
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
モデル駆動アプローチにおける経営管理システムの開

発とモデル駆動型アーキテクチャの開発環境の構築

Author(s) 黄, 明仁

Citation

Issue Date 2004-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1885

Rights

Description Supervisor:片山 卓也, 情報科学研究科, 修士

����������� �	
������ ����������

������ � ����� ����� �������� ���

����� �	 ���������������
���

����������� ����������

�� �������� 	
���

� ����� �
����� �

������ �� ���������� ��������

����� �������� ����
� �� ������� ��� �����������

�� ������ �
������� �� �� ���
�������

��� �� ������ ��

����� �� ���������� �������

 ���
�� !������ �� ���������� �������

"����
���� �� �������� ��

!�������� ��#
�� $������

��������� %&&'

����������� �	
������ ����������

������ � ����� ����� �������� ���

����� �	 ���������������
���

����������� ����������

�� �������� 	
��� ������

� ������ �
������� ��
������ �� ����������� �������

��!�� ��"����� ������
�� �� ������� ��� #���������
�� !������ �
�$������ �� ��� ��%
��������

��� ��� ������ ��
������ �� ����������� �������

&���
��� '������ �� ����������� �������

(������
���� ��� ��������� ��
'�������� #�)
�� *�������

��� �!!��"�� ��
'�������� #�)
�� *�������
'�������� *������� +�����,

'�������� ���
��� +����

�
�
�� ��- ��
��������

��������� 	�
��� � �������� �����

To Dad: your life, your courage, your mercy. I miss you

i

Abstract

Model-driven approach is a software developing method that proposes
programming from higher abstraction level and the computerized model
transformation. Current software developing frameworks applies languages that
can only be understood by developers to develop software. Users can not
understand them, thus the developing materials can not be validated by users.
This hampered smooth communication between the users and the developers.
Although OMG proposed MDA and defined a set of specifications to develop
software from higher abstraction level, their works do not solve this issue.
There is a gap that a model-driven software developing framework for enterprise
computing that use a language that can be understood by the users and use as
the communicating tool between the users and the developers is needed.

This thesis describes the details of ECSDF, a model-driven software
developing framework for enterprise computing. ECSDF contains four
architectural parts, the Business Model, the object model generator, the source
code generator, and the domain model virtual machine. The Business Model
allows users and developers to use the same language to communicate and to
define the details of software projects. The creation of the Business Model is
inspired by the characteristics of enterprise computing: document-centric
business activities, request-processing-response model of business activities,
and business rules that confine business activities and business entities. Object
model and source code generating mechanism are based on the ideas of roles,
responsibilities, and collaborations of software objects. The object model
generator and the source code generator use the Business Model to generate
object model and source code respectively. The mechanism can be simplified to
“each system responsibility is taken by a set of collaborative software objects
and, in turn, each software object takes smaller responsibilities and collaborates
with its neighboring software objects.” There are three types of rules, interaction
rules, responsibility rules, and architectural rules to generate object model from
the Business Model. They provide a clean and trustworthy way to realize
model-driven approach. The implementation for ECSDF, which is called
ECSDF-DE, is developed as Eclipse plug-in. The purpose of ECSDF-DE is for
practical rapid development and for academic expanded researches and
experiments. An evaluation of the effectiveness of ECSDF is performed. The
evaluation shows that the generated software system achieves two quality
attributes, flexibility and reliability. And it also shows productivity of using
ECSDF.

ECSDF fills the gap of the previous works. For the future work, an

ii

autonomous virtual machine that is both executable of the Business Model and
adaptable to desired quality attributes will be studied.

iii

Table of Contents

ABSTRACT...I
TABLE OF CONTENTS ... III

LIST OF FIGURES... VI
LIST OF TABLES ..VII
0. INTRODUCTION .. 1

0.1. BACKGROUND... 1
0.1.1. Overview of Model Driven Approach ... 1
0.1.2. Benefits of Model-Driven Approach ... 1
0.1.3. Enterprise computing and Model-Driven Approach ... 2

0.2. PREVIOUS WORK... 2
0.3. GAP IN THE RESEARCH ... 4
0.4. PURPOSE AND TASKS OF THE CURRENT RESEARCH ... 4
0.5. ORGANIZATION OF THE THESIS .. 5

1. OVERVIEW OF ECSDF.. 7

1.1. WHAT IS ECSDF?... 7
1.2. AN ARCHITECTURE OVERVIEW... 9
1.3. MOTIVATION OF ECSDF... 10
1.4. WHY ECSDF IS NOT MDA®? .. 12

2. ROLE STEREOTYPES OF OBJECTS ... 16

2.1. HELLO USER EXAMPLE, EPISODE I .. 16
2.1. ROLE STEREOTYPES ... 19
2.2. COLLABORATION PATTERNS OF ROLE STEREOTYPES ... 20

2.2.1. Information Holders.. 20
2.2.2. Structurers .. 21
2.2.3. Service Providers... 22
2.2.4. Coordinators .. 22
2.2.5. Controllers ... 23
2.2.6. Interfacers ... 23

2.3. COLLABORATION GROUPS .. 24
3. MODELING LANGUAGE FOR ENTERPRISE COMPUTING 26

3.1. ENTERPRISE PERSONALITY .. 26
3.1.1. Business Activities .. 27
3.1.2. Recording Business Activities .. 27
3.1.3. Business Constrains ... 27

3.2. MODELING PERSONALITY OF A COMPANY .. 28
3.2.1. Recording business activities in documents.. 28
3.2.2. Operating business activities on business entities ... 29
3.2.3. Constraining business rules on business activities and business entities...... 30

4. BUSINESS MODELS AND MODEL TRANSFORMATIONS 31

iv

4.1. BUSINESS MODEL... 31
4.1.1. Business Activity Model.. 31
4.1.2. Document/View Model .. 33
4.1.3. Domain Model ... 34
4.1.4. Business Rules Definition .. 34

4.2. HELLO USER EXAMPLE, EPISODE II .. 35
4.3. BASIC GENERATION MECHANISM... 40

4.3.1. Object Model Generation .. 40
4.3.2. Source Code Generator ... 48

4.4. ADVANCED GENERATION MECHANISM ... 49

5. DEVELOPING ENVIRONMENT FOR ECSDF... 51
5.1. OVERVIEW .. 51
5.2. FUNCTIONAL REQUIREMENTS .. 52
5.3. IMPLEMENTATION... 53

5.3.1. Eclipse Plug-in... 53
5.3.2. Rule-Based Engine.. 57

6. APPLYING AND EVALUATING OF ECSDF... 60
6.1. OVERVIEW .. 60
6.2. ARCHITECTURE .. 62

6.2.1. Hand-Coded BMS.. 62
6.2.2. ECSDF-generated BMS.. 63
6.2.3. BMS versus BMS .. 64

6.3. OBJECT MODEL .. 64
6.3.1. Hand-Coded BMS.. 64
6.3.2. ECSDF-Generated BMS... 66
6.3.3. BMS versus BMS .. 67

7. CONCLUSION... 68

7.1. SUMMARY ... 68
7.2. SIGNIFICANCE OF THE CURRENT RESEARCH.. 68
7.3. FUTURE WORK ... 69

APPENDIX-A. SPECIFICATION OF BMS... 71
A-1. OVERVIEW .. 71
A-2. VISION STATEMENT .. 71
A-3. FEATURES... 71
A-4. ACTOR-GOAL-USE CASES LIST... 72

APPENDIX-B. DESIGN OF BMS.. 73
B-1. PACKAGE DIAGRAM OF THE HAND-CODED BMS.. 73
B-2. CLASS DIAGRAM OF THE PACKAGE COM.ZURICH.BMS.BUSINESS OF THE HAND-CODE
BMS 74
B-3. CLASS DIAGRAM OF THE PACKAGE COM.ZURICH.BMS.DB OF THE HAND-CODE BMS... 75
B-4. CLASS DIAGRAM OF THE PACKAGE COM.ZURICH.BMS.DOMAIN OF THE HAND-CODE BMS
 76
B-5. CLASS DIAGRAM OF THE PACKAGE COM.ZURICH.BMS.STRUTS OF THE HAND-CODE BMS
 77

v

B-6. CLASS DIAGRAM OF THE PACKAGE COM.ZURICH.BMS.STRUTS OF THE HAND-CODE BMS
 78
B-7. LIST OF BUSINESS ACTIVITIES OF THE ECSDF-GENERATED BMS.............................. 78
B-8. THE DOCUMENT/VIEW MODEL OF THE ECSDF-GENERATED BMS............................. 80
B-9. THE DOMAIN MODEL OF THE ECSDF-GENERATED BMS.. 81

ACKNOWLEDGMENTS .. 82
REFERENCES.. 83

vi

List of Figures

FIGURE 1-1 ARCHITECTURE OF ECSDF .. 9
FIGURE 1-2 “HELLO, WORLD” JAVA SOURCE CODE ... 13
FIGURE 1-3 “HELLO, WORLD” UML CLASS DIAGRAM DEPENDENT ON JAVA 13
FIGURE 1-4 “HELLO, WORLD” UML CLASS DIAGRAM INDEPENDENT FROM ANY PROGRAMMING

LANGUAGE ... 14
FIGURE 2-1 HU 1.0 CLASS DIAGRAM .. 16
FIGURE 2-2 HU 1.1 CLASS DIAGRAM .. 18
FIGURE 2-3 COLLABORATION GROUPS WITHIN SOFTWARE.. 25
FIGURE 3-1 CREATION OF COMPUTABLE PURCHASE ORDER AND SUPPLIER ADDRESS FROM

BUSINESS WORLD PURCHASE ORDER.. 29
FIGURE 4-1 META-MODEL OF THE BUSINESS ACTIVITY MODEL .. 32
FIGURE 4-2 META-MODEL OF DOCUMENT/VIEW MODEL... 33
FIGURE 4-3 DOMAIN MODEL OF HU 2.0 IN UML CLASS DIAGRAM... 36
FIGURE 4-4 DOCUMENT/VIEW MODEL OF HU 2.0 IN UML CLASS DIAGRAM.............................. 37
FIGURE 4-5 COLLABORATION TEMPLATE OF APPLICATION FOR ENTERPRISE COMPUTING 41
FIGURE 4-6 GENERATED CLASS OF INTERFACER ROLE STEREOTYPE.. 43
FIGURE 4-7 GENERATED CLASS OF CONTROLLER ROLE STEREOTYPE .. 43
FIGURE 4-8 GENERATED CLASS OF SERVICE PROVIDER ROLE STEREOTYPE 44
FIGURE 4-9 GENERATED CLASS OF INFORMATION ROLE STEREOTYPE 44
FIGURE 4-10 GENERATED CLASS OF STRUCTURER ROLE STEREOTYPE 45
FIGURE 4-11 GENERATED CLASSES FOR PERSISTENT SERVICE.. 46
FIGURE 4-12 EXAMPLE OF ARCHITECTURAL RULES.. 48
FIGURE 4-13 CLASS DIAGRAM FOR R-1 ... 50
FIGURE 5-1 MAIN ELEMENTS OF ECSDF-DE... 53
FIGURE 5-2 ECSDF DEVELOPING ENVIRONMENT .. 54
FIGURE 5-3 DOCUMENT CREATION WINDOW .. 54
FIGURE 5-4 BUSINESS ACTIVITY CREATION WINDOW ... 55
FIGURE 5-5 DOCUMENT EDITOR.. 56
FIGURE 5-6 BUSINESS ACTIVITY EDITOR .. 57
FIGURE 5-7 GENERATED OBJECT MODEL.. 58
FIGURE 5-8 WORKS OF JESS.. 59
FIGURE 6-1 CONTEXT DIAGRAM OF BMS.. 61
FIGURE 6-2 TYPES OF DOCUMENTS MANAGED BY BMS ... 61
FIGURE 6-3 “MAGIC” MENU ITEM ... 64
FIGURE 6-4 PATTERN RELATIONSHIPS OF THE HAND-CODED BMS .. 66

vii

List of Tables

TABLE 2-1 COLLABORATION PATTERNS TABLE .. 20
TABLE 2-2 INFORMATION HOLDER COLLABORATION PATTERN ... 21
TABLE 2-3 STRUCTURER COLLABORATION PATTERN ... 21
TABLE 2-4 SERVICE PROVIDER COLLABORATION PATTERN ... 22
TABLE 2-5 COORDINATOR COLLABORATION PATTERN ... 22
TABLE 2-6 CONTROLLER COLLABORATION PATTERN... 23
TABLE 2-7 INTERFACER COLLABORATION PATTERN .. 24
TABLE 4-1 BUSINESS ACTIVITY MODEL OF HU 2.0 ... 39
TABLE 4-2 RESPONSIBILITIES IN EACH PART OF THE BUSINESS ACTIVITY.................................. 42
TABLE 4-3 ROLE STEREOTYPES AND THEIR RESPONSIBILITIES .. 42
TABLE 4-4 RESPONSIBILITIES IN EACH DOCUMENT .. 46
TABLE 4-5 RESPONSIBILITIES FOR HIERARCHY STRUCTURE FOR R-1 ... 49
TABLE 5-1 FUNCTIONAL REQUIREMENTS OF ECSDF-DE... 52
TABLE 6-1 DEFINITIONS OF QUALITY ATTRIBUTES.. 62

1

0. INTRODUCTION

This chapter describes background and previous work of my research
and what gap my research would like to bridge. It states the overall purpose
and the tasks have to perform. Finally it gives the following contents of the
thesis.

