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Abstract

This research proposes a new method of machine learning for structured artifacts. The technique
is called Directional Generative Networks (DGN). This study demonstrates that this method has
the potential to be industrially applicable. Here, structured artifacts mainly mean industrial
products that are physically tangible. Examples are the structure of a building, the molecular
structure of a medicine, etc.

Although various industrially applicable machine learning methods have been proposed,
their application to the design or search process of physical products such as the above is lim-
ited. The reasons for the limited application are: 1) product data and business processes are
not easily disclosed as trade secrets, and even if they are disclosed, the amount of data is often
insufficient; 2) it is challenging to avoid over-fitting due to a lack of data and 3) the difficulty
of avoiding biases originating from the data due to the small amount of data. The performance
of machine learning depends on the quantity and quality of the data set. It is presumed that
companies dealing with products with physical entities must use machine learning sparingly for
the above reasons.

In this study, the structure of physically tangible products is focused on. DGN, the proposal
method, is examined to compensate for the lack of data by combining a function that evaluates
based on the structure with a machine learning model. Methods or functions to evaluate a product
based on its structure are often publicly available. One of the neural network models that make
up the DGN is an approximation function of the evaluation function. It is well-known that a
neural network with multi-layers can be an approximate function for any function. The scheme
of DGN, combining the approximate function as an estimator with a generator, is similar to
Generative Adversarial Networks(GAN) generator and discriminator. However, the way ground
truth is given differs between GAN and DGN. The return value of the evaluation function is
used as the ground truth when training the estimator in DGN. When training the generator, the
weights of the estimator, the approximate function model, are fixed. The favorable value the
designer wants as the evaluation function output is given as a constant target value. This gives
the direction of the training to the generative model. In DGN, the generator and the estimator
are trained alternately, like the generator and discriminator are trained alternately in GAN. If
the estimator is trained enough, the outputs of the estimator are almost the same as the outputs
of the evaluation functions. If the generator is trained enough, the outputs of the generator
represent desired products that obtain the desired values of evaluation functions’ results. Due to
the methods above, you do not have to prepare datasets for the training.

Evolutionary Algorithms(EA) use not training data but feedback from the environment. EA
using the evaluation functions as the environment can get suitable results. However, if the com-
plexity of the product parts combination is increased, it will become challenging to get the de-
sired results. On the other hand, due to training DGN with a gradient of exploration field, DGN
may get more suitable results than EA in complex problems.

In this research, DGN was applied to the structural design of buildings and the molecular
discovery of drugs. The appropriate representation of data and model structure are examined
for each task and confirmed its usefulness for both tasks. If the generator and the estimator are
well-trained, the generator can generate various products with the desired structure with a sound



output(s) of the evaluation function.

Structural design of buildings and molecular search for pharmaceuticals are completely dif-
ferent industrial fields. It was confirmed that the DGN method can be used in these technologi-
cally distant industrial fields. Therefore, it may be applied in various industrial fields, even if a
sufficient data set cannot be prepared for the intended training.

Keywords— Generative Model, Unsupervised Learning, Evolutionary Algorithms, Generative Adver-
sarial Networks



Acknowledgements

As a part-time student, my research activities had progressed slowly. It was taken over a long period,
about six years. Due to hoping to apply deep learning to a wide range of industries, this research has
taken an unusual approach that relies less on data. This did not immediately lead to the desired results,
and I frequently lost my way. Despite this, Professor Nguyen had encouraged me calmly. I would like to
express my sincere gratitude to my advisor, Professor Nguyen, for his patience and enthusiastic guidance.
Without him, I would not have been able to complete this research.

Finally, I would like to thank my wife, Tomoko, and my sons, Sota and Yuta, for understanding and
supporting my research.



Contents

Introduction
1.1 Introductory remarks . . . . . . . . . .
1.2 Machine learning in industrial fields . . . . . . ... ... L o000,
1.2.1  Structures in products . . . . . . ...
1.3 Proposedmethod . . . . .. . . .. .. ...
1.4 Researchobjective . . . . . . . . . . . . . e e
1.5 Dissertationoutline . . . . . . . . . .. e e
Related Works
2.1 Evolutionary Algorithms and Genetic Algorithms . . . . . . . .. ... ... ... ...
2.1.1 GAforStructural Design . . . . . . . . ...
2.1.2 GAforMolecular Search . . . . . . ... ... ... o o
2.2 Applications with Deep Learning . . . . . . . . . .. ... ... .. L ...
2.2.1  Structural design . . . . ... e
222 Molecular Search . . . . . . . . ..
2.3 Reinforced Learning . . . . . . . . . . ..
Directional Generative Networks
3.1 Elemental methods of DGN derived from deep learning . . . . . . ... ... ......
3.1.1 Artificial Neural Networks as Approximate Functions . . . . . . . ... ... ..
3.1.2 Methods related todeep learning . . . . . . . ... ... ... ... ...
3.1.3 Generative Adversarial Networks (GAN) . . . . . . . . ... .. ... .....
3.2 Directional Generative Networks(DGN) . . . . . . . . . ... .. ... .. .......
321 Structure of DGN . . . . . . . . e
3.2.2 Comparison between GANand DGN . . . . ... ... ... ... .. .....
3.2.3 Theoretical description . . . . . . . . . ... L
3.3 Simple Examplesof DGN . . . . . . . .. .
DGN Application for Structural Design
4.1 Structural Design . . . . . . ..
4.1.1 Structural Design . . . . . . . ... Lo
4.1.2 Domain Knowledge . . . . . . . . . ... ...
4.2 DGN for Structural Design . . . . . . . . . .. L
4.2.1 Model Structure . . . . . ... e e e e e
422 DataRepresentaion . . . . . . . . . . ...
423 Training . . . . . . .. e e e e e e e e e
4.3 Experiment . . . . . . .. e e e e
431 Measurments . . . . . . ... .o e e e e e e e e e e
432 Method . . . . . . .
433 Result . . ... .. e

4.4 Summary of the Chapter . . . . . . . . . . . . .

10
10
10
11
14
15
15
15
17
20



5 DGN Application for Molecular Search

5.1 Molecular Search . . . . . . . ...
5.2 DGN for Molecular Search . . . . . . ... ... ... . ... . ... ...
5.2.1 Modelstructure . . . . . . . .. e e e e e e e
5.2.2 DataRepresentation . . . . . . . . ... ... ...
523 Training . . . . . . ..o e e e e
5.3 Experiment . . . . . . ... e e e e e
5.3.1 Measurements . . . . .. ... e e e e e e e e e e
532 CompariSOn . . . . . . ... e e e e e e
533 Result . . . .. e e e
5.3.4 Degree of freedom of DGNinput . . . . ... ... ... ... .........
54 Summaryofthe Chapter . . . . .. ... .. . .. ... ...
6 Conclusion
6.1 Findings . . . . . . . . e
6.1.1 Applicability of DGN . . . . . . . .. ... ..
6.1.2 Advantage of DGNoverEA . . . ... ... ... ... ... ... .......
6.1.3 Elimination of bias derived fromData . . . . . . ... ... ... ........
6.2 Future works . . . . . . . .

7 Appendix

7.1 Structural Design Method Based on Japanese Standard Act . . . . . . ... .. ... ..

7.2 Libraries and Resources . . . . . .. ...

7.3 DGN for molecular finding; model details
Bibliography

Publications

37
37
38
38
45
45
47
47
47
48
50
57

58
58
58
59
59
59

61
61
63
64

75

78



List of Figures

2.1
2.2
23

3.1
32
33
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

GAN for shear panel Layout . . . . . ... ... . ... 7
ORGAN . . 7
MOoIGAN . . 8
Highly nonlinearity objective function . . . . . . . . .. ... ... ... .. ...... 11
Residual Networks Block . . . . . . . .. ... . . o oo 12
U-Nets . . .o 13
Visual Self-Attention . . . . . . . . .. L e 14
GANdiagram . . . . . . . . . e e e e e 15
DGN diagram . . . . . . . . . 16
Training Procedure of DGN . . . . . . . . . . . . . . .. ... ... 16
Comparison of training procedure . . . . . . . . . . ..o e 18
Loss value transition of estimatormodel . . . . . .. ... ... ... .. .. ...... 21
Loss value transition of combinedmodel . . . . . . ... ... ... ... ... ..., 21
Calculated value yg transition . . . . . . . . . . . . . .. 22
Generated value y; transitionof DGN . . . . . ... ... ... ... ... ....... 22
Distribution of generated values for function Fp, using addition and multiply . . . . . . . 23
Distribution of generated values for modulo function . . . . ... ... .. ... .... 24
DGN Training Scheme for Structural Design . . . . . . . . ... ... ... ... .... 28
Building Data Representation Simplified Examples . . . . .. ... .. ... ... ... 29
Data Representation of Generated Shear-Panels . . . . . . ... ... ... ... .... 30
Training Procedure; DGN for Structural Design . . . . . . . . ... ... ... ..... 31
Building DataElements . . . . . . . . . . ... L 32
Estimators’ loss values transition during training . . . . . . . . . ... ... ....... 33
Generators’ loss values transition during training . . . . . . . . ... ... .. ... 33
Generators’ loss values withtestdata . . . . . . .. ... ... ... ... .. ... . 34
Eccentricity transition with test data during training . . . . . . . . ... ... ... ... 35
DCR transition with test data during training . . . . . . . . .. ... ... ... ..... 36
DGN Training scheme for Molecular Generation . . . . . .. ... ... ... ..... 39
Generator . . . . ... e e e e e e 40
Estimator . . . . . . . . . e e e e e 41
U-netBlock . . . . . . o 42
Self-Attention Block . . . . . . ... 43
Residual Block . . . . . . . . . . . 44
Data representation example . . . . . . . ... Lo 45
Training Procedure; DGN for molecular Search . . . . .. ... ... ... ... ... 46
Random Generation Procedure . . . . . . . . ... ... Lo 48
Evolutionary Algorithm Procedure . . . . . . . . ... .. .. ... ... .. ... 49
DGN Validation Procedure . . . . . . . .. ... ... oo 49
The kernel density estimates of the score distribution according to the number of molecules 51
Molecular Examples with Random Generation . . . . . . . ... ... ... .. ..... 52

Molecular Examples with Evolutionary Algorithm . . . . .. ... ... ... ..... 53



5.15
5.16
5.17
5.18

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

Generated molecular examples withDGN . . . . . ... ... ... ... .. ... .. 54
QM9 Molecular examples . . . . . . . ... 55
Comparison of degree of freedom . . . . . .. ... ... ... ... ... ....... 56
Comparison to Sumo6 score between DGNand DGNr . . . . . . ... ... ... .... 56
DGN for molecular finding; generatorO . . . . . . .. .. .. ... L. 65
DGN for molecular finding; generator 1 . . . . . . . ... ... ... ... ... ..., 66
DGN for molecular finding; generator 2 . . . . . . ... ... 67
DGN for molecular finding; generator3 . . . . . . . .. ... ... 68
DGN for molecular finding; generator4 . . . . . . ... ..o 69
DGN for molecular finding; estimator O . . . . . . .. .. .. ... oL L. 70
DGN for molecular finding; estimator 1 . . . . . . . ... ... ... .......... 71
DGN for molecular finding; estimator 2 . . . . . . .. .. ... oL L. 72
DGN for molecular finding; estimator 3 . . . . . . . .. .. ... ... ... ..., 73

DGN for molecular finding; estimator4 . . . . . . . . ... ..o, 74



List of Tables

3.1 Comparison between GAN,and DGN . . . . .. ... ... ... ... ... ... 19

5.1 Results of DGN and comparison with EA, random generation, and previous studies . . . 50



Chapter 1

Introduction

1.1 Introductory remarks

We live surrounded by many products. Smart devices, clothing, cutlery, and furniture we use daily. In the
big ones, houses, cars, bridges, buildings. For the small ones, gears in clocks, ICs, CPUs, tablets, etc., to
name but a few. We live every day with the benefits of these products.

Around 2022, generative models originating in deep learning had a significant social impact. Gener-
ative models return various products for a single input, for example. For a sentence in the input, the Large
Language Model (LLM) generates an appropriate sentence to answer the input. An image generation
model would generate an image corresponding to the input sentence. These products are not necessarily
uniquely determined but can be generated in various ways, and the user selects the desired solution that
meets their needs. Under these circumstances, it is natural to wonder if machine learning methods using
techniques such as deep learning could be applied to the business process of product development. It be-
comes a desirable tool if you can design the product you want to create by entering the desired attributes.

Various machine-learning methods have been proposed for industrial applications. Although various
industrially applicable machine learning methods have been proposed, their application to the design or
search process of physical products such as the above is limited. The reasons for the limited application
are: 1) product data and business processes are not easily disclosed as trade secrets, and even if they are
disclosed, the amount of data is often insufficient; 2) it is challenging to avoid over-fitting due to a lack
of data and 3) the difficulty of avoiding biases originating from the data due to the small amount of data.
The performance of machine learning depends on the quantity and quality of the data set. It is presumed
that companies dealing with products with physical entities must use machine learning sparingly for the
above reasons.

Naturally, in aiming for industrial use, there are many constraints, such as physical, legal, economic,
etc., and there will be a mixture of items for which fluctuations in solutions are acceptable and items for
which they are not. It could significantly impact the industry if a generative model can be applied to the
design process while respecting these constraints.

This research proposes a new method of machine learning for structured artifacts. The technique is
called Directional Generative Networks (DGN). This method can be used even when datasets for training
are insufficient. This study demonstrates that this method has the potential to be industrially applicable.
Here, structured artifacts mainly mean industrial products that are physically tangible. Examples are the
structure of a building, the molecular structure of a medicine, etc.

In this research, DGN is applied to the structural design of buildings and the molecular discovery of
drugs. Structural design of buildings and molecular search for pharmaceuticals are completely different
industrial fields. If it is confirmed that the DGN method can be used in these technologically distant
industrial fields, it may be applied in various industrial areas.



1.2 Machine learning in industrial fields

There are many industrial applications of machine learning. Technologies based on deep-learning meth-
ods have made significant progress in recent years. Typical applications include the following;

* image recognition, which forms the basis of automated driving technology
* lesion detection or disease diagnosis in CT or X-ray images

* Image generation using stable diffusion models, etc.

* Sentence generation using large language models.

These applications are supported by large, high-quality data sets as well as various algorithmic innova-
tions. If good-quality data is available enough for training, the desired results can be obtained in the space
defined by the dataset. In the case of lesion detection or disease diagnosis, if the results obtained by a
trained model are as accurate or more accurate than the judgment of a physician or other expert, it can be
a helpful tool. Issues that require social consensus, such as responsibility for the output of the model for
industrial use, are separate from the subject of this study.

On the other hand, some industrial fields do not often use machine learning or similar methods despite
various suggestions. For example, some generative models are derived from Generative Adversarial Net-
works(GAN) [3] and Evolutionary Algorithms(EA) [18] for molecular search. GAN-like method relies
on datasets for training. In industrial fields, dataset preparation has often become a huge problem. For
EA-like methods, the combinatory explosion is the main obstacle to real problems. Real-world problems
are often too complex to apply EA methods.

Commercial companies are reluctant to disclose experimental data obtained in research and devel-
opment or product development except for strategic purposes. Therefore, those data are rarely disclosed
to the other companies. In addition, the data collected at each company may be in a unique form at the
discretion of each person in charge unless the data formats are aligned with a corporate strategy. They
may need to be more neatly organized for sharing to use for machine learning. Even if a company strate-
gically collects data by aligning data formats, there is a limit to the amount of R&D budget that a single
company can invest, and there is a limit to the amount of data that can be collected. For these reasons,
the amount of data that can be used for machine learning is often insufficient.

When data is scarce, predictive models may overfit the insufficient data and fail to achieve sufficient
generalization ability. Even if they can be trained with poor data to some extent, they may be strongly
influenced by the biases of the data set. Therefore, reducing the dependence of machine learning models
on the datasets would be a great advantage for their industrial use.

One method that does not use a pre-prepared data set for training is the evolutionary algorithm (EA).
Instead of datasets, it receives feedback from the environment and searches for appropriate solutions.
EA performs very well for some problems. However, for complex problems or problems with many
combinations of genes that make up the solution, EAs are known to fail to provide empirically reasonable
solutions.

1.2.1 Structures in products

To cope with these issues, this research focused on the structure of products. Here, products mean tangible
objects such as building structures, molecule structures in medicine, etc. Almost without exception,
tangible products have a specific structure and were designed by someone. The designers determine a
more suitable structure for each product through the design processes. They were conceived to make
someone’s life better through the products and were shaped in the pursuit of economic rationality.
Regarding building structures, wood, steel, and reinforced concrete structures are typical structural
types. These structures have columns, beams, and floor slabs, and shear-bearing walls are provided as
needed. The required space is defined according to the use of the building, and the structural members
are determined so that the room can be maintained. The required space is an artificial requirement or con-
straint in structural design, while the ability to resist gravity, seismic loads, and wind loads is primarily a
physical constraint. Other typical constraints include technical standards, building codes, and economics.
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In drug development, molecules that are effective for a particular disease or condition are searched
for. Its efficacy is derived from the structure of the molecule. The main physical constraints are the bonds
between the atoms that make up the molecule. Other constraints are whether the molecule is toxic, stable
under normal temperature and pressure conditions, and can be synthesized economically and rationally.

These industrial products come from different industrial sectors, and the structure of each product is
very different. Due to the measurements above, it can measure the quality or performance derived from
its structures. In this research, we focus on the fact that evaluation is possible based on structure and
propose a new method of applying generative models derived from deep learning.

1.3 Proposed method

Some tasks performed by human designers can be considered functions that return deliverables in re-
sponse to clients’ requests as arguments. It is also known that neural networks can approximate any
function. If tasks performed by human designers are considered functions, formulating the function cor-
rectly may not be possible. Regarding the human creative act of drawing, we draw a picture as an output
based on some request or trigger.

In the case of drawing an image of a cat as an example, even if we show a procedure for arranging
the position and color of the cat’s parts (eyes, ears, whiskers, legs, etc.) as program code, it is impossible
to draw a variety of cat pictures. If we try to deal with various representations, the algorithm becomes
more complex, and we will soon face difficulties. If a human prepares the algorithm, they will likely
only be able to design a model with poor generalization capability. Therefore, to generate images, it is
necessary to use models derived from deep learning, such as GANs. Although models such as GAN can
be expressed in meta-equations, it is challenging to explain the meaning of the values of the parameters
of each layer in a way that humans can intuitively understand.

The relationship between the inputs and outputs of those generative models is similar to the act of
design in the industrial field. The designer responds to the client’s ambiguous request (input) with various
design alternatives. The clients select the most desirable proposal from the multiple proposals. The
generative model can be applied to designing or similar tasks from this similarity.

This research proposes Directional Generative Networks(DGN). DGN aims to compensate for the
lack of data by combining a function that evaluates based on the structure with a machine learning model.
Methods or functions to evaluate a product based on its structure may be publicly available. In a DGN,
one of the neural network models that make up the DGN is an approximation function of that evaluation
function. It is well-known that a neural network with multi-layers can be an approximate function for any
function. The scheme of DGN, combining the approximate function as an estimator with a generator,
is similar to Generative Adversarial Networks(GAN) generator and discriminator. However, the return
value of the evaluation function is used as the ground truth when training the estimator in DGN. When
training the generator, the weights of the estimator as the approximate function model are fixed, and the
desired output value of the evaluation function is given as a constant target value. This gives the direction
of the training to the generative model.

In DGN, the generator and the estimator are trained alternately, like the generator and discriminator
are trained alternately in GAN. If the estimator is trained enough, the outputs of the estimator are almost
the same as the outputs of the evaluation functions. If the generator is trained enough, the outputs of
the generator represent desired products that obtain the desired values of evaluation functions’ results.
Because of the technique, you do not have to have pre-prepared datasets for the training.

1.4 Research objective

This research aims to confirm the applicability of DGN, the proposed method, to real-world problems. The
real-world problems are the design/exploration of building structures, molecular structures, etc., objects
with structures. Building structural design and molecular exploration are completely different technical
fields. By confirming the applicability of the proposed method DGN to such distant domains, we can



verify its generality. Just as the applicability of genetic algorithms has been confirmed in a wide range of
fields, we believe that the proposed method can be applied in various areas.

