulties in capturing complex non-linear relationships in the data, and its com-
putational efficiency may decrease as the number of instances increases.

For detail, we start from the distance matrix MDpool containing the pairwise dis-
tance between materials in Dpool , which are obtained from the section 5.2.1. The
objective of the MDS is finding representation vectors (x1, x2, . . . , xm) for m materials
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in MDpool that minimize the following loss function:

lossMDS = ∑
i<j

MDpool [i, j]− M̂Dpool [i, j], (5.4)

where M̂Dpool = ‖xi − xj‖2 is the Euclidean distances between the representation
vectors of the materials on the embedding map.

t-Distributed Stochastic Neighbor Embedding (t-SNE): t-SNE is a non-linear di-
mensionality reduction technique introduced by van der Maaten and Hinton in 2008
(Maaten and Hinton, 2008). It is designed to preserve local structures in the data,
making it particularly effective for visualizing high-dimensional data with intricate
relationships. t-SNE works by minimizing the divergence between two probability
distributions: one representing pairwise similarities in the high-dimensional space
and the other representing pairwise similarities in the lower-dimensional space. The
critical innovation of t-SNE is its use of the t-distribution in the lower-dimensional
space, which mitigates the crowding problem that may arise in other techniques.
The crowding problem in t-SNE (t-Distributed Stochastic Neighbor Embedding) de-
rives from the "curse of dimensionality." When data points are reduced from a high-
dimensional space to a lower-dimensional space (e.g., 2D or 3D for visualization),
the distances between points change. In high-dimensional spaces, points are gener-
ally far apart, whereas, in lower-dimensional spaces, points are closer together. This
distance discrepancy can make preserving the data’s original structure challenging
when embedded in a lower-dimensional space. t-SNE is specifically designed to
mitigate the crowding problem by modeling pairwise similarities between points
with probability distributions. A Gaussian distribution is used in high-dimensional
space, whereas in lower-dimensional space, a t-distribution is used. The t-distribution
has heavier tails than the Gaussian distribution, allowing t-SNE better model the
pairwise similarities in the lower-dimensional space.

For detail, we start from the distance matrix MDpool containing the pairwise dis-
tance between materials in Dpool , which are obtained from the section 5.2.1. t-SNE
first computes probabilities pij that are proportional to the materials Ai and Aj in the
dataset Dpool , as follows:

pij =
pi|j + pj|i

2m
, (5.5)

where pi|j is the conditional probability that Aj would pick Ai as its neighbor if
neighbors were picked in proportion to their probability density under a Gaussian
centered at Aj. The conditional probability is defined as follow:

pj|i =
exp(−MDpool [i, j]/2σ2

i )

∑k 6=i exp(−MDpool [i, k]/2σ2
i )

. (5.6)

To ensure that the entropy of the conditional distribution matches a predetermined
entropy, the Gaussian kernel’s bandwidth, denoted as σi, is adjusted using the bi-
section method. This modification enables the bandwidth to conform to the data
density, with smaller σi values applied in areas of higher density within the data
space.

t-SNE is used to learn d-dimensional representation vectors (x1, x2, . . . , xm) of the
m materials (with xi ∈ Rd and d typically chosen as 2 or 3) that reflects the similarities
pij as well as possible. To achieve this objective, a comparable technique is employed
to gauge the similarities (qij) between two points (xi and xj) on the embedding map.
Precisely, for cases where i 6= j, qij is defined as follows:
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qij =
(1 + ‖xi − xj‖2)−1

∑k ∑l 6=k(1 + ‖xk − xl‖2)−1 . (5.7)

A heavy-tailed Student t-distribution (with one degree of freedom, equivalent to
a Cauchy distribution) is utilized to measure similarities between low-dimensional
points to model dissimilar objects far apart in the map. The locations of the points
(x1, x2, . . . , xm) are determined by minimizing the non-symmetric Kullback-Leibler
(KL) divergence of distribution P from distribution Q:

KL (P ‖ Q) = ∑
i 6=j

pij log
pij

qij
. (5.8)

To effectively display similarities among high-dimensional inputs on a map, utiliz-
ing gradient descent to minimize the KL divergence is crucial. Keep in mind, as the
KL divergence is not a convex function, starting from different points may result in
local minima. It is therefore necessary to try various seeds and select the one with
the lowest KL divergence to obtain the optimal embedding.

5.2.3 K-nearest neighbor classifier

We constructed an embedding map in the previous subsection that preserves the
obtained dissimilarities between materials, as defined in subsection 5.2.1. The pro-
posed distance metric evaluates pairs of materials based on their differences and
commonalities in constituent elements with respect to the property of interest. As
a result, materials that are close to each other in the embedding space share more
common elements and have similar properties of interest. It is worth noting that
unknown materials are also positioned near each other, forming regions of materi-
als with high epistemic uncertainty. Therefore, we can use neighbor-based models,
such as the k-nearest neighbor classifier (Cover and Hart, 1967), to make inferences
or decisions from the map. The k-nearest neighbor classifier is a simple yet powerful
algorithm that can be used for classification and regression tasks. It works by iden-
tifying the k data points in the embedding space that are closest to a given query
point and then predicting the property of interest based on the majority vote or the
average of the properties of these neighbors. This approach is particularly suitable
for the material embedding map, as it takes advantage of the spatial organization of
the materials in the embedding space and the assumption that materials with simi-
lar properties are located close to each other. By employing the k-nearest neighbor
classifier or other neighbor-based models, researchers can make informed decisions
regarding material synthesis, identify promising candidate materials, and gain in-
sights into the relationships between material properties and their constituent ele-
ments. This ultimately contributes to more efficient materials discovery and a better
understanding of the underlying mechanisms governing material properties.

5.3 Case study 1: Visualization of cocktail effects between
transition metals in HEA phase formation

5.3.1 Experimental design

We apply the proposed method to construct an embedding map for binary and
ternary alloys, which are comprised of E = { Fe, Co, Ir, Cu, Ni, Pt, Pd, Rh, Au,
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Ag, Ru, Os, Si, As, Al, Tc, Re, Mn, Ta, Ti, W, Mo, Cr, V, Hf, Nb, and Zr}. We de-
note Dpool

binary,ternary as the dataset of 351 (combinations of 2 in 27 elements) binary and
2925 (combinations of 3 in 27) ternary alloys that are comprised of the elements in
E . Among the alloys, there are 558 alloys, in which there are 117 binary and 441
ternary alloys, and their phases (either HEA or ¬HEA) are estimated by using the
AFLOW calculation (Zhang et al., 2014). Details of the 558 alloys are introduced in
the previous section 3.3.1 of the chapter 3. We denote the Dobserved

binary,ternary as the dataset
of the 558 calculated alloys.