0.1. Background

0.1.1. Overview of Model Driven Approach

Software developers design software system with software objects1.
They design those objects with various roles and assign various responsibilities
to them. They fill objects with instructions to instruct software objects how to
behave in accordance with their roles. Software objects then form a software
system to take bigger responsibilities to accomplish desired works. A software
system is complex machinery constructed from software objects which affects
each other [1].

In 2001, Object Management Group (OMG) proposed a new software
development approach, Model Driven Architecture (MDA) [2]. MDA is a
development approach and a set of standards that raises the abstraction level of
programming to modeling. The general idea of MDA is to develop software
system by modeling rather than by creating source code, such as Java or C#. It
defines the notion of Platform Independent Model (PIM) and Platform Specific
Model (PSM) to present technology-independent concepts and
technology-dependent concepts respectively. Then the computerized model
transformation transforms PIMs to PSMs to source code. Currently MDA uses
Unified Modeling Language (UML) as its standard modeling language. In short,
the core concepts of MDA is raising programming abstraction level and utilizing
the computerized model transformation.

0.1.2. Benefits of Model-Driven Approach

 Why raising programming abstraction level and utilizing the
computerized model transformation are necessary? How the software
developers can be benefit from the model-driven approach? As mentioned

1 This thesis only discusses object-oriented software system.

2

before, a software system is complex machinery. It is an artifact that designers of
the software system try to comprehend real world facts and to reconstruct these
facts as conceptual software objects. The transformation from real world facts to
software objects is not trivial at all. The mapped software system has also to
modify accordance with the ever-changing world. Doing these kinds of
transformation manually is not easy. Any small change in the real world may
have larger effects on the software system which can result in further effects on
other parts of the system. With the help of the model-driven approach, these
issues can be addressed. By model-driven approach, the developers only
consider how to perceive real world facts. The complex transformation to
software objects are handled by machines. It raises the productivity of software
development. The resulted software system can be both flexible and reliable.

0.1.3. Enterprise computing and Model-Driven Approach

Model-driven approach can bring large benefits specially to enterprise
computing. Although there are many researches on or commercial
implementation of model-driven approach, the researches or the
implementations for enterprise computing are rare [3]. Within this ever-changing
business environment, software system that is developed for enterprise suffers
pressure of matching the speed of changes and frequency of changes.
Enterprises change their business behavior and business rules to meet their
operating environments. In the same time, the software systems that are
designed for them are also modified to meet these changes. Software system is
complex and it should also satisfy multiple goals, such as reliability, flexibility, or
security etc. By implementing model-driven approach concepts, software system
can match the desired features easily and rapidly, and also be modified without
corrupting the whole system.

0.2. Previous work

Wirfs-Brock and Wiklerson proposed the responsibility-driven approach
for software design [4]. They focused on the very essential of software objects
responsibility, actions an object was responsible for and information an object
shared. Beck and Cunningham proposed using CRC Card to record classes,
responsibilities, and collaborations for object-oriented software design [5]. These
three aspects provided a clean and easy-to-comprehend framework for
object-oriented design. Responsibility-driven approach was leveraged by
characterizing software objects into different stereotypes by Wirfs-Brock
Rebecca [6]. These stereotypes were characterized by their object behavior. The
characterization provided a clean way to define objects.

3

Model Driven Architecture (MDA®) was proposed by OMG [2]. OMG
submitted a set of specifications trying to cover every aspect of software
development. One of the most important specifications was Unified Modeling
Language (UML) [7] that was the de facto standard modeling language for MDA.
The other was Meta-Object Facility [8]. It was designed as a common
meta-model for all other specifications. It could be easily overwhelmed by
quantity and thickness of the specifications. All in all, the idea was
higher-abstraction-level software developing materials (which were coined as
Platform Independent Platform) should be specified by a set of specifications for
various purposes that were based on the same common meta-model, and the
specifications also defined how to transform the developing materials into
lower-abstraction-level design materials (which were coined as Platform Specific
Platform). Then these lower-abstraction-level design materials were further
transformed into implementation materials, such as source code or database
schema. It sounded like if I gave you a dictionary, and then by looking it up, you
could speak foreign language well. Without mentioned it could be unsuccessful
in marketing [9], it failed in two points. The first was the idea overlooked complex
and changeability of underlying technologies. The second was it overlooked the
complex and diversity of software modeling to real world facts.

Regarding the first point, existing framework or programming
environments were too complex to map. Java 2 Platform, Standard Edition,
Version 1.4.2 [10] had totally 2723 classes and interfaces. Java 2 Platform,
Enterprise Edition, Version 1.3 [11], had 432 classes and interfaces. One
of the most popular web frameworks, Struts [12], had 284 classes and
interfaces. Nuance existed across them and fluidity among them made it
very hard to have any direct mapping from analysis artifacts to design
artifacts to implementation artifacts [9].

Regarding the second point, the most important thing of software
development was the intention of the problem domain. If UML should be
the next generation programming (modeling) language, then if should be
productivity and expressiveness enough to replace current text-based
programming languages. To examine this point, we should consider who
would use it, i.e. who would be the customer of UML in MDA? If software
developers would be the customers, UML did not provide productivity and
expressiveness to replace current text-based programming languages
[13][14]. If end-users would be the customers, the raising of programming
abstraction level was needed. If it rose to end-user level, then UML should
also provide productivity and expressiveness to the end-users. But
different domain had different needs. UML might be useful for some
domains, but couldn’t incorporate enough semantics to be a universal
modeling language [9][14].

4

0.3. Gap in the Research

There is a gap that a framework for enterprise computing based on the
model-driven approach which provides programming from higher abstraction
level and the computerized model transformation is needed.

Programming from higher abstraction level is model-centric. The models
shall be reviewable by non-technical people. And the transformed software
system shall be reliable and flexible.

0.4. Purpose and Tasks of the Current Research

The purpose of the research is to build a software developing framework
for enterprise computing that is based on the model-driven approach and to build
real software system for enterprise computing to verify the framework. For the
purpose, there are four tasks:

1. To build a business management system (by hand)
2. To conceive a mechanism for mechanical object model and source code

generation
3. To construct a modeling language for enterprise computing
4. To evaluate the software developing framework

Before exploring into the model-driven jungle, a real and workable demo
application is needed. Firstly, the business management system (BMS, for short)
is developed by hand-coded. It shall provide features for basic business
operations, such as sales, procurement, and inventory management etc. It shall
follow currently known “good design principles” of enterprise application. It shall
meet two architectural characteristics, maintainability and flexibility. By
developing this demo application, the resulting specifications can be used to
build another system by the model-driven framework. The hand-coded BMS can
be evaluated against the machine-generated BMS.

Secondly, the mechanism for the object models and the source code
generation shall be conceived. The mechanism is based on the idea of roles,
responsibilities, and collaborations of software objects. Responsibilities are the
things the system has to do and the information it shall provide. Roles are
abstraction of object characteristics [1]. By distilling into these higher abstraction
concepts, mechanical transformation can be achieved.

Thirdly, business models used to describe daily business activities of
enterprises shall be constructed. For the users and the developers to describe
the business world facts that could be handle by machines, a domain specific

5

language for enterprise computing is needed. The resulting business models are
expressible enough to capture the essential business world facts and also
rigorous and unambiguous to be processed by machines to produce the object
models and the source code.

And finally, the evaluation of the framework will be performed. The
evaluation is performed against the hand-coded BMS. To this end, a
development environment bases on the framework shall be built. It will be used
to build another business management system but has the identical
specifications as the hand-coded BMS. The specifications will be used to
develop the business models. The business models are then used to generate
the object model. The generated BMS is built with goals of reliability and
flexibility. The main focus of the evaluation is if the generated object model can
reliably accomplish responsibilities define in the business models and can
flexibly match any changes in its specifications without affecting other parts not
concerning with the changes.

0.5. Organization of the Thesis

The following chapters are organized into three major parts.
The first part, chapters 1 - 4, introduces the proposed

model-driven framework for enterprise computing, Enterprise Computing
Software Developing Framework (ECSDF for short). Chapter 1, Overview
of ECSDF, gives a short introduction to ECSDF. Chapter 2, Role
Stereotypes of Objects, explains the fundamental ideas of the object
model generator in ECSDF. Chapter 3, Modeling Language for Enterprise
Computing, states a higher-abstraction-level domain specific language,
the Business Model, which is used to describe the business activities and
the business entities of enterprise computing. Chapter 4, Business Models
and Model Transformations, gives the details of mechanical
transformations from the business model to the software object models to
source code.

The second part, chapters 5 – 6, presents a development
environment implemented for ECSDF and its applications. Chapter 5,
Development Environment for ECSDF, describes the Eclipse-based
developing environment (ECSDF-DE) developed for ECSDF. Its features,
architecture, and implementation are given. Chapter 6, Applying and
Evaluating of ECSDF, discusses the details of applying ECSDF and using
ECSDF-DE to develop a business management system and of evaluating
the resulted system.

And the final part, Chapter 7, Conclusion, is the conclusions of the

6

thesis.
Appendix A, Specification of BMS, gives a general specification of

the demo software system (BMS for short).
Appendix B, Design of BMS, shows the design materials of the

hand-coded BMS and the ECSDF-generated BMS.

7

1. OVERVIEW OF ECSDF

This chapter describes the conceived model-driven software developing
framework for enterprise computing. It is called enterprise computing software
developing framework (ECSDF for short). ECSDF is based on the concepts of
programming from higher abstraction level and the computerized model
transformations. ECSDF mainly contains four architectural parts, the Business
Model, the object model generator, the source code generator, and the virtual
machine. ECSDF uses only one language for both users and developers to
describe business activities and business entities of enterprise computing.
ECSDF bases on the ideas of MDA proposed by OMG but don’t comply with any
OMG’s MDA specifications.

1.1. What is ECSDF?

ECSDF is a software developing framework that helps both users and
developers to build software by specifying developing materials that are
readable by non-technical people and are also computable by machines. It can
bring time to market and customer satisfaction to the users and the software
developers. The generated software systems shall be reliable and flexible.

A software system is reliable when it is both “doing the right things”
and “doing the things right”. To produce a reliable software system,
specifications shall be readable by non-technical people and also be
computational by machines. ECSDF solved these two requirements
simultaneously.
1. Readable specification for customers1: Specification shall be readable

by customers. Without reviewing specifications by the customers, the
first part of software reliability, “doing the right things”, can not be
achieved. The customers usually do not understand jargon of
software or obscure mathematical symbols. A model that is used as
specifications to describe behavioral part and structural part of real
world shall state in a language that can be understood and verified by
the customers. The model shall also be expressible to represent
problem domain. The only way to have specifications be readable,
verifiable, and expressible is to adopt a language that is used by
customers in their daily activities. Within ECSDF, four models, which

1 Customers are the end-users of the developed application. Customers, users, and
end-users are used interchanged.

8

are called the Business Model collectively, are included. They capture
business entities and business tasks that customers performed in
their daily business activities.

2. Computational specifications: Specifications shall be processed and
transformed to source code by machines to achieve the second parts
of software reliability, “doing the things right”. Specifications are
statements to human’s perceived world. To have specifications
computable by machines, a rigorous and unambiguous mapping
between specifications and software objects is needed. ESCDF
abstracts system behavior and object characteristics to provide a
rigorous and unambiguous model transformation that generates
structural part and behavioral part of software objects from the four
business models. And it can even further generate source code.

A software system is flexible when it meets the changes of real
world facts it maps. One of the problems of current software development
is the ripple effect of changes. ECSDF abstracts the software object
characteristics to help to transform the business models. If there is any
change in real world facts, the object model generator and the source code
generator transform the business models rapidly, and also preserve
reliability and flexible.

9

1.2. An Architecture Overview

Object Model Generator

Source Code Generator

Business
Activity Model

Document-
View

Model

Business Model

Virtual Machine

Domain Model

Business Rules

R
eference

Im
plem

entation
D

eveloping
E

nvironm
ent

Figure 1-1 Architecture of ECSDF

Figure 1-1 shows the architecture of ECSDF. ECSDF provides the ability
to develop software system for enterprise computing from higher abstraction
level. The customers and the developers work together to describe requirements
and specifications of an application in a language that customers understand.
The requirements and the specifications are described in the Business Model,
which consists of business activity model, document-view model, domain model,
and business rules.

The object model generator is used to generate object models in
accordance with the Business Model. The generation is based on the concept of
role stereotypes of software objects, responsibilities of the software systems and
the software objects, and collaborations of the software objects. Business
entities and business tasks described in the Business Model are considered as
software system responsibilities. These software system responsibilities are

10

behavior that software systems must perform and information they must provide.
These larger responsibilities are decomposed into smaller responsibilities and
are assigned to the role stereotypes. Role stereotypes are abstractions of
software characteristics. Each of role stereotypes carries out these smaller
responsibilities. The source code generator is used to generate implementation
code specific to a programming language. The generating mechanism of the
object model generator and the source code generator are accomplished by
rule-based engines. Pre-defined rules describe how to assign responsibilities in
the Business Model to objects and source code.