In the structural design of buildings, the feasibility of a structural member arrangement that satisfies
some of the requirements of the building code is confirmed. The placement of shear walls, even when
intuitively positioned, rarely results in an arrangement that meets the criteria. Generally, calculations are
performed on the placed shear walls to see if they meet the criteria, and then they are repositioned based on
the values. The process is repeated until the criteria are satisfied. If the model has a reasonable probability
that the solution candidates it generates include those that satisfy the criteria, it can be considered to have
reached an industrially valuable level.

For molecular search, we aim to obtain a score for molecules obtained by the proposed model DGN
that is comparable to prior methods. The prior methods to be compared are the genetic algorithm and the
derivative model of GAN.

1.5 Dissertation outline
This dissertation is organized as follows.

* Chapter 2 describes previous machine learning studies that tried to apply industrial problems. It
includes explaining the applications of EA, deep learning, and reinforced learning.

* Chapter 3 explains DGN, the method proposed in this study. This chapter contains the basic con-
cepts of DGN, training procedures, and a simple example of DGN. It includes a comparison of
training procedures between GAN and DGN. The calculation process of EA and DGN are also
compared.

* Chapter 4 explains DGN application for structural design. The results show that the DGN is at a
level that can be used industrially. Most of the generated building structure results, calculated with
evaluation functions, satisfied the criteria defined by the Japanese Building Standards Act.

* Chapter 5 explains DGN application for molecular search. It is a DGN example that is close to a
real problem. Here are explanations that include the data representation method and the learning
method of DGN for molecular search. Here, DGN is compared to the supervised learning methods
of previous studies. The comparison shows that DGN’s performance is comparable with previous
methods. In addition, it has been confirmed that DGN has an advantage over EA for complex
problems.

* In Chapter 6 shows findings obtained from this study. The usefulness and limitations of DGN are
discussed. Based on the findings, future research issues are listed.

* Chapter 7 is an appendix describing an excerpt of the structural design methodology based on the
Japanese Building Standard Act used in Chapter 4. It also presents the computational resources
and libraries used in the experiments in Chapter 5 and the details of the DGN model in Chapter 5.



Chapter 2
Related Works

2.1 Evolutionary Algorithms and Genetic Algorithms

Since the first evolutionary algorithm was proposed by J. H. Holland [18] for the first time, it has been
applied in various fields. A characteristic feature of evolutionary algorithms is that the survival of the
generated individuals is determined based on feedback from the environment. The environment model
can remain a black box if feedback can be obtained. This is expected to be a significant reason why
applications have been attempted in various fields.

Evolutionary algorithms have the disadvantage of being difficult to apply to complex problems. It
is challenging to apply evolutionary algorithms when the number of possible solutions increases expo-
nentially with the size of the problem. Finding a reasonable solution can be challenging in such a vast
search space because EA is based on a random search. [5] [44] [38]. To compensate for this, genetic
algorithms using search strategies such as crossover and selection were used to improve evolutionary algo-
rithms, making the discovery of suitable solutions more efficient. However, even with genetic algorithms,
difficulties due to combinatorial explosion are inevitable.

2.1.1 GA for Structural Design

In high-rise buildings, dampers that reduce vibration amplitude may be installed to control horizontal
deformation caused by earthquakes or wind. The designer determines the place of dampers in a building,
conducts a response analysis of the structure for the arrangement, and readjusts the placement of the
dampers based on the results of the analysis.

Generally, damper locations are determined by the designer’s experience. N . Wongprasert et al.
attempted to optimize this damper placement using GA [45]. The damper arrangement is improved by
evaluating the maximum amplitude of the wave motion as the same as the external force to reduce the
amplitude. By doing so, they have obtained a damper arrangement that reduces the response of the build-
ing.

S. A. Faizi et al. applied GA to the problem of placing buckling-restrained braces in Reinforced
Concrete frames [11]. Buckling-restrained braces and other diagonal members, when incorporated into
moment frames, become like walls, which may affect the usability of the building. Stronger braces can
resist horizontal forces with fewer braces but cannot be unnecessarily strong because they increase the
cost of the surrounding columns and beams. Braces of appropriate strength should be placed where they
do not interfere with the floor plan.

The designer’s experience will determine the appropriate placement, but this is an example of where
an optimization method such as GA can obtain a better arrangement. Both examples are not so complex
to solve with GA.



2.1.2 GA for Molecular Search

Within the research area of the searching method for new molecules with desirable features, Lee et al.
proposed a method of stacking two GA models [26]. This is intended to focus on a desired region of the
search space. The method uses the similarity to a specific molecule prepared from the data set and the
desired features as a score for individual selection.

This study is unique in that GA was applied in two stages. As mentioned, in complex problems, EA
or GA is difficult to converge to an appropriate solution due to combinatorial explosion. In contrast, by
dividing the problem into two stages, GA can be easily applied to simple problems. Thus, GA can be
helpful if the problem can be simplified with domain knowledge.

2.2 Applications with Deep Learning

2.2.1 Structural design

Y. Fei et al. [13] attempted to place shear panels on reinforced concrete structures with GAN. The
GAN model achieved the same quality design as a highly efficient human expert. The generator input is
CAD drawings images without shear panels. It generates shear panel arrangements for the drawings. A
discriminator is applied to this generated shear panel drawing to determine whether it is an image with
real or fake shear panels. In addition, the relative displacement of each floor as physical performance is
fed back to the generator as an indicator to encourage a more favorable generation 2.1.

This method depends on a shear-panel dataset. In general, the placement of shear panels is not deter-
mined by a single solution but rather by various options. Therefore, there is a concern that methods that
use shear panel data created by humans as the correct answer will limit the variety of solutions that can
be obtained. In addition, it often requires significant expense to collect the data.

2.2.2 Molecular Search
ORGAN

ORGAN [16] is combined with conventional GAN and reinforcement learning. Figure 2.2 retrieved
from [16] is the schema for ORGAN. Objective-Reinforced Generative Adversarial Networks (ORGAN)
combines Generative Adversarial Networks (GAN) with Reinforcement Learning (RL) techniques. This
method was applied to protein generation and music generation. Remarkable performance was achieved
for these tasks.

The ORGAN model trains a network of generators and discriminators through adversarial training
to generate data with various orders, e.g., protein sequences or musical notes in music. As in GAN, the
generators generate sequences, which the discriminators then evaluate. The discriminator is true/false
classifier trained with real data and synthesized data. The two models can be trained adversaries to gen-
erate new ordered data with the characteristics of the original data.

ORGAN combines the GAN method with reinforcement learning techniques. It rewards them for
following a particular desired pattern or structure. This reward is used to update the generator’s parame-
ters, such as weights. This encourages the generative model to generate more favorable sequences. The
parameter A is used for tuning the weight of feedback between the discriminator and reward.

By combining adversarial training with reinforcement learning, ORGAN has shown promising results
in sequence generation tasks such as music composition and protein sequence generation. However, the
performance depends on datasets. If the datasets are insufficient to obtain favorable results, this method
does not necessarily work well.

MolGAN

Like ORGAN, MolGAN [9] combines GAN and reinforcement learning 2.3. Unlike ORGAN, MolGAN
uses Graph Convolutional Networks (GCN) for its model. GCN is excellent at estimating molecular
properties. [23]
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Figure 2.1: GAN for shear panel Layout: image is retrieved from original paper [13]. On top,
the generator input is CAD drawing images without shear panels, generating shear panels for the
drawing. In the bottom image, the diagram’s grey rectangle is a discriminator. It is applied to
the generated shear-panel drawing to determine whether it is from real data or generated. The
relative displacement of each floor that physical performance is fed back to the generator as an
indicator to encourage a more favorable generation.
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Figure 2.2: ORGAN; GAN for molecule generation: image is retrieved from original paper [16].
ORGAN combines this GAN method with reinforcement learning techniques. It rewards them
for following a particular desired pattern or structure. This reward is used to update the gen-
erator’s parameters, such as weights. This encourages the generative model to generate more
favorable sequences. The parameter A is used for tuning weight of feedback between discrimi-
nator and reward.
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Figure 2.3: MolGAN; GAN for molecule generation: image is retrieved from original paper [9].
MolGAN has a generator, discriminator, and reward network. The models are based on Graph
Convolutional Networks (GCN). The green model is generator. The yellow model is discrimi-
nator. The blue model is reward network.

MOolGAN has a generator, discriminator, and reward network. The models are based on GCN. The
generators and discriminators are trained in the same way as in GAN. The discriminator identifies the
molecules generated by the generator or the molecules from the dataset.

The molecules generated are rewarded for having desirable features through the reward network. This
allows for the generation of molecules with desirable features. Similar to ORGAN, the weight between
the discriminator and the reward network is hyperparameter A.

MolGAN has shown promising results in generating novel and diverse molecular graphs that closely
resemble the properties found in real molecules and is expected to have applications in drug discovery and
materials science. On the other hand, it is prone to mode collapse and challenging to train. It is not easy
to generate molecules with more desirable characteristics because there is a small number of molecules
with desirable features in the dataset. In MolGAN experimental results, there is a high probability that
the generated molecules are included in the original dataset. Also, the number of generated molecules is
small, which is not included in the original dataset and has desirable features. The performance of this
method is also inevitably dependent on the datasets.

2.3 Reinforced Learning

Reinforced learning [39] refers to methods by which a model is trained with feedback from the environ-
ment. Reinforcement learning is a type of machine learning. An agent learns by acting in an environment
and receiving rewards or penalties. The agent aims to maximize the cumulative reward over time or state.
The environment is formulated as a Markov decision process.

The learning procedure for reinforcement learning is as follows:

1. the agent acquires the current state of the environment.
2. Based on the current policy, the agent chooses an action to execute.
3. The environment probabilistically transitions to a new state.

4. The agent receives a reward or penalty based on its action.



5. The agent updates its policy based on the observed reward and the new state using a value function
estimation technique.

Reinforcement learning algorithms are distinguished by policy type, whether the action space is con-
tinuous or discrete, and whether the state space is continuous or discrete. Prominent reinforcement learn-
ing algorithms include the SARSA, Q-learning [41] [40], and Deep Q-Networks (DQN). For example,
the SARSA method deals with discrete values in action and state space. Q-learning and DQN treat the
action space as discrete and the state space as continuous. Both have a Q value that indicates the validity
of a rule and updates the value each time the agent acts. DQN is characterized by its Q table being a
neural network.

Reinforcement learning has been applied to robot control systems, recommendation systems, and
other applications. In recent years, DQN has made headlines by outperforming humans in gameplay [28].

Deep Q-Networks

DQNs were introduced by Mnih et al. [28]. Deep Q-Networks (DQNs) is a reinforcement learning
algorithm that uses deep neural networks to approximate the Q function in Q-learning. The Q-function
measures the expected cumulative reward for taking a particular action in a given state and following the
policy. DQN substitutes a deep neural network for the Q function, obtaining a more accurate and flexible
representation than previous methods.

DQN has several innovations to improve performance and stabilize learning.

1. The agents initially act randomly to avoid falling into a local optimum. Gradually, the proportion
of random actions is reduced. As a result, the ratio of actions by policy is increased.

2. Clip the error of the loss function. When the absolute value of the error exceeds a threshold value,
the error is clipped at that value to prevent divergence during learning.

3. Update the weights of the Target Network at regular intervals.

DQN uses the Replay Buffer and Target Network to stabilize the learning process and prevent agents
from overreacting to the environment. The Replay Buffer stores the agent’s experience (state, action,
reward, next state). The target network is a copy of the main network used to compute target Q values
during training. The target network is updated less frequently than the main network, which helps stabilize
the training process.

DOQN has attracted attention because it outperforms humans in gameplay. It has many applications,
including robot control and autonomous driving.

However, these methods are difficult to stabilize training because they aim for future rewards and
are trained in time history. Most models for structured product design do not need to be trained in time
history. Therefore, it is not necessarily suited for tangible product design.



Chapter 3

Directional Generative Networks

3.1 Elemental methods of DGN derived from deep learning

At the beginning of neural networks, it was known that neural nets could approximate an arbitrary func-
tion by layering units of neurons. However, there was a drawback: the deeper layers, the more challenging
to train. This problem was overcome by J. Hinton, I. Goodfellow, Y. Bengio, et al. They used a com-
putational graph-based differentiation method called backpropagation to achieve a dramatic performance
improvement in image recognition. That is the beginning of deep learning. Subsequently, their applica-
tion research progressed, and the method was applied not only to image recognition but also to speech
recognition, automatic translation, and a wide variety of other applications. In recent years, the Large
Language Model (LLM) has been widely recognized, and its use as a sentence generator or search tool
has been progressing, significantly impacting society.

This section shows methods related to deep learning used in Directional Generative Networks(DGN).

3.1.1 Artificial Neural Networks as Approximate Functions

Artificial neural networks(ANN) have been proven to approximate arbitrary functions [8] [19]. A non-
linear function is used as the activation function of a neuron. By stacking its units, a function of complex
shapes can be represented. Therefore, it can be approximated with arbitrary precision by the number of
neurons in the hidden layer of the neural network. This shows that the neural network can be applied to
the classification problem by one-hot encoding and the regression problem.

In the case of using a model based on a neural network as a generative model in the industrial or
engineering field, one idea is to connect the evaluation function used to evaluate the design proposal
with the generative model and update the weights of the generative model based on the error between
the evaluation value of the generated one and the desired evaluation value. This is a possible method.
However, evaluation functions used in industry or engineering are not necessarily differentiable. In some
cases, such as when the formula applied diverges depending on the conditions, the function may become
discontinuous at the point of divergence. In such cases, the problem arises that differential methods such
as error backpropagation cannot be applied.

Therefore, approximating the evaluation function with a model based on a neural network may solve
the problem. The approximation formula will have an error with the underlying function, but if the error
is within an acceptable engineering range, it may be an industrially valuable method.

Clipping Norm of Gradients

When a differentiable function approximates a non-differentiable function with a discontinuity or singu-
larity, the model’s behavior during training may become unstable near the discontinuity or singularity.
When attempting to update the weights by gradient descent, a sudden change in value can cause mode
collapse 3.1. To avoid this, gradient clipping may be effective. As noted by I. Goodfellow et al. [14], for
example, highly nonlinear functions computed over many time steps tend to have very large or small gra-
dients. In a search space of such a shape, if gradient clipping is not applied, the position being searched
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Figure 3.1: Highly nonlinearity objective function: This image is retrieved from the book Deep
Learning [14]. Highly nonlinear functions computed over many time steps tend to have very
large or small gradients. In a search space of such a shape, if gradient clipping is not applied,
the position being searched may be moved significantly when the gradient changes rapidly, that
shown in the left-hand image, wasting the optimization process that has been performed. The
right-hand image shows the behavior If the clipping is applied.

may be moved significantly when the gradient changes rapidly, wasting the optimization process that has
been performed.

There are two methods of clipping: element-by-element for the parameter gradients g of a mini-batch
and constraining the norm ||g|| of the gradient, just before the parameter update [30]. The equation 3.1
is shown as clipping norm.

iflgll>v
8V 3.1

g «—
Ilgll

Where v represents the threshold of the gradients norm.

3.1.2 Methods related to deep learning
Adam

Adam is short for Adaptive Moment Estimation. It is a popular optimization algorithm used in deep
learning. It is an extension of the stochastic gradient descent(SGD) algorithm that uses adaptive learning
rates for each parameter based on estimates of the first and second moments of the gradients [21].

Adam combines the advantages of two other popular optimization algorithms, Adagrads and RM-
Sprop. Adagrad adapts the learning rate for each parameter based on the historical gradient information.
RMSprop uses a moving average of the squared gradients to scale the learning rate. Adam also incorpo-
rates bias correction to account for the fact that the moving averages of the gradients are initially biased
toward zero.

Adam is known empirically to be useful for training GAN [3].

Residual Nets

Residual Networks are also called ResNets. Although backpropagation enabled layer-by-layer learning,
there was a problem as the layers got deeper, the gradient disappeared, and training did not progress. In
response to this problem, a method was proposed to learn residuals from inputs by introducing a short-
circuit connection 3.2 in which inputs are added in later layers [17]. This method prevents gradients
from disappearing and enables models with more than 100 deep layers. In ResNet, each layer block
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Figure 3.2: Residual Networks Block: image is retrieved from original paper [17]. Although
backpropagation enabled layer-by-layer learning, there was a problem as the layers got deeper,
the gradient disappeared, and training did not progress. In response to this problem, a method
was proposed to learn residuals from inputs by introducing a short-circuit connection.

usually consists of a short-circuit connection that adds the output of that block to the input after several
convolutional layers. The main advantage of ResNets is that they can be trained to very great depths, thus
improving the accuracy of various tasks. ResNets are useful for image classification, object detection,
and semantic segmentation tasks.

Convolutional Neural networks(CNN)

Convolution is one technique to improve the performance of full-connected neural nets, with the following
motivations

1. Sparse connections
2. Parameter sharing
3. Equivalence representation

Convolution uses a window function called a kernel. This reduces the number of connections dramatically
compared to a neural network fully connected, as only the connections in the applicable range of the kernel
are applied. This saves memory and reduces the amount of computation. In addition, since it is compatible
with parallel processing, it is possible to significantly shorten the learning time by parallel computation
using Graphic Processing Unit (GPU), etc.

Since the kernels are applied in a moving manner, features that are trained commonly within the
kernels, such as the edges of objects. Such parameter sharing allows the layer to be trained in equivalence
representation.

Thus, while the model is computationally much less expensive, its performance in tasks such as image
recognition is not degraded compared to the all-coupled model. It also has the advantage of avoiding over-
fitting.

Although CNN is excellent at understanding local features, it is not good at understanding image
stretching, rotation, and the positional relationship of each element within the whole. U-Net and Visual
Attention will be explained later as methods to compensate for these.

U-Net

CNNs s can grasp concepts at a high level of abstraction by convolution. On the other hand, the convolution
lacks information on details. To compensate for this shortcoming, a U-Net was proposed that has a sep-
arate branch from the main trunk that performs convolution, bypassing detailed information and passing
it to subsequent layers [12] [33].

The main branch that performs convolution grasps abstract concepts. The branches that are bypassed
retain details. Combining these two allows both whole and partial information to be retained, aiming to
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Figure 3.3: U-Nets: image is retrieved from original paper [33]. This figure shows a U-Net
configuration for semantic segmentation of medical images. The image is compressed by max-
pooling to extract information at higher levels of abstraction. At the same time, it aims to retain
detailed information through bypassed output. This allows for better obtaining semantic segment
and segment boundaries.

improve recognition accuracy. This is useful for tasks such as image recognition and semantic segmen-
tation.

Figure 3.3 is the U-Net model proposed by O . Ronneberger et al. Gray arrows represent branches to
be bypassed. Each is bypassed according to convolution depth and up-sampling.

Visual Self-Attention

Visual self-attention is a technique used in deep learning to process visual information. It uses a self-
attention mechanism to selectively focus on different regions of an image, allowing the model to under-
stand better the relationships between other parts of the image [27] [46].

The procedure for self-attention, figure 5.5 is to first find the inner product for a tensor (in this
case, the image) with the transpose of that tensor. The result of this inner product is then applied to the
softmax and multiplied by the tensor as a weight to be gazed at. Applying self-attention allows us to
focus on different regions of the image based on their importance to a particular task. CNN excels at local
feature understanding but has difficulty understanding the overall location of the features, improved with
the application of self-attention. Visual self-attention has been used in various deep-learning models for
tasks such as image captioning, object detection, and image segmentation.

Batch Normalization

In deep neural networks, during training, if the parameters or weights of one layer change, the distribution
of inputs in the next layer changes. This reduces the learning speed. It also requires careful initialization of
parameters and weights. Batch Normalization [20] was proposed to normalize the layer inputs to address
these issues.

In recent deep learnings, mini-batches are generally used for training. In this method, normalization
is performed for each mini-batch during learning. Precisely, the mean and standard deviation of the mini-
batches are first calculated. Then, for each element of the mini-batch, the mean is subtracted and divided
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by the standard deviation. This procedure normalizes the mini-batch.

Normalizing the mini-batch speeds up the learning process. It also eliminates the need to care about
the initial values of parameters and weights. No need to use Dropout [37]. Overfitting can be reduced.
Relatively high learning rates can be used because learning is more stable. It also contributes to the
learning stability of Generative Adversarial Networks (GAN). Because of these advantages, batch nor-
malization is widely used in deep learning.

3.1.3 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) are a type of deep learning architecture. The typical diagram is
shown in Figure 3.5. It consists of two neural networks working against each other to generate realistic
outputs. The first network, the generator, creates fake outputs from random values as input. The second
network, the discriminator, distinguishes between generated fake and real data. They are called adversarial
because they attempt to beat the other network through training. The generator and discriminator train
alternately and can produce increasingly realistic outputs [15].