In this section, we perform two experiments to demonstrate the embedding map’s
effectiveness in predicting the alloys’ HEA phase and providing valuable informa-
tion for decision support under uncertainty. For the first experiment, we apply the
k-nearest neighbor classifier on the embedding map to learn a classification model
for predicting the HEA phase of the alloys, in which the alloys are represented by
their coordinations on the embedding map. We compare the learned KNN model
with the ERS model, which is another classification approach for predicting the HEA
phase and is introduced in chapter 3. To evaluate the performance of the two models,
we perform a 9-fold cross-validation on Dobserved

binary,ternary 10 times. This cross-validation
process involves dividing the dataset into 9 equal parts, training the models on 8
parts, and testing their performance on the remaining part. This process is repeated
10 times to ensure the stability and reliability of the results. For the second experi-
ment, we investigate the distributions of alloys corresponding to their constituents
to extract valuable information about the underlying HEA formation mechanisms
with considering the uncertainty.

5.3.2 Results and discussions

The prediction accuracies of the KNN model on the embedding map and the ERS
model are 0.81± 0.02 and 0.80± 0.01, respectively. These results indicate that the
embedding map provides descriptive information for representing the alloys con-
cerning HEA phase formation, enabling the KNN model to achieve a similar level
of prediction accuracy as the ERS model. The comparable performance of the KNN
model on the embedding map and the ERS model highlights the potential of using
embedding maps as a valuable tool for material discovery. The embedding map not
only offers a visually intuitive representation of the material space but also captures
meaningful relationships between materials based on their composition, structure,
and properties. This, in turn, enables the development of machine learning models,
such as the KNN classifier, that can make accurate and interpretable predictions of
material properties. In conclusion, our experiments demonstrate the effectiveness
of using embedding maps for predicting the HEA phase of alloys. The results sug-
gest that embedding maps can be a powerful tool for material discovery, providing
both a visually intuitive representation of the material space and a foundation for
building accurate and interpretable machine learning models.

Figure 5.1 a displays the embedding map of alloys in Dpool
binary,ternary, constructed

from the Dobserved
binary,ternary, providing a visual representation of the material space. We

observe that the regions of Au-based alloys (black contours) and Ag-based alloys
(purple contours) are dominated by multiphase alloys (blue points). This result in-
dicates that alloys containing either gold or silver are likely not to form the HEA
phase. Consequently, in terms of the substitution method, substituting gold with sil-
ver and vice versa will not increase the probability of forming the HEA phase. This
observation is consistent with the results obtained from the ERS model in section
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FIGURE 5.1: (a) The embedding map of the alloys in Dpool

binary,ternary,

constructed from the Dobserved
binary,ternary, provides a visual representation

of the material space. In this map, orange, green, black, and purple
contours indicate the regions of alloys containing late transition met-
als, early transition metals, gold (Au), and silver (Ag), respectively.
The red and blue points represent alloys in Dobserved

binary,ternary that form
and do not form the HEA phase, respectively, while the plus points
denote unobserved alloys. (b) The bar chart shows the number of al-
loys concerning the ratios of early and late transition metals in their
composition, as well as the proportions of HEA, multiphase alloys

(not HEA), and unknown alloys.

3.3.3, which shows that gold and silver are similar to each other in terms of substi-
tutability. Additionally, the regions where alloys form the HEA phase are dominated
by alloys consisting of either early transition metals (TM) or late transition metals,
respectively. In contrast, the region containing alloys with both early and late TMs is
predominantly highlighted by multiphase alloys or "unobserved" compounds. This
result is consistent with the distinction between the two groups obtained from the
ERS model in section 3.3.3. In other words, alloys containing either only early TMs or
late TMs have a high chance of forming the HEA phase, while mixing the elements
from both groups may cause a reverse effect, leading to the formation of multiphase
alloys.

Further investigations show that 60% of alloys, which comprise only late tran-
sition metals, form the HEA phase, and 5% of these alloys do not form the HEA
phase, with the remainder being unknown (Fig. 5.1 b). On the other hand, alloys
composed solely of early transition metals tend to form the HEA phase more fre-
quently, with a proportion of 45% compared to multiphase alloys at 15%. However,
combining these two types of alloys leads to high epistemic uncertainty, and what
happens currently needs to be clarified. Therefore, conducting more experiments
is imperative to gather additional information and clarify the situation. The em-
bedding map is a crucial tool for understanding the complex interactions between
elements that contribute to creating the HEA phase. It is an essential support for the
ERS model, providing valuable insights for developing new alloys. By visualizing
the material space, this tool allows researchers to identify patterns and connections
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that can inform future studies and experiments, ultimately leading to the discovery
of new high-performance alloys.

5.4 Case study 2: Experiments simulating the discovery of
quaternary alloys

5.4.1 Experimental design

We consider the datasetDpool
quaternary, containing 990 equiatomic quaternary high-entropy

alloys, composed of 14 transition metals: {Ag, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pd,
Rh, Ru, Tc, Zn}, and their corresponding labels mag and TC. The label ymag

A of a
quaternary alloy A in Dpool

quaternary is denoted as either nonzero or zero if its calculated

magnetization is nonzero or zero, respectively. Similarly, the label yTC
A of the qua-

ternary alloy A is denoted as nonzero or zero if its calculated Curie temperature in
the BCC phase is nonzero or zero, respectively. The dataset was collected from an
original dataset of 147,630 equiatomic quaternary high-entropy alloys calculated us-
ing the Korringa-Kohn-Rostoker coherent approximation method (Fukushima et al.,
2022). Each alloy in Dpool

quaternary is represented by a set of its constituent elements.
In this section, we perform two experiments to demonstrate the embedding map’s

effectiveness in predicting the alloys’ properties (magnetization and Curie temper-
ature) and providing valuable information for decision support under uncertainty.
For the first experiment, we apply the k-nearest neighbor (KNN) classifier on the
embedding map to learn a classification model for predicting the ymag and yTC la-
bels of quaternary alloys, where the alloys are represented by their coordinates on
the embedding map. We compare the learned KNN model with the ERS model, an-
other classification approach for predicting whether particular alloys are magnetic
or nonmagnetic, introduced in Chapter 3. To evaluate the performance of the two
models, we perform a train-test-split cross-validation on Dpool

quaternary, with the size of
the training data ranging from 10% to 90%, in 10 repetitions. This validation process
involves training the models on l percent of the dataset (l ∈ [10, 90]) and testing their
performance on the remaining part. This process is repeated 10 times to ensure the
stability and reliability of the results.