The last piece of ECSDF is the virtual machine that runs a software
system by only specifying the four business models. It is not considered yet in
the thesis, and it will be the studying subject of my dissertation.

1.3. Motivation of ECSDF

Human form various communities who have the same interests.
Software objects in an application also form various object communities. Their
interests are to conduct a set of software system responsibilities. Software
Objects play various roles and interact with each other to form collaborations in
the community to take all the designated software system responsibilities.
Objects in the community are smart. They have different and clearly defined
roles and take one or more object responsibilities. Their responsibilities are
decomposed from software system responsibilities. They know what they have
to do. Some of them may provide information to others. Some of them may
provide services to others. Some of them may have to interact with other
communities. Some of them may work as a commander to direct the interactions
within an object community. ECSDF is based on these concepts of roles,
responsibilities, and collaborations.

Before I go further discussion, clearly definition of terms appear above
shall be given. The following definitions are quoted from Rebecca Wirsf-Brock
[1]:

 An application1: a set of interacting objects
 An object: an implementation of one or more roles
 A role: a set of related responsibilities
 A responsibility: an obligation to perform a task or know information
 A collaboration: an interaction of objects or roles (or both)

1 Application and software system are used interchanged.

11

Generally development of software system starts from gathering
requirements from customers. When gathering requirements, technical people
try to understand what customers (who pay money to build the application) want.
Gathering requirements is no easier than coding. If one just asks customers
“What do you want the system to do?” directly, customers always answer “Well, I
am not sure what I want…” Gathering requirements becomes a serious
discipline which is called Requirement Engineering [15]. One of the most
obstacles of gathering requirements lies on customers who provide information
and technical people who gather information speak different languages [16].
Customers have their own language to describe their business activities.
Technical people have their own language to describe their knowledge to build
an application. This kind of language barrier hampers customers and technical
people to communicate with each other smoothly.

After some requirements are gathered, technical people make decisions
about how to describe the requirements in their language. This stage is generally
called analysis. Diagrammatic representation (such as UML) may be used. For
example, UML class diagrams are used to define the structural relationship of
conceptual elements of problem domain. UML interaction diagrams are used to
depict interactions of those conceptual elements. These diagrams help technical
people to understand knowledge related to problem domain. They are also used
to communicate with customers and developers. When to transform from
requirements to analysis materials, the intention of customers’ requirements may
be misunderstood and misinterpreted by technical people. As mentioned before,
this is due to the language barrier.

After technical people learn important facts in the analysis stage, it is
time to do design in software terms. The design works contain software objects
that do different works to accomplish desired features. There is a
misunderstanding that software objects are designed to represent real world
facts directly. When doing design, we can reinvent the real world in the domain of
software even the design materials may largely deviate from the world the
software intent to manage [1]. Developers may misunderstand and misinterpret
the analysis materials again in this stage.

After some design materials are based, developers implement
application with source code. Developers fill software objects with the application
logic or domain logic base on the design materials and his knowledge to the
problem domain and the software domain. Again, the transformation from the
design materials to source code might be misunderstood and misinterpreted.

Since customers who use the application and technical people who

12

develop the application speak different languages and the transformations of
materials in various stages of software development can lead to
misunderstanding and misinterpretation, I came up with an idea that if it is
possible to raise the abstraction level of programming to have customers and
technical people both speak the same language to describe the specifications of
software system and then applies mechanical transformations to transform the
specifications to software system? ECSDF includes the Business Model to help
customers and developers using the same language to describe the
specifications. It also includes mechanical model transformations mechanism to
transform the specifications to the object model and source code without
distorting semantics in the specifications.

1.4. Why ECSDF is NOT MDA®?

ECSDF is NOT an MDA-compliant framework because it does not
comply with any specifications that are specified by OMG. ECSDF even not
incorporates the now prevailing phases, platform independent model (PIM) and
platform specific model (PSM) within it although I formerly used them in my
thesis proposal. I have mentioned why OMG’s MDA will not be a future of
software development from generally in Section 0.2. The following discussion
describes specific reasons that indicate why I do not try to be MDA-compliant.
Most of the end-users do not say any word of UML

The first reason is very simple and clear. Using UML as the language to
communicate with customers is not possible. First and the foremost point to be
successful in a software project is the communication between the customers
and the developers shall be smoothly. Using a language that the customers can
understand is necessary. Specifications shall be read and validated by the
customers. UML is a unified modeling language for software development. It is
not a universal modeling language for every domain in the world. Technology is
not almighty. Saying UML will be a general-purpose language for all problem
domains is only a wishful thinking. Every domain has its own needs and
requirements. We shall apply languages that customers use in their daily
activities to describe specifications of software projects.
UML works for specific domains but not all domains

UML is good at giving visual representation of source code. It is
especially useful to present structural aspect of source code. But it is limited to
present behavioral aspect of source code [17]. State charts work for specific
domains but not for some domains as complex as enterprise computing. Writing
algorithms in text-based programming languages or textual pseudo-code is
much productivity and easily comprehensible than diagrammatic representation,

13

such as UML.
There is no model that can be “platform-independent”

Every model is platform-dependent. Even defining PIM in OMG’s
specifications is platform-dependent. Regarding this point, it needs more
explanations. In the following, I will use a very simple example, a classical Hello,
World, to explain this reason.

Following is Java source code for printing “Hello, World!” to a standard
output device.

Figure 1-2 “Hello, World” Java Source Code

This Java program contains a MyApp class which has a static entry point
main method and an instance printHelloWorld method which prints “Hello,
World!” to the output device. It is surely a PSM according to OMG’s definition. It
is dependent on Java platform.

+main(in args : String[])
+printHelloWorld()

MyApp

+println(in s : String)
java.io::PrintStream

Figure 1-3 “Hello, World” UML Class Diagram Dependent on Java

Figure 1-3 is a UML class diagram that gives diagrammatic
representation of the Java source code in Figure 1-2. It is still a PSM because it
is still dependent on Java platform. UML class diagram only provides concise
visual representation.

If we need to represent the Hello World application as a PIM that
independent from any technology platform, such as Java, the UML class
diagram may look like Figure 1-4. Can we now tell what the class intents to do?
We can not. There is nothing in this diagram tells us what the meaning of the
operation main and printHelloWorld. From the naming of the methods, we
may guess it is a class that print string “hello world”. We can tell what the class

public class MyApp {
 public static void main(String[] args) {
 MyApp app = new MyApp();
 app.printHelloWorld();
 }

 public void printHelloWorld() {
 System.out.println("Hello, World!");
 }
}

14

does because if its good naming. But we still do not know where the string “hello
world” may go to.

+main(in args : String[])
+printHelloWorld()

MyApp

Figure 1-4 “Hello, World” UML Class Diagram Independent from Any Programming
Language

My argument is how a model can be possible to be independent? A
model always bases on something to describe other things. As the example
shows in Figure 1-4, we can guess what the class MyApp does from linguistic
form. But if we want to describe rigorous and unambiguous specifications of the
operation printHelloWorld, we need libraries. There is no such I/O library
defines in OMG’s standards. It is also in contradiction to the definition of PIM
which states it shall be independent from any technology platform. It is in a
dilemma. Fowler described this point in his web site [18].

Frankel argued [3] that a PIM shall specify what the PIM is independent
from. It is also strange because a model can possibly be independent from many
things. It may be independent from an operation system or from a hardware
platform. Saying a model is independent from a thing is meaningless.
OMG’s specifications are as much as platform

Can it possible to provide another universal model to be an abstraction
level above any technology platform? The answer is surely not. OMG provides
many specifications such as EDOC, CWM etc which are indented to be the
universal models. If changeability is the cause that OMG to create these
specifications, then the problem may also happen to them. In fact, all these
specifications are as much as platform as Java [18]. Fowler gives PIM a witty
name, Platform Independent Malapropism [18].

Trying to completely dispel technology considerations from initial stage
of software development is another wishful thinking, and not very practical.
Without considering technology aspect from initial stage will only drag down
software projects in later stages. Current enterprise application development is
hard and complex. Implementation details may be deferred until later developing
stages. But considering executing environments and technology choices are
necessary for developing software projects successfully. All these factors affect
developing ideas and decisions. Even when applying a model-driven approach,
such as ECSDF, we still have to put technology aspect up front, or we will not be
possible to find complete system responsibilities to be carried out by software

15

system.
ECSDF is not MDA® but MDA

From statements above, it may have an impression that I against
model-driven approach. It is not the case. All in all, I will not use:

 UML,
 terms of PIM and PSM, and
 any specifications from OMG

to develop ECSDF. They may be helpful for specific domains but not for other
domains, at least not for enterprise computing. Saying these things is a future of
software development is too early. The ideas within MDA are beneficial. But we
need more thorough studies and considerations about raising programming
abstraction level and computational model transformation, rather only try to
match the steps of OMG.

16

2. ROLE STEREOTYPES OF OBJECTS

This chapter describes the fundamental concepts used in the object
model generator. A simple example is represented as the illustration of the
concepts. With regard to object generation, the abstraction of object
characteristics is needed. Software objects play various roles in a software
system. Roles can be categorized into six role stereotypes. They follow a set of
rules to interact with. The set of rules are called collaboration patterns. The
object model generator of ECSDF applies collaboration patterns to generate a
set of collaborative objects. The set of collaborative objects are called
collaboration groups.

2.1. Hello User Example, Episode I

One day, the only architect, system analyst, and developer of ACME
software Inc., Michael, wins his first contract to create an application. The
requirement is to print a string “Hello” and a user name which is typed by a user
to a terminal. The specifications are described as the following:

 A user of the application types a name on screen.
 The application then has to show “Hello” and the name on the screen.

For example, if a user types a name, Jenson, then it prints “Hello,
Jenson”.

 The screen is a terminal type input/output device.

To make a change tracking, Michael calls it “HU 1.0”. After a deep
thought, Michael decides to create an object to store the string “Hello” and to
print out to the terminal. The class diagram is shown in Figure 2-1 in UML.

+printHelloAndName()
-helloString : String = Hello

HelloUser

Figure 2-1 HU 1.0 Class Diagram

The application is finished with careful implementation and thorough test.
Before he hands the application to the customer, the customer (who pays money
to Michael) tell him the requirements are changed. It is fine, anyway, a customer,
no matter what blood type he1 has, always changes his mind. The new

1 It does not imply the customer is male or female; “he” or “his” is used hereafter for
convenience sake.

17

requirement is to print a “Hello” which is concatenates by the user name which is
further concatenated by a string “what a beautiful day”. The specifications are
described as the following:

 A user of the application types in his name on the screen.
 The application then has to show “Hello”, follows by the typed name, and

follows by “what a beautiful day” on the screen. For example, if a user
types a name, Jenson, then it prints “Hello, Jenson, what a beautiful
day”.

 The constant strings “hello” and “what a beautiful day” shall be stored in
a text file.

 The screen may be a terminal type input/output device or a web page
browser.

 More screen types may be added in the future.
 Storage of the constant strings may be changed in the future such as

using a database instead.

Again, Michael gives it a tracking name, “HU 1.1”. The specifications add
more constrains and need much thorough consideration. The main changes of
the new requirements are listed as the following:

 The constant strings shall be stored in a text file
 Different I/O device is added
 The persistent storage and I/O device may be changed in the future

To cope with the new changes, Michael first comes up an execution
model in a request-processing-response fashion. There are two outside actors to
the system, one is the customers and the other is the string storage. The actors
do not belong to the application but the application has to interact with them.
Users issue request, type their name on the I/O device. The application
processes operations according to users’ request, which is to retrieve the strings
from the text file. The application made a response to the users, which is to
concatenate the constant strings and the typed name and to display the
assembled strings to the users.

18

+execute()

ExecuationOperator

+assembleString()

StringBuilder

+readString()

StringReader
-value : String
StringValue

WhatABeautifulDay UserName Hello

1 1

1

1

+requestProcessor()

RequestProcessor

1 1

Figure 2-2 HU 1.1 Class Diagram

According to the execution model, Michael makes a change to the object
model. The new class diagram is shown in Figure 2-2. An abstract
RequestProcessor class is responsible for communicating with the users. It
extracts the user name from incoming request message. It then hands the
extracted user name to an ExecuationOperator class. The
ExecuationOperator class has the responsibility to work as a director which
mange the whole operation of the application. An abstract StringReader class
is responsible for reading strings from storages. The implementation specific to a
type of storage media is leave to its subclasses. A StringBuidler class has a
responsibility to concatenate constant strings and the user name to a complete
string to return to the I/O device. The ExecuationOperator class directs
subclasses of the StringReader class to read stored strings and then asks the
StringBuilder class to assemble the whole string. It then returns the
assembled string to the RequestProcessor class. The RequestProcessor
is also responsible for displaying the execution results to the I/O device.

Besides the classes mentioned above, Michael also defines a set of
domain-specific classes to present the concepts of problem domain. An abstract
StringValue class represents those various constant strings. Three inherited
classes, WhatABeautifulDay class represents “what a beautiful day”,
UserName class represents user typed name, and Hello class represents
“hello”. The StringBuilder class operates on the domain objects and sends

19

the response to the ExecuationOperator class.