GAN has been applied to various tasks, including image and video generation, text generation, etc.
It has also been used for data augmentation, style transfer, and anomaly detection. GAN’s equation is
shown in equation 3.2. Discriminator, D, and Generator, G, play a mini-max game with value function
V(G, D).

mGin max V(D,G) = Ex-py(x)[10g D(x)] +E;~p,(z) [log (1 = D(G(2)))] (3.2)

As can be seen from the equation 3.4, the GAN discriminator uses binary cross entropy as the loss function
since it is a binary True or False classification problem.

GAN training is prone to instability. Empirical methods are known to stabilize the training of GAN [3].
The following methods were also used in this study.

1. balancing the generator and discriminator
2. Using batch normalization
3. using hyperbolic tangent(tanh) as the activation function

In GAN training, if one model is trained too quickly, the other model cannot keep up and causes mode
collapse. To avoid this, it is necessary to balance the training speeds of the generators and discriminators.
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Figure 3.5: GAN has two neural network models, generator G and discriminator D. The dis-
criminator tries to determine whether the inputs are real or fake and is trained with real/fake
labels. The generator tries to fake the discriminator with fake outputs. They trained alternately
in an adversarial way.

One way to do this is to make the geometry, number of parameters, and learning rate of the generator and
discriminator models similar. This makes it relatively easy to adjust the training speed.

It is known that a moderate distribution of data across each layer between -1 and 1 is less likely to
cause mode collapse, and thus, training is more likely to proceed. To achieve this, batch normalization
is used to equalize the distribution of values. In addition, tanh is used as the activation function, and for
values exceeding +1, it is made to be within +1.

3.2 Directional Generative Networks(DGN)
3.2.1 Structure of DGN

Figure 3.6 shows DGN’s model diagram. The method combines evaluation function F with deep learning
models. The diagram of DGN is very similar to that of GAN. GAN and DGN differ in the built-in
evaluation function F' and constant values C as training direction. The model G’s input z is random
values, and the model G generates x.

The evaluation function F takes x and returns the result r. The estimator model E also takes x and
returns the value p. The model E is trained from error between r and p. This makes the output of
E gradually closer to the output of F. In other words, if E was trained enough, E is an approximate
function of F.

For the training of model G, the model G and E are combined. The combined model is trained with
error between target value C and predicted value p. When the combination model is trained, the weights of
model E are fixed and not updated. By alternately training G and E, E increases the prediction accuracy,
and G gradually becomes to be able to generate the preferred output.

The training procedure is shown in algorithm 1 The function mse at operation 8 and 9 in the algo-
rithm 1 stands for mean squared error, which defined in equation (3.3).

l n
mse(p.y) =~ > (pi = yi)’ (3.3)
i=1

3.2.2 Comparison between GAN and DGN

DGN was conceived and inspired by the GAN learning method. A comparison of GAN and DGN is
shown in the table 3.1 below.

For GAN, the input to the Generator is random values, and the input to the Discriminator is the output
of the Generator as fake and real data from a pre-prepared dataset.

For the DGN input, random values are input to the generator. The output of the generator is input to
the Estimator and Evaluation functions. A pre-prepared dataset is not necessarily required.

For output, the GAN’s generator outputs fake data. The Discriminator outputs true/false label pre-
diction to identify whether the received data is real contained in the dataset or fake data generated by the
Generator.
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Figure 3.6: DGN Diagrams: The method combines evaluation function ' with deep learning
models. The diagram of DGN is very similar to that of GAN. GAN and DGN differ in the built-
in evaluation function F and constant values C as training direction. The model G’s input z is
random values, and the model G generates x.

The evaluation function F takes x and returns the result r. The estimator model E also takes x
and returns the value p. The model E is trained from error between r and p. This makes the
output of E gradually closer to the output of F. In other words, if E was trained enough, E is
an approximate function of F.

For the training of model G, the model G and E are combined. The combined model is trained
with error between target value C and predicted value p. When the combination model is trained,
the weights of model E are fixed and not updated.

By alternately training G and E, E increases the prediction accuracy, and G gradually becomes
to be able to generate the preferred output.

Algorithm 1 Training procedure of DGN

1: Setting constant values C as the target direction
2: for number of iteration do
3: Gathering mini-batch with size m:
4: Randomly generate initial array

{Z 2@, ... ,Z(m)}

{x |G(Z(O)),"' ,G(z(’"))}

{r |F(x@),... ,F(x(’"))}

{p |E(x(0)), . ,E(x(m))}
Updating £ with the mini-batch

m

Vop % 2 [mse(r, P)]]

9: Updating :G concatenated fixed-weights E with the mini-batch
Voo |+ X [mse(C, P)]]

10: end for

Figure 3.7: Training Procedure of DGN: Setting constant values C as the target direction; oper-
ation 1. A mini-batch is prepared from the generated random number sequence z; operation 4.
The mini-batch contains a random number sequence z, x generated with z as input; operation 5.
Preparing r calculated by F with x as input; operation 6. Preparing p estimated by E with x as
input; operation 7.

The parameters and weights of the predictive model E are updated from the errors of r and p;
operation 8. The parameters and weights of the generative model G are updated from the error
between C and p; operation 9. At this time, G and E are concatenated, and the weight of E is
fixed. This means that only G is updated. The operations from 3 to 9 are iterated during training.
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Like GAN, The DGN ‘s generator takes a random value input and outputs some generated data. Instead
of the GAN’s discriminator, DGN uses an estimator and an evaluation function. The Evaluation function
takes the output of the Generator as input and returns the value of the evaluation result. The Estimator
takes the output of the Generator as input and outputs a value that predicts the output of the Evaluation
function.

True/False labels are used for the generator and discriminator in GAN as the ground truth. In DGN,
constant values as targets are used for the generator as the ground truth. For the estimator, outputs of the
evaluation function are used as the ground truth. Here, ground truth refers to the correct answer data to
be compared to check the predicted values in the machine learning model.

In GAN, the errors for backpropagation are calculated with True/False labels and the discriminator’s
outputs. In DGN, the errors for the estimator’s training are calculated with the outputs of the evaluation
function and the estimator’s outputs. For the generator in DGN, the errors are calculated with the target
constant values and the estimator’s outputs.

Two models in GAN and DGN are trained alternately.

A comparison of training procedures using a block chart is shown in the figure 3.8.

3.2.3 Theoretical description

GAN’s equation is shown again in equation 3.4. Discriminator, D, and Generator, G play mini-max
game with value function V(G, D)[15]. The GAN discriminator is a binary classification problem that
distinguishes between real and fake data. Therefore, Equation 3.4 is constructed based on binary-cross
entropy.

rn(i;n mDax V(D,G) = Ex~pdma(x) [log D(x)] + Ez~pz(z) [log (1 - D(G(2)))] 3.4

For DGN, the probability distribution of the data in the GAN is replaced by the probability distribution
in the space defined by the functions F. In DGN, minimize the values of Vo(E) 3.5, and V{(G) 3.6.
Because DGN is a regression model, the equation is based on the mean squared error (M SE) rather than
the binary cross entropy in GAN.

Vo(D) = Ez-p,ic) l% 2 EG() - F(G(z)>]2] (35)
i=1
Vi(G) = Bepyio ll D EG() - Cd (36)
i=1

Even if the function F is not differentiable, the estimator E (x) could approximate F(x) like a differ-
entiable function. In the not-differentiable case, the exploration space is often steep. In this case, some
stabilizing methods like clipping-norm are required.

The generator G is trained with the error of the constant values ¢ and the output r of F. After sufficient
iterations, The generator G outputs G (z) such that the output r of F is close enough to c. In other words,
the generator can be trained with given constants as their targets.
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Figure 3.8: Comparison of training procedure:

The first step is generating objects or images from random input. This step is the same for GAN
and DGN.

In the second step, the discriminator in GAN takes Real and Fake images. And predict whether
the images are real or fake. In DGN, the estimator and evaluation function take the generated
object x. The function outputs the evaluated result of the x. The estimator model estimates the
evaluated result of the x.

In the third step in GAN, the error is calculated using the Real or Fake labels and predicted labels.
Then, the weights of the discriminator are updated by the error with the backpropagation. In the
third step in DGN, the error is calculated with the evaluated results and predicted values, Then,
the weights of the estimator are updated by the error with the backpropagation. Therefore, if the
estimator is trained enough, the estimator becomes an approximate function of the evaluation
function.

In the fourth step in GAN, the weights of the generator are updated by the error with the back-
propagation. At that time, the discriminator’s weights are not updated. In the fourth step in
DGN, the error is calculated with the predicted values by the estimator and constant values. The
constants are the target of the object x. the constant is the ideal value for the object x. Then,
the weights of the generator are updated by the error with the backpropagation. At that time,
estimator D is also not updated like GAN.

These four steps are iterated in the training phase until the models are trained enough. If the
models in DGN are trained enough, the evaluated result of generated x is close enough to the
target constant values. DGN is a cooperative model rather than adversarial.
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| GAN | DGN

Inputs For Generator :Random values For Generator :Random values
For Discriminator Fake(Generator’s | For Estimator and Evaluation func-
output) and real data tion : Generator’s outputs

Outputs From Generator: Fake data, From Generator : Generated data,
From Discriminator : True/False esti- | From evaluation function : evaluated
mations values for generated objects

From Estimator: Estimated values for
the evaluation function outputs

Ground truth | For Generator and Discriminator : | For Generator: Constant values as the
True/False labels target,

For Estimator: Outputs of the evalua-
tion function

Error For Generator and Discriminator : | For Estimator: error are calculated
error are calculated with True/False la- | with outputs of the evaluation function
bels and discriminator’s outputs and Estimator’s outputs

For Generator: error are calculated
with Constant target values and Estima-
tor’s outputs

How to train | Generator and Discriminator are alter- | Generator and Estimator are alternately
nately trained trained

Table 3.1: Comparison between GAN and DGN: Input for GAN is random values for the gen-
erator, the output of the Generator as fake, and real data from a pre-prepared dataset for the
discriminator. Input for DGN is random values for the generator. The output of the Generator
is input to the estimator and Evaluation functions. A pre-prepared dataset is not necessarily re-
quired.

Output of GAN, the generator outputs fake data. The discriminator outputs true/false label pre-
diction to identify whether the received data is real contained in the dataset or fake data generated
by the generator. Output of DGN: The generator outputs some generated data. The evaluation
function returns the value of the evaluation result based on the generator’s outputs. The estima-
tor takes the output of the Generator as input and outputs a value that predicts the output of the
evaluation function.

As ground truth, True/False labels are used for the generator and discriminator in GAN. In DGN,
constant values as targets are used for the generator. For the estimator, outputs of the evaluation
function are used.

The error calculation for backpropagation, In GAN, the errors are calculated with True/False
labels and the discriminator’s outputs. In DGN, the errors for the estimator’s training are calcu-
lated with the outputs of the evaluation function and the estimator’s outputs. For the generator
in DGN, the errors are calculated with the target constant values and the estimator’s outputs.
Two models in GAN and DGN are trained alternately.
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3.3 Simple Examples of DGN

Here are two Equations 3.7 and 3.8 as examples of the function F' in DGN. Equation 3.7, used in the first
example, is a simple differentiable function that returns the sum over all three arguments and the product
over all three arguments. The expression 3.8 for the second example is a non-differentiable function
that returns the remainders of the first and second arguments and the remainders of the second and third
argument. Constants in Equation 3.9 are given as the target for each example.

P p
Fo(xo,x1,x2) = [Zxk, ﬂxk‘ 3.7

=0 k=0
F1(x0,x1,Xx2) = [xo mod x1, x; mod x;] (3.8)
C =[0.5, 0.035] (3.9)

Training procedure of the simple example

The input z to the generative model is random numbers. The training procedure below follows the previous
pseudo code 1.

1. For the output [x1,x2, x3] of the generative model, obtain the return value [yg, y;] of the function
Fy or F) that takes it as an argument, and the output [y, y}] of the estimation model Dy.

2. From the [yo,y1] and [y, y]], obtaining the loss function values. The loss function is Mean-
Squared Error (MSE) Equation 3.10.

3. Update the weights of E from the loss function value.
4. [y(, y}] obtained from the model that combined G and E.
5. The loss function values are obtained from [y, y|] and the target constants C = [0.5, 0.035].

6. Update the weights of G from the loss function values. Here, the weight of E connected to G is
fixed and is not updated.

By repeating the above procedure, the estimation model £ output gradually closes to the output of the
function Fy or Fj. Also, the output F(G(z)) gradually closes to the target constant due to the generator
G’s weights update.

1 n
mse(p.y) =~ ) (pi=yi)’ (3.10)
i=1

Result

Figure 3.9 shows the loss values transition of the £ model during training. The x-axis is the iteration
number of training. The y-axis is the loss value. The total iteration number is 22°. Figure 3.10 shows loss
values transition of combination model, G and D while training. All of them are trained well.

Calculated values [y, y1] transition with generated values [xg,x;,x2] are shown in Figure 3.11
and 3.12. As in the Loss values figure, the line colors, orange and grey, are examples with the func-
tion Fy, and blue is an example with F;. Target values are [0.5, 0.035]. Therefore, [yo, y1] are converged
well.

Figure 3.13 on left shows generated values [xg, X, x2] with trained model G in example with function
Fy. The red color is xg, the green is x1, and the blue is x3. Figure 3.13 on right hand shows caluculated
values [yo, y1] with [xg,x1,x2]. The calculated values [yg, y1] are well converged. Nevertheless, the
generated [xp, x1,x2] maintain diversity. It can be seen that a variety of values are generated that realize
Target’s values.

20



c_loss
tag: c_loss

0.08 =
7e-3
6e-4
5e-5
de-b
3e-7

2e-8 |

0 200k 400k 600k 8OOk ™
Figure 3.9: Loss value transition of estimator model; Simple Examples of DGN: The x-axis is
the iteration number of training. The y-axis is the loss value. The total iteration number is 220
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Figure 3.10: Loss value transition of the combined model; Simple Examples of DGN: which
combined with G and E. The x-axis is the iteration number of training. The y-axis is the loss
value. The total iteration number is 22°. Line colors orange and grey are examples of the function
Fy, and blue is an example of Fj.
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Figure 3.11: Calculated value y( transition with generated values [xg, x1,x2] The target value
1s 0.5. Line colors, orange and grey are examples with the function Fj, and blue is an example
with Fj. Each experiment shows good convergence to the target value.
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Figure 3.12: Calculated value y; transition with generated values [xg, x1,x2] Target values are
0.035. Line colors, orange and grey are examples with the function Fy, and blue is an example
with F. Each experiment shows good convergence to the target value.
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Figure 3.13: Distribution of generated values for the function Fy, using addition and multiply:
On left shows generated values [xg, x, x2] with trained model G in example with function Fj.
The red color is xp, the green is x1, and the blue is x3. Figure 3.13 on right hand shows caluculated
values [yo, y1] with [xg, x1,x2]. The calculated values [yq, y;] are well converged. Nevertheless,
the generated [x, X1, x| maintain diversity. It can be seen that a variety of values are generated
that realize Target’s values.

Figure 3.14 on the right is an example of function F, with values [xo,x1,x;] generated using the

learned model G. Red is xg, green is x1, and blue is x3. The figure on the right 3.14 shows the calculated
value [yo, y1] with [xg,x1,x2]. The calculated value [y, y;] converges well too. However, the generated
[x0, X1, x2] are still diverse, but not as diverse as the example of the function Fy. This is expected because
the function F is non-differentiable, which means that it was difficult to train around the point where the
values are discontinuous. However, since the calculated values converge well, we can say that the models
E approximate the function F; well in the range where the value is generated with the model G.
These examples are elementary and can be described as toy problems. Real-world problems are much
more complex. Functions representing many problems are often non-differentiable. However, if a good
approximation can be made to the extent that it is useful from an engineering standpoint, it can be an
effective tool. This study examines the applicability of this tool to real-world problems in chapter 4 and
chapter 5.
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Figure 3.14: Distribution of generated values for modulo function Fj: On the right is an example
of function Fj, with values [x¢, x1,x2] generated using the learned model G. Red is x(, green
is x1, and blue is x3. The figure on the right 3.14 shows the calculated value [yg, y;] with
[x0,x1,x2]. The calculated value [ yq, y; ] converges well too. However, the generated [xq, x1,x2]
are still diverse, but not as diverse as the example of the function Fy. This is expected because
the function F; is non-differentiable, which means that it was difficult to train around the point
where the values are discontinuous. However, since the calculated values converge well, we can
say that the models E approximate the function F; well in the range where the value is generated
with the model G.
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Chapter 4

DGN Application for Structural Design

In this chapter, DGN is applied to building structural design. Building data is much more complex than the
simple examples described in chapter 3. The application applies DGN to the shear panels’ arrangement,
which is structural members. If the shear panels can be appropriately placed based on the building data
without structural data, the DGN is considered to have the functionality to support structural design.

The structural designer cannot immediately determine whether the design meets the requirements
simply by visually reviewing the structural design drawings. To make a judgment, it is necessary to
check the output results of the structural calculations. Based on the output results, the structural design
is changed, and the structural calculation is repeated in an iterative process. Appropriate placement of
shear panels is mainly evaluated based on the eccentricity and Demand capacity ratio(DCR) values, which
are structural safety check items specified in the Building Standard Act. In other words, if the values
of eccentricity and DCR are appropriate for the arrangement of shear panels generated, DGN can be
considered a helpful tool for engineering design support.

It is common for there to be more than one appropriate structural member arrangement for the building
data. However, the available data is expected to be only one of the adopted design alternatives. Therefore,
only a narrow search space may be learned if the shear panel arrangement is given as the ground truth.
In this study, instead of using the shear panel arrangement data corresponding to the architectural design
data, the values of eccentricity and DCR, which are structural safety check items, are fed back for learning.
The purpose is to obtain a model that can generate various solutions.

In this chapter, the applicability of DGN is examined. Section 4.2 describes the structure, data rep-
resentation, and training procedure of the DGN for structural design. Section 4.3 describes the measure-
ment metrics, data representation, and training/ testing results as an experiment. Section 4.4 summarises
this Chapter.

The description in this chapter is limited to what is described in the patent application or the public
domain. Matters relating to trade secrets are not discussed here and are omitted.

4.1 Structural Design

4.1.1 Structural Design

Structural design in civil engineering involves the following steps in general [36].

1. Project Planning: In this phase, the project team identifies the project’s requirements, objectives,
and constraints, including site conditions, client needs, budget, and relevant regulations.

2. Preliminary Design: The structural engineer develops preliminary design concepts based on the
project requirements and constraints.

3. Analysis Once the preliminary design is complete, the engineer performs a detailed analysis of the
structure to ensure that the structure complies with relevant codes and other performance require-
ments.
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4. Design Development The analysis results refine the preliminary design and produce detailed
design drawings, including plans, elevations, sections, and details.

5. Review and Approval The design is reviewed and modified as necessary by a project team that in-
cludes the client, architect, and other interested parties. Plans are then submitted to the appropriate
authorities, such as the building department and regulatory agencies, for approval. Construction
Once the design is approved, the construction phase begins. Engineers may provide construction
support services such as site visits and inspections to ensure that the structure is constructed as
designed.

6. Post-construction evaluation After construction, the engineer performs a post-construction re-
view to ensure the structure meets design specifications and functions as intended. This may in-
clude load testing and other evaluations.

Because construction projects are generally large in scale, design work may be subdivided into a
hierarchy. For example, the design work can be divided into basic design, in which overall requirements
or concepts are studied to be satisfied, and detailed design, in which each part is designed to satisfy the
needs of the basic plan. Evaluation is generally conducted in each of these phases. Overall, the structural
design process in civil engineering involves a cooperative effort among the project team, engineers, and
other stakeholders to ensure the structure is safe, efficient, and meets the client’s needs.

4.1.2 Domain Knowledge

The domain knowledge is essential to apply machine learning methods or other systems to support design
processes. Here, domain knowledge refers to the knowledge and know-how specific to an industry sector.
For example, the designer of a building structure must have the knowledge and skills to understand the
following technical backgrounds and set appropriate constraints according to the client’s requirements.
After several years of training, the designer is finally ready for design work.

1. Knowledge of materials and material mechanics: Typical materials used in building structures
include concrete, steel, and wood. Each material has inherent properties such as stiffness, allowable
stress, weight, and anisotropic/isotropic properties. Ease/difficulty of processing and ease/diffi-
culty of obtaining materials differ depending on the material, and the designer must select the
appropriate material according to the client’s requirements.

