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Abstract

In communication, we each hold various ideologies and assertions, contem-
plating whether we can ultimately convince others of our own claims. At
times, we may ignore or conceal arguments that are disadvantageous to
our own claims in order to persuade others to accept them. We analyze
a formalization of which arguments are hidden or ignored in order to get
someone to accept a certain claim.

This behavior is particularly prevalent in interactive multiplayer games,
where actions are often taken to achieve one’s victory conditions. One well-
known example of such a game is the Werewolf game [1,2], where players are
divided into Werewolf and Villager factions. All players engage in discus-
sions, with the Villager faction aiming to identify and eliminate Werewolves
from the village, while the Werewolf faction seeks to deceive the Villagers
and eliminate them. Among these two factions, the werewolf faction, in
particular, often ignores or conceals arguments unfavorable to their claims
in order to make them more acceptable. This is because, fundamentally, the
werewolf faction finds themselves at a disadvantage in debates. While the
villager faction moves closer to victory by honestly sharing the information
they possess, the werewolf faction must progress discussions in a distorted
manner, such as by telling lies, in order to navigate the situation. Hence, the
werewolf faction frequently engages in such behavior.

To address this issue, we formalize the act of ignoring or concealing
unfavorable arguments to persuade acceptance using Abstract Argumen-
tation Framework [3]. Then, we propose an implementation according to
our proposed formalization and verify through algorithms how this affects
multi-agent systems. Our algorithmic procedure can be briefly explained
as follows: First, each agent provides arguments through debate, creating
a set of arguments. Then, we examine from the debates which arguments
are critical of each argument and form a set of relationships based on this.
Through an algorithm, arguments are removed based on the set of arguments
and their relationships. The sets of arguments and relationships are then
reduced. And then, the process involves identifying the set of arguments
that have been reduced by eliminating unfavorable arguments to ensure the
acceptance of the desired claim.

By identifying the set of arguments being reduced, it becomes possible
to understand which arguments and relationships of arguments within the
arguments need to be removed in order to gain acceptance of the desired
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claim by others.
Keywords: Abstract Argumentation, Multi-agent System, Deception

Detection, Dynamic Argument.
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Chapter 1

Introduction

1.1 Motivation

In communication, we each hold various ideologies and assertions, contem-
plating whether we can ultimately convince others of our own claims. At
times, we may ignore or conceal arguments that are disadvantageous to our
own claims in order to persuade others to accept them. We analyze which
arguments are hidden or ignored in order to get someone to accept a certain
claim.

These actions range from serious issues to games, such as serious instances
occurring in trials or company meetings. In trials, for instance, prosecutors
and defense attorneys engage in debates to provide the desired outcome for
their respective clients. They present various arguments to convince the judge
or presiding officer, sometimes ignoring unfavorable arguments to support
their claims. Acts such as tampering with evidence or giving false testimony
are prohibited by Article 104 of the Penal Code and Article 169 of the Penal
Code, so concealing arguments would not occur [6]. Thus, there might be
instances where arguments are disregarded, even in serious cases like trials.
As for gaming examples, well-known ones include the Werewolf game and
Among Us [1, 2, 4]. These multiplayer games are interactive and remain
popular. In the Werewolf game, players are divided into the factions of
werewolves and villagers. All players engage in discussions, with the Villager
faction aiming to identify and eliminate Werewolves from the village, while
the Werewolf faction seeks to deceive the Villagers and eliminate them.

We formalize the act of ignoring or concealing unfavorable arguments to
persuade acceptance using Abstract Argumentation Framework [3]. Then,
we verify through our proposed algorithms how this affects multi-agent
systems [7]. In various ways, we engage in the suppression or concealment
of disadvantageous arguments in order to persuade others to accept our own
assertions. Moreover, this process can be logically articulated.

The mechanism behind this was elucidated by Dung in 1995, with the
framework of Abstract Argumentation (AA) [3] and its associated semantics.
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Figure 1.1: Among Us [4]

Through these, it became possible to derive conclusions in arguments using
sets of formalized arguments and attack relations [8].

We formalize acts such as “ignoring or concealing” disadvantageous ar-
guments to persuade others to accept our assertions using AA. Furthermore,
we aim to verify through algorithms how this behavior affects multi-agent
systems. By dynamically manipulating the arguments held by each agent
and their attack relations in the AA framework (a.k.a. an AA graph) (cf. an
example of such a dynamic manipulation in [7]), it is possible to influence
the interpretation of multi-agent systems and their discourse. This enables
the alteration of arguments deemed acceptable in discourse.

In order to gain acceptance for desirable arguments from others, what
arguments would need to be ignored or concealed? Our proposed methodol-
ogy is outlined as follows: First, each agent contributes arguments through
debate, forming a set of arguments. Next, attack relations are determined
from the debate, forming a set of attack relations. Through our algorithm,
arguments are then eliminated based on the set of arguments and attack
relations. Subsequently, the set of arguments and attack relations related
to the eliminated arguments is reduced. And then, the process involves
identifying the set of arguments that have been reduced by eliminating
unfavorable arguments to ensure the acceptance of the desired claim. By
identifying this, it becomes possible to understand which arguments and
attack relations of within the arguments need to be removed in order to gain
acceptance of the desired claim by others.

Using this methodology, we analyze which arguments need to be ignored
or concealed in order for others to accept a certain assertion. In this study,
we utilize the Werewolf game as an example to validate these concepts.
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Table 1.1: Victory conditions [1, 2]

Faction Victory conditions
Villager If all the Werewolves can be executed,

it results in victory.
Werewolf Victory is achieved if the number of living members

in the Werewolf faction is equal to or fewer than
the number of living members in the Villager faction.

1.2 The Werewolf game

The game consists of alternating day and night turns. During the night turn,
characters with special abilities take action, and the Werewolves target and
eliminate one member of the Villager faction. During the day turn, based
on the information from the night turn, all surviving players engage in a
maximum 5-minute discussion. They then vote to execute one player whom
they suspect to be a Werewolf. The player with the most votes is eliminated.
This cycle repeats, and the game concludes if either the Villager faction or the
Werewolf faction satisfies their respective victory conditions. Each faction’s
victory conditions are as outlined in Table 1.1 [1, 2].

Next, let’s explain the abilities of the role we will use in the experiment
this time. The abilities of each position is represented in Table 1.2.

The Werewolf faction and the Villager faction will engage in discussions
aiming for the victory conditions outlined in Table 1.2 by effectively utilizing
the roles in Table 1.1.

1.3 Objectives

We propose an algorithm to analyze which arguments are hidden or ignored
when a certain arguments is accepted. We aim to demonstrate that our
algorithm is adaptable to examples such as the Werewolf game. The
objectives of our system are as follows:

1. Provide explanations regarding Abstract Argumentation.
2. Represent which arguments are ignored or concealed.
3. Visualize all AA graphs when a certain assertion is accepted.
4. Analyze which arguments are ignored or concealed when a certain

assertion was accepted.
5. Measure the execution time of the algorithm to determine its ability to

handle graphs of varying complexity.
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Table 1.2: Each role [1, 2]

Faction Role Ability
Villager Villager Nothing.

Fortune teller At night, during his/her turn,
he/she can designate one person
other than him/herself and determine
whether they are werewolf or not.