2.1. Role Stereotypes

As we can see from the example, objects in an application take
responsibilities to achieve larger responsibilities. Each object plays one or more
clearly defined roles. The roles are categorized as a number of role stereotypes.
Role stereotype characterizes roles and responsibilities an object takes. The
example is simple, but it demonstrates a set of stereotypes in a common
software system.

The RequestProcessor class plays a role as an interfacer to
interact with the users. It accepts request from the users and responds
results to the users.

The ExecuationOperator class plays a role as a controller to
direct the operations of the application. It takes the responsibility to ask
other classes to read strings from persistent storage, to build strings from
domain-specific objects, and to display the resultant string to an I/O
device.

The StringReader class and StringBuilder class plays a
role as service provider; it provides persistent service and string
operation service to the controller class.

The domain-specific object hierarchy, the abstract StringValue
class and its inherited subclasses play a role as information providers;
they store strings. Other classes that need the values ask them to provide
information.

By using the role stereotypes, we can simplify objects design according
to the roles an object plays. And according to their interaction relationships, the
collaboration of a set of object can be decided.

In Object Design: Roles, Responsibilities, and Collaborations,
Wirfs-Brock defines six stereotypes and their responsibilities as the following [1]:

 Information holder - knows and provides information
 Structurer - maintains relationship between objects and information

about these relationships
 Service provider - performs works and, in general, offers computing

services
 Coordinator - reacts to events by delegating tasks to thers
 Controller - makes decisions and closely direct other s̀ actions
 Interfacer - transforms information and requests between distinct parts of

our system

20

In the following section, the collaboration patterns, what role stereotypes
are permissible to interact with what other role stereotypes, are described

2.2. Collaboration Patterns of Role Stereotypes

A software object plays one or more clearly define roles in an application.
Roles can be categorized as role stereotypes that follow a set of rules to
constrain themselves that other role stereotypes they interact with. I call the set
of rules as collaboration patterns. Each collaboration pattern defines two role
stereotypes to interact with. The collaboration patterns are arbitrary defined
based on the domain under consideration. In the thesis, a set of patterns for
enterprise computing is defined. A role stereotype actively interacts with the
other role stereotype. The role stereotype which is called may replay with
response. For example, if a collaboration pattern defines interfacers interact with
service providers, it implies interfacers may ask service providers to do some
works but not vice versa.

For each role stereotype, a table (see Table 2-1) is used to show if a role
stereotype is permissible to interact with other role stereotypes. First column
presents the role stereotypes. Second column presents if the role stereotype
under discussion is permissible to interact with the role stereotype listed left. A
role stereotype not only interacts with other role stereotypes, it may also interact
with its own role stereotypes. Symbol indicates the role stereotype under
discussion is permissible to interact with the stereotype listed left. Otherwise, it is
marked with symbol . In the following sections, a set of collaboration patterns
for enterprise computing is described.
Table 2-1 Collaboration Patterns Table

Role Stereotype Interact With

Information holder

Structurer

Service provider

Coordinator

Controller

Interfacer

2.2.1. Information Holders

The collaboration pattern of the role stereotype information holder is

21

shown in Table 2-2.
Table 2-2 Information Holder Collaboration Pattern

Role Stereotype Interact With

Information holder

Structurer

Service provider

Coordinator

Controller

Interfacer

Information holder rarely interacts with other role stereotypes. After all,
as its name implies, its responsibility is hold and provide information. A best way
to manage information holders is to provide a factory object or an aggregate
object as a structurer. A structurer works as a gateway to all information holders
it knows. Sometimes an information holder needs services from other service
providers, such as, a logging service provider.

2.2.2. Structurers

The collaboration pattern of role stereotype structurer is shown in Table
2-3.
Table 2-3 Structurer Collaboration Pattern

Role Stereotype Interact With

Information holder

Structurer

Service provider

Coordinator

Controller

Interfacer

Structurer is used to organize and maintain a bunch of related objects
especially information providers and service providers. Any other role stereotype
needs to access them shall ask structurer first.

22

2.2.3. Service Providers

The collaboration pattern of role stereotype service provider is shown in
Table 2-4.
Table 2-4 Service Provider Collaboration Pattern

Role Stereotype Interact With

Information holder

Structurer

Service provider

Coordinator

Controller

Interfacer

Service provider always does some things. It is the workhorse of an
application. It takes responsibility as heavy as to execute a series of business
activities, such as creating salary information for the whole company; to
responsibility as easy as logging what happens inside a software object.

2.2.4. Coordinators

The collaboration pattern of role stereotype coordinator is shown in
Table 2-5.
Table 2-5 Coordinator Collaboration Pattern

Role Stereotype Interact With

Information holder

Structurer

Service provider

Coordinator

Controller

Interfacer

A coordinator passes information to other role stereotypes. It receives
events and asks other role stereotypes to handle events. It is not a smart object.
It only connects between software objects. It can be viewed as a downgraded
controller. It usually receives requests from an interfacer and then asks a

23

structurer to provide information from information holders or to provide services
from service providers.

2.2.5. Controllers

The collaboration pattern of role stereotype controller is shown in Table
2-6.
Table 2-6 Controller Collaboration Pattern

Role Stereotype Interact With

Information holder

Structurer

Service provider

Coordinator

Controller

Interfacer

Controller is the upgrade version of coordinator. A controller makes
decisions on what next action to take bases on a certain situation. It may hold
information internally or may ask a structurer to provide information in order to
make decisions. It may also interact with a structurer to provide services when it
knows what action to take next.

2.2.6. Interfacers

The collaboration pattern of role stereotype interfacer is shown in Table
2-7.

24

Table 2-7 Interfacer Collaboration Pattern

Role Stereotype Interact With

Information holder

Structurer

Service provider

Coordinator

Controller

Interfacer

Interfacer interacts with actors outside of an application or other
collaboration groups (collaboration group is discussed in Section 2.3). It is a
gateway of a collaboration group. Its responsibility is to interact with outsiders
that are not belonging to the collaboration group the interfacer sits in. An
interfacer may have to process request messages from outside actors by itself,
or it may ask a structurer to provide processing services. After the request
messages are handled, it then passes information to a controller or a coordinator
in order to decide what action to take next.

2.3. Collaboration Groups

Collaboration patterns provide rules for a machine to generate objects.
The object model generator of ESCDF follows the collaboration patterns
described above to decide how to form a group of objects. In ESCDF, a group of
object following the collaboration patterns is called collaboration group. An
application is formed from many collaboration groups. Each collaboration group
takes larger responsibilities of software system.

Collaboration groups work as logical grouping units or physical
deployment units. It can be physically deployed to different processes or
machines (see Figure 2-3). The details of the object model generator in ESCDF
are discussed in Section 4.3.

25

Figure 2-3 Collaboration Groups within Software
Collaboration group A and Collaboration group B sat in a same machine.
Collaboration group C sat in another machine. Collaboration group B and
collaboration group C communicate through networks.

26

3. MODELING LANGUAGE FOR ENTERPRISE
COMPUTING

This chapter describes the personality of enterprise computing. By
observing the concrete and abstract things and behavior within a company, we
can abstract them to help us to build computational models. Within ECSDF,
there are four business models to describe business world. They are
document/view model, business activity model, business rules, and domain
model. They capture the characteristics of enterprise computing:
document-centric, business-rules-rich, and
request-processing-response-pattern.

3.1. Enterprise Personality

Before delve into further discussion, clearly definition of terms are given:
Business operation: represents an action that is performed on one or
more business entities.
Business activity: represents a sequence of business operations that
brings business benefit to a company
Business entity: represents a concrete or abstract element in a
company

These terms are used within two worlds. One was the real world we are living in
(real world facts). The other was the perceived world (software specifications).

 Starting a business is not hard, although earning a lot of money may be
hard. To develop software system for a company to manage its business
information and to help people in the company to perform business activities will
be harder. It is because there are no hard and fast rules to do business. Every
domain has its own business environments and its own business conventions.
Even companies in the same domain do business in their own way. Difficulties
are added due to the fast changes of business environment.

In the thesis, I propose a model-driven framework for enterprise
computing which is based on the ideas of raising the programming abstraction
level and using computational model transformation. For raising the
programming abstraction level, we have to know how to abstract business world
facts. To this end, we shall first consider the personality of enterprise computing.

27

3.1.1. Business Activities

A company makes its living by selling goods or providing services to
customers. At first glance, goods and services represent very different concepts.
Customers who buy goods can place them in a place and the goods occupy a
space but it is impossible to place services in a place. They have one thing in
common; customers shall pay money or barter for goods and services. A
company buys goods or services from other companies and sells goods or
assembled goods (or divided goods) to other companies or individuals. From
above discussion, people who operate the company, goods or services a
company sells and provides, and money a company holds largely constituted
business entities in enterprise computing. Business activities operate on the
business entities to bring benefits to the company. A list (it is not exhausted) of
major activities that concerns the entities (people, goods, and money) is shown
bellowed:

 Buy goods or services from other companies
 Sell goods to other companies and individuals
 Provide service to other companies and individuals
 Manage goods stocking.
 Manage money flow
 Manage customers data
 Manage employee data

3.1.2. Recording Business Activities

A company not only performs the activities list above. It shall also record
information of the activities in documents. The recorded information is placed in
formatted documents for business or legal purposes. The recorded information
that contained the activities shall be viewed by various roles of people in the
company. For example, the owner of the company needs to know total amount of
money it earns last month. The company creates and preserves tons of
documents with regard to its business activities.

3.1.3. Business Constrains

The company also defines rules about how/when/who to conduct its
business. Rules are constraint. They constrain entities and behaviors [19]. For
example, to manage the customer’s data, a unique identifier may assign to each
customer. The unique identifiers are not arbitrary defined but usually follow a
predefined rule. Such as the length of identifier are 15 characters long and can
contain only numbers and alphabets. Another example is before a company
buys a product from other companies, it shall be approved by the owner of the
company. These constraints about how/when/who to conduct business activities

28

and business entities are called business rules. Business rules are fluid. They
change frequently, if not every day. They are modified to cope with the
ever-changing environment the company sit in and the changes within itself.

3.2. Modeling Personality of a Company

Personality of enterprise computing, which is discussed in Section 3.1, is
summarized as the following list:

 Documents record business activities
 Business activities operate on business entities
 Business rules constrain on business activities and business entities

In ECSDF, the personality of enterprise computing is described in four business
models, which are collectively called the Business Model, to cover different
aspects of the business. The business models are abstraction of business world
facts. They describe business entities and business activities.

3.2.1. Recording business activities in documents

As mentioned in Section 3.1.2, there are tons of documents a company
creates and preserves. The primary work of people in the company is to handle
the documents. People in the company then judge performance of the business
activities and made business decisions by gathering information from these
documents. Thus, the primary mission of enterprise computing application is to
manage the documents and information gathering from different documents. In
order to describe the documents and the gathered information, I propose the
document/view model (d/v model for short).

Documents in the d/v model matches to those formal documents
generated everyday by people in the company. View provides a window that
shows different aspect of those documents. The views and the documents are a
one-to-many relationship. A view represents information collected from the
documents or parts of the documents. The d/v model is computable. It provides
entities semantics of the human perceived world.

The Documents and the views in the d/v model are not “the documents”
of real business world. Since they have to be processed by machines, the
definitions of a document or a view shall be machine-readable. For example, in
business world, a purchase order contains supplier information, such as its
name and address, and purchasing items information. For a computable
purchase order, another computable document called supplier address, which
contains supplier information, shall be defined in addition to the purchase order.
The computable purpose order only contains purchasing item information. It is

29

mainly for database processing. The relationship of the purchase order of
business world and the computable documents in the d/v model is shown in
Figure 3-1. Surely the computable supplier address can be combined into the
computable purchaser order, but it is inefficient for computation. It is one of the
limitations of the d/v model. I would like to solve this mismatch of business world
documents and computable documents from the d/v model in my dissertation.

Figure 3-1 Creation of Computable Purchase Order and Supplier Address from
Business World Purchase Order

3.2.2. Operating business activities on business entities

Exception d/v model, we need another model to describe how to process
the management of the documents and the views.

When people in a company have to create some kinds of documents,
they usually start from preparing data that are related to the documents from
different sources. For example, if one would like to create a purchase order, he
may have to know supplier information, such as supplier’s ID, supplier’s address
etc. He may also have to know the details of purchasing items, such as items’ ID,
items’ prices etc. With the information of the supplier and purchasing items on
hand, he can create the purchase order. And then pass it to the supplier and
waiting the supplier to acknowledge the purchase with acknowledged messages.
Usually they are also in a form of documents. In order to describe this process, I

30

propose a request-processing-response-pattern model, which is called the
business activity model.

The request represents actions of people who collect information from
various sources. The processing represents operations conduct on the
documents or the views. With regard to enterprise computing, the operation
types are generally limited to CRUD (creation, retrieval, update, and deletion).
The response represents the results of the processing. It may be a newly
created document, modification of an existing document, or an acknowledged
message about if the process is success or failure.

3.2.3. Constraining business rules on business activities and business
entities

Business process group defines that “a business rule is a statement that
defines or constrains some aspect of the business. It is intended to assert
business structure, or to control or influence the behavior of the business” [20].
Business rules define how/when/who to conduct business activities and
constraints on business entities.