2. Knowledge of building construction methods Since buildings are assembled at the construction
site, transporting, assembling, and joining the components are essential. For steel construction,
high-tension bolted or welded joints are commonly used. The designer must properly design the
joint locations of the structure to divide the members into appropriately sized sections that can be
loaded onto trucks delivered to the site.

3. Knowledge of loads acting on buildings: Loads working on a building during its service life
can be divided into long-term and short-term loads. Long-term loads are the dead weight of the
building itself and the weight of the people and fixtures that use it. Short-term loads include seismic
loads, wind loads, and snow loads. The designer must design the structure with an appropriate
safety buffer for each load risk.

4. Knowledge of Geotechnical and Soil Mechanics: Buildings are constructed on the ground. Im-
proper ground investigation or foundation design can lead to building settlement or tilt, resulting in
significant losses. Therefore, it is necessary to understand the behavior of the soil under building
loads, e.g., consolidation settlement, liquefaction during earthquakes, and foundation pile behav-
ior. The soil or sand that makes up the ground is a highly variable material, and the designer must
properly design the foundation to account for this variability.

5. Analysis Methods: It is necessary to understand how the designed building structure will be
deformed and what internal forces will be generated in response to external forces such as the
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abovementioned seismic forces. The finite element method has been commonly used for analysis in
recent years. In Japan, elastoplastic analysis is sometimes used to take advantage of the structure’s
ability to absorb energy through plastic deformation to avoid over-designing for the possibility
of massive earthquakes. Designers should understand the technical background of these analysis
methods and use them appropriately.

6. Regulations and Standards for Building Structure: Most buildings are private assets, but they
are also social assets. If a building were to collapse due to a moderate earthquake that could occur
during its service life, the social loss would be enormous. From the viewpoint of public welfare,
minimum standards are set by law. Materials used in construction must also be by Japanese Indus-
trial Standards and other standards. Designers must design in compliance with these standards.

7. Knowledge of basic building design: Communication between the structural designer and archi-
tect is essential. During the structural design process, plans are frequently adjusted. When design
changes occur due to the client’s intention, etc., the feasibility is examined from the viewpoint of
structural design. Even if feasible, the designer must also consider cost-effectiveness since achiev-
ing this at a reasonable cost may not be possible. Communicating to accommodate such changes
requires general architectural knowledge, not just structural design.

4.2 DGN for Structural Design

4.2.1 Model Structure

The model structure of the DGN is shown in Figure 4.1. In this section, seismic forces are considered
external forces, and a design that meets the requirements of the Building Standard Act is considered.
Here, we consider a structure where the shear panels bear the most horizontal forces. Let Fj be a function
of this model for the tool to evaluate the Proposed design. This function Fj takes the building structure as
input and returns its eccentricity and Demand Capacity Ratio (DCR). Eccentricity and DCR are explained
in Appendix, Chapter 7.

As an intuitive explanation of this model, the generative model G on the left in the figure is a model
for generating a design (generated data) with the desired performance, and estimation model D¢ on the
right side of the figure is a model for estimating the result of the function Fy. If the estimation model Dy
is sufficiently trained, it becomes an approximate function of the function . When the generative model
G is trained, it is connected to the estimated model D with fixed weights, and G is trained with the error
between the output of D (G (d, z)) and the fixed value C, that is the desired value.

By training these models appropriately, the quality of the generated design is expected to improve.
In other words, the evaluation result of the building structure generated by G will be closer to the desired
result, C. For example, if you want 0.95 for the demand-capacity ratio of the building structure, set 0.95
at the corresponding position in C.

G: Generator, is neural network-based model that generates x, shear-panel locations with grey-scale
images. The input of G has two parts: an initial state that randomly generated z and a building data d.
The building data consists of each floor image made with floor-slab images, outer and inner wall images,
and windows and doors images. Fy is a function that takes x as input and returns demand-capacity ratio
(DCR) and eccentricity measurements. These measurements are described in Chapter 7 section 7.1.

G, Generator and Dy/D1, Estimator of Fj(x) have been based on U-net [33] structure, and combined
with self-attention [27] block. Dg and D receive x, the generated shear-panel images. Dy is trained
with the output of r, Fy(x) as ground truth. Thus, p, the output of Dy gradually approaches the output
of Fy(x). In other words, if Dy had trained enough, it acts as an approximate function of Fyp(x). The
model D is exactly the same as Dy. D;’s only difference with D is not trainable. When learning G,
the weights of D are fixed when updating the weights of G. ¢ is constant target values, desired values of
measurements.
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Figure 4.1: DGN Training Scheme for Structural Design:

4.2.2 Data Representaion

The data used for training and testing is that of a built house. In general, the CAD (Computer Aided
Design) data consists of the name of each element and the coordinate values at which that element is
located. Each of these elements is treated as an image in a two-dimensional array, with one stored in the
array location corresponding to the coordinates at which it is located 4.2.

A certain standard length, for example, one meter or one foot, is equivalent to one pixel in an image.
An image can be described as a multidimensional array. For example, if a structural member is present at
a specific location, one is stored at the corresponding position in the array, and if not present, O is stored
at that location. The image size of the training data and the generated shear panel images are 64 pixels
by 64 pixels. Each image deals with a horizontally projected member of each floor. Mirror flipping and
data rotation (0°, 90°, 180°, 270°) were used as data enhancement to increase the number of data.

The generated image of the sheared panel is shown in Figure 4.3. The generated shear panels are
separated in the x- and y-axis directions. These images show the recommended locations of the shear
panels to resist horizontal forces in each direction, in the x-axis direction for the second floor. Locations
where it is desirable for shear panels to be placed generate larger values, while undesirable locations
generate smaller values. In the figure, darker colors represent larger values, and lighter colors represent
smaller values. Locations where shear panels cannot be placed are white as 0.

This data format makes it easier to apply CNN. Even if the size of the building changes, the same
model can be used for training/generation as long as the building size fits within 64 pixels x 64 pixels.

4.2.3 Training

The following pseudo-code 2 shows the training procedure for DGN. As the hyperparameter on the
raining, the number of training iterations is 35000.

Where, Fj is a function that takes d, building data and x, the generated shear panels as input, and
returns the calculated result values such as demand-capacity ratio and eccentricity.

The function logcosh at operation9 and 11 in the algorithm 2 is defined in equation (4.1).

pP-Yy —pty
L) @1

logcosh(p,y) = log ( >

These models cooperate; they gradually approach the desired solution. As the prediction accuracy of the
computational results around the search area improves, more favorable sheare panels arrangement will be
generated.
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Figure 4.3: Data Representation of Generated Shear-Panels: The generated shear panels are
separated in the x- and y-axis directions. Upper left is the y-axis direction of the first floor, top
right is the x-axis direction of the first floor, top left, in the y-axis direction on the second floor;
top right, in the x-axis direction on the second floor; The top right shows the recommended
locations of the shear panels to resist horizontal forces in each direction, in the x-axis direction
for the second floor.

Locations where it is desirable for shear panels to be placed generate larger values, while un-
desirable locations generate smaller values. In the figure, darker colors represent larger values,
and lighter colors represent smaller values. Locations where shear panels cannot be placed are
white as 0.
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Algorithm 2 Training Procedure Dy, G

1. Setting constant values C as the target direction
2: for number of iteration do

3: Minibatch Preparation: Sample minibatch of m samples
4: d=[d"Y,...,d"™] from building data.
5: 7= [z(l), .. ,z(’")] from gaussian noise.
6 xm o d0,20), .G (am, o)
e[ d a0 Ry a1
s = |00y ()
9: Updating D with the mini-batch by stochastic gradient:
Vb, [% kzo[logcosh(r, p)]]
10: Copying weights from D to D
11: Updating the weights of generator G with the mini-batch by stochastic gradient:
m
Vo |4 & l1ogeosnic. )
12: end for

Figure 4.4: Training Procedure; DGN for Structural Design: Setting constant values C as the
target direction 1. Prepare A mini-batch of m samples; operation 3. For mini-batch preparation,
building data samples are gathered from training data; operation 4. Generate random number
sequence z; operation 5. Generate shear panels arrangement x with generator G from d and
z as inputs; operation 6. Calculate measurements results r with function F' from x as input;
operation 7. Estimate measurements results p with the estimator model D; from x as input;
operation 8.

The weights of the predict-model D are updated from the errors of r and p; operation 9. Copy-
ing weights from trainable model Dy to non-trainable model D; operation 10. The weights of
the generate-model G are updated from the error between C and p; operation 11. At this time,
G and D are concatenated, and the weight of D is fixed. This means that only G is updated.
The operations from 3 to 11 are iterated during training.
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Figure 4.5: Building Data Elements: F1, F2, and F3 in the image show 1st floor slab, 2nd floor
slab, and roof slab, respectively. E is outer-wall. G is inner wall. B shows doors. W1 and W2
are windows.

4.3 Experiment

4.3.1 Measurments

Eccentricity and Demand capacity ratio are used as measurements.

1. Eccentricity The eccentricity ratio indicates the building’s tendency to twist based on the distance
between the center of gravity and the stiffness center of the building. If the eccentricity ratio is
large, the building will twist when horizontal forces are applied, and structural design considera-
tions are required to resist such twisting. For example, if the eccentricity exceeds 0.15, the hori-
zontal force for structural design should be increased during an extreme earthquake. The smaller
the eccentricity, the more desirable it is, but it is challenging to make it completely zero.

2. Demand Capacity Ratio The demand capacity ratio (DCR) is the ratio of the stress generated to
the allowable capacity value of a structural member. If the DCR is greater than 1, the member is
considered unsafe. If the DCR is below 1, it is considered safe, but if it is significantly below 1, it
is of excessive quality. Therefore, the closer to 1, but not exceeding 1, the more desirable it is.

The calculation methods for eccentricity and DCR are shown in the Appendix, Chapter 7. For exam-
ple, as the target, the constant values could be set at 0.0 as the eccentricity and 1.0 as DCR.

4.3.2 Method

As inputs to the DGN model, the geometry of the building’s exterior walls, interior walls, windows, doors,
and floors, and the weight of each part of the building in figure 4.5, are given. For this input, the presence
or absence of each element is stored as O or 1 in an array of 64 by 64 pixels.

The building data were divided into training data and test data in the experiment. Neither the training
data nor the test data contained the correct shear panel placement. The shear panels were generated
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Figure 4.6: Loss values transition of calculation result estimator, D: During the training, esti-
mators’ loss value is stably decreased.
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Figure 4.7: Loss values during training of shear panel generator, G: The model is combined with
genarator G and fixed-weights estimator D;. Like loss values, the loss value of the combined
model is stably decreased.

from the test data as a test in an iterative procedure within the pseudocode that illustrated the training
procedure. Therefore, the number of training iterations coincided with the number of test iterations. The
sheared panel arrangement generated from that test data was used as input to the function F, and the
eccentricity and DCR were obtained as output. The obtained eccentricity and DCR trends were used to
evaluate the training success or failure of the training.

4.3.3 Result

Figure 4.6 and Figure 4.7 below are the loss function values of models Dy and D{(G) at training.
Figure 4.8 is the loss function value of D (G) with test data. The horizontal axis indicates the number of
training iterations. The vertical axis shows the loss function value in that training iteration.

From this, we can see that models Do and D (G) are being trained successfully, with the loss function
values decreasing as the training progresses. Testing is being conducted in parallel with training. The
loss function value of D(G) from the test data is generally larger than that from the training data. There
is a temporary phase in which the loss function value increases, but in general, the loss function value
decreases as learning progresses, indicating that generalization ability has been acquired.

During the training and testing, the eccentricity and DCR transition obtained from the shear panel
arrangement generated by model G from the test data as input to the function Fy are shown in Figure 4.9
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Figure 4.8: Loss values of G with test data: Up to about 2.5k iterations, G and D are learned
separately and are stable. Between 2.5k and 5k iterations, the loss function value is expected to
deteriorate due to the competition between G and D. After 5k iterations, the loss function value
begins to decrease again. Naturally, the loss function values from the test data are larger than
those from the training data. However, it can be said that a certain level of generalization ability
has been acquired. Test data refers to the building plan data not included in the training data.
Training and test data do not contain the correct shear panel arrangement data.

and Figure 4.10. For eccentricity, the values are generally around 0.2, although there are some outliers.
The DCR also has some outliers but is generally between 0.6 and 1.0. Therefore, most shear panel ar-
rangements are appropriately designed as building structures.

4.4 Summary of the Chapter

It seems feasible to apply DGN to building structural design. When DGN was applied to the design
of shear panel placement in architecture, it was found to be adequately trained. In addition, its learned
generative model acquired a certain generalization capability. The eccentricities and DCRs calculated
from the shear panel placement generated from the test data were generally adequate, although there was
some variation.

The DGN was used to design the placement of shear panels in a building structure, and the model was
found to be adequately trained. After repeated mini-batch training of approximately 35,000 iterations, it
was confirmed that the loss function values of the models that inferred the structural calculation results
converged below a certain value. The loss function values of the model that concatenates the generated
model with the fixed weights of the model that guesses the structural calculation results also converged
well. It was confirmed that even a regression problem, rather than a GAN-like model that only guesses
true-false values, can be trained without divergence.

The learned generative model of DGN acquired a certain generalization ability. During the learning
process, we used test data not included in the training data to check the transition of loss function values.
Although there was a temporary increase in the loss function value, the loss function value continued
to fall steadily after that. Naturally, the test data’s loss function values exceeded the training data’s loss.
Still, they did not diverge or overfit, and a constant generalization capability was obtained.

The eccentricities and DCRs calculated from the shear panel configurations generated from the test
data were generally adequate, albeit with some outliers. When the DGNs’ generator model is used as a
design aid tool, multiple shear panel placement patterns are generated from buildings’ architectural data.
Of those multiple generated shear panel placement patterns, the patterns containing outliers are discarded,
and the preferred one is selected from the remaining designs. Used in this way, it can be a helpful tool
for engineering purposes.
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Figure 4.9: Eccentricity transition with test data during training: The values are generally around
0.2, although there are some outliers. Multiple shear panel arrangements are generated for ac-
tual use as a design aid tool. Among the generated shear panel arrangements, those that contain
outliers in the output of the evaluation function F are eliminated, and the preferred one is se-
lected from the remaining arrangements. In doing so, it becomes a helpful tool for engineering
purposes.

The DGN was found to be adequately trained to place shear panels in building structures. In addition,
its learned generative model acquired a certain generalization capability. The eccentricities and DCRs
calculated from the shear panel arrangements generated from the test data were generally adequate, al-
though there was some variation. Based on the above, applying DGN to building structural design seems
feasible.
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Figure 4.10: Demand Capacity Ratio(DCR) transition of shear panels with test data during train-
ing: The DCR also has some outliers but is generally between 0.6 and 1.0. Multiple shear panel
arrangements are generated for actual use as a design aid tool. Among the generated shear
panel arrangements, those that contain outliers in the output of the evaluation function F are
eliminated, and the preferred one is selected from the remaining arrangements. In doing so, it
becomes a helpful tool for engineering purposes.
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Chapter 5

DGN Application for Molecular Search

In this chapter, the applicability of DGN for molecular search is examined. This study shows that a
generative model trained in DGN can generate molecules with the desired characteristics by feeding back
the measurements calculated with the evaluation function. DGN is compared to ORGAN and MolGAN
in this chapter. ORGAN and MolGAN were already discussed in chapter 2.

DGN is also compared to evolutionary algorithms(EA) here. When the problem complexity increases,
there is a case where the EA performance decreases. EA performs random searches based on good
individuals. DGNs based on deep learning perform searches according to the gradient of the search
space. Therefore, DGNs are expected to work on complex problems where evolutionary algorithms do
not work well if the model has sufficient expressive capability.

Section 5.1 shows the background of molecular search tasks. Section 5.2 describes the structure of
DGN for molecular search, data representation, and the theoretical description of the learning procedure.
Section 5.3 describes experiments, including metrics and comparison of generated molecules with EAs.
Section 5.4 summarizes the chapter.

5.1 Molecular Search

Drug discovery, which contributes to people’s health, is one of the most important fields of research and
development. Huge budgets and time tend to be consumed in the process of drug discovery. Discovering
new molecules, e.g., candidates for new drugs, is still a challenging task due to the vastness of the search
space [31]. In addition to physical discovery using high-throughput screening(HTS) and other methods,
recent advances in computational power have led to the experimentation of various virtual discovery
methods. Computational methods to obtain new molecules with desirable characteristics can be roughly
classified into the following categories. Naturally, attempts are also being made to improve performance
by combining these methods.

1. Virtual Screening: Virtual Screening(VS) [32] methods include Substructure search, Similarity,
Docking, and QSAR [35]. Substructure search method searches for molecules that contain the
desired substructure in a given database of molecules. Similarity method searches a database of
molecules for molecules similar to the molecule with the desired property. Docking methods search
the database for molecules that fit the target enzyme or receptor. QSAR stands for Quantitative
Structure-Activity Relationship. The QSAR method searches for molecules with predicted activity
from the database based on the activity data of the compound.

2. Randomized algorithms: Evolutionary Algorithms(EA) is well known as a typical randomized
algorithm [18]. The advantage of EA is that it can be applied even if the differentiability of the
evaluation function is not certain. Genetic Algorithm(GA) is one of the EAs proposed by Holand.
J. [18]. A unique aspect of GA is its emphasis on crossovers. In searching for new molecules
with desirable features, Lee, Y. et al. proposed a method of stacking two GA models [26]. This
is intended to focus on a desired region of the search space. The method uses the similarity to
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a specific molecule prepared from the data set and the desired features as a score for individual
selection.

3. Generative models: Generative Models based on Deep Learning [14], Variational Autoen-
coder(VAE) [22] is known as a likelihood-based generative model, Samanta et al. applied VAE
to the graph structure of molecules. [34] Generative Adversarial Networks(GAN) [15] as a
likelihood-free generative model. While likelihood-free models have disadvantages compared to
likelihood-based models, such as low explanatory power and difficulty in learning, they are known
to have advantages, such as the ability to learn even objects with complex data structures.

As the generative models, ORGAN [16] and MolGAN [9] can generate desirable molecules.

This model uses multiple discriminators to learn the correctness of molecules and generates a group
of molecules with desirable properties as a GAN. This makes it possible to generate molecules with
favorable scores for Drug-likeness [6] logP [43] [7] and Synthesizability [10]. However, depending on
the dataset used for learning, the variation of molecules generated may be limited. If the number of data
used to train a GAN is insufficient, the output may be identical to those in the data set used for training.
In MolGAN, molecules with specific characteristics are selected and used as training data, Therefore, it is
likely that the same molecules as those used for training are generated, resulting in a smaller Uniqueness
score.

Most of the methods rely on the datasets of molecules. Since the molecules obtained can vary depend-
ing on the data set used for the search, it would be difficult to eliminate the influence of bias in the data set.
Due to the difficulty of generating molecules with reasonable structures, few studies have attempted to
do so without relying on datasets. In this study, we attempted to construct a training-data-free generation
model by combining modules for chemical informatics functions with the model. The proposed method
performed better than EA for more complex tasks.

Molecular searches are challenging, physically realistic, and virtual searches due to the sheer volume
of combinatorial patterns. Many datasets have been proposed that consist of molecular structures and
measurements of the molecules. However, a dataset is a subset of a vast search space and cannot cover
everything. In addition, preparing a new dataset is not easy due to the human and financial resources
required.

As already mentioned, evolutionary algorithms are computationally expensive for complex systems.
If the number of solution combinations becomes too large, they will not converge to a suitable solution
due to the explosion of combinations. Multiple GA models were stacked in the EA/GA applications
already seen. Molecular search requires domain knowledge to compress the search space because of the
vast number of combination patterns.

In addition, most other machine learning methods rely on existing datasets. Therefore, it is difficult
to remove the bias of that dataset. Also, acquiring molecules outside the space defined by the dataset is
generally impossible.

5.2 DGN for Molecular Search

5.2.1 Model structure

Directional Generative Networks (DGN) have almost the same structure as GANs. However, DGN does
not require training data for molecular search. By not using a dataset, we aimed to eliminate the bias
caused by the dataset. When a generative model is properly trained with training data, the model has
generalization ability within the search space defined by the training data. In other words, if the search
space is vast and the available training data is limited, the generalization ability of the model will depend
on the data, and it will not have the ability to generate models for other search spaces. Therefore, we
aimed to create a generative model that does not use any training data.