Knight One nights other than the first,
he/she choose one person to
protect from werewolf attack during
the night. He/She cannot protect
him/herself.

Werewolf Werewolf He/She identify who his/her fellow
werewolves are. During night turns,
excluding the first night, he/she can
choose one non-werewolf player
to devour.

Maniacs The ability is nothing. Their victory
condition aligns with the werewolf faction.
However, he/she is unaware of
who the werewolves are.
The maniacs supports the werewolves by
trying to identify them during discussions
and employing tactics such as pretending
to have a different role.

Our system demonstrates the analysis and practicality of hidden or
ignored arguments in this study.

1.4 Contribution

In recent years, research has been conducted on inference in debates among
multi-agents using Argumentation Frameworks and AA Frameworks [9–13].
However, there has been little research on dynamically [7] modifying AA to
identify hidden or ignored arguments. We summarize the contributions of
our study as follows:

1. We are the first who provides an algorithmic procedure for identifying
hidden or ignored arguments when AA is changed.

4



Figure 1.2: The flow of the Werewolf game [1,2]

2. We show application of our algorithm in the Werewolf game, e.g.,

• Assume a set of arguments wanted to be believed, the werewolf
needs to lie to all the other agents (villagers, etc).

5



Figure 1.3: Discussions of the werewolf game [5]
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Chapter 2

Preliminary

2.1 Overview

In this chapter, we will provide an explanation of the Abstract Argumenta-
tion (AA) [3] used in this study.

Traditionally, artificial intelligence has focused on single human thoughts,
such as formalization of non-monotonic reasoning [3, 14]. However, in
everyday human society, multiple people gather together, present their own
opinions based on their own ideas on problematic issues, and argue and
refute each other to solve various problems and make decisions, leading to
consensus. [8]

Since 1995, intelligent agents (software) on distributed networks have
continued to develop, and there has been a growing trend to have multiple
intelligent agents solve problems, such as discussions and communication,
as multiple humans do [8]. Indeed, in 1995, Dung elucidated the basic
mechanism of human argumentation in a gathering [8]. Then, he defined
an AA framework to realize this mechanism on a computer [8].

2.2 Abstract Argumentation

This section explains a series of definitions in the abstract argumentation
framework and the semantics proposed for determining acceptable arguments
regarding Dung’s sense.

Definition 2.1: Abstract Argumentation framework [3]
An argumentation framework (AF) [3] is a pair F = (A,R) where

• A is set of arguments and
• R ⊇ A×A is a relation representing “attacks” of arguments.

Different semantics in AA Framework are proposed in [3].

• We say that an argument X ∈ A attacks an argument Y ∈ A if
(X, Y ) ∈ R

7



Figure 2.1: AA graph

• A set S of argument attacks an argument Y if there exists X ∈ S such
that X attacks Y

• A set S of arguments defends an argument X if S attacks every
arguments attacking X

• S is conflict-free if for any X, Y ∈ S, there is no (X, Y ) ∈ R.

Definition 2.2: Abstract Argumentation semantics [3]
Let S ⊆ A. Several semantics are defined as follows:

• S is admissible if S is conflict-free and S defends all arguments
attacking S.

• S is preferred if S is the maximal (w.r.t set inclusion) admissible.

• S is grounded if S is the minimal (w.r.t set inclusion) complete.

• S is complete if S is admissible and S contains all arguments it
defends.

• S is stable if S is conflict-free and S attacks each argument X ∈ A\S.
• S is ideal if S is admissible and S is the (maximal set) intersection
of all preferred semantics.

The results of executing the semantics are arguments’ set called exten-
sions. We now show an example of AA Framework. In Figure 2.1, according
to Definition 2.2, the extensions of each semantics would be as follows:

• admissible = {∅}, {c}, {e}, {a, c}, {c, d}
• preferred = {a, c}, {c, d}
• grounded = {∅}
• complete = {∅}, {a, c}, {c, d}
• stable = {a, c}, {c, d}
• ideal = {c}

8



Figure 2.2: The process of the Dynamic Abstract Argumentation

2.2.1 Dynamic Abstract Argumentation

Here, we provide a brief definition of Dynamic Abstract Argumentation , as
lightly discussed in Section 1.1.

Definition 2.3: Dynamic Abstract Argumentation
Sets A and R can be changed through time. Let AF be denoted as F ′ =
(A′,R′). Given that H ⊃ A be a set of the hiding arguments, then

• A′ := A \H if H is not empty.
• R′ := R\ (H ×A ∪A× H) if H is not empty.

According to Definition 2.3, we perform the process as illustrated in
Figure 2.2. For example, when considering Figure 2.1, executing this
process would result as follows. Assuming H is {c, b} and argument is
{a, b, c, d, e}, according to the definition, argument \ H is conducted. Thus,
the argument becomes {a, d, e}. Additionally, attack relations associated
with {c, b} are removed, so the attack relations become {(e, d), (d, a)}. In
this case, according to Definition 2.3, the new extensions would be as follows:

• admissible = {∅}, {a}, {e}, {a, e}
• preferred = {a, e}
• grounded = {a}, {e}
• complete = {a}, {e}, {a, e}
• stable = {a, e}
• ideal = {∅}
Executing Dynamic Abstract Argumentation in this manner results in

changes to the content of arguments, attack relations, and extensions. Then,
the above process is repeated, and the set of combinations of arguments and
attack relations that emerge from it is computed.
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Chapter 3

Methodology

3.1 Overview

People may ignore or withhold arguments that are disadvantageous to them
in order to assert their accepted arguments as true. This practice is called
“hiding argument” or “hidden argument”.

Definition 3.1: Hidden Arguments
Given F = (A,R) and F ′ = (A′,R′) be argumentation frameworks where
A′ ⊂ A and R′ ⊂ R, we say arguments A \ A′ is hidden from F .

Example
Let {1, 2, 3, 4} be a set of arguments, and {(1, 2), (3, 1), (3, 2), (4, 3)} be an
attack relations among these arguments. Suppose that we would like to know
what arguments would need to be hidden so that arguments {1, 4} become
accepted. From the original AA graph, by removing such arguments that
result in {1, 4} being accepted in the AA graph, we can identify Hidden
Arguments. Following this viewpoint, in Figure 3.1, it can be observed that
{3} is Hidden Argument.

Any communication of agent’s dialogue is represented by an abstract
argumentation framework F where each node is a full sentence put forward
by an agent and each edge represents an attack relation between them.

In this chapter, we describe the methodology and mathematically algo-
rithmic completeness of hiding arguments in discussions. It is an approach
that shrinks arguments and attack relations in an a discussion using the
Abstract Argumentation Framework and the uniquely defined Dynamic
Abstract Argumentation to assert the accepted arguments of one’s agents
as true. In addition, by displaying these Abstract Argumentation graphs,
it is possible to compare which arguments are hidden and which accepted
arguments are true. Furthermore, we prove the completeness of the algorithm
to aid the correctness of this methodology.

11



Figure 3.1: The AA graph after hiding “3”

To solve this problem, we divide it into three sub-steps:

1. Calculate the ground extension: This is used to identify sets
of Hidden Arguments. By calculating the grounded extension, it is
possible to determine which set constitutes the Hidden Arguments.
Furthermore, this facilitates graph comparison by referencing it.