31

4. BUSINESS MODELS AND MODEL
TRANSFORMATIONS

This chapter describes the details of the object model generator and the
source code generator. ECSDF abstracts the business into
higher-abstraction-level model, which is called the Business Model. The
Business Model describes how a business executes its business activities on
business entities to gain profits. The simple example used in Chapter 2 is
expanded to represent the ideas of the generating mechanism. The object model
and source code generating mechanism base on the ideas of roles,
responsibilities, and collaborations. The responsibilities of software system are
assigned to role stereotypes. And then role stereotypes are transformed into
software objects. Inheritance and composition of software objects are also based
on the same ideas.

4.1. Business Model

The Business Model describes business activities, business operations,
business entities, and constraints on them. The business activity model defines
business activities and business operations. The d/v model defines business
entities. The business rules define constraints on the business activities, the
business operations, and the business entities.

4.1.1. Business Activity Model

I propose using business activity model to describe
request-processing-response pattern of business activities. As I mentioned in
Section 3.1.2, documents play an important role in a company. And as Section
Error! Reference source not found. described, the
request-processing-response pattern is used to describe how people in the
company execute business activities to process the documents and the views.
The range of a business activity is very broad. It can be from updating customer
name in a customer record to the generation of a balance sheet. The customers
define what and how they expect the application to perform in business activities.
Each business activity represents a system responsibility of the generated
application shall take. The meta-model of the business activity model is shown in
Figure 4-1.

32

Figure 4-1 Meta-model of the Business Activity Model

A business activity definition is composed from three parts, request,
processing, and response.

The request represents a request message which is sent from a
user to the application to perform a business activity. The request
describes request channel and request parameters. It also contains
information of the user. The request channel represents what protocol is
used to transmit the request message. The request parameters represent
necessary information provide by the user to the application to perform the
business activity. For example, a request specifies a request channel of
“HTTP” protocol and one request parameter of “purchasing order ID” to
search a purchasing order with the designed identification number. Thus
the request is “using HTTP to send a request message which contains
purchasing order ID”.

The processing represents business operations the application
has to execute. The processing contains a sequence of operations which
represents the decomposed business activity. An operation describes
operation type, operation target, and operation output. The operation type
represents what type of the operation it is. The operation type can be one
of the basic CRUD operations or any extended domain-specific operation.
When it is defined as the domain-specific operation, it must be further
mapped to one of the CRUD operations. The operation target represents
on which the operation to perform. It is always specific to a document or a
view. The operation output represents the output of the results of the
operation. There are two types of operation output. The first is the
operation target itself. The other is if the results of the operation are
success or not. For example, a processing contains one operation, and the
operation specifies that the operation type of “place” and the operation
target of “purchase order”. The operation type “place” is further mapped to

33

“create” operation. Thus the processing is to execute a “Place purchase
order” operation. The operations of the processing are executed in
sequence, never overlapping.

The response represents a reaction comes from the application in
replay to the request. The response describes response channel and
response target. The response channel describes what protocol is used to
transmit the response message. The response target describes what to
transmit to. The response target is assigned one of the operation outputs.
For example, a response contains the response channel of “SMTP”
protocol and the response target is the operation output of first operation
which is “an email with acknowledgement of a purchase order”. Thus the
response is “using SMTP to replay an email with acknowledgement of a
purchase order”.

4.1.2. Document/View Model

I propose using the document/view model (d/v model for short) to
describe operation targets of the business activities. The documents and the
views in the d/v model represent the business documents and the business
information gathered from different business documents in the business world. A
document records the results of business activities, such as purchase order for
order processing, shipping invoice for shipment of goods. Business operations in
the business activities only operate on the documents and the views, never on
the domain objects. Domain objects are explained in the next section. The
documents are defined from domain objects. The views are also used to record
business activities. They are used in a way as a window on many documents,
such as the monthly sales of product records. The line between the documents
and the views are blurred. The documents are usually used to record the daily
business activities. The views are usually used to show business performance in
order to make any business decisions. The meta-model of the document/view
model is shown in Figure 4-2.

Figure 4-2 Meta-model of Document/View Model

Generally, the documents shall persist in storage media. The storage

34

media may be any kind of media that provides persistent service, such as
database management system or file system. Each document or each view
represents a system responsibility of persistent service the generated
application shall take.

4.1.3. Domain Model

Domain model is not a new concept at all. It describes conceptual
objects, which are called domain objects, an application concerns [1][16][21]. It
characterizes an application from others. Different application for different
customers has different domain objects with definitions of attributes and
relationships among them. With regard to enterprise computing, it contains
conceptual objects of people, goods/services, money, and many others.

Domain model is also use as a communicating tool to help the
customers and the developers to speak the same language. It describes what
the customers use in their daily activities. The developers try to explore it in
order to build desired features in an application. Within ECSDF, it is not
computable. But it plays an extremely important role in ESCDF. The object
model generator can generate an interfacer or a controller role objects, but it can
never be possible to “guess” a domain model for enterprise computing. In
ECSDF, It is used as the communicating tool to help the customers and the
developers to build other three business models.

4.1.4. Business Rules Definition

Business rules of ECSDF constrain how/when/what of business
operations and business entities, the documents and the views. For example, a
business rule defines in the business activity “Add purchasing item to purchase
order” in its second operation “Add a purchasing item to a purchase order” of the
processing states that “the total price of a purchase order cannot excess
¥10000”. This example shows the constraints on the business activity. Business
rules definition also constrains on the value of the attributes of the business
entities. For example, a business rules constrains that the length of a customer’s
name cannot excess 30 alphabetic characters. Each business rule represents a
system responsibility that the generated application shall take to prevent the
constraint be violated.

The business rules are like IF-THEN statements. The IF part of the
statement represents the constraints, the THEN part of the statement
represents violation reactions indicate what actions to take if the constraints
are violated. For example, there is a business activity that a web customer adds
an item to a shopping cart. The IF part defines a constraint that states a

35

shopping cart can only accommodate up to ten shopping items. The THEN part
defines a violation reaction that states if the constraint is violated then shows a
warning message to the web customer.
` IF

counts of shopping items of a shopping cart >= 10
THEN

operationOutput displays “The maximum counts of a
shopping item is 10”

By defining constraints on the business activities and the business entities, the
generating mechanism in ESCDF generates business validation and violation
reactions service provider objects and source code.

The source code generator will generate source code to ensure the
constraints will never be violated and to display a default warning message
states that the rules are violated. The users and the developers can override the
default violation reactions.

4.2. Hello User Example, Episode II

After an incredible success of the delivery of HW 1.1, customers decide
to expand the Hello User application to be more capable. The new requirements
are to print a document contained “Hello” followed by a user name and then
followed by “you have accessed the application N times”. N is a count to show
how many times a user has access the application. The specifications are shown
as the following:

 A user of the application types a name on screen.
 The application then has to display a document contains “Hello”, follows

by the name, follows by “you have access “, follows by the count of how
many times the user has accessed the application, and follows by
“times”. For example, if a user types a name, Jenson, and it is the
second time he accesses the application, then it prints “Hello, Jenson,
you have accessed the application 2 times”.

 The constant “hello”, “you have accessed the application”, “times”, and
the count a user access the application shall be stored in a database.

 The screen shall be a terminal type input/output device or a web
browser.

 Other screen types may be added in the future.
 Storage of the constant strings and the count may be changed in the

future.
The new requirements are called HU 2.0. This time, Michael decides to use
ECSDF to evaluate its promises.

36

Michael first defines the domain model. It is a good idea to start from
finding domain objects. He discusses the domain model with the customer. After
he gains confidence that he does really understand the requirements, he then
creates the d/v model by referring the domain objects. The domain model and
the d/v model for HU 2.0 are shown in Figure 4-3 and Figure 4-4 respectively.

Figure 4-3 Domain Model of HU 2.0 in UML Class Diagram

37

Figure 4-4 Document/View Model of HU 2.0 in UML Class Diagram
 The domain model contains four domain objects. The User domain
object represents the user who uses the application. Other three domain objects,
YouHaveAccessed, Times, and Hello, represent the constant strings the
application uses. The User domain object has two attributes which represent
information about the user of the application. One is the name attribute, which
represents the name the user types and the other is the count attribute, which
represents the count the user accesses the application. All three constant string
domain objects have the same attributes, value, to represent the string the
domain object represent. The domain objects are labeled with UML-style

38

stereotype <<domainobject>>.

The d/v model contains two documents, the AccessNTimes document
and the User document. These two documents are created by referring to the
domain objects. The dashed line with arrowed head that is labeled with UML
styled stereotype <<reference>> represents a document referring to the
definition of the domain objects (see Figure 4-4). The User document refers to
the User domain object and the AccessNTimes document refers to the other
three domain objects, YouHaveAccessed, Times, and Hello. The documents
are labeled with UML-style stereotype <<document>>.

The detailed reference specifications are shown in UML-styled
constraints. The dot operator represents referring to the attributes of the
documents or the attributes of the domain objects. Equal sign = represents
definition of a document (left hand side) refers to the definition of a domain
object (right hand side). For example, the User document refers to the User
domain object which is represents with a dashed line with arrowed head that is
labeled with UML styled stereotype <<reference>>. The constraints of the
dashed line have defined that

User.name = User.name,
which means the definition of the name attribute of the User document (left hand
side) refers to the definition of the name attribute of the User domain object
(right hand side).

Michael then defines the business activities of the application. The business
activities model is showed in Table 4-1.

39

Table 4-1 Business Activity Model of HU 2.0

Model Element Value
Name: Get AccessTime and increase count by one
Request

requestChannel Stream
requestParameters User.name
requestSource Terminal user

Processing.Operations
operation:1

operationType Retrieval
operationTarget AccessTimeDocument
operationOutput operationTarget

operation:2
operationType Update
operationTarget User.accessCount
operationOutput operationResult

Response
responseTarget operation:1.operationOutput
responseChannel Stream

The business activity model contains one business activity. The
business activity is given a name “Get AccessTimeDocument and increment
count by one”. The name plays two roles in ECSDF. One is used to identify the
business activity and to convey the purpose of the business activity. The other is
used to be the name of business service providers when the object model
generator generates software class definition. The processing of the business
activity has two operations, one is to retrieve the AccessTimeDocument
document, and the other is to add 1 to the accessCount attribute of the User
document. Although the details of update operation are not shown in Table 4-1, it
shall always be defined for update operation.

Finally, Michael defines the business rules definition. There is only one
rule:

 User.accessCount must not be smaller then 0.

40

4.3. Basic Generation Mechanism

After Michael finishes the definition of the business model, it is about
time to have ECSDF to show its promises. In this section, I would like to use the
example described above to present how ECSDF is possible to generate the
object model and the implementation code.

Before I explain the “how” of the generation, I would to like discuss what
the prerequisite necessities for ECSDF to generate are. The following is a list of
high-level structural and behavioral elements that may exist in object model and
source code.

 Entities
 Entities relationships
 Entities constraints
 Entities interactions
 Application logic and domain logic

The entities are the software objects in the object model. Each software object
has attributes. The entities relationships represent the relationship among the
software objects. The entities constraints limit the values of object attributes. The
entities interactions represent a software object provides information or services
to other software objects. Application logic and domain logic are source code
that concretely state how things are done and how information are hold.

The four business models provide information for the object model
generator and the source code generator to produce these elements. In short,
the mechanism can be described as “each system responsibility is taken by a set
of collaborative software objects and, in turn, each software object takes smaller
responsibilities and collaborates with its neighboring software objects.” Following
sections, Section 4.3.1 and Section 4.3.2, describe the details of the generation
mechanism.

4.3.1. Object Model Generation

There are three types of rules, interaction rules, responsibility rules, and
architectural rules, to generate object model. These rules are described as the
following.
Interaction rules

The object model generator holds a collaboration template of the role
stereotypes. Collaboration template defines a set of collaboration patterns for a
specific domain (collaboration patterns are described in Section 2.2). The
collaboration template for enterprise computing is shown in Figure 4-5. A role

41

stereotype in the collaboration template can be viewed as a placeholder. The
placeholders contain two parts, structural part and behavioral part. Structural
part is equaled to property and operation definitions of a class. Behavioral part is
equaled to the implementation of a class. The object model generator fills the
placeholders with classes. How the generator knows what classes to fill? The
information comes from the Business Model.

Information
Providers

Service
Providers

Structuerer

Controller

Interfacer

Structuerer
Coordinator

Message path

Alternative choice

Legend

Figure 4-5 Collaboration Template of Application for Enterprise Computing

Responsibility rules
The Business Model contains all system responsibilities the application

must carry out. If the application carries out all these system responsibilities, we
can say the application is reliable because the customers can dependent on the
application to help them doing business. The object model generator generates
the object model that carries out all these system responsibilities. The business
activities play an important role in generating classes to fill in the placeholders. A
business activity defines a larger (system) responsibility an application has to
realize. It has three parts, the request, the processing, and the response. Each
part has smaller responsibilities. These smaller responsibilities are listed in Table
4-2.