For the second experiment, we design a simulation of the exploration process
for the quaternary alloys in Dpool

quaternary. We randomly select 90 alloys from Dpool
quaternary

as the initial training data, while the remaining alloys in Dpool
quaternary are considered

as not-yet-calculated data. For a query time t, we select 20 alloys from the not-
yet-calculated data according to criteria of exploration or exploitation. To rank the
alloys at the query time, we apply two different models: 1) KNN models learned on
the embedding map constructed from calculated data, and 2) the ERS model learned
from calculated data. This experiment aims to compare the performance of the two
models in the context of an exploration-exploitation scenario and provide insights
into the usefulness of the embedding map for decision-making under uncertainty.
We perform the validation in 20 times.

In detail, at each query time, we learn the two models based on the available data
on Dobserved

quaternary and use these models to predict the alloys on the not-yet-calculated
data. In order to determine how an unobserved alloy called B affects the accuracy
of prediction models and the exploration process, we have created two acquisition
functions called τ

map
exp (B) and τers

exp(B). These functions use the KNN model on the
embedding map and the ERS model to evaluate the performance of alloy B. The
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functions are defined as follows:

τers
exr(B) = mB

Dobserved
quaternary

({nonzero, zero}) (5.9)

τ
map
exr (B) = p(yB = ”unk”|xB), (5.10)

where the xB is the coordinations of the alloy on the embedding map. The probability
p is estimated by using the KNN model on the embedding map with considering
three variables of the property of interest ("zero," "nonzero," and "unk"). The label
unk indicates that the alloy is a not-yet-calculated data.

Regarding the exploitation strategy, we define acquisition functions that select
not-yet-calculated structures with the high belief that the alloys have nonzero mag-
netization or nonzero Curie temperature. The functions are defined as follows:

τers
exp(B) = mB

Dobserved
quaternary

({nonzero}) (5.11)

τ
map
exp (B) = p(yB = ”nonzero”|xB), (5.12)

where the xB is the coordination of the alloy on the embedding map. The probability
p is estimated by using the KNN model on the embedding map with considering
three variables of the property of interest ("zero," "nonzero," and "unk"). The label
unk indicates that the alloy is a not-yet-calculated data.

5.4.2 Results and discussions

Figure 5.2 demonstrates the performance comparison between different classifica-
tion models for predicting magnetic alloys (a) and nonzero TC alloys (b) in the con-
text of quaternary high-entropy alloys. When using the MDS method to generate
the embedding map, the resulting classification models exhibit significantly lower
prediction accuracies compared to the ERS models. This indicates that the MDS-
generated embedding map is not as effective in capturing the essential features re-
quired for accurate predictions of the alloy properties. In contrast, the embedding
map generated using the t-SNE method exhibits a similar trend in performance for
classifying magnetic alloys and alloys with nonzero Curie temperatures compared
to the ERS models, suggesting that the t-SNE-generated map is more effective in
representing the data.

As for the classification of magnetic alloys, we observe a distinct improvement
in the accuracy of both the KNN (on a t-SNE-generated map) and ERS models as the
training size increases from 10% to 30%. Subsequently, the performance stabilizes,
hovering at around 90% for the ERS models and 87% for the KNN models on the
t-SNE-generated embedding map. Intriguingly, this level of stability persists even
as the training set expands. A similar trend is observed in the models’ ability to de-
termine alloys with nonzero Curie temperatures (Fig. 5.2 b). The results of the KNN
models based on the t-SNE-generated map exhibit a similar trend and performance
in prediction accuracies to the ERS models for both properties. In stark contrast, the
accuracies of the KNN models based on the MDS-generated map are significantly
lower than those of the other two models. These findings provide compelling ev-
idence that the t-SNE-generated embedding map is more adept at predicting the
properties of interest than its MDS-generated counterpart. This observation under-
scores the critical role of choosing the right dimensionality reduction technique for
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(a)

Magnetic alloy classification

(b)

Nonzero Tc alloy classification

FIGURE 5.2: Comparison of prediction accuracies between classifica-
tion models for magnetic alloys (a) and nonzero TC alloys (b). In each
plot, the gray line indicates the precision score of the ERS model on
the test set, while the red lines show the results of the KNN models
on the embedding maps generated by using the t-SNE (solid line) or

MDS (dashed line) methods.

creating embedding maps that can effectively capture the intricate relationships em-
bedded within the data. Researchers are better equipped to develop more accurate
classification models by leveraging a suitable embedding map. In turn, these mod-
els can furnish valuable insights that can be used to inform future efforts in alloy
design, discovery, and property prediction, thereby pushing the boundaries of what
we currently understand about these complex materials.

Figure 5.3 showcases the performance comparison between ERS learners (gray
lines) and KNN learners on the embedding map (red and orange lines) using differ-
ent selection strategies. The recall rate for querying magnetic alloys (a) and alloys
with nonzero Curie temperature (b) is plotted as a function of query time t. Sim-
ilarly, the prediction accuracies for classifying magnetic alloys (c) and nonzero TC
alloys (d) are also presented as a function of query time t. This figure illustrates that
all settings (learner and criteria) manage to recall all the positive alloys (magnetic
alloys or non-zero TC alloys) without querying all the not-yet-calculated alloys (Fig.
5.3 a-b). The designs employing an exploration querying strategy with both KNN
learner and ERS learner (solid red and gray lines) exhibit the worst recall perfor-
mance. By contrast, KNN learners applying the exploitation strategy display the
best performances, requiring approximately 30/45 query steps to recall all the mag-
netic alloys or alloys with non-zero Curie temperature. In comparison, ERS learners
require more than 2 or 3 steps to recall all these positive alloys, with higher vari-
ance than those of KNN learners. Regarding the prediction accuracies of different
settings, Fig. 5.3 c and d show that the settings with exploration querying strat-
egy require less than 10 queries (approximately 30% of alloys in the Dpool

quaternary) to
reach stable, high accuracies, consistent with the results from the first experiment.
The results of the settings of ERS or KNN learners exhibit similar performance. In
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FIGURE 5.3: Comparison of ERS learners (gray lines) and KNN learn-
ers on embedding map (red lines) with different criteria. (a-b) Recall
rate in querying magnetic alloys and alloys with nonzero Curie tem-
perature depending on the query time t. (c-d) Dependence of pre-
diction accuracies in classifying magnetic alloys (c) and nonzero TC

alloys (d) on querying time t.

summary, the comparison between ERS learners and KNN learners on the embed-
ding map demonstrates the potential of using low-dimensional embedding maps to
support scientists in making decisions.