2. Shrinking AA (i.e. the dynamics): By dynamically altering the
AA, we create sets of Hidden Arguments, enabling the creation of all
sets of Hidden Arguments.

3. Prove mathematically the correctness of the algorithm: By
proving this, we confirm that the identification of sets of Hidden
Arguments is being done correctly.

The purpose of this chapter is to explain these sub-steps.

3.2 Algorithmic Procedure

In Figure 3.2, the whole algorithm’s flowchart is depicted.
At first, we input the original AF. This AF will be dynamically modified

to conduct the research.
Next, we seek to find all combinations of elements from the arguments.

“All combinations” refers to selecting combinations of one element from the
arguments to combinations of n-1 elements. Further details will be explained
in Subsection 3.2.2.

And then, we iterate through the elements obtained from combinations,
comparing each with the arguments of the AFs. We remove any matching
elements from the arguments and also delete the attack relations related to
the removed arguments. For example, if the first element of the combination
is selected and the same element exists in the arguments, we delete it.
Additionally, we delete the attack relations associated with the removed

12



arguments. These combinations of arguments and attack relations represent
the AF subjected to Hidden Arguments. The combinations of deleted
arguments and attack relations are stored in a list. This process is repeated
for each combination. Further details will be explained in detail in Subsection
3.2.2 and Section 3.3.

Afterward, we compute the grounded extension. Calculate the grounded
of all the AFs subjected to Hidden Arguments that were stored earlier, and
store them in a list. This is done by executing ASP from Python to determine
the grounded. Further details will be explained in detail in Subsections 3.2.1.

Next, we analyze the Hidden Argument of each AF. According to the
Definition 3.1, this can be determined by subtracting the nodes of the original
AF from the nodes of the shrunken AF. Repeat this process for each shrunken
AF to find each Hidden Argument.

Using the stored list of grounded or Hidden Arguments, we can select
AFs that match specific conditions. The list of grounded stored is used
to display its AF when the desired argument is accepted, or to analyze
its Hidden Arguments. For example, in Figure 3.3, to display only AFs
or Hidden Arguments that include {3} in the grounded, it is possible to
achieve this by saving the index 6, which corresponds to the list element
containing it. This is because the indices of the list containing all grounded
correspond to the indices of the list containing all AFs and the list containing
all Hidden Arguments. On the other hand, the list of Hidden Arguments is
used to display its AF or the arguments accepted due to its influence when
the arguments is hidden. This is made possible by identifying the indices of
the list of Hidden Arguments where the desired Hidden Arguments is stored,
similar to when the list of grounded is used. This is because, as shown in
Figure 3.3, the indices of each list correspond to each other. In other words, if
we can grasp the index of the list element containing the grounded or Hidden
Arguments of the desired AFs, it is possible to display the desired AFs.

Finally, we use the stored index to display AFs that match specific
conditions.

The algorithm is operating in the manner as described in the above.

3.2.1 Computing the grounded extension

Here, we deal with the Werewolf game.

Example 1
The role of each agent is as shown in Table 3.1. Villagers consist of agents A
and E, and the Fortune teller is agent C; these agents belong to the villager’s
faction. The Werewolf faction consists of agents B and D.

13



Figure 3.2: The flowchart of the algorithm

In the Example1, The discussion is being conducted as shown in 3.2.

Each agent has an argument in his/her knowledge base and presents
it in the discussion. Then, the arguments raised there are combined into
one. From Figure 3.4, the relationship between arguments and attacks is as
follows.

Based on the definitions explained in Background and Figure 3.4, admis-
sible, complete, and grounded extensions are as shown in Table 3.3.

From the above information, arguments 1, 2, 4, and 6 are acceptable for
grounded extensions. Arguments 1 and 2 are given by C, argument 4 by A,
and argument 6 by E. Notationally,
A = {4}, B = {3}, C = {1, 2}, D = {5}, E = {6}.
Arguments = {1, 2, 3, 4, 5, 6}.
Attack relations = {(3, 1), (3, 2), (4, 3), (5, 4), (6, 3), (6, 5)}.

Finally, we compute the grounded extension by executing Answer Set
Programming (ASP) [15] from Python. In this case, the villager wins (i.e.,
his argument is accepted). These calculations are handled as shown in Figure

14



Figure 3.3: The correspondence of each list’s index

Table 3.1: Agent’s role

Agent ID Agent’s role
A Villager
B Werewolf
C Fortuneteller
D Werewolf
E Villager

3.5 .

3.2.2 Shrinking AA (i.e. the dynamics)

We implement a naive method for shrinking the AA graph.
We visualize the AA graph by inputting arguments as nodes and attack

relations as edges into the graph.
Next, we will store combinations of arguments with potential hidden

elements obtained from agents into a list called “patterns”. At this point, the
number of elements in the set of set families within the “patterns” list ranges
from 0 to 5. This is because, as evident from Figure 3.6, if the number
of elements were 6, result in the deletion of all arguments, rendering the
AA graph non-existent. If there is no AA graph, it implies that no agent
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Table 3.2: Discussion’s flow

Argument No. Agent ID Argument
1 C A is not a werewolf by the result of divination.
2 C B is a werewolf by the result of divination.
3 B The result of divination are meaningless

when fortuneteller C is false.
4 A C is not confirmed to be a fake and

should be used as a reference.
5 D B is not a werewolf, so C is lying.
6 E The one who doubts the result of divination

is suspicious.

Figure 3.4: AA graph of example1

has submitted any arguments. Therefore, if the total number of arguments
were n (n> 0, n∈ N), the number of elements in the set families within the
“patterns” list must be between 0 and n-1, inclusively. However, there is one
exception. They are the presence of “None”. Although this applies not only
to the list “patterns”, in the list we will use from now on, “None” is placed
at index 0. Placing “None” at index 0 prevents confusion when extracting
the first graph from the list, as it would be less clear if the first graph were
located at index 1. Therefore, index 0 is intentionally excluded.

Next, the list “pattern” is compared to the nodes and edges of the graph
and the matches are reduced. In “Graphset”, “None” is stored at index 0
and “∅” is stored at index 1. At index 1, the original graph is stored because
the first element of “patterns” is “∅”. Then, the graph obtained by the
nodes the remove the elements matching the second element of “patterns”
and its associated edges from the original graph is stored at index 2 of
“Graphset”. Next, the graph obtained by the nodes remove the elements
matching the third element of “patterns” and its associated edges from the
original graph is stored at index 3 of “Graphset”. This process is repeated
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Table 3.3: Each extension of the AAF in Example 1

Abstract Argumentation framework Set
Admissible ∅, {6}, {1, 6}, {2, 6}, {4, 6}, {1, 4, 6}, . . .

{2, 4, 6}
Complete {1, 2, 4, 6}
Grounded {1, 2, 4, 6}

Figure 3.5: Executing ASP from python

for the length of “patterns”. As a result, all the shrunk graphs are stored in
the list “GraphSet”.

Finally, the nodes and edges stored in the list “GraphSet” are sent from
Python to ASP. The extensions computed in ASP are returned to Python
and stored in the list “grounded”.