42

Table 4-2 Responsibilities in Each Part of the Business Activity

Part No. Responsibility
R-1 Process request message send by a specific channel

defines in requestChannel. Request
R-2 Extract request parameters from request message.
R-3 Decide what classes shall process the operations.
R-4 Maintain classes that process operations
R-5 Execute each operation in turn.
R-6 Create document defines in operationTarget by values

defined in requestParameters.
R-7 Retrieve document defines in operationTarget by criteria

defined in requestParameters.
R-8 Update document defined in operationTarget by values

defined in requestParameters
R-9 Delete document defined in operationTarget by criteria

defined in requestParameters.
R-10 Return different types the results of the operation defines

in operationOutput
R-11 Maintain classes that provide information of the

documents

Processing

R-12 Hold information of a document
R-13 Return one of the operationOutput defines in

Processing.operations
Response

R-14 Return the operaitonOutput via a specific channel defines
in responseChannel

Table 4-3 Role Stereotypes and Their Responsibilities

Role Stereotype Responsibility
Interfacer R-1, R-2, R-14
Controller R-3, R-13

Service provider R-5, R-6, R-7, R-8,
R-9, R-10

Information holder R-12
Structurer R-4, R-11

43

These smaller responsibilities in Table 4-2 shall be taken by one or more role
stereotypes. In Table 4-2, each responsibility is given an ID for convenient
discussion sake. ECSDF predefines what role stereotypes shall take the
responsibilities. Table 4-3 shows these predefined relationships. The
relationships of the roles stereotypes and the responsibilities are discussed
below.

Interfacer processes the request and the response of the business
activity. It takes three responsibilities of the request and the response, R-1,
R-2, and R-14. The generated interfacer role stereotype class for HU 2.0 is
shown in Figure 4-6. The generated class has three operations,
processRequestStream, processRequest, and
processResponseStream. Operations processRequestStream and
processResponseStream are used to take the responsibilities R-1 and
R-14 respectively. Operation processRequest takes the responsibility
R-2.

-processRequestStream()
+processRequest()
-processResponseStream()

<<interfacer>>
RequestProcessor

Figure 4-6 Generated Class of Interfacer Role Stereotype

Controller decides what to do next. It takes the responsibilities R-3
and R-13 to execute the operations of the processing in sequence. The
generated controller role stereotype class for HU 2.0 is shown in Figure
4-7. The generated class has two operations,
getGetAccessNTimesService with a parameter and
processOperations. These two operations take the responsibilities R-3
and R-13. Operation getGetAccessNTimesService is a private
operation which is used by operation processOperations to get the
service providers which provide processing execution service.

Figure 4-7 Generated Class of Controller Role Stereotype

Service providers execute the operations. Service providers take
the responsibilities R-5, R-6, R-7, R-8, R-9, and R-10. The responsibilities
R-6, R-7, R-8, and R-9 may not always be taken. Their responsibilities are
taken by the generated application only when their operation types are

44

defined in the business activity. The operation type is always one of CRUD
(creation, retrieval, update, and deletion) operations. Creation, retrieval,
and deletion are always easier. ECSDF can infer implementations for all
operation types except update. Update contains computation. The
computation shall be defined by the customers or the developers. It is not
possible be inferred by ECSDF. The source code generator uses the
request parameters of the request and the operation target of the
processing to infer source code for creation, retrieval, and deletion.

The generated controller role stereotype class for HU 2.0 is shown
in Figure 4-8. The generated class has four operations,
GetAccessNTimesService with a parameter, execute,
retrieveAccessNTimes, and updateAccessNTimes.
GetAccessNTimesService is the constructor for the class. It has a
parameter which is defined in requestParameters in the request of the
business activity. Operations retrieveAccessNTimes and
updateAccessNTimes are both private and are used to perform the
operations defined in processing part of the business activity. In HU 2.0,
operation retrieveAccessNTimes takes the responsibility R-7 and
operation updateAccessNTimes takes the responsibility R-8. Operation
execute calls these two operations in sequence. It corresponds to the
responsibilities R-5 and R-10.

Figure 4-8 Generated Class of Service Provider Role Stereotype

Information holders hold information of the documents or the views.
Information holders take the responsibility R-12 to provide information
about the documents to the service providers. What information of the
documents to provide is defined in operationTarget of the processing part
in the business activity. The generated controller role stereotype classes
for HU 2.0 are shown in Figure 4-9. The generated classes have no
operation but only attributes to hold information of the documents.

Figure 4-9 Generated Class of Information Role Stereotype

45

Structurers maintain relationships of information holders and
service providers. When a service provider needs information from the
information holders, it does not get it directly from the information holders.
Instead, it asks a structurer to reach the necessary information holders.
When a controller needs service providers, it also has to ask a structurer to
reach the necessary service providers. The structurers take the
responsibilities R-4 and R-11. The generated controller role stereotype
classes for HU 2.0 are shown in Figure 4-10. Each class always has a
static operation getInstance that is used to get the only permissible
instance of the class. It is an implementation of Singleton pattern [22].
Each of them also has one or more operations to get classes it maintains.
In HU 2.0, class DocumentFactory has two operations
getAccessNTimes and getUser. Both operations take the responsibility
R-11. Class BusinessServiceFactory has one operation
getGetAccessNTimesService which takes the responsibility R-4.

Figure 4-10 Generated Class of Structurer Role Stereotype

Coordinators may be used to take the responsibilities of controllers.
But it is always a good idea to use the controllers instead of the
coordinators because the controllers are much smarter than the
coordinators. The controllers take more responsibilities, thus the burden of
the controllers’ neighboring objects is alleviated and those neighboring
objects can focus on their own responsibilities.

Besides these responsibilities in the business activity model, the d/v
model also contains responsibility. As mentioned in 4.1.2, each document
represents a system responsibility of persistent service to the document that
the generated application shall provide. Decomposed smaller responsibilities of
the persistent service are listed in Table 4-4.

46

Table 4-4 Responsibilities in Each Document

Part No. Responsibility
R-15 Create new data of document in persistent storage
R-16 Find data of document in persistent storage
R-17 Update data of document in persistent storage
R-18 Delete data of document in persistent storage

Document

R-19 Maintain classes that provide these persistent service

There are four responsibilities, R-15, R-16, R-17, and R-18 in each
document. Responsibility R-15, R-16, R-17, and R-18 may not always be taken.
These responsibilities match to the operation types, CRUD, in the business
activity model. Their responsibilities are taken by the generated application only
when the operation types are defined in the business activity.

The generated service providers role stereotype classes for HU 2.0 are
shown in Figure 4-11. There is one class of structurer role stereotype,
DAOFactory, and two classes, UserDAO and AccessNTimesDAO, of service
provider role stereotypes. These two service providers are used to manipulate
data in database. Operations insert, find, and save in the class UserDAO
correspond to the responsibilities R-15, R-16, and R-17. Operations insert
and find in the class AccessNTimesDAO correspond to the responsibilities
R-15 and R1-6. As usual, there is always a class that used to maintain the
service providers. Class DAOFactory takes the responsibility R-19. It is an
implementation of FactoryMethod pattern [22].

+getInstance() : DAOFactory
+getUserDAO() : UserDAO
+getAccessNTimesDAO() : AccessNTimesDAO

<<structurer>>
DAOFactory

+find()
+insert()
+save()

<<serviceprovider>>
UserDAO

+find()
+insert()

<<serviceprovider>>
AccessNTimesDAO

Figure 4-11 Generated Classes for persistent service

47

Business rules definition also represents responsibilities. Business rules
apply to the documents and the views in the d/v model and operations in the
processing of the business activity. Business rules shall be checked against any
point where applied documents are operated on or applied operations are
executed. Deciding when to check business rules is a trade-off between
performance and reliability. If checking too often, the performance can be
dragged down. Conversely, if checking too less, wrong data or malicious data
may be slipped through. The following list is the possible points to check
business rules:

1. In classes of interfacer role stereotype
2. In classes of controller role stereotype
3. In classes of structurer role stereotype which manage information

holders and service providers
4. In classes of information holder role stereotype
5. In classes of service providers role stereotype which provide data

persistent service
Deciding where to put the checking logic of the business rules are

another trade-off between performance and maintainability. The checking logic
can be spread in every place showed in the aforementioned list without calling
any other classes for help. It may have some performance gain. But if there is
any business rule change, it is very hard to hunt down every place where
modification is necessary. Or it can be gathered up in only a few classes and be
called by other classes that require the checking logic. It is best for
maintainability.

 In ECSDF, the generated application shall be flexible and reliable. And
these two characteristics are guidelines for deciding when to check and where to
place the checking logic. With regard to when to check, all aforementioned
places shall be checked because it promises reliability. With regard to where to
place the checking logic, the business rules are centralized in a few classes
because it promises flexibility. More explanations of the checking logic creation
are given in the next section.
Architectural Rules

 Architectural rule is very simple. It defines that there shall be one
collaboration group for a business activity. A business activity contributes a
certain set of role stereotypes to a collaboration group. The d/v model and the
business rules also contribute a certain set of role stereotypes to a collaboration
group. All the collaboration groups forms the object model. For example, if there
are two business activities, one is creating purchase order, and the other is
updating customer record. Then there shall be two collaboration groups for these
two business activities. And these two collaboration groups forms the generated

48

object model (see Figure 4-12).

Figure 4-12 Example of Architectural Rules

4.3.2. Source Code Generator

The details of source code generation are not discussed in my thesis. It
is the future work for my dissertation. Following discussions only provide ideas
concerning this topic.

We can use recently emerged code generation engine to produce
implementing logic. From the aspect of raising the abstraction level of
programming, the declarative style of programming improves productivity. One
of the most well-known declarative styles is JavaServer Page (JSP) [23]. JSP
uses tags to provide the necessary information to the code generator to produce
Java Servlet [24]. Generally, code generators hold code templates and the
developers provide extra information as the tags in a declarative way. The idea
of the source code generator in ECSDF is to use the Business Model as the tags
to provide information to generate application logic and domain logic. The d/v
model is used to create private fields and getter and setter methods. Business

Document/View Model

Purchase
Order

Customer
Record

Collaboration
Group A

Collaboration
Group B

Object Model

Business Activity Model

Creating
Purchase

Order

Updating
Customer

Record

Business Rules

Rules of
Purchase

Order

Rules of
Creating
Purchase

Order

Rules of
Customer

Record

Rules of
Updating
Customer

Record

49

rules are centralized in a few classes and Dependency Injection pattern [25] is
used to have every necessary place to be checked.

4.4. Advanced Generation Mechanism

One of the hardest problems for the model-driven approach is how to
have machines to know when and where to create relationships. There are two
kinds of relationships in an object model, inheritance and composition. Before
discussing of how to create these two relationships by machines, the purpose of
these two relationships shall be considered first. Without knowing why these
relationships are necessary, it is not possible to design the mechanical creation
mechanism.

Both relationships are used to extend an object’s responsibilities. But
composition is dynamic, whereas inheritance is static [1]. Within a collaboration
group, composition exists among collaborative objects to ask others to provide
service or to provide information. There may be a situation that there are too
many business activities and the object model just becomes bloated. It is
possible to optimize the object model to be more compact. Composition and
inheritance is helpful in the situation. For example, the interfacers of all
collaboration groups can be merged into a hierarchy of interfacers to provide
request message handling functionality. If multiple request channels exist, the
common responsibilities of the request message handling can be placed in a
superclass and specific responsibilities to each request channel are scattered
over subclasses. In short, the responsibilities shall be divided into a hierarchy
structure. Higher-level responsibilities shall be taken by superclasses and
lower-level responsibilities shall be taken by subclasses. Table 4-5 shows the
possible hierarchical responsibilities for R-1. Figure 4-13 shows the possible
generated interfacer classes for the hierarchical structure of R-1.
Table 4-5 Responsibilities for Hierarchy Structure for R-1

No. Responsibilities
R-1-1 Extract message head
R-1-2 Extract message body
R-1-1-1 Handle message head of request channel HTTP
R-1-1-2 Handle message head of request channel STREAM
R-1-2-1 Handle message body of request channel HTTP
R-1-2-2 Handle message body of request channel STREAM

50

Figure 4-13 Class Diagram for R-1

There is no significant benefit of optimizing an object model with these
two relationships for reuse. For human to handle complexity, this kind of
optimization is helpful. But for machines it is skeptical. But the conclusion may
be too early. I would like to conduct more studies on this topic in the future.

51

5. DEVELOPING ENVIRONMENT FOR ECSDF

This chapter describes the developing environment developed for
ECSDF. It is developed as Eclipse plug-in. It is not a traditional integrated
developing environment for text-based programming language. It provides
functionality to programming from higher abstraction level. Current
implementation provides project explorer, document/view model editor, business
activity model editor, and rule-based object model generator. Others functionality
expects to be implemented in my dissertation.

5.1. Overview

In Chapter Error! Reference source not found., the details of the
generation mechanism of ECSDF are discussed. The next work is building a
developing environment based on the mechanism. Building a developing
environment is not an easy job. A contemporary developing environment usually
provides as an integrated, all-in-one solution application. Following is a list of
common functionality.

 Elegant source code editor
 Source code visualization, such as UML diagrams supports
 Outliner

Some others provide more advanced functionality.
R-15. Source code rafactoring
R-16. Code skeleton generation from UML diagrams
All these common and advanced functionality are central to source code. For
ECSDF, the focus is shifted from source code to modeling. There are two
choices for the work.