Moreover, using the embedding map provides visual explanations of the learn-
ers during the querying process, allowing researchers to observe the evolution of
the model’s understanding of the material space as more data is incorporated. Fig-
ure 5.4 displays the embedding maps of the alloys in the Dpool

quaternary at four differ-
ent query times (initial step, fifth step, tenth step, and ending step) with respect to
their magnetization properties. On the maps at steps 0 and 5, the distributions of
magnetic and non-magnetic alloys overlap, suggesting that the model has not yet
clearly distinguished between the two groups. In contrast, from step 10 onwards,
the distributions separate from each other, revealing a more refined understanding
of the material space and the relationships between the constituent elements and
their magnetic properties. Magnetic alloys are dominated by alloys composed of
iron, cobalt, or manganese, indicating that these elements play crucial roles in de-
termining the magnetic behavior of the alloys. However, it is essential to note that
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some Mn-based alloys do not contain cobalt or iron and exhibit non-magnetic prop-
erties, highlighting the complex nature of the relationships between elements and
their resulting properties in quaternary alloys.

5.5 Contributions and limitations

In material science, understanding and visualizing the material space is crucial for
discovering and designing new materials with desired properties. Recently, a novel
evidence-based method for visualizing the material space with respect to properties
of interest has been proposed. The effectiveness of this method, which involves con-
structing embedding maps using manifold learning techniques, has been demon-
strated in predicting properties of interest and providing valuable insights into the
underlying mechanisms of the data.

1. Visual Representation of Complex Material Space: The evidence-based visu-
alization method offers an intuitive and visually appealing representation of
the complex relationships between materials and their properties. This allows
scientists and researchers to understand the material space better and make
informed decisions during the design and discovery process.

2. Predictive Capabilities: The embedding maps generated using the proposed
method have effectively predicted properties of interest, such as magnetic prop-
erties and Curie temperatures. This predictive capability can be invaluable in
guiding the selection of candidate materials for further experimentation and
analysis.

3. Understanding Learned Models: The visualization method provides valuable
insights into the learned models from data, such as ERS and KNN learners.
This understanding can help researchers better interpret the results of these
models and refine them for improved performance in future studies.

However, the method has certain limitations, such as its reliance on the manifold
learning method and the need for further research on effective querying strategies.

1. Dependence on Manifold Learning Methods: The proposed method relies on
manifold learning techniques, such as t-SNE and MDS, to generate the em-
bedding maps. These techniques can sometimes be sensitive to their hyperpa-
rameters and may not always produce optimal visualizations. Furthermore,
the choice of manifold learning method can significantly impact the resulting
visualization, as seen in the comparison between t-SNE and MDS.

2. Trade-off Between Descriptiveness and Transparency: When constructing vi-
sual maps for human interpretation, there is an inherent trade-off between de-
scriptiveness and transparency. To make the visualization more interpretable,
some level of detail may be sacrificed, which could limit the ability of the map
to represent the material space accurately.

3. Designing Effective Querying Strategies: Using the embedding maps, the cur-
rent evidence-based visualization method requires further research to develop
effective strategies for querying candidate materials. Efficiently exploring the
material space and selecting the most promising candidates remains a chal-
lenge that needs to be addressed to maximize the potential of the proposed
method.
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The evidence-based method for visualizing the material space offers several sig-
nificant contributions, including intuitive visual representation, predictive capabil-
ities, and insights into learned models. However, there are also limitations, such
as the dependence on manifold learning methods, the trade-off between descrip-
tiveness and transparency, and the need for further research on effective querying
strategies. Despite these limitations, the proposed method holds promise as a valu-
able tool for scientists and researchers working on material design and discovery.
Addressing these limitations and refining the method can advance our understand-
ing and exploration of the complex material space.
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FIGURE 5.4: Embedding maps of the alloys in Dpool
4 at four different

query times t (0-Initial, 5, 10, and 45-End). Orange, green, purple and
blue contours indicate the regions of alloys comprise of cobalt (Co),

manganese (Mn), iron (Fe), and other metals, respectively.
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Appendix A

Monitoring HEA recall ratios in
test set

A.1 Evaluation of HEA-recommendation capability by cross-
validation

In the experiment with DASMI16, the result shows that the ERS can significantly re-
duce the number of trials required to recall all the HEAs in the test set compared to
the competitor systems (Figure A.1 a). The proposed ERS requires less than 12, 25,
and 80% of all the possible trials to recall one-half, three-quarters, and all the HEAs
in the test set, respectively (Table A.1). In the DCALPHAD experiment, the ERS re-
quires less than 2 and 5% of all the possible trials to recall one-half and three-quarters
of the HEAs in the test set, respectively, which are the fewest trials required among
all the recommender systems (Figure A.1 b and Table A.1). Interestingly, in the
DASMI16 and DCALPHAD experiments, the supervised-method-based recommender
systems either approximately randomly selected possible HEAs (Naïve Bayes and
decision tree) or could not rank any (logistic regression and SVM) at all because
these data sets contain only positively labeled HEAs.

The result in DAFLOW experiment demonstrates that the ERS also outperforms
the competitor systems in recalling one-half of the HEAs in the test set. However,
the ERS cannot reliably recall the one-quarter of the HEAs remaining in the test set
because not enough evidence is available in the training data to make inferences
about the remaining HEAs (Figure A.1 c and Table A.1). The DLTVC and DAFLOW
experimental results are identical(Figure A.1 d). Although the ERS performs better
than the other recommendation systems in recovering one-half of the test HEAs in
the DLTVC data set (requiring only less than 3% of the number of possible trials), it
cannot reliably recover the remaining one-quarter of the test HEAs owing to the lack
of evidence in the training data (Table A.1).

A.2 Evaluation of HEA-recommendation capability by extrap-
olation

In the Dquaternary
AFLOW experiment, the ERS performs significantly better than the NMF-

based recommender system, requiring less than 5 and 19% of the total number of
possible HEA candidates to recall 50 and 75% of the HEAs in the test set, respectively
(Table A.2). In the Dquaternary

LTVC experiment, the ERS and competitor matrix-based sys-
tem developed using the first type of matrix representation require 13 and 32% and
14 and 41% of the total number of possible HEA candidates to recall 50 and 75%
of the HEAs in the test set, respectively (Table A.2). Further investigation indicates
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TABLE A.1: Ratio of number of trials (out of total number of possible
trials) required to recall 50, 75, and 100% of HEAs in test set.