This allows you to identify AA graphs that match specific conditions.
For example, in Example 1 , when you want to identify only AA graphs that
include {3} in the grounded, you can extract those AA graphs by the indices
of the list “grounded”. This is because the indices of the list “grounded”
correspond to the indices of the list “GraphSet”. In other words, the element
in the list “grounded” at index 1 corresponds to the grounded of the AA graph
of the list “GraphSet” at index 1.

From Definition 3.1, Hidden Arguments of specific AA graphs can be
analyzed by removing nodes from the original AA graph that correspond to
the nodes of specific AA graphs.

By dynamically modifying the multi-agent knowledge base in this way, it
is possible to represent “Hiding Argument”.

3.3 Correctness of the Shrinking Algorithm

In this section, we will prove mathematically the correctness of the algorithm.
We denote arguments gathered from agents as Equation 3.2 and define attack
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Figure 3.6: Hiding all arguments from the AA graph

relations as Equation 3.3.

n ∈ N, n > 0 (3.1)

argument = {a1, a2, a3 · · · , an} (3.2)

attack relation = {(a1, a1), (a1, a2), · · · , (a1, an),
(a2, a1), (a2, a2), · · · , (a2, an),
(a3, a1), · · · , (a3, an), · · · , (an, a1), · · · , (an, an)}

(3.3)

First, we calculate all possible combinations from arguments in Equation
3.2. All combinations refer to obtaining all possible combinations from
selecting zero item to selecting n− 1 items (n > 0, n ∈ N). The meaning of
selecting 0 elements is to choose nothing. In this case, the set stored in the list
“pattern” is ∅. When referenced, according to Definition 2.3, argument \∅ is
conducted. At this point, argument and attack relation remain unchanged.
This indicates the original AA graph. The reason why n−1 is the maximum
is to prevent the AA graph from becoming ∅. For example, when there are
arguments for Equation 3.2, the elements of combinations selecting n items
will be the same as the arguments. Let’s call this element H. Then, according
to Definition 2.3, conducting arguments \ H results in ∅. This means the AA
graph disappears. When there’s no AA graph, it implies that no agent has
submitted any information and thus no discussion is taking place. Therefore,
n− 1 becomes the maximum. Based on these reasons, all combinations refer
to obtaining all possible combinations from selecting zero item to selecting
n − 1 items (n > 0, n ∈ N). In this case, the total number of combinations
is represented by Equation 3.4.
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combination =
n−1∑
r=0

nCr (3.4)

Then, based on this combination, remove one argument at a time and
delete the edges associated with the removed argument. Repeat this process
for the number of combinations. Then, record all sets of arguments and edges
after their removal. The number of sets at this point will be equal to the
number of combinations.

For example, suppose there is an argument for Equation 3.5 and an attack
relations against Equation 3.6. In that case, the combination would result in
Equation 3.7.
The number of combinations calculated based on Equation 3.4 matches
Equation 3.8, and this count is equivalent to enumerating the attack relations
of Equation 3.6 one by one. Therefore, Equation 3.4 is proven to be correct.

argument = {1, 2, 3, 4, 5} (3.5)

attack relation = {(1, 2), (2, 1), (4, 1), (4, 3), (3, 4), (5, 2)} (3.6)

combination = {∅, 1, 2, 3, 4, 5, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4},
{1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {1, 2, 3, 4},
{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}

(3.7)

combination =
5−1∑
r=0

5Cr

= 31

(3.8)

Next, using Equation 3.7 , we will proceed to remove one argument at a time
and delete attack relations associated with the removed argument. Then, we
will retrieve all sets obtained from this process. At that point, the calcula-
tions are performed as follows: When the first element of the combination,
{∅}, is chosen, according to Definition 2.3, Equation 3.9 becomes like this.

node = argument \ ∅
edge = attack relation \ ∅

(3.9)

When the second element of the combination, {1}, is chosen, Equation
3.10 becomes like this.

node = argument \ {1}
edge = attack relation \ {{1, 2}, {2, 1}, {4, 1}}

(3.10)
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When the seventh element of the combination,{1, 2}, is chosen, Equation
3.11 becomes like this.

node = argument\{{1, 2}}
edge = attack relation \ {{1, 2}, {2, 1}, {4, 1}, {5, 2}}

(3.11)

For each combination, we reduce the set in a manner similar to Equation
3.9 to Equation 3.11. Then, we save all combinations of nodes and edges
obtained through this process.

Next, based on Definition 2.2, we use Python to invoke Answer Set
Programming (ASP) [15] to determine the grounded of each shrunken set
obtained from the previous process. And the grounded result is as equation
3.12.

grounded = {{5}, {5}, {5}, {4, 5}, {1, 3, 5}, {5}, {5, 4}, {5, 3}, {2}, {5, 4}, {5, 3, 1},
{5, 1}, {4, 2}, {3}, {4, 5}, {3, 5}, {5}, {2, 4}, {2, 3}, {1, 5}, {4}, {1, 3},
{5}, {4}, {3}, {2}, {1}}

(3.12)

The sets of shrunken sets and grounded sets correspond in position, where
the first element of the grounded set, {5}, corresponds to the grounded set
of the first shrunken set. Similarly, the second element of the grounded
set, {5}, corresponds to the grounded set of the second shrunken set. In
this way, the sets of shrunken sets and grounded sets correspond to each
other. Using this correspondence, we can display the desired AA graph.
For example, if we want to display the AA graph where the shrunken set
containing {1} is included in the grounded, we can identify the position of
{1} within the grounded set and select all sets at that position to display.
In this case, the elements containing 1 in the grounded sets are the ones
in the fifth, eleventh, twelfth, twentieth, twenty-second and twenty-seventh
positions. Therefore, we can select the fifth, eleventh, twelfth, twentieth,
twenty-second and twenty-seventh shrunken sets. Similarly, we can compare
different AA graphs based on different grounded using a similar method.
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Chapter 4

Experiments

4.1 Overview

In this chapter, we measure how the algorithm’s execution time varies
for different numbers of arguments, allowing us to assess the algorithm’s
practicality for discussions of varying complexity. For this study, we prepared
discussions with 6, 10, 14, 18, and 20 arguments. The discussions chosen for
this example all revolve around the Werewolf game. In this game, players
are divided into the Werewolf faction and the Villager faction, engaging in
discussions.

We use these to examine the differences in the algorithm’s execution time.

4.2 Time Complexity

Table 4.1 shows the time complexity of each process for analyzing Hidden
Arguments.

In “Make original graph”, the execution time is proportional to the
number of arguments and attack relations. When the number of arguments
is n, and n nodes are added, the time complexity becomes O(n). When the
number of attack relations is m, and m edges are added, the time complexity
becomes O(m). Therefore, the overall time complexity is O(n+m).

In “Get combinations”, we need to find all combinations from 0 items to
n-1 items. In this case, since we need to loop n times, the time complexity
becomes O(n). Moreover, the time complexity of finding combinations is
O(nCr). Furthermore, in this algorithm, the overall time complexity is
dominated by the two inner loops. Therefore, the final time complexity
becomes O(n× (2n)).