The model structure of DGN is shown in Fig. 5.1. G: Generator, is neural network-based model that
generates SMILES [42] with one-hot encoding. The input of G has two parts: a few initial atoms that are
randomly generated and a mask based on the atom number of the molecule. Fj is a function that takes x,
the generated SMILES as input, and returns the SMILES with the grammatically incorrect parentheses
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Figure 5.1: DGN Structure. G, D: Estimator of Calculation model D receives x, the generated
SMILES as input. D learns with the output of F(Fp(x)) as ground truth. Thus, the output of
D gradually closes the output of F;(Fy(x)). When learning G, the weights of D are fixed when
updating the weights of G. c is constant for the target measured values as ground truth.

and ring numbers corrected as output. Fj is a function that include the RDKit [25] module, an open
source toolkit for chemical informatics. F; takes the generated SMILES as input and returns the QES,
SAS, and logP measurements. These measurements are described in subsection 5.3.1.

Two methods based on domain knowledge were used in DGN: masking the positions of sequences that
exceed the required number of atoms by a factor of 0 and using the function F to convert them into a
form suitable for the SMILES grammar.

G, Generator and D, Estimator of F(Fy(x)) have been based on U-net [33] structure, and combined
with self-attention [27] block. D receive x, the generated SMILES. D is trained with the output of r,
F1(Fy(x)) as ground truth. Thus, p, the output of D gradually approaches the output of F;(Fyp(x)). In
other words, if D had trained enough, it acts as an approximate function of Fj(Fp(x)). When learning
G, the weights of D are fixed when updating the weights of G. c is constant target values and desired
molecular features. For example, if you want 0.6 for the QED value of the molecule to be generated, set
0.6 at the corresponding position in C.

Generator

The generator model G is shown in figure 5.2. There are two inputs to the Generator. One input zg
is an array containing a few randomly selected atoms. The second input, zj, is an array that represents
the number of atoms in the molecule and acts as a mask. The number of randomly selected atoms in
the first input and the range of randomly chosen numbers in the second input are specified in advance as
hyperparameters.

The first and second inputs are concatenated and normalized in the Batch Normalization layer. In the
next convolution layer, they are adjusted to the specified number of filters and concatenated into an Unet
Block and a Self Attention block.

Sigmoid is used as the activation function to represent the type of atoms that consist of the molecule
as One-hot-encoding. Finally, the second inputz; is multiplied to set the range where the molecule does
not exist to 0.

The details of the generator G is shown Figure 7.1 7.2 7.3 7.4 7.5 in Appendix.

Estimator

The estimator Dg and D are shown in figure 5.3. The input to Estimator receives the generated molecules
expressed in one-hot encoding.

The first layer of convolution is adjusted to the specified number of filters. Next, it is connected to
the self-attention block. The next layer is connected to the U-Net Block. The order of self-attention and
U-Net is reversed in the generative model.

The output of the U-Net branches into three branches. The output of each branch is scalar, with a
full-connection layer. The activation function is not used for the outputs to make it a regression problem.

The details of the estimator Do and D is shown Figure 7.6 7.7 7.8 7.9 7.10 in Appendix.
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Figure 5.2: Generator: One input z is an array containing a few randomly selected atoms. The
second input, zj, is an array that represents the number of atoms in the molecule and acts as
a mask. The number of randomly selected atoms in the first input and the range of randomly
chosen numbers in the second input are specified in advance as hyperparameters.

The first and second inputs are concatenated and normalized in the Batch Normalization layer. In
the next convolution layer, they are adjusted to the specified number of filters and concatenated
into u-net and self-attention blocks.

Sigmoid is used as the activation function to represent the type of atoms that consist of the
molecule as One-hot-encoding. Finally, the second inputz; is multiplied to set the range where
the molecule does not exist to 0.
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Figure 5.3: Estimator: The input to Estimator receives the generated molecules expressed in
one-hot encoding.

The first layer of convolution is adjusted to the specified number of filters. Next, it is connected
to the self-attention block. The next layer is connected to the U-Net Block. The order of self-
attention and U-Net is reversed in the generative model.

The output of the U-Net branches into three branches. The output of each branch is scalar, with
a full-connection layer. The activation function is not used for the outputs to make it a regression
problem.
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Figure 5.4: U-Net Block: The Residual Block in U-Net is shown in Figure 5.6. Each Residual
Block in this U-Net is stacked four. One-dimensional convolution is used to obtain highly ab-
stract features. The parallel bypass aims to learn while maintaining detailed information. For
up-sampling, the transpose of One-dimensional convolution is used.

Residual Block x 4

U-Net

The U-Net structure used by Generator and Estimator is shown in Figure 5.4. The Residual Block in
this U-Net is shown in Figure 5.6. Each Residual Block in this U-Net is stacked four. One-dimensional
convolution is used to obtain highly abstract features. The parallel bypass aims to learn while maintaining
detailed information. For up-sampling, the transpose of One-dimensional convolution is used.

Residual Block

The structure of the Residual block is shown in Figure 5.6. In the Residual Block, a single block comprises
three layers of 1D convolution, tanh as the activation function, and batch-normalization. The output of
the residual block is the sum of the output of these two blocks stacked and the first input. As a result, the
residuals from the inputs are learned. The activation function tanh is empirically known to be suitable
for learning GANs. Using Batch Normalization also makes the learning process faster and more stable
without Dropout.
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Figure 5.5: Self-Attention Block: The procedure for self-attention is to first find the inner product
for a tensor, the output of the yellow layer, with the transpose of that tensor, the output of the
green layer. The result of this inner product that applied softmax as an activation function is
called an attention map. Then, the attention map, as a weight to be gazed at, is multiplied by the
input tensor, the output of the purple layer.
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Figure 5.6: Residual Block: In the Residual Block, a single block comprises three layers of 1D
convolution, tanh as the activation function, and batch-normalization. The output of the residual
block is the sum of the output of these two blocks stacked and the first input. As a result, the
residuals from the inputs are learned. The activation function tanh is empirically known to be
suitable for learning GANs. Using Batch Normalization also makes the learning process faster
and more stable without Dropout.
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Figure 5.7: Data representation example; the lefthand is the input example, and the lefthand is
the output one. Each row represents the index of the token list; each column represents the order
of atoms in the generated molecule.

The degree of freedom explained in section 5.3.4 is 38 (=2by19) in the input example. The
number of atoms in a generated molecule is randomly generated in the input. In this example,
the number of atoms is eight. The first two atoms are randomly generated, and the rest are not
yet determined as input. The output is multiplied by the input at the last layer in the generator.

5.2.2 Data Representation

The following list of SMILES [42] elements has been used.
(c', 's', 'o', 'c=', 'N=', '0O=', 'C1', 'C2', 'C3',
'NL', 'N2', 'N3', 'C(', 'N(', 'C1(', 'C2(', 'C3(',
'N1(', 'N2(', 'N3(' ]

SMILES stands for Simplified molecular-input line-entry system. C, N, O, and F stand for carbon,
nitrogen, oxygen, and fluorine, respectively. The character ”=" means double bond between atoms. Hy-
drogen is included in the generated molecules but is not explicitly indicated. Parentheses denote branches,
and numbers denote the starting and ending points of the ring. Parentheses are used in pairs, and the num-
ber of occurrences of the ring number must be even. However, unclosed parentheses can occur, and the
number of occurrences of the ring number can be odd. Therefore, a method to easily obtain a gram-
matically correct sequence of SMILES tokens has been proposed by O’Boyle N et al.[29] In this study,
function Fj is used to increase the probability of SMILES grammar correctness. In the function Fy, The
symbols of parentheses are converted so that they are always paired for parentheses.

A one-hot encoding representation that draws the index of the above list was used. An example of
input data for DGN is shown in figure 5.7 lefthand. The righthand in figure 5.7 is an example of generator
output, one-hot encoding SMILES.

5.2.3 Training

The estimator £ in DGN is used in the training phase. The following pseudo code 3 shows the learning
procedure for DGN. For the hyperparameters, the batch size is 8, the number of training iterations is 8192,
and using Adam [21] optimizer with a learning rate of 107> for G Generator, 10~* for D Estimator of
Calculation model.

Where, Fj is a function that takes x, the generated SMILES as input, and returns the SMILES with the
grammatically incorrect parentheses and ring numbers corrected as output. Fj is a function that returns
the values of QED, SAS, and log P, described in Chapter 4.

The function logcosh at operation14 and 15 in the algorithm 3 is defined in equation (5.1).

Py —pty
&) 5.1)

logcosh(p,y) = log ( >

The reason for not using Mean Squared Error(MSE) is that when the error value exceeds 1, the MSE
grows as a square, but the logcosh is nearly linear, making the learning process more stable. As the
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Algorithm 3 Training Procedure D, G

1: Setting constant values C as the target direction
2: for number of iteration do
3: while mini-batch is not filled do

4: 20, z1: Randomly generate initial atoms and number-of-atom mask
5: if Fo(G(z0,2z1)) is grammatically correct in SMILES then,
6: Add the data to the mini-batch.
Z0C€ = 20,21C = 21
7: end if
8: end while
Gathering mini-batch with size m:

o e D )
o RIGED O G
12: {r IFI(Fo(x' ™).+, Fi(Fo(x™))}
13: {p |E(x), ... ,E(x(m))}

14: Updating D with the mini-batch
Vop | % X [logcosh(r, P)]]

15: Updating :G with the mini-batch

Vo %kZO[logCOSh(C, P)]]

16: end for

Figure 5.8: Training Procedure; DGN for molecular Search: Setting constant values C as the tar-
get direction 1. For preparing a mini-batch, randomly generate initial atoms and number-of-atom
mask zo, z1; operation 4. Generate molecule G (zo, z1) and evaluate the molecule Fy(G (20, 21))
is grammatically correct or not 5.

If the molecule is grammatically correct, add the molecule to the mini-batch 6 Gathering mini-
batch with size m as from operation 10 to 13. z represents randomly generated atoms, which
can be the seed of grammatically correct molecule; operation 10. x is generated molecules with
G (z); operation 11. Calculate measurements results r with function F; (Fy(x)) from x as input;
operation 12. Estimate measurements results p with the estimator model D from x as input;
operation 13.

The weights of the estimator D are updated from the errors of r and p; operation 14. The
weights of the generator G are updated from the error between C and p; operation 15. At this
time, G and D, are concatenated, and the weight of D is fixed. This means that only G is
updated. The operations from 3 to 15 are iterated during training.
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two models cooperate, they gradually approach the desired solution. As the prediction accuracy of the
computational results around the search area improves, more favorable molecules will be generated.

5.3 Experiment

As an unsupervised learning method, random generation, GA, and DGN are compared for the generation
of molecules. ORGAN and MolGAN are compared as supervised learning methods. In both experiments,
hydrogen was not included in the number of atoms. Finally, the effect of degree of freedom(DOF) of the
input in DGN is confirmed.

5.3.1 Measurements
The measurements of this experiments are follows:

* Validity indicates the percentage of the generated SMILES that returned O in the function Fy. In
other words, for molecules converted to Rdkit[25] Mol objects, we consider them to be grammat-
ically correct SMILES and show the percentage of them.

 Diversity indicates the ratio of the number of molecules remaining after eliminating duplicates to
the number of molecules generated.

* QED stands for Quantitative Estimate of Druglikeliness [6]. QED uses the following eight de-
scriptors to quantify “drug-likeliness.” Molecular Weight (MW), logP, number of hydrogen bond
donors (HBDs), number of hydrogen bond acceptors (HBAs), polar surface area (PSA), rotatable
bonds (ROTBs), number of aromatic rings (AROMs), and number of structural alerts to avoid as
drug (ALERTS).

* SAS stands for synthetic accessibility score [10]. SAS rates ease of synthesis on a scale of 1 to 10
based on frequency of occurrence and complexity. We used normalized values from O to 1.

* logP is the predicted octanol/water partition coefficient and is used for estimating fat solubility
[43] [7].

* Sum is a sum of normalized QED, normalized SAS, and normalized logP.

For QED, SAS, and logP, the values are normalized to values between 0 and 1. For the standardization,
we used the module provided by the authors of MolGAN [9].

5.3.2 Comparison

Random generation and EA were compared with DGN. The number of atoms other than hydrogen ranges
from 6 to 20 for the first experiment and from 8 to 32 for the second experiment. The number of atom
range was applied to Random generation, EA, and DGN.

Random Generation

For random generation, random numbers with Gaussian distribution were used to generate indices for the
list of atoms listed in the data representation above. In each experiment, 10000 molecules were generated
in SMILES format for each number of atoms. The number of generated molecules is 150000 and 240000
for each experiment. The procedure is shown in Algorithm 4. The list shown in Data Representation
in Chapter 3 was used to generate the molecules. A uniform random number was generated, and the
random number was used as the index of the list. After the molecules were converted using the function
Fp in Section 3, we attempted to convert them to Mol objects using Rdkit. For the molecules that could
be converted to Mol objects, the function F; in Section 3 was used to calculate QED, SAS, LogP, and
Sum. For molecules that could not be converted to Mol objects, we recorded that SMILES grammar was
inappropriate.
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Algorithm 4 Random Generation Procedure

1: for Number of atoms range do

2: for number of iteration do

3: z: Generate random array with uniform distribution
4: Calculate F;(Fy(z))

5: end for

6: end for

Figure 5.9: Random generation procedure: Generate uniform random number z as the atom list
index; operation 3. Calculate measurements with F (F(z)); operation 4 Iterate from operation 3
to 4 for the number of iteration 2. Iterate from operation 2 to 5 for the number of atoms range 1.

Evolutionary Algorithm

In this comparison, we used the simplest Evolutionary Algorithm(EA) presented by Bick. T. [4] in chapter
7. The algorithm is shown in Algorithm 5. In EA, if the SMILES grammar of the generated molecule is
correct, the score of the generated molecule is computed with the function F; (Fy(x)); if the grammar is
incorrect, Fy (Fy(x)) returns 0, and the difference between that value and the desired score c is calculated
as fitness. As the configuration of EA, the number of generations is from 10 to 40. The best molecules
were obtained in smiles format for each atomic number in each experiment for atomic numbers 6 to 20
and 8 to 32. The number of molecules obtained is 450 and 720 for each experiment. The number of
individuals in the population is 64. The crossover probability is 0.9. And the probability of an individual
mutating is 0.1. As targets, normalized QED=0.8, normalized SAS=0.9, and normalized logP=1.0. The
measurements of the molecules generated in each step and the mean squared error (MSE) of the target
were calculated. Here, the score was 0 for individuals not grammatically correct in SMILES. Based on
the MSE, the individual with the best fit was allowed to survive as the next generation.

The function mse at operation 6 and 10 in the algorithm 5 is defined by the following equation, which
is given in Chapter 3 and restated below. (5.2).

1 n
mse(p,y) = - Z(Pi - yi)? (5.2)
i=1

DGN

As a verification phase of the DGN, a randomly generated input was given to Generator, G. The number
of initial atoms as input was set to 1 in Experiment 1 with 6 to 20 atoms and 2 in Experiment 2 with 8
to 32 atoms. In each experiment, 100 molecules were generated in SMILES format for each number of
atoms. The number of molecules obtained is 1500 and 2400 for each experiment. Like the training phase,
the list shown in Data Representation in Chapter 3 was used to generate the molecules. If the generated
molecule was parsable, QED, SAS, LogP, and Sum were calculated with F;(Fy(G(z9,z1))) as shown in
Algorithm 6

5.3.3 Result

A comparison of the molecules generated by unsupervised learning (Random, EA, DGN) and supervised
learning (MolGAN, ORGAN) is shown in Table 5.1. The QED, SAS, and logP in the table are mean of
the generated molecules values. ORGAN, MolGAN, and MolGAN(QM?Y) results were obtained from the
Objective ALL row of Table 2 from the original paper [9]. QED corresponds to Druglikeliness, SAS to
Synthesizability, and logP to Solubility. Sum in the table is the sum of QED mean, SAS mean, and logP
mean.
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Algorithm 5 Evolutionary Algorithm Procedure

for Number of atoms range do

1:
2 for number of population do
3 Generate x as individuals with uniform distribution for initial population
4: end for
5: evaluate population
6 fitness = mse (F1(Fyp(x)),c)
7 for number of generation do
8 Apply crossover and mutation on the population
9: evaluate population
10: fitness = mse (F1(Fy(x)), c)
11: Select individuals from population based on the fitness as next generation
12: end for
13: Get individual with the best result xj,.;
14: Calculate Fy (Fy(xpesr))
15: end for

Figure 5.10: Evolutionary Algorithm Procedure: Initialize population; operation 2 3 Calculate
measurements Fj(Fp(x)) of individual molecule x and fitness with mse; operation 4. Apply
crossover and mutation on the population; operation 8 Calculate measurements F;(Fp(x)) of
individual molecule x and fitness with mse as evaluation; operation 10 Select individuals from
population based on the fitness as next generation; operation 11 Iterate from 8 to 11 for num-
ber of generations; operation 7 After the iteration, Get the individual with the best result xp,;;
operation 13. Calculate the measurements of the best F| (Fy(xpesr)); operation 14. Iterate from
2 to 14 for the number of atoms-range; operation 1

Algorithm 6 DGN Validation Procedure

1: for Number of atoms range do
2: for number of iteration do

3 20, z1: Randomly generate initial atoms and number-of-atom mask
4 if Fy(G(z0,21)) is parsable then

5: Calculate F(Fy(G(z0,21)))

6 end if

7 end for

8: end for

Figure 5.11: DGN Validation Procedure: Randomly generate initial atoms and number-of-atom
mask, zo, z1; operation 3. Generate molecule G (zg, z1) and confirm whether the molecule is
parsable; operation 4. If it is parsable, it means grammatically correct, calculate measurements
with F (Fo(G (z0,z1))); operation 5. Iterate from operation 3 to 6 for the number of iteration 2.
Iterate from operation 2 to 7 for the number of atoms range 1.
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Molecules that were grammatically correct (can be analyzed with Rdkit) and generated molecules
that eliminated SMILES duplications were included in the calculations. The results for MolGAN and
ORGAN are taken from the original MolGAN paper [9], where QED corresponds to Druglikeliness, SAS
to Synthesizability, and logP to Solubility.

Algorithm Sample Validity(%) Uniqueness QED SAS logP  Sum
Random(6-20) 150000 21.8 099 0.36 005 0.17 0.53
Random(8-32) 240000 10.8 .00 0.35 0.02 0.09 046
EA(6-20) 450 100.0 090 0.59 0.69 0.75 2.02
EA(8-32) 720 100.0 098 0.62 046 0.71 1.79
DGN(6-20) 1500 86.8 0.11 0.51 070 0.82 2.03
DGN(8-32) 2400 96.7 0.15 046 056 087 1.89
ORGAN 6400*! 96.1 0.89*2 0.52 0.71 0.53 1.76%
MOoIGAN 6400*! 97.4 0.022 047 0.84 0.65 1.96*3
MOolGAN(QM9) 6400*! 98.0 0.022  0.51 0.82 0.69 2.02*3
QM9 133247+ 100.0 1.00 046 022 028 096

Table 5.1: The results for MolGAN and ORGAN are taken from the original MolGAN paper [9],
where QED corresponds to Druglikeliness, SAS to Synthesizability, and logP to Solubility. 1:
based on MolGAN paper [9]. *2: Uniquness were multipleied with Unique(%) and Diver-
sity as meaningful ratio. *3: Sum is sum of QED(Druglikeliness), SAS(Synthesizability), and
logP(Solubility). *4: The original QM9 dataset contains 133885 molecules. Easily convertible
to RdKit mol objects were 133247.

For each unsupervised learning method, the distribution of the score, the sum of QED, SAS, and
logP at each number of atoms is shown in Figure 5.12 as a kernel density estimate. EA and DGN scores
are higher than randomly generated ones for all atomic numbers. The scores of EA and DGN are close.
However, for EA, the scores tend to decrease as the number of atoms increases, as shown in the results
for atom numbers 8 32 in Figure 5.12. The increase in the number of atoms means an increase in the
number of combinatorial patterns and the complexity of the problem. The increased complexity makes
it difficult for a random choice algorithm such as EA to obtain good scores for individuals with mutation
and crossover in the next generation. DGN, on the other hand, can obtain relatively high scores even as
the number of atoms increases. This is because DGN is trained in the search space by gradient descent,
thus avoiding combinatorial explosion and performance degradation.