Data set Model
Recall rates

Half Three-quarters Full

ERS 12% 25% 80%
NMF (type 1) 16% 25% 92%
NMF (type 2) 13% 26% 98%
SVD (type 1) 31% 68% 99%

DASMI16 SVD (type 2) 23% 64% 99%
Decision Tree 77% 90% 99%
Naïve Bayes 77% 90% 99%

Logistic Regression - - -
SVM - - -
ERS 2% 5% 92%

NMF (type 1) 3% 7% 89%
NMF (type 2) 3% 8% 93%
SVD (type 1) 14% 28% 94%

DCALPHAD SVD (type 2) 17 37% 93%
Decision Tree 39% 52% 94%
Naïve Bayes 39% 52% 94%

Logistic Regression - - -
SVM - - -
ERS 2% 8% 97%

NMF (type 1) 3% 6% 96%
NMF (type 2) 3% 6% 85%
SVD (type 1) 16% 35% 99%

DAFLOW SVD (type 2) 20% 50% 99%
Decision Tree 31% 51% 99%
Naïve Bayes 33% 53% 99%

Logistic Regression 20% 29% 93%
SVM 15% 26% 99%
ERS 3% 23% 97 %

NMF (type 1) 4% 6% 96%
NMF (type 2) 4% 7% 86%
SVD (type 1) 14% 33% 99%

DLTVC SVD (type 2) 19% 52% 99%
Decision Tree 32% 48% 99%
Naïve Bayes 26% 42% 99%

Logistic Regression 17% 26% 89%
SVM 12% 26% 99%

that the ERS hardly recommends any quaternary alloys in Dquaternary
LTVC because these

alloys cannot be generated by substituting elements in any of the ternary alloys in
DLTVC (Table A.3). Therefore, the properties of these alloys cannot be inferred from
the evidence collected from DLTVC. As a result, the rankings obtained for these al-
loys are significantly low; therefore, the HEA recall rate is even lower than those
obtained for randomly recommended HEAs. The results obtained for Dquinary

LTVC and
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TABLE A.2: Ratio of number of trials (out of total number of possi-
ble trials) required to recall 50, 75, and 100% of HEAs in test set by

extrapolating HEA-recommendation capability.

Data set Model
Recall rates

Half Three-quarters Full

ERS 5% 19% 99%
NMF (type 1) 10% 24% 99%

Dquaternary
AFLOW NMF (type 2) 50% 67% 99%

SVD (type 1) 13% 32% 99%
SVD (type 2) 53% 67% 99%

ERS 0.4% 1% 3%
NMF (type 1) 10% 56% 98%

Dquinary
AFLOW NMF (type 2) 9% 14% 47%

SVD (type 1) 15% 27% 99%
SVD (type 2) 8% 57% 99%

ERS 13% 32% 99%
NMF (type 1) 14% 41% 99%

Dquaternary
LTVC NMF (type 2) 50% 71% 99%

SVD (type 1) 15% 39% 99%
SVD (type 2) 53% 71% 99%

ERS 0.07% 0.2% 2%
Dquinary

LTVC NMF (type 1) 11% 16% 47%
NMF (type 2) 10% 53% 93%
SVD (type 1) 15% 27% 99%
SVD (type 2) 7% 54% 93%

Dquinary
AFLOW both show that the ERS drastically outperforms the capability of the com-

petitor systems for recommending quinary HEAs. To recall 50, 75, and 100% of the
HEAs from these data sets, 10–100 times fewer trials are required using the ERS than
are required using the matrix-based recommender systems (Table A.2).
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TABLE A.3: List of 63 quaternary HEAs in Dquaternary
LTVC that no evi-

dence about their properties is found.

FeAuRePd AuNiPdOs NiRePtOs RhRePtOs RePtOsAg
FeNiRePd AuRhRePd NiPdRuOs RhPdOsAg PdRuOsAg

FeMoOsAg AuRhPdOs NiPdCuOs CoRePdRu PdCuOsCr
FeRhPdOs AuRePdRu NiPdOsCr CoRePdCu ReCuPtOs
FeRePdRu AuRePdCu NiPdOsAg CoRePdOs RhRePdAg
FeRePdCu AuRePdOs MoRhPdOs CoRePdAg NiRePdAg
FeRePdOs AuRePdAg MoRePdOs CoReRuPt AuNiReAg
FeReRuAg NiMoPdOs MoRePtOs CoRePtOs ReRuPtOs
FeReOsAg NiRhRePd MoReOsAg CoPdRuOs RhRePdOs
FePdRuOs NiRhPdOs MoPdRuOs CoRuPtOs NiRePdOs
FePdCuOs NiCoRePd MoRuPtOs RePdRuOs FeCuOsAg
FePdOsCr NiRePdRu RhCoPdOs RePdPtOs
FeRuOsAg NiRePdCu RhRePdCu RePdOsAg

(a) (b) (d)(c)

FIGURE A.1: Dependence of HEA recall ratio in the test sets on the
number of trial required using k-fold cross-validation on (a) DASMI16,

(b) DCALPHAD, (c) DAFLOW, and (d) DLTVC data sets.
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Synthesis of FeMnCoNi high
entropy alloy thin film

As a case study, we fabricated a high entropy alloy film of Fe0.25Co0.25Mn0.25Ni0.25. A
100 nm thick-thermal oxidized SiO2/Si (100) substrate was used. After the organic
solvent and deionized water cleaning, the substrate was loaded in a combinatorial
multi target RF-sputtering system (COMET inc., CMS-6400). To identify the stable
crystal structure and its composition dependence, a composition spread film was
fabricated by combinatorial method (Koinuma and Takeuchi, 2004). For the compo-
sition spread film, we used two targets of FeCoMn (1:1:1) and Ni (3N grade). The
base pressure was below 1× 10−5 Pa, and Ar gas pressure was set as 0.3 Pa. To ad-
just the deposition rate as 0.23± 0.01 nm/s, RF-sputtering powers of FeCoMn and
Ni targets were set at 100 and 120 W, respectively. To enhance the crystallinity, the
sample was annealed at 400◦C for 30 min under a vacuum condition below 6× 10−3

Pa (Advanced RIKO, MILA-3000).
Figure 5(b) shows the sample structure. The composition film layer consists

of three layers. One is a single FeCoMn layer with a thickness of 0.25 nm. The
other layers are composition spread film formed by FeCoMn and Ni layers. For the
composition-spread film deposition, during the FeCoMn layer deposition, a mask
moved 18.5 mm at constant speed from a point 1.5 mm from the edge of the sub-
strate to another end where the film thickness gradually changed. After that, the
targets were changed to Ni. The mask moved to the opposite direction during the
Ni film deposition. The total thickness of one unit of the 1-x(FeCoMn)-xNi composi-
tion spread layer/ FeCoMn stack structure is 0.5 nm. Alternating between the three
deposition steps created composition-spread region with a width of 18.5 mm. The
total film thickness in the composition-spread region was set to 100 nm. The compo-
sition spread was confirmed by an X-ray fluorescence spectrometer (XRF: Shimadzu,
µEDX-1400) with a measuring spot diameter of 50 µm, as shown in Figure B.1.