In “Store all shrunken graph”, when the number of combinations is r,
the time complexity becomes O(r) since all these combinations are used to
shrink the AA graph. Next, to maintain the original graph, a copy of the
graph needs to be created. In this case, the time complexity depends on the
number of nodes and edges in the graph. If the number of nodes is n and
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Table 4.1: Time Complexity

The algorithm Time complexity
Make the original graph O(n+m)
Get combinations and

store them to list “pattern” O(n× 2n)
Store all shrunken graph to

list “Graphset” O(r × (n+m+ n× k))
Identify all graph’s

grounded and store the them O(r × (n+m+ α))
to list “grounded”

Show “Hidden Arguments”
for all graphs O(n)

Display all the matched graphs O(m× n2)

the number of edges is m, the time complexity of this operation is O(n+m).
And then, a nested loop is performed. First, it iterates over the nodes in the
graph. If the number of nodes is n, the time complexity of this loop is O(n).
Next, an iteration is performed based on the number of elements in the set
of combination families. If the number of elements is k, the time complexity
of this loop is O(k). Finally, within that loop, the deletion of nodes from
the graph is performed. At this time, the average time complexity is O(1),
but in the worst case scenario, it becomes O(n). Therefore, the overall time
complexity becomes O(r × (n+m+ n× k)).

In “Identify all graph’s grounded and store them”, the objective is to
determine all grounded in each graph. If the number of graphs is r, we need
to perform a loop r times to examine all graphs’ grounded. At this point, the
time complexity becomes O(r). Next, as a preliminary step to examining the
grounded, we write the nodes and edges of each graph to a file. If the number
of nodes is n and the number of edges is m, the time complexity becomes
O(n+m). Finally, to examine the grounded, we send the file created earlier
from Python to ASP for execution. Since the execution time of Clingo is
independent, let’s denote it as α. Thus, the time complexity becomes O(α).
Both O(n + m) and O(α) occur within the same loop, so the overall time
complexity becomes O(r × (n+m+ α)).

In “Show Hidden Arguments for all graphs”, the time complexity depends
on the number of graphs. If the number of graphs is n, then the overall time
complexity becomes O(n).

In “Display all the matched graphs”, the goal is to draw all graphs that
match specific conditions. If the number of graphs is m, we need to perform a
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Table 4.2: The agent’s roles when there are 6 arguments

Agent ID Agent’s role
A Villager
B Werewolf
C Fortuneteller
D Werewolf
E Villager

Table 4.3: The number of arguments are 6.

Argument No. Agent ID Argument
1 C A is not a werewolf by the result of divination.
2 C B is a werewolf by the result of divination.
3 B The result of divination are meaningless

when fortuneteller C is false.
4 A C is not confirmed to be a fake and

should be used as a reference.
5 D B is not a werewolf, so C is lying.
6 E The one who doubts the result of divination

is suspicious.

loopm times to draw each matched graph. At this point, the time complexity
becomes O(m). Next, network layout calculations are performed within the
loop. The time complexity of these calculations depends on the number
of the nodes. If the number of the nodes is n, the time complexity becomes
O(n) [16]. And then, the time complexity of drawing depends on the number
of nodes and edges. Therefore, the time complexity becomes O(n2) [17, 18].
Since these occur within the loop, the overall time complexity becomes O(m×
n2).

4.3 The algorithm’s Execution Time

4.3.1 Case 1: When There are 6 Arguments

In this subsection, we verify the execution time when there are 6 arguments
and 5 agents. At this time, the roles of each agent are as follows: they become
like Table 4.2, and the discussions become like Table 4.3.
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Table 4.4: In the case of having 6 arguments, the algorithm’s execution time

Algorithm Execution time
Making AA graph 0.0002s

Getting combinations and
store them to list “pattern” 0.0002s

Storing all shrunk graph to list “Graphset” 0.0027s
Identifying all graph’s grounded and

store them to list “grounded” 7.7537s
Specifying rows and columns for displaying graph 0.0004s

Displaying all graph 38.0151s
Total time 45.7696s

The time series of the discussions in Table 4.3 corresponds to the ascend-
ing order of argument number.
The discussion begins with Agent C, who is the fortune teller, declaring their
role as in Argument No.1. Additionally, since Table 4.3 assumes discussions
immediately after the first night, the only agent with information to advance
the discussion is Agent C, the fortune teller who gains information during the
first night. Therefore, to progress the discussion, the fortune teller, Agent C,
reveals the result of their divination as in Argument No.2.

In Argument No.3, Agent B, who has been revealed as the werewolf
through the divination, is making a defense to avoid being executed during
the voting phase. In Argument No.4, Agent A is refuting Agent B’s claim
made in Argument No.3 that Agent C is the fake fortune teller. In Argument
No.5, Agent D, an ally of Agent B who is a werewolf, is providing support
to ensure that Agent B is not executed during the voting phase. Finally, in
Argument No.6, Agent E expresses suspicion that Agents B and D, who are
accusing Agent C of being a fake despite no one else declaring themselves as
a fortune teller besides Agent C, might be werewolves.

In this flow, the villagers’ faction and the werewolves’ faction are engaging
in discussions to fulfill their respective victory conditions.

The argument in Table 4.3 consists of {1, 2, 3, 4, 5, 6} and the attack
relations is {(3, 1), (3, 2), (4, 3), (5, 4), (6, 3), (6, 5)}. In this case, the number
of AA graphs, including the original AA graph, is 63. And the execution
time for Table 4.3 is as shown in Table 4.4.
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Table 4.5: The agent’s roles when there are 10 arguments

Agent ID Agent’s role
A Villager
B Werewolf
C Fortuneteller
D Werewolf
E Villager
F Villager

Table 4.6: The number of arguments are 10.

Argument No. Agent ID Argument
1 C I am the fortune teller.
2 C A is not a werewolf by the result of divination.
3 B I am the fortune teller.
4 B E is the werewolf by the result of divination.
5 A Since I am a villager,

C is the true fortune teller.
6 D Since B is the true fortune teller,

C is the fake.
7 D E is a werewolf.
8 E I am a villager.
9 E B and D is suspicious.
10 F Since we don’t know who is

the true fortune teller, we should not use
the result of divination.

4.3.2 Case 2: When There are 10 Arguments

In this subsection, we verify the execution time when there are 10 arguments
and 6 agents. At this time, the roles of each agent are as follows: they become
like Table 4.5, and the discussions become like Table 4.6.

In Table 4.6, just like in Table 4.3, the discussion begins with the decla-
ration of roles by the fortune teller and the presentation of the divination’s
results. However, this time, in order to prevent Agent C from becoming
the true fortune teller as in Argument No.3 and No.4, Agent B is falsely
declaring themselves as the fortune teller and providing false the result of
divination. In Argument No.5, Agent A is stating that he/she is a villager
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Table 4.7: In the case of having 10 arguments, the algorithm’s execution time

Algorithm Execution time
Making AA graph 0.0003s

Getting combinations and
store them to list “pattern” 0.0019s

Storing all shrunk graph to list “Graphset” 0.4137s
Identifying all graph’s grounded and

store them to list “grounded” 1.7978m
Specifying rows and columns for displaying graph 0.0041s

Displaying all graph 11.2837m
Total time 13.0886m

and affirming that the divination’s result of Agent C are correct. Therefore,
Agent A expresses the belief that Agent C is the true fortune teller. Then, in
Argument No.6, Agent D, who is a werewolf, is making statements to support
Agent B, who is also a werewolf and pretending to be the fortune teller, in
order to deceive others and protect Agent B. Furthermore, in Argument No.7,
Agent D is supporting Agent B by referencing Argument No.4 and stating
that Agent E is a werewolf in order to direct the hatred of the other agents
towards Agent E. Next, in Argument No.8, Agent E declares his/her role,
and in Argument No.9, Agents B and D claims that Agent E is a werewolf,
which makes Agent E suspicious of both them. Finally, in Argument No.10,
Agent F points out that based solely on the arguments presented in the
current discussion, it is impossible to determine which of Agent B or C is the
true fortune teller. Therefore, Agent F suggests disregarding the results of
divination and continuing the discussion.