 Implementing from scratch
 Using existing framework and expanding it

Surely our choice is the second one. A developing environment bases on
ECSDF is developed as a plug-in of Eclipse platform [26], which is called
ECSDF-DE (ECSDF developing environment). One of the most significant
benefits of Eclipse is extensibility. Eclipse is not only a framework to provide
functionality of GUI and resource management, it is effectively a platform to be
extended into any creative works. ECSDF-DE is provided as an all-in-one
solution for modeling.

52

5.2. Functional Requirements

ECSDF-DE has two goals:
 Rapid development for developers
 Expandable for researchers

Its functional requirements are listed in Table 5-1.

Table 5-1 Functional Requirements of ECSDF-DE

Function Implemented Future Work

Project explorer

Document/view model editor

Business activity model editor

Business rule editor

Object model generator

Source code generator
Verification and validation of the
Business Model
Virtual machine

Not all of the requirements are implemented in this thesis. The project
explorer, the document/view model editor, the business activity model editor, and
the object model generator are implemented first. Others are leaved out and
shall be implemented in the dissertation.

The project explorer is a tree-styled viewer for project contents. An
ECSDF project contains the Business Model, the generated object model, and
the generated source code. The document/view model editor, the business
activity model editor, and the business rule editor are used to edit the d/v model,
the business activity model, and the business rules of ECSDF respectively. The
object model generator and the source code generator of ECSDF-DE are the
implementation of generation mechanism described in Section 4.3. Verification
and validation of the Business Model is used to verify and validate the
correctness of the business model. Virtual machine provides a real-time running
environment which directly executes software system from the Business Model.
Following section described the implemented functional requirements.

53

5.3. Implementation

Figure 5-1 shows the main elements of ECSDF-DE. ECSDF-DE is
comprised from three elements, Eclipse plug-in, rule-based engine, and
database. The plug-in provides the Business Model graphical editing
functionality. The rule-based engine generates the object model. The database
stores the Business Model data. Lines with arrow head indicate the flow of data.
The data of the Business Model are provided to the rule-based engine to
generate the object model. The generated object model goes to the plug-in to
provide visual representation. The data of the Business Model are stored in and
retrieved from the database.

Figure 5-1 Main Elements of ECSDF-DE

5.3.1. Eclipse Plug-in

Figure 5-2 shows the screenshot of the ECSDF-DE. The basic user
interface of Eclipse is a multi-paned window which could be customized for
different purposes [26]. In ECSDF-DE, the windows are customized with the
following items.

1. Project explorer is a tree-styled view which shows the contents of the
Business Model and the generated object model.

2. Editing area is stacked with windows which has tabs for navigation. The
document/view model editor and the business activity model editor are
hosted in the editing area.

3. Console output is used to show the informative messages, such as the
execution of the object model generator.

54

Figure 5-2 ECSDF Developing Environment

Figure 5-3 and Figure 5-4 show the document creation window and the
business activity creation window respectively. These windows provide the
creation functionality of the documents and the business activities.

Figure 5-3 Document Creation Window

Project
explorer

Editing
area

Console
output

55

Figure 5-4 Business Activity Creation Window

Figure 5-5 and Figure 5-6 show the document editor and the business
activity editor respectively. These editors provide the editing functionality of the
documents and the business activities that already exist in the Business Model.
The view editor is not implemented in the thesis.

56

Figure 5-5 Document Editor

57

Figure 5-6 Business Activity Editor

5.3.2. Rule-Based Engine

The object model generator uses a rule-based engine to produce the
object model structure. The rules are defined based on the mechanism
described in Section 4.3. Currently the rules are hard-coded into a text file. In the
future, a more flexible rules definition editor will be considered. In the current
implementation, a collaboration group is created for each business activity.
Figure 5-7 shows the generated object model for the business activity “BA-1:
Search product catalog” of the demo application. If more than one collaboration
group exists, they can be optimized into a merged collaboration group. The
optimizing implementation is based on the mechanism described in Section 4.4.

58

Figure 5-7 Generated Object Model

Currently, Jess is used as the engine [27]. It does not imply that ECSDF
is designed specific to Jess. The mechanism of ECSDF can be implemented by
any rule-based engine or even without a rule-based engine but code from
scratch. Jess is comprised from two main elements, facts and rules. The facts
represent the things about the real-world environment. The rules represent what
to do if a fact occurred. Facts trigger rules, rules assert more facts. With regard
to ECSDF-DE, the data of the Business Model are inputted as the facts. The
generating mechanisms are solidified to the rules. The Business Model triggers
the object generating rules, and the object generating rules assert the object
model structure. The work is depicted in Figure 5-8.

59

Figure 5-8 Works of Jess

60

6. APPLYING AND EVALUATING OF ECSDF

This chapter describes the application and the evaluation of ESCDF. To
verify the effectiveness of ECSDF, ECSDF-DE is used to develop a software
system for enterprise computing. Another three-layered software system is
developed by hand-coded as a comparison. The details of the software
specification are described in Appendix-A. The design materials of both software
systems are illustrated in Appendix-B. The evaluation is carried out against
software architecture and object models.

6.1. Overview

In Chapter Error! Reference source not found., the mechanism of
ECSDF is described. In Chapter 5, the implementation based on the mechanism
is introduced. Then, I would like to evaluate the effeteness of ECSDF. The
specifications of software system for enterprise computing (BMS for short)
described in Appendix-A is developed into two software systems. One is done by
hand and the other is done by ECSDF-DE. The context diagram of BMS is
shown in Figure 6-1. BMS provides web store, basic information, procurement,
selling, and inventory functionality. Customers order products from the web store
via the Internet. Basic information functionality provides management of data of
customers, suppliers, and products. Procurement functionality provides
management of purchasing documents. Selling functionality provides
management of sales documents. Inventory functionality provides management
of product storage.

61

Business Management
System

$ $
$

PurchasingSales

CustomersInventory Products Data

Products

Product Catalog

Shopping
Carts

Sales
Documents
Customers’ Data

Purchase
Documents

Products’ Data

Suppliers’ Data

Products’ Data

Figure 6-1 Context Diagram of BMS

As mentioned in Section 3.1.2, there are tons of documents a company
creates and preserves. The types of the documents that are managed by BMS
are shown in Figure 6-2. The arrowed lines represent the processing flow.

Figure 6-2 Types of Documents Managed by BMS

62

In the following sections, the evaluation is performed against software
architecture and object model of the hand-coded BMS and the
ECSDF-generated BMS. The criteria use to evaluate are list as the following:

1. How “well” the desired quality attributes of both systems are achieved.
2. Productivity of both systems

Different software system has different focused quality attributes [28].
The hand-coded BMS focuses on maintainability and flexibility. The
ECSDF-generated BMS focuses on flexibility and reliability. It makes no sense
using only one set of quality attributes to evaluate both systems. Thus, the
evaluation is not carried out by using the same set of quality attributes to
evaluate both systems. Instead, the evaluation is carried out to see how “well”
the desired quality attributes of each system is achieved. The software quality
attributes are not only concerned with the choices of architectural styles but shall
be considered throughout design, implementation, and deployment [28]. My
evaluation focuses on the architecture and the object model. There is no any
implementation and deployment artifact created, thus implementation and
deployment aspects are not considered. There is no any standard way,
quantified approach to evaluate quality attributes, thus a narrative style is used.

For further discussion, the definitions of the quality attributes are shown
in Table 6-1
Table 6-1 Definitions of Quality Attributes

Quality Attributes Definition

Maintainability The quality of being modifiable without
affecting other parts of the system

Flexibility The quality of being adaptable to other
situations

Reliability The quality of being dependable by the users
of the system

Productivity
The quality of being effective and speedy
completion of the system without
compromising other desired quality attributes

6.2. Architecture

6.2.1. Hand-Coded BMS

The hand-coded BMS follows “traditional” three-layered architecture

63

which consists of presentation layer, domain layer, and data source layer
[29][30][31]. The presentation layer handles interaction between the user and
the software system. The domain layer contains the application-specific or
domain-specific logic that work for current problem domain. The data source
layer handles communication with other systems [30]. This three-layered
architecture has following benefits:

 The dependencies between layers are minimized. For example, the
change of external database system only affects the data source layer.
The presentation layer and the domain layer are not affected.
Maintainability is achieved.

 Each layer has specific responsibilities. New services can be added to a
layer easily. For example, if a new service to access data stored in LDAP
(Lightweight Directory Access Protocol) must be added, the only
necessary place to extend it is the data source layer. Flexibility is
achieved.

 The developing works can be divided according to the separation of the
layers. Each layer follows a set of well-known patterns to speed up
design works. Productivity is achieved.

Although the three-layered architecture helps to achieved desired quality
attributes, any hand-coded system suffers from the ripple effect of any
requirement change. It requires the developers to track the system around to
make modification. It does not only concerns with design and implementation; it
is the limitation of human brains.

6.2.2. ECSDF-generated BMS

The ECSDF-generated BMS consists of multiple collaboration groups.
Each collaboration group takes the responsibilities of the Business Model.
Changes to the Business Model can be easily handled because the only work is
a creation of a new collaboration group. Flexibility is achieved.

A collaboration group realizes the responsibilities of the Business Model
by using the language the customers understand. The specifications described
by the language are later directly used to generate software system. There are
no misunderstanding or misinterpreted of the requirements. Reliability is
achieved.

ECSDF-DE provides a “magic” menu item to generate the object model
(see Figure 6-3). All the works of software development are simplified by
ECSDF-DE with a click on the menu item. Any change to the Business Model
can be easily handled by re-generating of collaboration groups. Productivity is

64

achieved.

Figure 6-3 “Magic” Menu Item

6.2.3. BMS versus BMS

As discussed in Section 6.2.1 and Section 6.2.2, both BMSes achieves
their own desired quality attributes, but the criteria of the evaluation are how
“well” they are. The following comparison discussed both BMSes:

With regard to the hand-coded BMS, maintainability is a big issue.
Although layered-architecture and well-modularized design and
implementation have some remedies, human brains are limited.

Both BMSes are productive. With a good design, implementation
can be simplified to a set of the coding patterns. The developers only have
to follow the set of the coding patterns. Undoubtedly, ECSDF provides
much higher productivity than the hand-coded BMS. Human are inferior to
machines in this kind of recursively occurred works.

Both BMSes are flexible. The layered-architecture and the
well-modularized design and implementation are helpful. But again,
ECSDF provides much superior performance of flexibility than human.

With regard to reliability of ECSDF-generated BMS, there are
issues about verification and validation of the Business Model. It shall be
the future work.

6.3. Object Model

6.3.1. Hand-Coded BMS

Framework and patterns are two keys to achieve the desired quality
attributes in the hand-coded BMS. Struts [12], a framework for web applications,
is used in the presentation layer. The hand-coded BMS also uses a wealth of the
patterns. A pattern consists of one or more classes. The patterns are used as a

65

convenient design and communication tool for designers [30][31]. The patterns
used in the hand-coded BMS and the relationships among them are shown in
Figure 6-4. The design of the hand-coded BMS provides the following benefits:

Maintainability is achieved by the framework and the patterns.
Struts provides a clean separation of models, views, and controllers.
Different pattern takes different responsibilities. For example,
ApplicationController in the presentation layer has the responsibilities to
manage views and commands. The views are used to show information to
the users. The commands represent requests of the user to the
hand-coded BMS. Any change to the views or the commands is limited to
this pattern. Modification is easier.

Flexibility is achieved by the patterns. For example, if a new
database is added to support data storage, a new class that implements
Data Access Object pattern [30][31] can be added easily to support this
requirement.

Productivity can be achieved by the patterns. The patterns provide
well-known solutions to well-defined problems [22][30][32]. The
developers comprehend the design of the hand-coded BMS easily by
pattern names. Learning curve is flatted. Communication path is shortened.
And coding time is compressed.

66

Figure 6-4 Pattern Relationships of the Hand-Coded BMS

6.3.2. ECSDF-Generated BMS

ECSDF-generated BMS consists of a set of collaboration groups. A
collaboration group is created from a collaboration template. A collaboration
template consists of various role stereotypes (see Figure 4-5). Usually, a role
stereotype is mapped to a class. The object model of the ECSDF-generated
BMS provides the following benefits:

Flexibility is achieved by collaborations. Collaboration patterns
define possible message sending paths between role stereotypes. In
Figure 4-5, a collaboration template is defined for enterprise computing.

67

Other domains may have different collaboration template which results
from different collaboration patterns.

Reliability is achieved by collaborations. Each collaboration group
realizes the responsibilities of the Business Model. The users can
dependent on the ECSDF-generated BMS by testing each collaboration
group separately.

There is not question that ECSD provides superior productivity.
Tedious and recursively occurred works are best done by machines.

6.3.3. BMS versus BMS

How “well” both BMSes are? The following comparisons discuss both
BMSes:

With regard to the hand-coded BMS, the framework and the
patterns are used to alleviate issues of maintainability. But any change to
the requirements still lead to a long journey of modification.

Both BMSes provide productivity. ECSDF is superior to the
hand-coded BMS. With a cleanly responsibilities sharing among
collaborative software objects, the object model can be easily generated
and expanded.