The crystal structure was identified by X-ray diffraction (XRD). An XRD system
with a 5-kW rotating anode Cu target x-ray source and a high-resolution 2D-detector
(BRUKER AXS, D8 Discover Super Speed with GADDS) was used to determine the
crystal structure. The 2D-detector system can detect part of the Debye–Scherrer ring
rapidly and two-dimensionally (He, 2018).

In the evaluation of the phase separation temperature and magnetization prop-
erties of the other FeCoMn-X compositions, we found that the phase separation and
inflection point were observed near 400◦C. Therefore, we set the annealing temper-
ature as 400◦C. In the reported experiment, the annealing was performed at only
400◦C; however, for FeCoMnNi, structural changes at higher temperatures are ex-
pected and are currently under investigation. Figure B.3 shows the XRD patterns
of the sample as deposited and annealed. The BCC phase was confirmed for the
annealed thin film sample at the equiatomical composition of FeCoMnNi (x=0.25).
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Even at room temperature, a weak peak of the BCC can be observed for the FeCoM-
rich composition.
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1-x(FeCoMn) - xNi

Fe/Co/Mn concentration (at.%)
16 33

4 mm
Fe

(Kα)

Co
(Kα)

Mn
(Kα)

Ni
(Kα)

Ni concentration (at.%)
0 50

x = 0.5x = 0

FIGURE B.1: Heatmapping image of Fe, Co, Mn, and Ni concentration
estimated by EDX analysis. Composition was estimated from the XRF
intensity of balk target materials and single-phase films of FeCoMn

and Ni.
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FIGURE B.2: 2D-XRD images at center γ angles of 0 and 45 ◦of
FeCoMn-Ni films with low- (a,b) and high- (c,d) Ni concentrations.
According to the powder diffraction pattern data baseGates-Rector
and Blanton, 2019 (PDF 03-065-7519 and PDF 03-065-5131), for BCC,
except for the reflection from (110), the signal intensities from other
plane are not enough high to detect them in film form. So, the reflec-
tion from (110) is only detected. For FCC, in addition to the reflection
from (111), the second strongest signal from (200) can barely be de-
tected. The signals do not show no γ angle dependence, meaning the

films are polycrystals in disordered crystal orientation.
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FIGURE B.3: XRD patterns of the as deposited and annealed at 400◦C
of FeCoMn-Ni film using an XRD system with a 5-kW rotating an-
ode Cu target x-ray source. The BCC phase was confirmed for the
annealed thin film sample at the equiatomical composition of Fe-

CoMnNi (x=0.25)
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Appendix C

Evaluation the eRSM using toy
datasets

C.1 Datasets

The details of the datasets investigated in this study are as follows.

• Noisy datasets Dk
noisy: Two-dimensional synthesized signals with background

noisy datasets consisting of 100 data instances generated from a nonlinear
function f (x) = sin(x) +N (0, 0.052) and several random background noise
with ratio k. The data instances generated from f (x) are denoted by the pre-
fix a, whereas the random background noises are indicated by the prefix bn.
The ratio k of random background noise bn varies from 20% to 90% of the to-
tal number of data instances generated from f (x). For example, Figure C.1 a
shows the synthesized dataset D30

noisy with a ratio of the background noise bn
of 30%.

• Bifurcate dataset Dbi f urcate: A two-dimensional synthesized dataset containing
150 data instances with a descriptive variable x ranging from 0.0 to 1.0 and a
target variable y ranging from−1.0 to 1.0. Dbi f urcate is generated from a mixture
of three mechanisms. Regarding x ≤ 0.4, y oscillates around 0.0 (A). Consider-
ing x > 0.4, y is bifurcated, with one branch oscillating and increasing from 0.0
to 1.0 (B), and the other oscillates and decreases from 0.0 to −1.0 (C) (Fig. C.4
a). The data instances generated from mechanisms A, B, and C are denoted by
the prefixes a, b, or c, respectively. Regarding each mechanism, each data in-
stance is represented by an index suffix that corresponds to an ascending value
of x.

C.2 Evaluation of outlier detection capability

We apply the eRSM to detect outliers unrelated to the main mechanism in the syn-
thesized noisy datasets Dk

noisy. Figure C.1 b shows the similarity matrix M30
noisy con-

structed by combining pieces of evidence using the Dempster–Shafer theory applied
to the synthesized dataset D30

noisy with a noise level bn of 30%. The background noise
instances denoted by the prefix bn exhibit low similarity to all the other data in-
stances. By contrast, data instances without the prefix bn are all similar in matrix
M30

noisy. To obtain a better visual interpretation of the obtained results, we apply
the multidimensional scaling (MDS) algorithm (Kruskal, 1964; Borg, 1997; Mead,
1992) to represent the obtained similarities/dissimilarities between data instances
as distances between points (representing the corresponding data instances) in a
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(a) (b) (c) (d)

Belief of similarity Estimated density Estimated density

FIGURE C.1: (a) Sample dataset D30
noisy with the noise level bn− 30%.

(b) Similarity matrix M30
noisy constructed by applying the eRSM in

dataset D30
noisy. The pattern and background instances are labelled

with prefixes a and bn, respectively. (c) Projection of the data in-
stances in D30

noisy into a two-dimensional embedding space in which

the distances correspond to the obtained similarity in M30
noisy. The

background color and contour lines indicate the densities of these
data instances which are estimated using kernel density estimation
(Silverman, 1998) in the projection space. (d) Visualization of data in-
stances D30

noisy colored according to the estimated density in the pro-
jection space. The blue dashed line and blue region show the mean
and 2σ confidence interval of the regression models derived using
the Gaussian process for inliers predicted using the local outlier fac-

tor (LOF) algorithm with eRSM.

low-dimensional space. This makes the distances correspond as closely as possi-
ble to the similarities/dissimilarities. Figure C.1 c shows a visual representation of
the similarity matrix M30

noisy by applying the MDS algorithm. Approximately, all the
data instances are distributed primarily in the dense region (red), whereas the rest
are scattered in the sparse region (blue). These data instances with high estimated
density form a sine pattern in the original space; nevertheless, the remaining points
are randomly located in the original space (Fig. C.1 d). We observed similar results
for the datasets with different noise levels in this experiment (Fig. C.2).