The argument in Table 4.6 consists of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the
attack relations is {(3, 1), (1, 3), (4, 8), (8, 4), (5, 3), (6, 1), (7, 8), (8, 7), (9, 3),
(9, 4), (9, 6), (9, 7), (10, 2), (10, 4), (10, 5), (10, 7)}. In this case, the number of
AA graphs, including the original AA graph, is 1023. And the execution
time for Table 4.6is as shown in Table 4.7.

4.3.3 Case 3: When There are 14 Arguments

In this subsection, we verify the execution time when there are 14 arguments
and 6 agents. At this time, the roles of each agent are as follows: they become
like Table 4.8, and the discussions become like Table 4.9.

Argument No.1 through No.4 follows the same pattern as the previous
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Table 4.8: The agent’s roles when there are 14 arguments

Agent ID Agent’s role
A Villager
B Werewolf
C Fortuneteller
D Werewolf
E Villager
F Knight

subsection, with both true and false fortune tellers declaring their roles
and presenting their results of divination. Next, in Argument No.5, Agent
A is expressing the same sentiment as Argument No.5 in Table 4.6. In
Argument No.6, leveraging the statements made in Argument No.5, Agent D
is echoing similar sentiments, supporting Agent B from the werewolf faction.
Furthermore, utilizing Arguments No.5 and No.6, Agent D is diverting
attention away from him/herself and Agent B by making Argument No.7
and No.8. Argument No.9 follows the proposal made in Argument No.8. In
this argument, Agent E declares his/her role and advocates for the execution
of someone other than him/herself. In Argument No.10, Agent F asserts that
as a member of the village faction with special abilities, he/she should not
be executed first. Then, in Argument No.11, Agent F states that if following
Argument 8, then Agent E should be the one to be executed. However, Agent
F holds a different opinion and proposes Arguments No.13 and No.14.
The argument in Table 4.9 consists of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
and the attack relations is {(3, 1), (1, 3), (5, 3), (6, 1), (10, 9), (9, 10), (11, 9),
(12, 2), (12, 4), (12, 7), (12, 8), (13, 2), (13, 4), (13, 5), (13, 6), (14, 1), (14, 3),
(14, 8)}. In this case, the number of AA graphs, including the original AA
graph, is 16385. And the execution time for Table 4.9 is as shown in Table
4.10.

The phrase “12h or more” means that the algorithm was running for
at least 12 hours but did not complete processing. In this instance, the
algorithm ran for approximately 16 hours without completing processing.
To ensure consistency in future occurrences, it has been decided to use the
notation “12h or more” in all cases where the algorithm runs for at least 12
hours without completion.
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Table 4.9: The number of arguments are 14.

Argument No. Agent ID Argument
1 C I am the fortune teller.
2 C A is not a werewolf by the result of divination.
3 B I am the fortune teller.
4 B D is not the werewolf by the result of divination.
5 A Since I am a villager, C is the true fortune teller.
6 D Since B is the true fortune teller, B is the true.
7 D We should refer to the result of divination.
8 D Those who don’t have the result of divination and

have no role should be executed.
9 E Since I am a villager, F should be executed first.
10 F You should not execute me because I am a knight.
11 F If we are going to execute them,

we should do it from E.
12 F However, the result of divination should not be

used as a guide.
13 F It is possible that either A or D is a werewolf.
14 F Definitely one of them is a werewolf,

B or C should be executed first.

4.3.4 Case 4: When There are 18 Arguments

In this subsection, we verify the execution time when there are 18 arguments
and 7 agents. At this time, the roles of each agent are as follows: they become
like Table 4.11, and the discussions become like Table 4.12.

Argument No.1 through No.4 follow the same pattern as the previous
subsection, with both true and false fortune tellers declaring their roles and
presenting their results of divination. However, in Table 4.12, unlike the
previous three subsections, there is the presence of Agent G, who is a maniac.
Agent G, despite being a maniac aligned with the werewolf faction, is not
identified as a werewolf in the result of divination. Utilizing this fact, Agent
G deceives others by falsely claiming to be the fortune teller. This is a
strategy employed by Agents B and D to avoid taking risks and prevent
the confirmation of the true identity of the fortune teller. In Argument
No.5 and No.6, Agent A is attempting to advance the discussion by using
the results of divination. Then, Agent B realizes from Argument No.4
that Agent G is a maniac, and in Argument No.7 and No.8, Agent B is
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Table 4.10: In the case of having 14 arguments, the algorithm’s execution
time

Algorithm Execution time
Making AA graph 0.0003s

Getting combinations and
store them to list “pattern” 0.0275s

Storing all shrunk graph to list “Graphset” 3.1950s
Identifying all graph’s grounded and

store them to list “grounded” 28.7036m
Specifying rows and columns for displaying graph 0.0101s

Displaying all graph 12h or more
Total time 12.48h or more

Table 4.11: The agent’s roles when there are 18 arguments

Agent ID Agent’s role
A Villager
B Werewolf
C Fortuneteller
D Werewolf
E Villager
F Knight
G Maniac

supporting Agent G. Agent E is certain that either Agent C or G is a
member of the werewolf faction. Therefore, in Argument No.9, Agent E
expresses a critical opinion regarding Argument No.5. Furthermore, based
on the aforementioned reasons, Agent E suggests that either Agent C or
G should be executed first. Next, Agent F criticizes Argument No.10 in
Arguments No.11 and No.12, arguing that sequentially executing both a
powerless maniac and a powerful true fortune teller does not benefit the
villagers’ faction. Agent D agrees with Argument No.6 and expresses their
opinion in Argument No.13. Agent F also makes a statement in Argument
No.14 that is similar to Argument No.13. In Argument No.15, Agent A is
suspicious of Agent B, who claims that G is the true fortune teller. Following
this, Agent A expresses their opinion in Argument No.16. Argument No.17
is also just the opinion of Agent E. In Argument No.18, Agent G is suspicious
of discussing something when they don’t know who the true fortune teller is.
The argument in Table 4.12 consists of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
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Table 4.12: The number of arguments are 18.

Argument No. Agent ID Argument
1 C I am the fortune teller.
2 C A is not a werewolf by the result of divination.
3 G I am the fortune teller.
4 G B is not the werewolf by the result of divination.
5 A We should refer to the result of divination.
6 A Those who don’t have the result of divination

and have no role should be executed.
7 B Since I am a villager,

G is the true fortune teller.
8 B C should be executed first.
9 E The result of divination is not helpful.
10 E C or G should be executed first.
11 F Either C or G could be the maniac.
12 F C or G should not be executed.
13 D Since I am a villager, I think that

E or F should be executed first. - not me.
14 F Since I am the knight, D or E should

be executed first.
15 A B, who assume that G is the true fortune teller,

is suspicious.
16 A G is the fake fortune teller.
17 E Since D has a little to say,

he/she should be executed first.
18 G It is strange that people are now talking about

the truth or falsehood or fortune teller.