Images of generated molecules are show in Figure 5.13, 5.14, 5.15 and 5.16. Randomly generated
molecules have a higher percentage of complexity. For EA, molecules become more complex as the
number of atoms increases. For DGN, many are relatively simple even as the number of atoms increases.

5.3.4 Degree of freedom of DGN input

The Degree of Freedom (DOF) refers to the variety of input arrays of the generator model in DGN.
DGN(DOF=38(=2by19)) and DGNr(DOF=1216(=64by19)) are compared. As a result, in table 5.1 and
score distribution in Figure 5.18, the scores of DGNr are much lower than DGN. It is almost the same as
random generation. However, Div: diversity of DGNr is greater than DGN. During training, loss values
of DGNr are greater than DGN in figure 5.17. It clearly shows that DGNr needs to be better trained.

According to these results, DOF affects the convergence ability of training and the diversity of prod-
ucts. It is a trade-off. You might have to determine DOF depending on the complexity of the problem to
solve.
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Figure 5.12: On the top is Experiment 1, the number of molecules is 6 to 20. On the bottom
is Experiment 2; the number of molecules is 8 to 32. The kernel density estimates of the score
distribution according to the number of molecules. The x-axis is the number of atoms in the
generated molecules. The y-axis is the sum of QED, SAS, and logP. Blue is random generation,
orange is EA, and green is DGN. Red is not generated but is a direct calculation of the original
QMO dataset for reference. Random scores were lower than the others. As the number of atoms
increases, the score decreases. EA scores generally well, but performance declines as the number
of atoms increases. DGN performs well, and performance does not decrease as the number of
atoms increases.
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Figure 5.13: Molecular examples that are randomly generated. Rows one through four are Exper-
iment 1 (number of atoms excluding hydrogen, 6-20). Rows five through eight are Experiment
2 (number of atoms excluding hydrogen, 8-32). Many molecules have complex shapes.
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Figure 5.14: In molecular examples generated by EA, the duplicates are eliminated. Rows one
through four are Experiment 1 (number of atoms excluding hydrogen, 6-20). Rows five through
eight are Experiment 2 (number of atoms excluding hydrogen, 8-32). Molecules with a small
number of atoms are often simple. Molecules with more than 20 atoms have more complex
shapes.

53



.Y ax o, T

P SR p—

Figure 5.15: In molecular examples generated by DGN, the duplicates are eliminated. Rows
one through four are Experiment 1 (number of atoms excluding hydrogen, 6-20). Rows five
through eight are Experiment 2 (number of atoms excluding hydrogen, 8-32). Molecules are
often simple. Even when the number of atoms exceeds 20, they maintain their simple shapes.
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Figure 5.16: Molecule examples included in the QM9 dataset. In the first to the fourth row, the
number of atoms in the molecule is 6 to 9, excluding hydrogen. In the fifth to eighth row, the
number is also from 6 to 9, excluding hydrogen, and the sum of normalized scores is over 1.9.
The molecules in rows five through eight are simpler than the others.
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Figure 5.17: DOF Comparison of time-history of loss values during training; The left-
hand is the loss value transition of the estimation model. The righthand is the loss value
transition of the combined model. The blue line is DGN(DOF=38), the orange one is
DGNr(DOF=1216(=64by19)). DGNr is difficult to converge.
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Figure 5.18: Comparison to Sum6 score between DGN and DGNr

56



5.4 Summary of the Chapter

The results of this study suggest that DGN can generate molecules without training data and with features
comparable to models from supervised learning. In general, the dataset used for training is smaller than the
search space, and the features obtained by the dataset do not necessarily encompass the desired solution.
Suppose the function that evaluates the generated object, in this study, the evaluation of the molecule by
Fy and F), satisfies the necessary and sufficient conditions. In that case, the DGN can function as an
excellent generator. A similar method is EA, but EA’s performance degrades as the complexity of the
problem increases due to combinatorial explosion. On the other hand, DGN can asymptotically approach
the solution by gradient descent even when the problem is complex and thus is more likely to produce
a good solution than EA. Since preparing datasets for training is still expensive, DGNs can complement
conventional supervised learning.

As a disadvantage of DGN, the evaluation function, e.g., F; (Fp(x)) in this study, is often simpler than
in reality. If the evaluation function satisfies the necessary conditions but not the sufficient conditions, the
output of the DGN may be biased. Therefore, when using DGN, appropriate constraints based on domain
knowledge should be applied to input data and models.

For future research, it is necessary to devise a data representation less prone to stagnation near the
local optimum. Increasing the input degrees of freedom is necessary to obtain various solutions in GAN-
like models. However, high input degrees of freedom have the side effect of making learning convergence
more difficult. By considering data representations that can maintain appropriate outputs, such as gram-
matical correctness, we expect to achieve diverse outputs and learning convergence, even with various
inputs.
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Chapter 6

Conclusion

6.1 Findings
6.1.1 Applicability of DGN

As described in Chapter 1, this study focused on the structure of products in the industrial sector. De-
signers and engineers often use several tools to evaluate product designs to select the most appropriate
design among various candidates. Their evaluation tools are based on the structure of the product. This
study proposed a DGN incorporating that tool as an evaluation function in a deep learning model. DGN
is applied to building structure design and molecular search and confirmed its effectiveness.

Structural design

In building structural design, the model was applied to the shear panel’s placement in buildings and was
found to be appropriately learned and practical. In addition, the learned generative model acquired a cer-
tain generalization capability. The eccentricities and DCRs calculated from the shear panel arrangements
generated from the test data were generally adequate, although there were some outliers.

The loss function values of the estimator model, D¢, are well converged. The loss function values of
the concatenated model D (G) also converge well. It was confirmed that even regression models could
be learned without divergence, rather than GAN-like models that are true-or-false classifiers.

Eccentricity and DCR were used as indices to evaluate the shear panel arrangement. The eccentricities
and DCRs calculated from the shear panel configurations generated from the test data were generally
adequate, although there were some outliers.

When the DGNs generated model is used as a design support tool, multiple shear panel placement
patterns are generated from the building’s architectural data. Of the multiple shear panel arrangements
generated, the structure containing anomalies is discarded. The preferred one is selected from the remain-
ing designs. Used in this manner, it is a valuable engineering tool.

Molecular Search

DGN’s performance was comparable to that of conventional methods on the task of molecular search. It
was compared to ORGAN and MolGAN based on GAN as conventional methods. It was also compared
to random generation and EA.

ORGAN and MolGAN combine GAN with reinforcement learning methods that feedback rewards for
generated molecules with favorable features. They use drug-likeliness, solubility, and synthesizability as
evaluation indices. DGN met results comparable to ORGAN and MolGAN for those evaluation metrics,
even though it did not use training data.

As for unsupervised learning, we compared DGN with random generation and EA. Unsurprisingly,
the simple random generation did not perform well. For EA, the performance was excellent for molecules
with a small number of atoms. However, performance degraded as the number of atoms increased. DGN
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showed almost no performance degradation despite the increased number of atoms. The superiority of
DGN for complex problems was confirmed.

6.1.2 Advantage of DGN over EA

DGN can serve as a good generator if the function that evaluates the generated object, the evaluation
function, Fp, and F; in Chapter 5, satisfies the necessary and sufficient conditions. A similar method
is EA, but EA’s performance degrades due to combinatorial explosion as the complexity of the problem
increases. On the other hand, DGN is likely to generate better solutions than EA because it can approach
the solution asymptotically and by gradient descent, even if the problem is complex.

6.1.3 Elimination of bias derived from Data

Regarding data bias, DGN may complement traditional supervised learning. In general, training data
contain bias. The DGNs in Chapters 4 and 5 were able to train without using pre-prepared correct data.

In general, the dataset used for learning is smaller than the search space, and the features obtained by
the dataset do not necessarily encompass the desired solution. It is challenging to remove the bias of the
data used for learning concerning the entire search space. To remove the bias, a dataset that encompasses
the search space should be prepared. However, the preparation of the data set is enormously expensive.

In the structural design in Chapter 4, we used building data as constraints for placing shear panels
in the DGN training. Still, we did not use the shear panel placement data as ground truth corresponding
to that building. In Chapter 5, only the list of atoms that make up the molecule was provided, and no
data was used in the training. The results in Chapter 5 suggest that DGN can generate molecules without
training data and with features comparable to models based on supervised learning.

Although DGN cannot explore all of the search space due to computational resource constraints, it
may complement conventional supervised learning concerning data bias.

6.2 Future works

Inputs’ Degrees of Freedom

Through the try-and-error of the hyper-parameter tuning for DGN training, we found that the degrees of
freedom(DOF) of the input of the generator G affect the convergence of the learning and the diversity of
the products.

As a matter of course, if the input of the DGN’s generator G is constant values, and the target, C, is
constant values, the weights of the generator and guesser will converge to a single state according to the
initial values of the each layers’ weights. Conversely, output diversity can be expected with a high DOF
input of the generator G of the DGN. At the same time, convergence becomes problematic if the input
with a high DOF. In other words, convergence and diversity are in a trade-off relationship, with the degree
of freedom of the input as a parameter.

What DOF of input is required depends on the design target and customer requirements. Therefore,
it is difficult to say how many DOF are generally good. However, moderate DOF restrictions are believed
to affect the usefulness of the DGN as a design assistance tool. This study has yet to examine thoroughly
how many DOF are good. This is a subject for future research.

Limitation of evaluation functions

One drawback of DGN is that the evaluation function, e.g., F{(Fy(x)) in Chapter 5, is often simpler than
in reality. Even if the evaluation function satisfies the necessary conditions, the output of the DGN may
be biased if it does not meet sufficient conditions. Therefore, when using DGNs, applying appropriate
constraints based on domain knowledge put data and model structure is desirable.
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Other Applications

It is worthwhile to explore the applicability of DGN to other design-like tasks similar to structural design
and molecular search. DGN can potentially be applied to tasks for which conventional generative methods
cannot be used. DGN is expected to improve the productivity of design tasks. DGN can be used for
learning if the following conditions are met.

* If the evaluation function can be incorporated into the model as a function F, although it is not easy
to rewrite as a differentiable function. For example, in the case of LSI design, tools for evaluating
device layout optimization, wiring optimization, etc., can be used as DGN function F. In the
case of mechanical element design, finite element analysis(FEA) tools used for stress analysis,
temperature analysis, etc., can be used as DGN function F.

* If the problem is not simple enough to be solved by EA/GA.
* When it is possible to express appropriate data about the design target and design constraints.

For simple problems, GA and other tools have been used so far. DGNs can be applied to more complex
problems. One advantage of DGN is that these functions do not need to be rewritten as differentiable
functions. Therefore, it is believed that productivity can be improved without significantly changing
conventional business procedures simply by devising data representation. It means DGNs can be applied
to various industries.

Combination with EA or GP

Since DGN and EA employ different search strategies, combining them may have complementary effects.
DGN, an application of deep learning, uses the gradient descent method, while the basic strategy of EA
is random selection. By taking advantage of the characteristics of each method, better performance can
be obtained by combining wide-area search using random selection and narrow-area search using the
gradient descent method.

When the search space is vast, the random selection algorithm has difficulty converging, and the
gradient descent method tends to stay at the local optimum. In such cases, it is compressing the search
space by some means. If a graph representation can be adopted from the nature of the problem, it is
possible to reduce the search space effectively.

For EA, genetic programming(GP) can be used to handle graph representation. In deep learning,
graph convolutional networks can be used. GP is a method that represents individuals as a graph struc-
ture and randomly recombines branches of the graph to obtain a better solution. It can be applied to
any object a graph represents, such as mathematical expressions, sentences, and molecules. The graph
structure restricts data representation, reducing the search space. Therefore, if a suitable representation
format can be defined, better performance can be obtained compared to the usual genetic algorithm or
DCN, and further performance improvement can be expected by combining DGN and GP using graph
representation.
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Chapter 7

Appendix

7.1 Structural Design Method Based on Japanese Standard
Act

As described in Chapter 3, the design of architectural or civil engineering structures assumes various
external forces and makes sure that the design meets the criteria for those external forces. This chapter
describes a method in the Japanese Building Standard Act for considering the layout of shear panels with
seismic forces as the external force. The Japanese Building Standard Act provides a two-stage design
method: one is to design the structure for rare seismic forces in a generally elastic range (primary de-
sign), and the other is to allow plastic deformation of the structure for extremely rare earthquakes and to
design for the energy-absorbing capacity of the framework (secondary design). This section describes the
primary design in detail. This explanation is based on the explanation of the structure-related provisions
of the Japanese Building Standard Act [24].

External Force

External forces acting on the structure are assumed to ensure that it is safe during its service life. The
building structure system’s response to those external forces is verified to meet the criteria. Buildings
constructed in Japan are assumed to be subjected to long-term loads such as dead weight and loading and
short-term loads such as earthquakes, wind, and snow. This section describes the calculation of seismic
loads, often the dominant design loads.

Here, we consider seismic motions that rarely occur during the service life of the building. The
horizontal force at the lowest level, which varies moment by moment with the time of the seismic motion,
is substituted for a static load of 20% of the weight of the building. Its ratio of 20% to the building weight
is called the standard story shear force coefficient, expressed as Cy = 0.2.

Al distribution
A simplified method for calculating the natural period T of a building is as follows 7.1.
T = h(0.02+0.01a) (7.1)

The following equation 7.2 expresses the distribution of horizontal forces in the height direction of the
building, the so-called Ai distribution, taking into account the effects of higher-order modes.

1 2T
Ai=1+ —a; 7.2
(\/a_i “)1+3T 7-2)

Demand-Capacity Ratio

The demand-capacity ratio (DCR) is a measure used to assess the safety of a structure under different
loading conditions. It is defined as the ratio of the maximum expected demand on a structure to its
capacity to resist that demand.
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In other words, the DCR indicates how close a structure is to its maximum capacity when subjected
to a particular load or combination of loads. A DCR greater than 1.0 indicates that the demand on the
structure is greater than its capacity, which means the structure is potentially unsafe and may be at risk of
failure.

For example, in the case of a building, the demand on the structure would be the maximum load that
the building is expected to experience, such as the weight of the people and furniture, the wind forces,
or seismic forces. The structure’s capacity would be its ability to resist these loads, which is determined
by the strength and stiffness of the building components, such as the columns, beams, and shear panels.
If the demand on the building exceeds its capacity, the DCR will be greater than 1.0, indicating that the
structure is potentially unsafe and may need to be strengthened or repaired to reduce the risk of failure.

Engineers use DCR as a critical factor in assessing the safety of a structure and determining whether
it needs to be repaired, strengthened, or replaced to ensure that it can safely withstand the loads it is
expected to experience throughout its design life.

Eccentricity

Floor slabs generally have higher in-plane stiffness than walls and columns, in building structures. There-
fore, technically, the floor slab is generally regarded as a rigid body and designed as if seismic forces were
acting on the center of gravity of the floor slab. Eccentricity is the ratio of the center of gravity to the
eccentricity of the rigid body as torsional resistance. The higher the value of eccentricity, the greater the
effect of eccentricity. The value of eccentricity can be obtained by the following procedure.

The eccentric distance ey, e, between the weight center and the stifness center of a the structure.
gravity center is defined following equation 7.3 7.4.

N-X

8x = % (7.3)
N-Y

gy = % (7.4)

Where W is a sum of N, the vertical force of each column 7.5.

W = Z N (7.5)

Stiffness center of the structure is obtained from followings 7.6 7.7. The stiffness in each direction
is the sum of the effective seismic elements in the X- and Y-directions, respectively.

_ 2Ky - X)

Ix = —Z Ky (7.6)
_ 2(Kx-Y)

=T ke 7

The eccentricity distance ex, ey is calculated from the position of the center of gravity gx, gy and
stiffness center I, Ly as follows 7.8 7.9.

ex =|lx — gx| (7.8)

ey = |ly — gyl (7.9)

Next, the torsional stiffness K around the stiffness center is calculated 7.12. The coordinates are
moved in parallel with the stiffness center position as the origin.

X=X-Ix (7.10)
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Y=Y-I (7.11)

K=Y (KX : YZ) £ (KY : )‘(2) (7.12)

Therefore, the elasticity radius r.x, 7.y is given by the following equation 7.14 7.16.

TeX = S Ky (7.13)
Y (Kx - 72) + X (Ky - X2)

= 7.14

\/ S Ky (7.14)

rev =[5k (7.15)
> (Kx -72) + X (Ky - X?)

= 1
\/ > Ky (7.16)

Eccentricity Ry, R,y is expressed by the following equation 7.17 7.18 from the eccentricity distance
of the structure e, ey and elastic radii 7¢y, 7ey.

€y

Roy = = (7.17)
rex

Rey = X (7.18)
Tey

7.2 Libraries and Resources

This section lists the main libraries and computational resources used for DGN for Molecukar finding in
Chapter 5.

Libraries

Keras [1] was used as the framework for building and training the model. As a backend, TensorFlow [2]
is used. Following is a list of the major libraries and Pythons’ version.

* keras 2.11.0
* numpy 1.22.3

* python 3.8.16

rdkit 2022.03.2

e tensorflow 2.11.0
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Resources

Following is the major-part list of calculation resources.

* OS: Ubuntu 20.04.6 LTS

CPU: Intel Core 15-10400 CPU @ 2.90GHz

* Memory: 32GB

GPUO: Nvidia GeForce GTX 1660 SUPER

GPU1: Nvidia GeForce GTX 1650 SUPER

e Docker version 23.0.5

7.3 DGN for molecular finding; model details

Generator

Generator model details in DGN for molecular finding are shown in Figure 7.1 7.2 7.3 7.4 7.5. It includes
the output shape of each layer.