To quantitatively assess the capability of the eRSM for outlier detection, we use
the eRSM with the local outlier factor (LOF) algorithm (Breunig et al., 2000), which
identifies outlier based on the density of its local neighborhood, and measure the
precision and recall of the inlier and outlier labels in noisy datasets. Furthermore,
we compare the results of the eRSM with those using the Euclidean distance in the
descriptive space of the datasets (including the target y). The result of the compar-
ison between the eRSM and Euclidean distance shows that the application of LOF
with eRSM effectively removes noise (Fig. C.3), especially the datasets with high
noise levels. These results indicate that the obtained similarities facilitate the detec-
tion of outliers unrelated to the dominant mechanism that generates the datasets.

C.3 Evaluation of capability in detecting the mixture mecha-
nism

We now consider an application of the similarity measure to determine multiple
mechanisms in a heterogeneous dataset. Figure C.4 b shows the similarity matrix
Mbi f obtained by the eRSM for all the data instances in Dbi f . This uses a mixture of
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FIGURE C.2: Results of applying the eRSM to noisy datasets Dk
noisy

with the noise level k from 20% to 90% (left to right). Plots in the first
row visualize the noisy datasets. Similarity matrices constructed by
applying the eRSM in these datasets are shown in the second row. The
pattern and background instances are labelled with prefixes a and bn.
In the next row, we exhibit projections of the data instances in each
dataset into a two-dimensional embedding space in which the dis-
tances correspond to the obtained similarity. The background color
and contour lines indicate the densities of these data instances, which
are estimated using kernel density estimation (Silverman, 1998) in
the projection space. The last row consists of visualizations of data
instances colored according to the estimated density in the projection
space. The blue dashed line and shaded region show the mean and 2σ
confidence interval of the regression models derived using the Gaus-
sian process (Williams and Rasmussen, 1996) for inliers predicted us-
ing the local outlier factor (LOF) algorithm (Breunig et al., 2000) with

eRSM.

two Gaussian processes to collect the reference functions fr. The dark blue cells in
the similarity matrix indicate pairs of data instances associated with high similarity
values and vice versa. Regarding the matrix, the similarity values among data in-
stances with the same prefixes of indexes are homogeneous. These indicate that the
data instances with the same prefix can be modeled using the same smooth func-
tion. By contrast, approximately all data instances with different prefixes show low
similarity values, especially between prefixes b and c.

We apply the MDS algorithm to the similarity matrix Mbi f to visualize the sim-
ilarities between all the data instances in Dbi f . Figure C.4 c shows the projection of
these data instances in a two-dimensional embedding space in which the distances
are consistent with the obtained similarities. Regarding the embedding space, the
data instances in Dbi f are distributed in three well-separated clusters. We apply
k-means clustering (MacQueen, 1967; Lloyd, 1982) to extract three groups of data in-
stances in the embedding space. The clustering results show that the data instances
belonging to each of the three clusters form different nonlinear smooth functions.
This is consistent with the three mechanisms that generated the data in the orig-
inal space (Fig. C.4 d). We compare the obtained result extracted by eRSM and
k-means clustering with the result extracted by a mixture of three Gaussian pro-
cesses (Lázaro-Gredilla, Van Vaerenbergh, and Lawrence, 2012). The mixture of GPs
can distinguish mechanisms B and C; nonetheless, it cannot detect the difference
between mechanisms A and B and between mechanisms A and C (Fig. C.5 d). It
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(a) (b)

FIGURE C.3: Evaluation of the outlier detection capability of eRSM on
datasets with different noise levels. (a) Outlier recall rate via local out-
lier factor (LOF) algorithm with eRSM (blue) and Euclidean distance
(green). (b) Inlier prediction errors of regression models learned from
all data instances (black), inliers predicted using the LOF algorithm

with eRSM (blue), and Euclidean distance (green).

is difficult to discuss the differences between mechanisms A and B or mechanisms
A and C if they are compared pairwise. However, mechanism A cannot be distin-
guished from mechanisms B or C, which shows a peculiar property of mechanism A.
Therefore, the proposed eRSM has shown its capability to identify such complicated
three-way relationships.
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(a) (b) (c) (d)

Belief of similarity Estimated density Estimated density

(C)

(A)

(B)

FIGURE C.4: (a) Scatter plot of data instances in dataset Dbi f . (b)
Heatmap showing the similarity matrix Mbi f constructed by apply-
ing the eRSM in Dbi f . (c) Visualization of the data instances in a
two-dimensional embedding space corresponding to their similari-
ties Mbi f . The background color and contour lines indicate the esti-
mated densities of these data instances. The upward triangle, square,
and downward triangle points indicate that the data instances are as-
signed to groups one, two, and three, respectively, using k-means
clustering. (d) Visualization dataset Dbi f colored according to the
estimated density in the projection space. The blue, green, and or-
ange dashed lines show the Gaussian process predictions of data in-
stances from the predicted groups one, two, and three, respectively.
The shaded regions indicate the 2σ confidence interval of these pre-

dictions.

Gaussian Process 1 Gaussian Process 2 Gaussian Process 3

FIGURE C.5: Mixture of three regression models (Gaussian processes)
is regressed from the dataset Dbi f using the mixture of Gaussian
processes (MGP) (Lázaro-Gredilla, Van Vaerenbergh, and Lawrence,
2012). The dashed lines and shaded regions show the mean and 2σ
confidence interval of the regression models. Colors of scatter points
indicate the mixture weights of the regression models for each of data

instance.
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Appendix D

Supplementary materials for the
eRSM

D.1 Modeling unreliability of evidence

When the evidence as a whole is itself affected by some uncertainty (unreliability),
Shafer has suggested a discounting factor in his research (Shafer, 1976) to consider
the new uncertainty. Discounting operator, an application of the concept, was ex-
plained in Smets’s research (Smets, 1993). According to such studies, we adopt an
discounting factor γi,j to describe the unreliability of evidence about the similarity
between (xi, yi) and (xj, yj) collected from a source of evidence fr. We define the
factor as follows:

γi,j = (e
σ̄

∆y + 1)× (
σxi

σ̄
+ 1)× (

σxj

σ̄
+ 1), (D.1)

where ∆y is the variation range of the target variable y in the dataset D. σ̄ is the
average of the predictive standard error of all the data instances in Dre f , a subset of
dataset D is used to build the function fr.

Given a source of evidence fr, the γi,j considers the unreliability of collected evi-
dence about the similarity between (xi, yi) and (xj, yj) is caused due to uncertainties
from:

• Source of evidence fr: We use a function fr regressed from Dre f (⊂ D) to con-
sider the similarity/dissimilarity between remaining data instances in D. So,
function fr with higher accuracy is expected to provide more reliable evidence
about the similarities between these data instances. The first component of the

discounting factor (e
σ̄

∆y + 1) is used to describe the uncertainty from fr.