15, 16, 17, 18} and the attack relations is {(3, 1), (1, 3), (7, 1), (9, 2), (9, 4),
(9, 6), (5, 9), (9, 5), (11, 1), (11, 3), (12, 8), (12, 10), (14, 13), (15, 7), (16, 3),
(17, 13), (18, 7), (18, 16)}. In this case, the number of AA graphs, including
the original AA graph, is 262145. And the execution time for Table 4.12 is
as shown in Table 4.13.

4.3.5 Case 5: When There are 20 Arguments

In this subsection, we verify the execution time when there are 20 arguments
and 7 agents. At this time, the roles of each agent are as follows: they become
like Table 4.14, and the discussions become like Table 4.15.
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Table 4.13: In the case of having 18 arguments, the algorithm’s execution
time

Algorithm Execution time
Making AA graph 0.0003s

Getting combinations and
store them to list “pattern” 0.1127s

Storing all shrunk graph to list “Graphset” 38.9800s
Identifying all graph’s grounded and

store them to list “grounded” 7.6682h
Specifying rows and columns for displaying graph 0.0773s

Displaying all graph 12h or more
Total time 19.68h or more

Table 4.14: The agent’s roles when there are 20 arguments

Agent ID Agent’s role
A Villager
B Werewolf
C Fortuneteller
D Werewolf
E Villager
F Knight
G Maniac

Argument No.1 through No.6 follow the same pattern as the previous
subsection, with both true and false fortune tellers declaring their roles and
presenting their results of divination. Agent B believes that either Agent C or
Agent G is the Maniac, and if the true fortune teller can also execute, then it’s
acceptable to execute the Maniac. Therefore, in Arguments No.7 and No.8,
he/she express opinions on executing the two individuals sequentially. Agent
E agrees with Arguments No.4 and No.5, and then expresses his/her own
thoughts in Arguments No.9 and No.10. Next, in Argument No.11, Agent
F declares his/her role to bolster his/her argument. Utilizing Argument No.
11, Agent F expresses his/her opinions in Arguments No.12 and No.13. Agent
D, to avoid conceding the opinions from Arguments No.11 to No.13, similarly
declares the role of the knight in Argument No.14, following the example set
by Agent F. Furthermore, Agent D criticizes Agent F in Argument No.15.
Agent E, on the other hand, presents opinions in Arguments No.16 and
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No.17 based on Arguments No.11 to No.15. Agent B criticizes Agent E for
presenting Argument No. 9 in Argument No. 18. Finally, Agent C expresses
the opinion in Argument No. 19 that regardless of which one is the true
knight, both should be executed over the course of two turns, rendering their
identities irrelevant. In Argument No. 20, Agent C sets the direction for the
discussion.

The argument in Table 4.15 consists of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20} and the attack relations is {(3, 1), (1, 3), (7, 2), (7, 4),
(5, 7), (7, 5), (7, 6), (8, 6), (9, 1), (9, 3), (10, 8), (11, 14), (14, 11), (12, 10), (13, 7),
(15, 12), (12, 15), (16, 14), (17, 15), (18, 16), (19, 15), (19, 17), (20, 15)}. In this
case, the number of AA graphs, including the original AA graph, is 1048577.
And the execution time for Table 4.15 is as shown in Table 4.16.
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Table 4.15: The number of arguments are 20.

Argument No. Agent ID Argument
1 C I am the fortune teller.
2 C A is not a werewolf by the result of divination.
3 G I am the fortune teller.
4 G E is not the werewolf by the result of divination.
5 A We should refer to the result of divination.
6 A Those who don’t have the result of divination

and have no role should be executed.
7 B The result of divination is not helpful.
8 B C or G should be executed first.
9 E C or G may be the maniac.
10 E B, D or F should be executed first.
11 F I am the knight.
12 F You should not execute me.
13 F It is strange to make a statement that

ignores the results of divination.
14 D I am the knight.
15 D F should be executed first.
16 E Since F claimed to be the knight first,

so F is the true knight.
17 E D should be executed first.
18 B E, who assume that D is the fake fortune teller,

is strange.
19 C We can execute D and F consecutively

over two turns, so it doesn’t matter
which one start with for the execution.

20 C We execute D first.- then F.
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Table 4.16: In the case of having 20 arguments, the algorithm’s execution
time

Algorithm Execution time
Making AA graph 0.0007s

Getting combinations and
store them to list ”pattern” 0.5555s

Storing all shrunk graph to list “Graphset” 3.4551m
Identifying all graph’s grounded and

store them to list “grounded” 12h or more
Specifying rows and columns for displaying graph 0.1520s

Displaying all graph 12h or more
Total time 24.05h or more
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Chapter 5

Conclusion

5.1 Concluding Remark

We analyzed a formalization of which arguments are hidden or ignored in
order to get someone to accept a certain claim in this thesis.

To achieve this, both AA and the custom-defined Dynamic Abstract Ar-
gumentation were necessary. Dynamic Abstract Argumentation dynamically
alters the arguments accepted in discussions by manipulating the nodes and
edges of the AA framework or graph. This enables the identification of
all potentially changing shrunken AA graphs. Then, using these shrunken
graphs and the original graph, it is possible to analyze the Hidden Arguments
of each shrunken graph. Furthermore, by storing the grounded of all these
shrunken AA graphs, it becomes possible to call and display these graphs.
While the explanation was demonstrated using the example of the Werewolf
game, these attempts can be considered successful.

However, there are several challenges. As mentioned in Section 4.3,
the execution time of the algorithm is not a concern for simple argument
instances, but it significantly increases when the number of shrunken AA
graphs, such as 16385, becomes large. Furthermore, the increase in the
number of shrunken AA graphs begins to have a significant impact on the
calculation of bases. Due to this impact, if the grounded of all shrunken
graphs cannot be obtained, it becomes impossible to analyze which argu-
ments are hidden to make desirable arguments accepted by others. This is
considered a serious issue.

The second issue is that it cannot yet be applied to realistic, serious cases
like court cases. In addition to the aforementioned problem with execution
time, there is an issue with how arguments and attack relations are inputted.
The current algorithm requires manual input of information, so it becomes
impractical for complex cases with a large number of arguments, such as
those found in court cases, due to the enormous amount of time required
and thus it is not practical.

From these challenges, it can be inferred that theories like Dynamic
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Abstract Argumentation are not flawed, but there might be issues with the
development approach of the algorithm.

In this thesis we analyzed which arguments are hidden or ignored in order
to get someone to accept a certain claim, and this experiment itself could be
considered successful. However, there are still several issues remaining, and
these need to be resolved to make it practical.

5.2 Future Directions

My future design is as follows:

1. Extend the current framework using Argumentation-based Agent
(ABA) [14] approach. Unlike AA which lacks structure for abstract
concepts, ABA arguments have a structure [8]. This enables expressing
ambiguous parts like hypotheses.