Estimator

Estimator model details in DGN for molecular finding are shown in Figure 7.6 7.7 7.8 7.9 7.10. It includes
the output shape of each layer.
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| input_6 | input: |[(None, 48, 20)]| | input_7 | input: |[(None, 48, 20)]|
[ mputLayer [ output: | [(None, 48, 20)] | [ InputLayer [ output: | [(None, 48, 20)] |

|concalenaleJ | input: | [(None, 48, 20), (None, 48, 20)] |
(None, 48, 40)

| Concatenate | output: |

[ batch_normalization_103

input: | (None, 48, 40) |

| BatchNormalization

output: | (None, 48, 40) |

| convld_113 | input: | (None, 48, 40) |

| ConviD | output: | (None, 48, 64) |

[convid_114 ] impu: | (None, 48, 64) | [ batch_normalization_128

input: | (None, 48, 64) |

| ConviD |outpul: | (None, 24, 128)| | BatchNormalization

output: | (None, 48, 64) |

| batch_normalization_104 | input: | (None, 24, 128) |

BatchNormalization | output: | (None, 24, 128) |

| convld_115 | input: | (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

| activation_103 | input: | (None, 24, 128) |
| Activation | output: | (None, 24, 128) |

[ batch_normalization_105 | “input: [ (None, 24, 128) |

BatchNormalization | output: | (None, 24, 128) |

| convld_116 | input: | (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

| activation_104 | input: | (None, 24, 128) |
| Activation | output: | (None, 24, 128) |

|convld7141 | input: | (None, 48, 64) |

| ConviD | output: | (None, 48, 64) |

| activation_127 | input: | (None, 48, 64) |

| ‘Activation | output: | (None, 48, 64) |

[ batch_normalization_129

input: | (None, 48, 64) |

| BatchNormalization

output: | (None, 48, 64) |

| convld_142 | input: | (None, 48, 64) |

| ConviD | output: | (None, 48, 64) |

| activation_128 |

input: | (None, 48, 64) |

[ Activation |

output: | (None, 48, 64) |

[add_68 | input: | [(None, 48, 64), (None, 48, 64)] |

[ Add_ ] ouput: |

(None, 48, 64)

| add_56 | input: | [(None, 24, 128), (None, 24, 128)] |

[ batch_normalization_134

| input: | (None, 48, 64) |

| Add |outpul: | (None, 24, 128) |

| BatchNormalization

| output: | (None, 48, 64) |

| batch_normalization_106 | input: | (None, 24, 128) |
| output: | (None, 24, 128) |

| BatchNormalization

| convld_117 | input: | (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

| activation_105 | input: | (None, 24, 128) |
| ‘Activation | output: | (None, 24, 128) |

| batch_normalization_107 | input: | (None, 24, 128) |

output: | (None, 24, 128) |

| BatchNormalization

[[convid_118 | “input: [ (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

| activation_106 | input: | (None, 24, 128) |
| ‘Activation | output: | (None, 24, 128) |

| convld_147 | input: | (None, 48, 64) |

| ConviD | output: | (None, 48, 64) |

| activation_133 | input: | (None, 48, 64) |

| Activation | output: | (None, 48, 64) |

[ batch_normalization_135

input: | (None, 48, 64) |

| BatchNormalization

output: | (None, 48, 64) |

| convld_148 | input: | (None, 48, 64) |

| ConviD | output: | (None, 48, 64) |

| activation_134 | inj

input: | (None, 48, 64) |

| Activation | output: | (None, 48, 64) |

[[add_71 [ input: ] [(None, 48, 64), (None, 48, 64)] |

| Add |outpul: |

(None, 48, 64)

| add_57 | input: | [(None, 24, 128), (None, 24, 128)] |

| batch_normalization_140 | input: | (None, 48, 64) |

| Add |outpul:| (None, 24, 128)

| BatchNormalization

| output: | (None, 48, 64) |

[ batch_normalization_108 | imput: | (None, 24, 128) |
| BatchNormalization | output: | (None, 24, 128) |

| convld 119 | input: | (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

| activation_107 | input: | (None, 24, 128) |
| ‘Activation | output: | (None, 24, 128) |

[ batch_normatization_109 | input: | (None, 24, 128) |
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| convld_153 | input: | (None, 48, 64) |

| ConviD | output: | (None, 48, 64) |

[ activation_139 |

input: | (None, 48, 64) |

[ Activation |

output: | (None, 48, 64) |

| batch_normalization_1

41 [ input: [ (None, 48,64) |

| BatchNormalization

output: | (None, 48, 64) |

[‘convid_154

input: | (None, 48, 64) |

Figure 7.1: DGN for molecular finding; generator O:




| BatchNormalization | output: | (None, 24, 128) |

| convld_120 | input: | (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

| activation_108 | input: | (None, 24, 128) |
| ‘Activation | output: | (None, 24, 128) |

| ConviD | output: | (None, 48, 64) |

| activation_140 | input: | (None, 48, 64) |
| ‘Activation | output: | (None, 48, 64) |

| add_74 | input: | [(None, 48, 64), (None, 48, 64)] |
| Add |outpul: | (None, 48, 64) |

| add_58 | input: | [(None, 24, 128), (None, 24, 128)] |

[ batch_normalization_146 [ input: | (None, 48, 64) |

| Add |outpul: | (None, 24, 128) |

| BatchNormalization | output: | (None, 48, 64) |

[ batch_normalization_110 [ input: [ (None, 24, 128) |

| convld_159 | input: | (None, 48, 64) |

| BatchNormalization | output: | (None, 24, 128) |

| ConviD | output: | (None, 48, 64) |

|conv1d712l | input: |(None, 24, 128) |
| Conv1D | output: | (None, 24, 128) |

| activation_145 | input: | (None, 48, 64) |
| ‘Activation | output: | (None, 48, 64) |

| activation_109 | input: | (None, 24, 128) |

| Activation | output: | (None, 24, 128) |

[ batch_normalization_11

input: | (None, 24, 128) |

| BatchNormalization

output: | (None, 24, 128) |

| convld_122 | input: | (None, 24, 128) |

| ConviD | output: | (None, 24, 128) |

| activation_110 | input: | (None, 24, 128) |

| Activation | output: | (None, 24, 128) |

[ batch_normalization_147 [ imput: | (None, 48, 64) |
output: | (None, 48, 64) |

| BatchNormalization

| convld_160 | input: | (None, 48, 64) |
| ConviD | output: | (None, 48, 64) |

| activation_146 | input: | (None, 48, 64) |
| ‘Activation | output: | (None, 48, 64) |

[[add_77 ] input: ] [(None, 48, 64), (None, 48, 64)] |

| Add |outpul: | (None, 48, 64)

[(add_s59 [ input: | [(None,

24, 128), (None, 24, 128)] |

| Add |outpul:|

(None, 24, 128) |

| convld_123 | input: | (None, 24, 128) | | batch_normalization_130

input: | (None, 24, 128) |

| ConviD |outpul: | (None, 12, 256)| | BatchNormalization

output: | (None, 24, 128) |

[ batch_normalization_112 | input: | (None, 12, 256) |
| BatchNormalization | output: | (None, 12, 256) |

| convld_124 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| activation_111 | input: | (None, 12, 256) |
| ‘Activation | output: | (None, 12, 256) |

[ batch_normalization_113 | “input: | (None, 12, 256) |
output: | (None, 12, 256) |

| BatchNormalization

| convld_125 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| activation_112 | input: | (None, 12, 256) |
| ‘Activation | output: | (None, 12, 256) |

| convld_143 | input: | (None, 24, 128) |

| ConviD | output: | (None, 24, 128) |

| activation_129 | input: | (None, 24, 128) |

| ‘Activation | output: | (None, 24, 128) |

| batch_normalization_131

input: | (None, 24, 128) |

| BatchNormalization

output: | (None, 24, 128) |

| convld_144 | input: | (None, 24, 128) |

| ConviD | output: | (None, 24, 128) |

| activation_130 | input: | (None, 24, 128) |

| ‘Activation | output: | (None, 24, 128) |

| add_69 | input: | [(None, 24, 128), (None, 24, 128)] |

[ Add [ output: |

(None, 24, 128) |

| add_60 | input: | [(None, 12, 256), (None, 12, 256)] | | batch_normalization_136 | input: | (None, 24, 128) |

| Add_ [ ouput: |

(None, 12, 256)

| | BatchNormalization | output: | (None, 24, 128) |

[ batch_normalization_114 [ “input: | (None, 12, 256) |
| BatchNormalization | output: | (None, 12, 256) |

| convld_126 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| activation_113 | input: | (None, 12, 256) |
| Activation | output: | (None, 12, 256) |

[ batch_normalization_115 | “input: | (None, 12, 256) |
output: | (None, 12, 256) |

| BatchNormalization

| convld_149 | input: | (None, 24, 128) |

| ConviD | output: | (None, 24, 128) |

| activation_135 | input: | (None, 24, 128) |

| ‘Activation | output: | (None, 24, 128) |

[ batch_normalization_137

input: | (None, 24, 128) |

| BatchNormalization

output: | (None, 24, 128) |

| convld_150 | input: | (None, 24, 128) |

| ConviD | output: | (None, 24, 128) |

Figure 7.2: DGN for molecular finding; generator 1:
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| convld_127 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| activation_136 | input: | (None, 24, 128) |
| ‘Activation | output: | (None, 24, 128) |

| activation_114 | input: | (None, 12, 256) |
| Activation | output: | (None, 12, 256) |

| add_72 | input: | [(None, 24, 128), (None, 24, 128)] |
| Add |outpul: | (None, 24, 128) |

| add_61 | input: | [(None, 12, 256), (None, 12, 256)] | | batch_normalization_142 | input: | (None, 24, 128) |
| Add | output: | (None, 12, 256) | BatchNormalization | output: | (None, 24, 128) |

| batch_normalization_116 | input: | (None, 12, 256) | | convld_155 | input: | (None, 24, 128) |

| BatchNormalization

| output: | (None, 12, 256) |

| ConviD | output: | (None, 24, 128) |

|conv1d7128 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| activation_115 | input: | (None, 12, 256) |
| ‘Activation | output: | (None, 12, 256) |

|balch7normalizalion7117 input: |(None, 12, 256) |

output: | (None, 12, 256) |

| BatchNormalization

| convld_129 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| activation_116 | input: | (None, 12, 256) |
| ‘Activation | output: | (None, 12, 256) |

| activation_141 | input: | (None, 24, 128) |

| Activation | output: | (None, 24, 128) |

[ batch_normalization_143

input: | (None, 24, 128) |

| BatchNormalization

output: | (None, 24, 128) |

| convld_156 | input: | (None, 24, 128) |

| ConviD | output: | (None, 24, 128) |

| activation_142 | input: | (None, 24, 128) |

| Activation | output: | (None, 24, 128) |

| add 75 | input: | [(None, 24, 128), (None, 24, 128)] |

| Add |outpul: |

(None, 24, 128)

| add_62 | input: | [(None, 12, 256), (None, 12, 256)] |

| batch_normalization_148 | input: | (None, 24, 128) |

| Add |outpul:| (None, 12, 256)

| BatchNormalization

| output: | (None, 24, 128) |

[ batch_normalization_118 | input: | (None, 12, 256) |
| BatchNormalization | output: | (None, 12, 256) |

| convld_130 | input: | (None, 12, 256) |

| ConviD | output: | (None, 12, 256) |

| activation_117 | input: | (None, 12, 256) |

| ‘Activation | output: | (None, 12, 256) |

[ batch_normalization_119

input: | (None, 12, 256) |

| BatchNormalization

output: | (None, 12, 256) |

|conv1d7161 | input: | (None, 24, 128) |

| conviD_ | output: [ (None, 24, 128) |

| activation_147 | input: | (None, 24, 128) |
| ‘Activation | output: | (None, 24, 128) |

|balch7normalizalion7149 input: |(None, 24,128) |

output: | (None, 24, 128) |

| BatchNormalization

| convld_162 | input: | (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

| convld_131 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| activation_148 | input: | (None, 24, 128) |
| ‘Activation | output: | (None, 24, 128) |

| activation_118 | input: | (None, 12, 256) |
| ‘Activation | output: | (None, 12, 256) |

| add_78 | input: | [(None, 24, 128), (None, 24, 128)] |
| Add |outpul: | (None, 24, 128) |

| add_63 | input: | [(None, 12, 256), (None, 12, 256)] |
| Add |outpul:| (None, 12, 256) |

[[convid_132 [ input: [ (None, 12,256) | [ batch_normalization_132
| ConviD |nutpul:| (None, 6, 512) | | BatchNormalization

input: | (None, 12, 256) |
output: | (None, 12, 256) |

| batch_normalization_120 | input: | (None, 6, 512) |
| output: | (None, 6, 512) |

| convld_145 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| BatchNormalization

| convld_133 | input: | (None, 6, 512) |
| ConviD | output: | (None, 6, 512) |

| activation_131 | input: | (None, 12, 256) |
| Activation | output: | (None, 12, 256) |

| activation_119 | input: | (None, 6, 512) |
| ‘Activation | output: | (None, 6, 512) |

[ batch_normalization_133 | “input: | (None, 12, 256) |

output: | (None, 12, 256) |

| BatchNormalization

| batch_normalization_121 | input: | (None, 6, 512) |

output: | (None, 6, 512) |

| convld_146 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| BatchNormalization

Figure 7.3: DGN for molecular finding; generator 2:
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| convld_134 | inpl'll: | (None, 6, 512) |

| activation_132 | inp‘ul: | (None, 12, 256) |
| ConviD | output: | (None, 6, 512) |

| Activation | output: | (None, 12, 256) |

| activation_120 | input: | (None, 6, 512) | | add_70 | input: | [(None, 12, 256), (None, 12, 256)] |

| ‘Activation | output: | (None, 6, 512) | | Add | output: | (None, 12, 256) |
| add_64 | input: | [(None, 6, 512), (None, 6, 512)] | | batch_normalization_138 | input: | (None, 12, 256) |
| Add | output: | (None, 6, 512) | | BatchNormalization | output: | (None, 12, 256) |

[ batch_normalization_122 | imput: | (None, 6,512) |

| convld_151 | input: | (None, 12, 256) |
| BatchNormalization | output: | (None, 6, 512) |

| ConviD | output: | (None, 12, 256) |

| convld_135 | input: | (None, 6, 512) |

| activation_137 | input: | (None, 12, 256) |
| ConviD | output: | (None, 6, 512) |

| ‘Activation | output: | (None, 12, 256) |

| activation_121 | input: | (None, 6, 512) | | batch_normalization_139 | input: | (None, 12, 256) |
| ‘Activation | output: | (None, 6, 512) | | BatchNormalization | output: | (None, 12, 256) |

[ batch_normalization_123 | imput: | (None, 6, 512) |

| convld_152 | input: | (None, 12, 256) |
| BatchNormalization | output: | (None, 6, 512) |

| ConviD | output: | (None, 12, 256) |

| convld_136 | input: | (None, 6, 512) |
| ConviD | output: | (None, 6, 512) |

| activation_138 | input: | (None, 12, 256) |
| ‘Activation | output: | (None, 12, 256) |

| activation_122 | input: | (None, 6, 512) |

| add_73 | input: | [(None, 12, 256), (None, 12, 256)] |

| ‘Activation | output: | (None, 6, 512) | | Add | output: | (None, 12, 256) |
| add_65 | input: | [(None, 6, 512), (None, 6, 512)] | | batch_normalization_144 | input: | (None, 12, 256) |
| Add | output: | (None, 6, 512) | | BatchNormalization | output: | (None, 12, 256) |

[ batch_normalization_124 [ input: | (None, 6, 512) |

| convld_157 | input: | (None, 12, 256) |
| BatchNormalization | output: | (None, 6, 512) |

| ConviD | output: | (None, 12, 256) |

| convld_137 | input: | (None, 6, 512) |

| activation_143 | input: | (None, 12, 256) |
| ConviD | output: | (None, 6, 512) |

| ‘Activation | output: | (None, 12, 256) |

[(activation_123 | imput: [ (None, 6, 512) | [ batch_normalization_145 | input: | (None, 12, 256) |

| Activation | output: | (None, 6, 512) | | BatchNormalization | output: | (None, 12, 256) |

[ batch_normalization_125 [ input: | (None, 6, 512) |
| BatchNormalization | output: | (None, 6, 512) |

| convld_158 | input: | (None, 12, 256) |
| ConviD | output: | (None, 12, 256) |

| convld_138 | input: | (None, 6, 512) |
| ConviD | output: | (None, 6, 512) |

| activation_144 | input: | (None, 12, 256) |
| ‘Activation | output: | (None, 12, 256) |

| activation_124 | input: | (None, 6, 512) | | add_76 | input: | [(None, 12, 256), (None, 12, 256)] |
| Activation | output: | (None, 6, 512) | | Add | output: | (None, 12, 256) |

[(add_66 [ input: [ [(None, 6. 512). (None, 6,512)] | [ batch_normalization_150 [ input: [ (None, 12, 256) |

| Add | output: | (None, 6, 512) | | BatchNormalization | output: | (None, 12, 256) |
| batch_normalization_126 | input: | (None, 6, 512) | | convld_163 | input: | (None, 12, 256) |
| BatchNormalization | output: | (None, 6, 512) | | ConviD | output: | (None, 12, 256) |
| convld_139 | input: | (None, 6, 512) | | activation_149 | input: | (None, 12, 256) |
| ConviD | output: | (None, 6, 512) | | Activation | output: | (None, 12, 256) |
[(activation_125 [ input: [ (None, 6, 512) | [ batch_normalization_151 ] input: | (None, 12, 256) |
| Activation | output: | (None, 6, 512) | | BatchNormalization | output: | (None, 12, 256) |
| batch_normalization_127 | input: | (None, 6, 512) | | convld_164 | input: | (None, 12, 256) |
| BatchNormalization | output: | (None, 6, 512) | | ConviD | output: | (None, 12, 256) |
| convld_140 | input: | (None, 6, 512) | | activation_150 | input: | (None, 12, 256) |
| ConviD | output: | (None, 6, 512) | | Activation | output: | (None, 12, 256) |
[ activation 126 | input: | (None, 6, 512) | [add 79 | input: [ [(None, 12, 256), (None, 12, 256)] |

Figure 7.4: DGN for molecular finding; generator 3:
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Activation \ output: | (None, 6, 512) | | Add | output: | (None, 12, 256)

| add_67 | input: | [(None, 6, 512), (None, 6, 512)] |
[ Add T output: | (None, 6, 512) |

[ conv1d_ranspose 6 [ input: | (None, 6,512) |
| ConviDTranspose | output: | (None, 12, 256) |

[ activation_151 ] input: | (None, 12, 256) ]
[ Activation ] output: | (None, 12, 256) ]

| add_80 | input: | [(None, 12, 256), (None, 12, 256)] |
[ Add [ ouput: | (None, 12, 256) |

[ batch_normalization_152 | input: [ (None, 12, 256) |
| BatchNormalization | output: [ (None, 12, 256) |

[ conv1d_transpose_7 [ input: | (None, 12, 256) |
| Cony1DTranspose | output: | (None, 24, 128) |

activation_152 | input: | (None, 24, 128) |
| Activation | output: | (None, 24, 128) |

[[add_81 T input: | [(None, 24, 128), (None, 24, 128)] |
[ Add [ oupu: | (None, 24, 128) |

[ batch_normalization_153 | input: | (None, 24, 128) |
| BatchNormalization | output: | (None, 24, 128) |

[[conv1d_transpose_8 [ input: | (None, 24, 128) |
[ Cony1DTranspose |oulpu|:| (None, 48, 64) |

[activation_153 | input: [ (None, 48, 64) |
| Activation | output: | (None, 48, 64) |

[[add_82 [ input: | [(None, 48, 64), (None, 48, 64)] |

\ Add |ourpm:\ (None, 48, 64)
| convld_165 \ input: \ (None, 48, 64) | \ convld_166 \ input: | (None, 48, M)N
| ConviD ] output: | (None, 48, 64) | | ConvID ] output: | (None, 48, 64) ]

| tf linalg. matmul_4 | input: | (None, 48, 64) | | convld_167 | input: | (None, 48, 64) |
[ TFOpLambda | output: I(Nonc, 48, 48) ] | ConvID IouﬁpuL | (None, 48, 64) |

[ tt.on.softmax 2  input: [ (None, 48, 48) |
| TFOpLambda | output: | (None, 48, 48) |

| tf.linalg.matmul_5 \ input: | (None, 48, 48) |
[ TFOpLambda_ | output: | (None, 48, 64) |

(None, 48, 64)

convld 168

[Cioc
o 3.0

[ batch_normalization_154 | input: [ (None, 48, 64) |
| BatchNormalization | output: | (None, 48, 64) |

[ add_83 ] input: [ [(None, 48, 64), (None, 48, 64)] ]
[ Add ] oupu: | (None, 48, 64) |

) e

o #6.20

[activation_154  input: [ (None, 48, 20) |
| Activation | output: | (None, 48, 20) |

[[muttiply_t T input: T [(None, 48, 20, (None, 48, 20)] |
| Multiply |oulpu|: ] (None, 48, 20) |

Figure 7.5: DGN for molecular finding; generator 4:
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[impuc 13 T input: | [(None, 48, 20)] |
| InputLayer | output: | [(None, 48, 20)] |

[[convid 283 T input: [ (None, 48, 20) |
| ConviD [ output: ] (None, 48, 64) |

[[convid 284 | input: | (None, 48, 64) | [ convid 285 [ input: [ (None, 48, 64) m

| ConvlD Ioulpul: [ (None, 48, 64) \ | ConviD [ output: ] (None, 48, 64) |

[t linalg matmul 10 [ input: | (None, 48, 64) | [ convid 286 [ input: [ (None, 48, 64) |
[ TFOpLambda ] output: | (None, 48, 48) | | ConviD | output: I(Nonc, 48, 64) |

| tf.nn.softmax_5 [ input: ] (None, 48, 48)]
| TFOpLambda | ouput: | (None, 48, 48) |

| tf.linalgmatmul_11 | input: ] (None, 48, 48) |
| TFOpLambda | output: [ (None, 48, 64) |

| convld 287 } input: } (None, 48, 64) |
| ConviD ] output: [ (None, 48, 64) ]

[ batch_normalization_258 | input: | (None, 48, 64) |

output: | (None, 48, 64) |

| BatchNormalization

['add_140 [ input: [ [(None, 48, 64), (None, 48, 64)] |

\ Add | output: | (None, 48, 64) |
lconvldjSSl input: | (None, 48, 64) | |balch7nonnahzalian7283 input: I(None, 48, 64)|
[ ConviD | output: | (None, 24, 128) | | BatchNormalization | output: | (None, 48, 64) |

| batch_normalization_259 | input: | (None, 24, 128) |
| BatchNormalization ] output: | (None, 24, 128) |

| convld 315 | input: | (None, 48, 64) |
[ conviD | output: [ (None, 48, 64) |

[[convid 289 | input: [ (None, 24, 128) |
| ConvID | output: \ (None, 24, 128) |

| activation_282 | input: | (None, 48, 64) \
| Activation | output: | (None, 48, 64) \

| activation_258 | input: | (None, 24, 128) |
| Activation | output: | (None, 24, 128) |

| batch_normalization_284 | input: [ (None, 48, 64) |
| BatchNormalization | output: | (None, 48, 64) |