Both BMSes are flexible. But the ECSDF-generated BMS is
inferior to the hand-coded BMS. Although the collaboration patterns and
the collaboration templates provide flexibility, there is no magic that
machines can generate code for new technology they have not known yet.
New rules shall be written by the developers.

As mentioned in 6.2.3, more studies on reliability of ECSDF are
ncessary. I will focus on how to ensure the users can dependent on the
ECSDF generated software system.

68

7. CONCLUSION

This chapter describes the conclusions of the thesis. It briefly states
what I have represented about my works. It also introduces if I have
accomplished the purpose of my work, the importance and the effects of the
current research works, and the possibilities for the future work.

7.1. Summary

Programming from higher abstraction level provides many benefits.
Developing software for enterprise computing is especially beneficial. A software
developing framework for enterprise computing is conceived. The framework
uses only one language for the users and the developers. Misunderstanding and
misinterpretation are avoided. The object model generator and the source code
generator of ECSDF are developed for building flexible and reliable software
system for enterprise computing. The implementations of ECSDF, based on
Eclipse, are also developed. They are the combination of Eclipse plug-in for
graphical interactions, the rule-based engine for object model and source code
generation, and the database for the Business Model repository. An evaluation of
two software systems, one is developed by hand-coded and the other is
developed by ECSDF, is carried out. The results of the evaluation show that the
ECSDF-generated software system provides flexibility, reliability, and
productivity

7.2. Significance of the Current Research

The research is successful. A software developing framework, ECSDF,
that can be used to describe business activities of enterprise computing and to
generate proper software architecture, object models, and source code is
conceived. The implementation of ECSDF, the development environment based
on Eclipse, is built. The hand-coded business management system is developed
for evaluation purpose. The gap is filled.

The Business Model of ECSDF uses only one language for the users
and the developers. It is understood by the users and the users get away with
mysterious jargon. It also helps to avoid misunderstanding and misinterpretation
of requirements. It is expressive to describe essential business activities. It is
also rigorous and unambiguous to be transformed by machines.

69

The software systems generated by ECSDF are reliable because
ECSDF uses the language customers can understand. They are also flexible
due to the idea of roles, responsibilities, collaborations. ECSDF brings business
benefits of time to market and customer satisfaction to application users and
application developers.

ECSDF is inspired by the ideas of roles, responsibilities, and
collaborations. With the well-defined responsibilities in the Business Model, and
the ideas of the collaboration patterns and the collaboration groups, the
generation mechanism bridges the gap between the real world facts and the
cognizant of the real world, and the gap between the cognizant of the real world
and software world cleanly. Although many software developing methodologies
refer to responsibilities, ECSDF is a vanguard to use the ideas in the study of
theoretical and practical model-driven approach.

7.3. Future Work

The conceived framework for enterprise computing leaves out room for
improvements and opens many possibilities.

Currently, responsibility assignments transform to rules manually. It is
better to edit the assignments directly and have machines do the transformation
of assignments to rules. The source code generator needs more discussions
and considerations. The generated software systems are proved to be flexible.
To be a truly reliable, more studies are needed. There should be a way that the
correctness of the Business Model can be validated and verified. Currently, the
d/v model is used as a database schema definition. If the d/v model can be
defined directly by “the documents” of the real world and have machines to
generate the computational database schema, productivity can be raised. The
benefits of object model optimization are unclear. It needs more studies. With the
progress of the improvements, the implementations of ECSDF, ECSDF-DE will
be modified simultaneously.

The ultimate goal of the ECSDF is the virtual machine. The virtual
machine is an autonomous execution environment for the Business Model. With
only the definition of the Business Model and the desired quality attributes, the
virtual machine can have itself adapt to the desired quality attributes. For
example, if the desired quality attributes of software system are performance
and security, the virtual machine can make a trade-off between these two quality
attributes by adding specific implementations to the software system without
human interference. To achieve this functionality, the study of executing

70

characteristics of ECSDF-generated software shall be done.

71

APPENDIX-A. SPECIFICATION OF BMS

A-1. Overview

Mount Tea Store is a mail order store. Its main business is selling Taiwan
tea and tea jar. Almost all of its business processes and business information is
done manually by using spreadsheet application. Customers’ information,
product records, supplier information, and purchase records are recorded in the
spreadsheet application. When a data update is needed its staff have to use Find
and Replace in the spreadsheet application. Although spreadsheet application
provides easy calculation and reporting function, there are many inconsistent
found in monthly account settlement. Since data are spread in different sheets,
copy and paste is needed when exchange information among sheets.

Because the growing business in recent months, the boss of Mount Tea
Store decided to adopt a software system, to integrate and to automate its selling,
purchasing, and stocking business information processing. Such system would
save staff time and provide precise and timely business information and meet
the Mount Tea Store’s future growing business needs. It would also provide a
web-based ordering system, allowing existing and new customers to order
products directly on Internet.

A-2. Vision Statement

For Mount Tea Store which wishes to maintain selling, purchasing, and
stocking information, the Business Management System is an Internet-based
application that will store all selling, purchasing, and stocking related information
safely, automate business process and provide easy to use interface to retrieve
and maintain these data. Unlike the current spreadsheet program, staffs that use
the Business Management System will not have to record the business
information manually, which will save them time, will provide precisely and timely
information, and will increase the business opportunity.

A-3. Features

FE-1: Maintain selling data (quote to cash)
FE-2: Maintain purchasing data (purchase to pay)
FE-3: Maintain stocking data (inventory management)

72

FE-4: Customer can order product on Internet (web storefront)

A-4. Actor-Goal-Use Cases List

Actor Goal Use Case

Search product catalog Search product catalog
Buy products Buy products
Track order history Track order history
Join membership Join membership
Get product recommendations Get product recommendations

Web
Customer

Update member account Update member account
Process sales documents Process sales documents
Process payment Process invoice documents
Process returns Process return documents
Create members
Modify members

Sales Staff

Delete members
Manage members

Create users
Update users
Delete users

Manage user

Create items in product
catalog
Update items of product
catalog (change product
description, supplier etc.)

System
Administrator

Delete items from product
catalog

Manage product catalog

Add items to inventory
Modify items in inventory
(location, stocking amount)

Inventory
Staff

Delete items from inventory

Manage inventory

Procurement
Staff

Process purchases Process purchase documents

73

APPENDIX-B. DESIGN OF BMS

B-1. Package Diagram of the Hand-Coded BMS

74

B-2. Class Diagram of the Package com.zurich.bms.business
of the Hand-Code BMS

75

B-3. Class Diagram of the Package com.zurich.bms.db of the
Hand-Code BMS

76

B-4. Class Diagram of the Package com.zurich.bms.domain of
the Hand-Code BMS

77

B-5. Class Diagram of the Package com.zurich.bms.struts of
the Hand-Code BMS

78

B-6. Class Diagram of the Package com.zurich.bms.struts of
the Hand-Code BMS

B-7. List of Business Activities of the ECSDF-Generated BMS

Use Case No. Name

Search Product Catalog BA-1 Search products
BA-2 Create shopping cart (Quotation)
BA-3 Add shopping item to shopping cart

Buy Products

BA-4 Create SalesOrder from shopping cart
Track Orders BA-5 List SalesOrders

BA-6 Create Customer record Join Membership
BA-7 Add address to Customer record

Get Product
Recommendations

BA-8 Get product recommendation

BA-9 Get Web Customer master record
BA-10 Update Web Customer master record
BA-11 Get Web Customer address

Update Member Account

BA-12 Update Web Customer address
BA-13 Create Quotation
BA-14 Add quotation item to Quotation

Process Sales
Documents

BA-15 Create SalesOrder from Quotation
Process Invoice
Documents

BA-16 Create Invoice from SalesOrder

BA-17 Create Return Process Return
Document BA-18 Add return item to Return

BA-19 Create Customer record Manage Customers
BA-20 Add address to Customer record

79

BA-21 Get Customer master record
BA-22 Update Customer master record
BA-23 Get Customer address
BA-24 Update Customer address
BA-25 Create Vendor record
BA-26 Add address to Vendor record
BA-27 Get Vendor master record
BA-28 Update Vendor master record
BA-29 Get Vendor address

Manage Vendors

BA-30 Update Vendor address
BA-31 Create PurchaseOrder Process Purchase

Document BA-32 Add purchase item to PurchaseOrder
BA-33 Create Product Record
BA-34 Get Product Record

Manage Product Catalog

BA-35 Update Product Record
BA-36 Get Inventory record Manage Inventory
BA-37 Update Inventory record

80

B-8. The Document/View Model of the ECSDF-Generated BMS

81

B-9. The Domain Model of the ECSDF-Generated BMS

82

Acknowledgments
Many people helped me in this thesis, and I wish to acknowledge and

thank them.

First, I would like to thank Professor Takuya Katayama for his kindness
encouragement and guidance. I would also like to thank all the members of
Foundations of Software Laboratory, especially, Mr. Toshiaki Aoki, Mr. Mitsutaka
Okazaki, and Mr. Naohiro Hayashihara. Thank you for giving me precious
comments on my research.

I would like to thank my family in Taichuang, mom, my elder sister, my
elder bother-in-law, my lovely nephew Chi-Yo, and my lovely nieces Chi-Jun and
Chi-An. Thank you for your endless support. I would like to thank my family in
Tainan, my mother-in-law, my younger sister-in-law Marilyn, my younger
bother-in-law In-Bin, and my younger bother-in-law Jamy. Thank you for your
kindness to me. Especially, I would like to thank my father-in-law. Thank you for
brining me Lisa and your family to my life. I would also like to thank Mr. Toshio
Hamada and Mrs. Tomoko Hamada, and their family. Thank you for treating me
like one of your family. You are my parents in Japan. So many thanks to you all.
All of you support me go such far. And last, my dear Lisa, you know I do not have
to say no more words here. You are my whole life.

83

References

[1] Wirfts-Brock, Rebecca. Object Design, Roles, Responsibilities, and
Collaborations. Addison-Wesley, 2003.

[2] OMG. MDA Guide Version 1.0.1. http://www.omg.org/docs/omg/03-06-01.pdf.

[3] Frankel, David. Model Driven Architecture, Applying MDA to Enterprise
Computing: Practice and Promise. Wiely, 2003

[4] Wirfs-Brock, Rebecca, and et al. Object-Oriented Design: A
Responsibility-Driven Approach. OOPSLA’89

[5] Beck, Kent, et al. A Laboratory for Teaching Object-Oriented Thinking,
OOPSLA’89.

[6] Wirfs-Brock, Rebecca, Characterizing Your Objects. The Small Talk
Report, Vol. 2, No. 5, 1992.

[7] OMG. Unified Modeling Language, version 1.5,
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf

[8] OMG. Meta-Object Facility (MOF™), version 1.4,
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf

[9] Thomas, Dave. MDA: Revenge of the Modelers or UML Utopia? IEEE
Software, Vol 21, No. 3, 2004.

[10] Sun Microsystems, Java 2 Platform, Standard Edition, Version 1.4.2,
http://java.sun.com/j2se/1.4.2/docs/api/index.html

[11] Sun Microsystems, Java 2 Platform, Enterprise Edition, Version 1.3,
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html

[12] Apache Software Foundation, Apache Struts Framework Javadoc,
http://struts.apache.org/api/index.html

[13] Fowler, Martin. UML Distilled, 3rd Ed. Addison-Wesley, 2004.

84

[14] Cook, Steve. Domain-Specific Modeling and Model Driven Architecture.
MDA Journal, January 2004.

[15] Wiegers, Karl. Software Requirements. Microsoft Press, 2003

[16] Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart
of Software. Addison-Wesley, 2004.

[17] Thomas Dave, UML- Unified or Universal Modeling Language: UML2,
OCL, MOF, ECSDF – The Emperor Has Too Many Clothes, Journal of Object
Technology, Vol 2, No. 1.

[18] Fowler, Martin. PlatformIndependentMalapropism.
http://martinfowler.com/bliki/PlatformIndependentMalapropism.html

[19] Martin, James, et al. Object-Oriented Methods: A Foundation. Pretence
Hall PTR, 1995.

[20] Business Process Group. What is a Business Rule?
http://www.businessrulesgroup.org/brgdefn.htm

[21] Larman, Craig. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process, 2nd ed.
Prentice Hall PTR,

[22] Gamma, Erich, et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[23] Sun Microsystems. JavaServer Pages 1.2 Specifications.
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

[24] Sun Microsystems. Java Servlet 2.3 Specifications.
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

[25] Fowler, Martin. Inversion of Control Containers and the Dependency
Injection pattern. http://martinfowler.com/articles/injection.html

[26] Shavor, Sherry, et al. The Java Developer’s Guide to Eclipse.
Addison-Wesley, 2003.

85

[27] Friedman-Hill, Ernest. Jess in Action. Manning, 2003.

[28] Bass, Len, et al. Software Architecture in Practices. Addison-Wesley,
2003.

[29] Buschmann, Frank, et al. A system of Patterns, Pattern-Oriented
Software Architecture, Wiley. 1996.

[30] Fowler, Martin, et al. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2003.

[31] Alur, Deepak, et al. Core J2EE Patterns, Best Practices and Design
Strategies. Prentice Hall PTR, 2003.

[32] Alexander, Christopher, et al. A Pattern Language: Towns, Buildings,
Construction. Oxford, 1977.