2. In this study, it is necessary to extend the current framework to
represent not only attack relationships, such as “a attacks b”, but also
trust relationships, such as “a trusts b”. This is because in reality,
there are often allies who support each other’s claims rather than
criticizing each other. If we were to represent trust relationships, the
AA graph would be expected to resemble Figure 5.1. To express this,
new methods like Trust-Based Argumentation Framework (TBAF) [13]
and ABA would need to be utilized to expand the current framework.
In simple terms, TBAF is a framework where all arguments within it are
mapped to trust values for comparison and ranking [13]. Additionally,
each argument is mapped to an attack level, indicating the extent to
which it is being attacked by other arguments [13].

3. Address the problems outlined in the sections. Without resolving these,
it cannot be considered practical. Therefore, exploring new approaches
by revisiting algorithms is necessary. Additionally, combining methods
such as ABA and TBAF might open up new avenues.
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Figure 5.1: Express the trust relationship
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Appendix A

Example

We consider the input for the algorithm as “arguments = {1, 2, 3, 4}, attacks
= {(1, 2), (2, 3), (1, 3), (3, 4)}”.

An AA graph is created in the Figure B.3 based on the aforementioned
arguments and attacks. In this case, the execution result of Figure B.4 would
be as depicted in the figure A.1.

Next, the algorithm is executed from Figure B.5 to FigureB.6. Subse-
quently, the grounded obtained from these operations are verified in Figure
B.7. The result is as depicted in Figure A.2.

And then, the Hidden Arguments were analyzed by executing the nodes of
the original graph and the nodes of each graph stored in the list “Graphset”
to produce Figure B.8. The result is as depicted in Figure A.3.

When executing Figure B.9, the input would be as depicted in Figure
A.4. As a result, the list “check” would contain 1, 2.

When executing Figure B.10, the list “check” would contain the indices of
graphs that include the grounded 2. When the list ”grounded” corresponds to
the one from Figure A.2, then the contents of “check” would be {2, 7, 8, 14}.
Next, we calculate the rows and columns for displaying the graphs that
include the grounded 2. The result of this execution would be as depicted in
Figure A.5.

In Figure B.11, the rows and columns are being calculated for displaying
all graphs. The result of this execution would be as depicted in Figure A.6.

In Figure B.12, the display of specific graphs is executed using the list
“check”, rows, and columns obtained from Figure B.10. We are using the
execution result from Figure A.5 this time. In this case, the result of the
execution in Figure B.12 would be as depicted in Figure A.7.

In Figure B.13, all graphs are displayed and then converted into PDF
format. Using the list “grounded” from Figure A.2 and the rows and columns
obtained from Figure A.6, the execution result would resemble Figures A.8
to A.11. In this case, the title font size in Figure B.13 is set to 10, but it has
been changed to 20.
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Figure A.1: The execution result of Figure B.4

Figure A.2: The execution result of Figure B.7

Figure A.3: The execution result of Figure B.8

Figure A.4: The execution result of Figure B.9

Figure A.5: The execution result of Figure B.10
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Figure A.6: The execution result of Figure B.10

2

3

4

AFGraph2: DiGraph with 3 nodes and 2 edges

2
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AFGraph7: DiGraph with 2 nodes and 0 edges

2 3

AFGraph8: DiGraph with 2 nodes and 1 edges

2

AFGraph14: DiGraph with 1 nodes and 0 edges

AF Graph

Figure A.7: The execution result of Figure B.12
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Figure A.8: The execution result of Figure B.13
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Figure A.9: The execution result of Figure B.13

Figure A.10: The execution result of Figure B.13
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Figure A.11: The execution result of Figure B.13
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Appendix B

Code

In Figure B.1, Matplotlib and NetworkX are introduced to enable graph
plotting, and the time tool is introduced for measuring execution time.
Additionally, three lists for arguments, attack relation, and index of graph
are declared, along with a directed graph G for storing them.

In Figure B.2, values to be included in arguments and attack relations
are predetermined before executing the algorithm.

In Figure B.3, arguments are assigned to the nodes of the directed
graph G, while attack relations are assigned to the edges. Subsequently,
the execution time is measured.

In Figure B.4, the modules re and itertools are first imported. Then, three
lists are declared, with “None” inputted into the 0th index of these lists to
make it unusable. Subsequently, we store ∅ in the list “pattern”. Next, when
the number of arguments is n (n > 0, n ∈ N ), store all combinations of
selecting 0 to n-1 elements in the list “pattern”. Finally, we measure the
execution time to store it in a list “pattern”. Here, the nodes and edges of
the original the AA graphs are associated with the arguments and attack
relations from Figure B.2.

In Figure B.5, all Hidden Argument annotated AA graphs are stored in
the list “Graphset”. To do this, the AA graphs are shrunk using the list
“pattern” obtained in Figure B.4. Subsequently, the execution times for this
process are measured. Here, the nodes and edges of the original the AA
graphs are associated with the arguments and attack relations from Figure
B.2.

In Figure B.6, the grounded of all AA graphs stored in the list “Graphset”
are stored in the list “grounded”. During this process, the grounded are
obtained by executing ASP from Python. Subsequently, the execution times
for these process are measured. Here, the nodes and edges of the original
the AA graphs are associated with the arguments and attack relations from
Figure B.2.

In Figure B.7, the correctness of the grounded is being verified to ensure
they are properly instantiated. Here, the nodes and edges of the original
the AA graphs are associated with the arguments and attack relations from
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Figure B.1: Install tools and define variables

Figure B.2.
In Figure B.8, The Hidden Arguments of each shrunken graphs are

analyzed and stored in the list “Hidden”. According to Definition 3.1, Hidden
Arguments are identified by executing “the nodes of the original graph \ the
nodes of the shrunken graph”.

In Figure B.9, the index of AA graphs that are to be compared are
manually inputted during the execution of the algorithm. Here,he nodes
and edges of the original the AA graphs are associated with the arguments
and attack relations from Figure B.2.

In Figure B.10, the indices of AA graphs containing specific grounded are
being stored in the list “check”. Here, the nodes and edges of the original
the AA graphs are associated with the arguments and attack relations from
Figure B.2. In Figure B.10, the index of AA graphs containing the grounding
2 is being stored. Next, we calculate the rows and columns for displaying the
graphs to be compared.

In Figure B.11, the rows and columns are being calculated for displaying
all AA graphs. Subsequently, the execution time is measured. Here, the nodes
and edges of the original the AA graphs are associated with the arguments
and attack relations from Figure B.2.

In Figure B.12, the list “check” is used to display the specific AA graphs.
And then, those displayed AA graphs are converted into PDF format.

In Figure B.13, all AA graphs are displayed. And then, those displayed
AA graphs are converted into PDF format. Subsequently, the execution time
is measured.
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Figure B.2: Predetermine values before executing the algorithm.

Figure B.3: argument and attack relations are assigned to the directed graph
G

Figure B.4: store combinations in the list
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Figure B.5: Store all Hidden Argument of AA graph in the list

Figure B.6: Calculate the grounded extensions

Figure B.7: verify the correctness of the grounded
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Figure B.8: Analyze Hidden Arguments

Figure B.9: The index of AA graphs are manually inputted during the
execution of the algorithm
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Figure B.10: Storage of AA graph number and Specify rows and columns
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Figure B.11: calculate the rows and column for displaying all AA graphs

Figure B.12: Display the specific AA graphs
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Figure B.13: Displaying all AA graphs
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