[ batch_normalization_260 | input: | (None, 24, 128) |
| BatchNormalization | output: | (None, 24, 128) |

| convld 316 \ input: \ (None, 48, 64) |
| ConviD | output: |(None, 48, 64) |

[[convid 290 | input: | (None, 24, 128) |
| ConviD |outpul: | (None, 24, 128) |

[(activation_283 | input: [ (None, 48, 64) |
| ‘Activation | output: | (None, 48, 64) |

[activation 259 [ input: [ (None, 24, 128) |
[ Activation | ouput: [ (None, 24, 128) |

[[add_153 ] “input: ] [(None, 48, 64), (None, 48, 64)] |
[ Add T ouput | (None, 48, 64) |

[[add_141 | input: [ [(None, 24, 128), (None, 24, 128)] |

[ batch_normalization_289 [ input: [ (None, 48, 64) |
| Add | output: | (None, 24, 128) | | BatchNormalization [ output: [ (None, 48, 64) ]
[ batch_normalization_261 [ input: | (None, 24, 128) |

[ convid 321 [ input: | (None, 48, 64) |

| ‘BatchNormalization [ output: | (None, 24, 128) | \ ConviD | output: | (None, 48, 64) |

| convld 291 | input: \ (None, 24, 128) |
[ ConviD | output: | (None, 24, 128) |

| activation_288 \ input: | (None, 48, 64) |
| Activation | output: | (None, 48, 64) |

| activation_260 ] input: | (None, 24, 128) |
| Activation | output: | (None, 24, 128) |

[ batch_normalization_290 | input: [ (None, 48, 64) |
| BatchNormalization [ output: | (None, 48, 64) |

[ batch_normalization_262

input: | (None, 24, 128) |
| BatchNormalization | output: | (None, 24, 128) |

[[convia_322 ] input: | (None, 48, 64) |
| ConviD | output: | (None, 48, 64) |

| convld 292 | input: | (None, 24, 128) | | activation_289 | input: | (None, 48, 64) |
[ ConviD ™ T outout: | (None. 24, 128) | [ Activation [ output: | (None. 48. 64) |

Figure 7.6: DGN for molecular finding; estimator O:
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| activation_261 | input: | (None, 24, 128) |
| Activation Ioulpul: | (None, 24, 128) |

| add_156 | input: | [(None, 48, 64), (None, 48, 64)] |
| Add } output: | (None, 48, 64) |

['add_142 ] input: [ [(None, 24, 128), (None, 24, 128)] |

[ batch_normalization 295 [ input: [ (None, 48, 64) |
| Add | output: | (None, 24, 128) |

| BatchNormalization | output: I(None, 48, 64) |

[ batch_normalization_263 [ input: | (None, 24, 128) \
| BatchNormalization |ompuz: | (None, 24, 128) \

| convld 327 | input: [ (None, 48, 64) |
| ConviD | output: |(None, 48, 64) |

[[convid 293 T input: | (None, 24, 128) |
| ConviD | output: ] (None, 24, 128) |

[ activation_294 | input: | (None, 48, 64) |
| ‘Activation | output: | (None, 48, 64) |

[ activation 262 | input: [ (None, 24, 128) |
| ‘Activation | output: | (None, 24, 128) |

[ bateh_normalization 296 | input: [ (None, 48, 64) |

output: | (None, 48, 64) |

| BatchNormalization

[ batch_normalization_264 | input: [ (None, 24, 128) \

output: | (None, 24, 128) \

[ convld 328 [ input: ] (None, 48, 64) \
[ BatchNormalization

| ConvID | output: | (None, 48, 64) \

|convld7294| input: I(Nnnc, 24,128) |
| conviD | output: | (None, 24, 128) |

[activation 295 T input: | (None, 48, 64) |
| Activation | output: | (None, 48, 64) |

[activation 263 | “input: [ (None, 24, 128) |
| Activation | output: | (None, 24, 128) |

[[add_159 T input: [ [(None, 48, 64), (None, 48, 64)] |
| Add lnurput:l (None, 48, 64) |

[ add_143 ] input: | [(None, 24, 128), (None, 24, 128)] | [ batch_normalization 301 | input: [ (None, 48, 64) |
[ Add | ourpue: | (None, 24, 128)

] | BatchNormalization ] output: | (None, 48, 64) |

[ bateh_normalization 265 | input: [ (None, 24, 128) |
| BatchNormalization | output: | (None, 24, 128) |

lconvld}}} | input: I(Nonc, 48, 64) |
| conviD [ output: [ (None, 48, 64) |

[[convid 295 | input: [ (None, 24, 128) |
[ ConviD Ioutpul: | (None, 24, 128) \

[activation_300 [ input: [ (None, 48, 64) |
| Activation |outpul: | (None, 48, 64) \

| activation_264 | input: | (None, 24, 128) |
| Activation [ output: | (None, 24, 128) ]

| batch_normalization_302 | input: | (None, 48, 64) |

output: | (None, 48, 64) |

| BatchNormalization

| batch_normalization_266 | input: | (None, 24, 128) |

output: | (None, 24, 128) |

[[convid 334 | input: [ (None, 48, 64) |
| BatchNormalization

[ conviD | output: | (None, 48, 64) |

| convld 296 } input: | (None, 24, 128) |
| ConviD \ output: \ (None, 24, 128) |

| activation 301 } input: | (None, 48, 64) |
| Activation \ output: | (None, 48, 64) |

| activation_265 | input: | (None, 24, 128) |
[ ‘Activation Ioutpul: I(None, 24, 123)|

| add_162 } input: | [(None, 48, 64), (None, 48, 64)] |
[ Add” ] outpur: | (None, 48, 64) |

[[add_144 T input: [ [(None, 24, 128), (None, 24, 128)] |
| Add }ompm:] (None, 24, 128) |

[[convia 207 T imput: [ (None, 24, 128) | [ batch_normalization_285 | input: | (None, 24, 128) |
| ConviD \ output: | (None, 12, 256) | |

output: | (None, 24, 128) |

BatchNormalization

| batch_normalization_267 [ input: | (None, 12, 256) |
| BatchNormalization |ou|pm: | (None, 12, 256) |

| convld 317 | input: | (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

| convld 298 | input: | (None, 12, 256) |
| ConviD | output: ] (None, 12, 256) |

| activation_284 | input: | (None, 24, 128) |
| Activation | output: | (None, 24, 128) |

[ activation 266 | input: [ (None, 12, 256) |
| Activation | output: | (None, 12, 256) |

[ batch_normalization_286 | input: [ (None, 24, 128) |

output: | (None, 24, 128) |

| BatchNormalization

[ batch_normalization 268
| BatchNormalization

input: | (None, 12, 256) |
output: | (None, 12, 256) |

| convld_318 | input: | (None, 24, 128) |
| ConviD | output: | (None, 24, 128) |

Figure 7.7: DGN for molecular finding; estimator 1:
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|conv|d,299 | input: I(Nonc. 12, 256) ]
| conviD | output: | (None, 12, 256) |

[(activation 267 | “input: [ (None, 12, 256) |
| Activation | output: | (None, 12, 256) \

| activation 285 | input: | (None, 24, 128) |
| ‘Activation | output: ] (None, 24, 128) |

[[add_154 | input: | [(None, 24, 128), (None, 24, 128)] |

[ Add T ouput: | (None, 24, 128)

| add_145 \ input: \ [(None, 12, 256), (None, 12, 256)] |

| Add ]output:[

[ batch_normalization 291 | input: | (None, 24, 128) |

(None, 12, 256)

| | BatchNormalization | output: ] (None, 24, 128) |

| batch_normalization_269 [ input: ] (None, 12, 256) |
| BatchNormalization

| output: | None, 12, 256) |

| convld_300 | input: | (None, 12, 256) ]
| ConviD | output: | (None, 12, 256) |

| activation_268 ] input: | (None, 12, 256) |
| Activation ] output: [ (None, 12, 256) |

| batch_normalization 270 | input: | (None, 12, 256) |

output: ] (None, 12, 256) |

| BatchNormalization

| convld 301 | input: | (None, 12, 256) \

| ConviD | output: | (None, 12, 256) \

| activation_269 | input: ] (None, 12, 256) |
[ Activation | output: ] (None, 12, 256) |

| convld_323 ] input: | (None, 24, 128) ]
[ conviD | ouput: | (None, 24, 128) |

| activation_290 | input: } (None, 24, 128) |
| Activation | output: \ (None, 24, 128) |

| batch_normalization 292 | input: ] (None, 24, 128) |

output: ] (None, 24, 128) |

| BatchNormalization

| convld 324 \ input: | (None, 24, 128) \
| ConviD }ouzpm; | (None, 24, 128) |

| activation 291 ] input: ] (None, 24, 128) |
| Activation \ output: \ (None, 24, 128) |

| add_157 [ input: | [(None, 24, 128), (None, 24, 128)] |

[ Add [ouxpm;| (None, 24, 128)

[add_146 ] input: ] [(None, 12, 256), (None, 12,256)] | = [ batch_normalization 297 [ input: | (None, 24, 128) |

[ Add [ output: |

(None, 12, 256)

| [ BatchNormalization

[ batch_normalization 271 [ input: [ (None, 12, 256) |
\ BatchNormalization | output: | (None, 12, 256) \

| convld 302 [ input: [(Nm.e, 12, 256) |
| ConvID \ output: \ (None, 12, 256) |

\ activation_270 | input: | (None, 12, 256) |
\ ‘Activation | output: | (None, 12, 256) |

[ batch_normalization 272 | “input: | None, 12, 256) |

output: | (None, 12, 256) ]

| BatchNormalization

| convld 303 | input: | (None, 12, 256) |
| ConvID | output: | (None, 12, 256) |

| activation_271 | input: ] (None, 12, 256) |
| Activation | ouput: | (None, 12, 256) |

| output: [ (None, 24, 128) |

| convld 329 | input: | (None, 24, 128) |
\ ConviD | output: | (None, 24, 128) |

[ activation_296 | input: | (None, 24, 128) \
| ‘Activation | output: | (None, 24, 128) \

[ batch_normalization 298 | input: | (None, 24, 128) |

output: | (None, 24, 128) |

| BatchNormalization

[[convid 330 | input: [ (None, 24, 128) |
| ConvID |outpu|: [ (None, 24, 128) |

[ aczivation,zw] input: I(Nonc, 24,128) \
[ Activation | ouput: [ (None, 24, 128) |

[ add_160 ] input: | [(None, 24, 128), (None, 24, 128)] ]

[ Add \ourput;| (None, 24, 128)

[add_147 ] input: ] [(None, 12, 256), (None, 12,256)] | = [ batch_normalization_303 [ input: | (None, 24, 128) |

| Add |0u|pu(:‘

(None, 12, 256)

| | BatchNormalization ] output: [ (None, 24, 128) |

[ batch_normalization 273 | input: | (None, 12, 256) |
| ‘BatchNormalization | output: | (None, 12, 256) |

| convld_304 ] input: ] (None, 12, 256) |
[ conviD | output: | (None, 12, 256) |

| activation 272 | input: | (None, 12, 256) |
| Activation | output: | (None, 12, 256) |

| batch_normalization 274 | input: | (None, 12, 256) ]

output: | (None, 12, 256) ]

| BatchNormalization

[[convid 305  input: | (None, 12,256) |
[ ConviD | output: | (None, 12, 256) |

Figure 7.8: DGN for molecular finding; estimator 2:

\ convld_335 | input: | (None, 24, 128) |
[ ConviD | output: ] (None, 24, 128) |

[ activation_302 | input: | (None, 24, 128) \
| Activation | output: | (None, 24, 128) |

| batch_normalization_304 | input: | (None, 24, 128) |

output: [ (None, 24, 128) |

| BatchNormalization

| convld 336 | input: | (None, 24, 128) |
[ ConviD |outpu|: [ (None, 24, 128) |

[(activation 303 | input: [ (None, 24, 128) |
| Activation | output: | (None, 24, 128) |
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| activation 273 | input: | (None, 12, 256) \

[ add_163 | input: | [(None, 24, 128), (None, 24, 128)] |
| Activation | output: ] (None, 12, 256) |

| Add Io\llpul:l (None, 24, 128) ]

| add_148 | input: | [(None, 12, 256), (None, 12, 256)] |
| Add | output: | (None, 12, 256) |

[[conv1d 306 [ input: | (None, 12,256) | [ batch_normalization 287

input: | (None, 12, 256) |
| ConviD ‘ou(pul:‘ (None, 6, 512) | | BatchNormalization

output: | (None, 12, 256) |

[ batch_normalization_275 | input: [ (None, 6, 512) |

[[convia 319 | input: [ (None, 12,256) |
| BatchNormalization | output: | (None, 6, 512) |

| ConviD | output: | (None, 12, 256) |

| convld_307 ] input: | (None, 6, 512) |

| activation_286 | input: [ (None, 12, 256) \
[ ConviD | ouput: | (None, 6,512) |

[ Activation | ouput: [ (None, 12,256) |

[[activation 274 [ input: [ (None, 6, 512) |
| Activation | output: [ (None, 6, 512) |

[ batch_normalization_288

input: | (None, 12, 256) |

| BatchNommalization

output: | (None, 12, 256) |

[ batch_normalization_276

input: | (None, 6, 512) |

| BatchNormalization

output: | (None, 6, 512) |

| convld_308 | input: | (None, 6, 512) |
[ ConviD | output: ] (None, 6, 512) ]

[ activation_275 | input: ] (None, 6, 512) ]
[ ‘Activation | output: | (None, 6, 512) |

[[convid 320 | input: | (None, 12, 256) |
| ConviD |outpu|: [ (None, 12, 256) |

| activation_287 | input: | (None, 12, 256) |
| Activation ] output: I(Nonc‘ 12, 256) |

| add_155 ] input: ] [(None, 12, 256), (None, 12, 256)] ]

| Add |ompm;\ (None, 12, 256)

[[add_149 | input: | [(None, 6, 512), (None, 6, 512)] | | batch_normalization 293 [ input: [ (None, 12, 256) |

| Add |ou|pn(:| (None, 6, 512)

| | BatchNormalization | output: | (None, 12, 256) |

[ batch_normalization_277 [ input: [ (None, 6, 512) |

| convld 325 | input: | (None, 12, 256) |

| BatchNormalization 1outpu|: I(None, 6,5]2)'

| ConviD ] output: | (None, 12, 256) ]

Iconvld}(}?l input: | (None, 6, 512) ]
[ ConviD | ouput: | (None, 6,512) |

| activation_276 | input: | (None, 6, 512) |
| Activation | output: | (None, 6, 512) |

| activation_292 ] input: ] (None, 12, 256) ]
| Activation | output: | (None, 12, 256) |

| batch_normalization 294 | input: | (None, 12, 256) |

output: | (None, 12, 256) |

| BatchNormalization

|ba|ch7nonnalizahon7278 input: | (None, 6, 512) |

| convld 326 | input: | (None, 12, 256) |

| BatchNormalization

output: [ (None, 6, 512) |

[ ConviD [ output: ] (None, 12, 256) ]

[ convld 310 [ input: | (None, 6, 512) \
| ConviD | output: | (None, 6, 512) \

| activation_293 \ input: \ (None, 12, 256) |
| ‘Activation } output: ](None, 12, 256) |

| activation_277 | input: | (None, 6, 512) |

[(add_158 | input: [ [(None, 12, 256), (None, 12, 256)] |

| Activation | output: | (None, 6, 512) |

| Add |ompm:| (None, 12, 256) ]

| add_150 | input: | [(None, 6, 512), (None, 6, 512)] | | batch_normalization_299 | input: | (None, 12, 256) |

[ Add Iculpul:l (None, 6, 512)

| | BatchNormalization [ output: ] (None, 12, 256) ]

| batch_normalization_279 | input: | (None, 6, 512) |

| BatchNormalization | output: | (None, 6, 512) |

[[convia 311 [ input: [ (None, 6, 512) |
| ConviD |ompm; | (None, 6, 512) |

[[convid 331 ] imput: | (None, 12,256) |
| ConviD ] output: | (None, 12, 256) |

[[activation_298 | input: [ (None, 12, 256) |
| Activation | output: | (None, 12, 256) |

[ activation_278 ] input: | (None, 6, 512) |

| batch_normalization_300 | input: ] (None, 12, 256) |

| Activation | output: | (None, 6,512) |

| BatchNormalization | output: | (None, 12, 256) |

[ batch_normalization 280 | input: [ (None, 6, 512) |

output: ] (None, 6, 512) |

| BatchNormalization

Figure 7.9: DGN for molecular finding; estimator 3:

| convld 332 [ input: | (None, 12, 256) \
[ conviD | output: | None, 12, 256) |
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| convld 312 | input: | (None, 6,512) |
[ ConvlD | output: | (None, 6, 512) |

[(activation 279 T input: | (None, 6, 512) |
| Activation | output: | (None, 6, 512) |

| activation 299 | input: | (None, 12, 256) |
| Activation ] output: [(None, 12, 256) |

| add_161 | input: | [(None, 12, 256), (None, 12, 256)] \
[ Add T oupu: | (None, 12, 256) |

[add_151 | input: | [(None, 6, 512), (None, 6, 512)] |

[ batch_normalization_305 | input: [ (None, 12, 256) |

| Add | ouput: | (None, 6, 512) |

| BatchNormalization | output: | (None, 12, 256) |

| batch_normalization 281 | input: ] (None, 6, 512) |

| convld_337 | input: | (None, 12, 256) |

| BatchNormalization | output: [ (None, 6, 512) |

| ConviD | output: | (None, 12, 256) \

| convld 313 | input: | (None, 6, 512) |
| ConviD | output: | (None, 6, 512) \

| activation_280 | input: | (None, 6, 512) |
| Activation [ output: | (None, 6, 512) |

| activation_304 | input: | (None, 12, 256) ]
[ Activation [ output: | (None, 12, 256) ]

input: | (None, 12, 256) |
output: | (None, 12, 256) |

[ batch_normalization_306

| BatchNormalization

[ batch_normalization_282 | input: [ (None, 6, 512) |

| convld 338 | input: [ (None, 12, 256) |

| BatchNormalization | output: | (None, 6, 512) |

| ConviD | output: \ (None, 12, 256) |

| convld 314 | input: | (None, 6, 512) |
| ConviD | output: | (None, 6, 512) |

| activation_305 | input: | (None, 12, 256) |
| Activation | output: | (None, 12, 256) |

\ activation_281 | input: ] (None, 6, 512) |

| add_164 | input: ] [(None, 12, 256), (None, 12, 256)] |

| Activation | output: | (None, 6, 512) | [ Add | ouput: | (None, 12, 256) |

[ add_152 | input: ] [(None, 6, 512), (None, 6, 512)] |
\ Add |outpu|: | (None, 6, 512) |

|conv1d7transposeﬁl§| input: [ (None, 6, 512) |
| Conv1DTranspose |ompu|: | (None, 12, 256) |

[(activation_306 | “input: [ (None, 12,256) |
| Activation | output: | (None, 12, 256) |

[(add_165 ] input: | [(None, 12, 256), (None, 12, 256)] |
| Add | output: \ (None, 12, 256) |

[ batch_normalization 307 | input: | (None, 12, 256) ]

output: | (None, 12, 256) |

[ BatchNormalization

[ convid_transpose_16 [ input: | (None, 12, 256) |
[ Conv1DTranspose ] output: [ (None, 24, 128) |

[ activation_307 | input: [ (None, 24, 128) |
| Activation ] output: I(Nonc\ 24,128) |

| add_166 | input: | [(None, 24, 128), (None, 24, 128)] |
[ Add [ oupue: | (None, 24, 128)

input: ] (None, 24, 128) ]
output: | (None, 24, 128) |

[ batch_normalization_308

| BatchNormalization

[ conv1d_transpose_17 [ input: [ (None, 24, 128) |
| ConvIDTranspose |oulpul: | (None, 48, 64) \

| activation_308 | input: | (None, 48, 64) \
| Activation | output: [ (None, 48, 64) |

[add_167 ] “input: [ [(None, 48, 64), (None, 48, 64)] |
[ Add [ output: | (None, 48, 64) |

[ dense_6  input: [ (None, 48, 64) | [ dense_7 [ input: [ (None, 48, 64) | [ dense_8 [ input: [ (None, 48, 64) |
| Dense Ioulpul: | (None, 48, 1) ] | Dense |ompm: | (None, 48, 1) | | Dense }ou:pm:] (None, 48, 1) ]

Figure 7.10: DGN for molecular finding; estimator 4:
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