• Prediction for xi (or xj): Given fr, we use ∆i = |yi − fr(xi)|, the deviation
from the true to the predicted target values of data instance i, and σxi , stan-
dard error of the prediction, to model the probability p(Oi| fr) that instance i is
generated from fr. However, in the case that the fr does not make sure about
its prediction (σxi → +∞ ), the probability p(Oi| fr) approximates to 1 even
the prediction error ∆i is large. Therefore, we use (

σxi
σ̄ + 1) and (

σxj
σ̄ + 1) to

describe the prediction uncertainty of fr for xi and xj, respectively.

The smaller σ̄ is relative to ∆y, the more reliable the learned regression function
fr is. Also, when σxi and σxj are smaller than σ̄, fr can provide reliable evidence
for the relationship between (xi, yi) and (xj, yj). By contrast, when σxi and σxj are
large compared to σ̄, fr cannot provide reliable evidence for the relationship between
(xi, yi) and (xj, yj).
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D.2 Combination method for the eRSM and Jaccard Index

To identify the subgroup that unobserved alloys belong to, we propose an approach
that constructs an embedding space for the observed and unobserved alloys from a
distance matrix M, which is an element-wise product of the distance matrix obtained
by using our proposed similarity measurement, the eRSM, for the 36 numerical de-
scriptors and the distance matrix obtained by applying the Jaccard index for four
categorical features. Considering any pair of two materials ai and aj. The combined
distance is defined as follows:

M[i, j] = (mi,j({ds}) + mi,j({s, ds})
2

)× (1− J(ai, aj)) (D.2)

, where mi,j is the obtained similarity information from the eRSM and J(ai,aj) is Jac-
card similarity coefficient between the two materials. It should be noted that if one
of the two alloys is unobserved in dataset, the eRSM considers no information about
the similarity between the alloys (mi,j({s, ds}) = 1 and mi,j({ds}) = 0). Therefore,

the combined distance M[i,j]= 1−J(ai ,aj)
2 .

D.3 Comparison between the eRSM and traditional similar-
ity measurements

We perform an additional experiment to evaluate the effectiveness of our proposed
similarity measure for detecting subgroups of quaternary alloys in the quaternary
alloy dataset Dquaternary. In this experiment, we construct six mixtures of experts
(MoE), in which their gating functions are learned by applying the K-Means cluster-
ing on the material features (36 selected compositional descriptors) and five embed-
ding spaces. The four embedding spaces are developed using the tSNE algorithms
with four traditional similarity/dissimilarity measures: 1) Euclidean distance, 2) Co-
sine distance, 3) Jaccard index, and 4) Braun-Blanquet similarity coefficient. The Eu-
clidean and cosine distances are applied to the materials space of 36 selected com-
positional descriptors. In contrast, the Jaccard index and Braun-Blanquet similar-
ity coefficient are applied to categorical descriptors of the dataset. In addition, the
last embedding space is constructed using a distance matrix that is an element-wise
product of the distance matrix obtained from the euclidean distance and distance
matrix obtained Jaccard index. It should be noted that the expert (regression model)
of each detected cluster is learned by applying Gaussian Process to the alloys in the
cluster; these alloys are represented by 36 selected compositional descriptors.

Figure D.1 a-e show visualization in the five embedding spaces of quaternary al-
loys in two subgroups detected using our method, GMag

1 (red points) and GMag
2 (blue

points). In the embedding spaces built using the Jaccard Index and Braun-Blanquet
similarity coefficient, we can identify the local regions in which the alloys belong to
the same subgroup (GMag

1 or GMag
2 ). However, such embedding spaces do not main-

tain a global structure like the embedding space obtained by using the eRSM (Figure
4 c). In contrast, embedding spaces constructed from the euclidean, cosine distances
and the combination of euclidean and Jaccard index cannot provide valuable in-
formation to distinguish alloys from the two subgroups GMag

1 and GMag
2 , making it

challenging to distinguish the alloys in the two subgroups. As a result, the cross-
validation mean absolute errors (MAE) of the constructed MoEs based on clusters
in the embedding spaces constructed from the Jaccard Index and Braun-Blanquet
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(a) (b) (c)

(d) (e) (f)

Regression
Gaussiaon Process

FIGURE D.1: (a-e) Visualization in the five embedding spaces of two
subgroups of alloys GMag

1 (red points) and GMag
2 (blue points), which

are detected by using the similarity information obtained from the
eRSM. These spaces are constructed by applying (a) Euclidean dis-
tance, (b) Cosine distance, (c) Jaccard index, (d) Braun-Blanquet sim-
ilarity coefficient, and (e) a combination between Euclidean distance
and Jaccard index. (f) Cross-validation prediction error for magne-
tization of Mixtures of Experts in which their gating functions are
learned by using the K-means algorithms on the embedding space

and material features space.

similarity coefficient exhibit better performance for predicting magnetization than
the MoEs on other embedding spaces and original space (Fig. D.1 f). However, the
results are significantly higher than those of a Gaussian Process Regression and the
constructed MoE based on detected subgroups GMag

1 and GMag
2 .

Similarly, Figure D.2 a-e show visualization in the five embedding spaces of qua-
ternary alloys in two subgroups detected using our method, GTC

1 (red points) and
GTC

2 (blue points). In the embedding spaces built from the Jaccard Index and Braun-
Blanquet similarity coefficient, we can identify the local regions in which the alloys
belong to the same subgroup (GTC

1 or GTC
2 ) and construct MoEs exhibiting better

performance for predicting the Curie temperature than those on other embedding
spaces and original space (Fig. D.2 f). In addition, the prediction errors of the MoEs
based on the clusters detected from the embedding space, which are constructed us-
ing the Jaccard Index, are lower than the result of a Gaussian Process Regression but
are still significantly higher than the result of the MoE based on subgroups that are
detected by using the eRSM.
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(a) (b) (c)

(d) (e) (f)

Regression 
Gaussiaon Process

FIGURE D.2: (a-e) Visualization in the five embedding spaces of two
subgroups of alloys GTC

1 (red points) and GTC
2 (blue points), which are

detected by using the similarity information obtained from the eRSM.
These spaces are constructed by applying (a) Euclidean distance, (b)
Cosine distance, (c) Jaccard index, (d) Braun-Blanquet similarity coef-
ficient, and (e) a combination between Euclidean distance and Jaccard
index. (f) Cross-validation prediction error for Curie temperature of
Mixtures of Experts in which their gating functions are learned by
using the K-means algorithms on the embedding space and material

features space.
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