
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
【課題研究報告書】分散リーダエレクションプロトコルの形式

仕様とモデル検査

Author(s) 小椋, 友芳

Citation

Issue Date 2024-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18924

Rights

Description
Supervisor: 緒方 和博, 先端科学技術研究科, 修士(情報

科学)



Abstract

In this research project, we created formal specifications of some leader elec-

tion algorithms and then verified that they enjoy desired properties using model

checking. By doing this, we will show how to create a formal specification of a

leader election algorithm and how to model check that the algorithm enjoys desired

properties based on the formal specification in a realistic execution time.

In distributed systems, centralized management is not a good idea in terms

of system load and failure, and it is considered better to design a system with

multiple processes that have the same role. However, it is easier to make sure to

keep data integrity if there is one special process that is in charge of it.

The process of selecting one elected process, or ”leader,” from among multiple

processes that comprise a distributed system is called leader election. Various

algorithms have been proposed for leader election.

Since leader election has been used in recent years for distributed databases

and for building fault tolerance into systems, the accuracy of the leader election

algorithm has become very important from the perspective of system operation.

For this reason, leader election algorithms are modeled and model checking tools

are used to verify that such algorithms satisfy desired properties. However, the

difficulty of modeling and the unrealistically long verification time due to state

explosion have become problems.

In the experiments described in this report, we created formal specifications

using Maude for three leader election algorithms: the Bully algorithm, the Chang-

Roberts algorithm, and the Franklin algorithm. In addition, based on the created

formal specifications, we used model checking to verify whether each algorithm

satisfies the guaranteed properties.

In the Bully algorithm, when a process detects that a leader has stopped, it

starts the next election process. The process that started the election sends a

message to all processes whose IDs are greater than its own ID. If there is no

reply from the processes to which the message has been sent, the process that

started the election becomes the leader. Conversely, if a process whose ID is

greater than the process that initiated the current election replies to the message,

the election is replaced. Eventually, there will be no processes left that reply to

such a message, and the one remaining process will become the leader. In this

report, we formalize and specify the Bully algorithm, which performs the above

operations, as a state transition system with eight observable components, and 11

rewriting rules for state transitions. We then used model checking to verify that

the algorithm enjoys desired properties based on the formal specification created.

In the verification experiments, the number of processes targeted by the Bully

algorithm was set to five, and model checking was performed. The results of the

2



validation experiments confirm that the Bully algorithm satisfies the properties of

a leader election algorithm.

In the Bully algorithm, all processes perform the selection process step by step

in synchronized timing. Therefore, it is difficult to perform model checking in

Maude, which inherently performs the process asynchronously. However, in this

report, we decided to perform model checking of the Bully algorithm by performing

three synchronous measures to the rewriting rules of the formal specification that

we created. As a result of the measures, it was confirmed that the properties of

a leader election algorithm were satisfied, so the measures are considered to be

effective.

In the Chang-Roberts algorithm, when a non-candidate process detects the ab-

sence of a leader, it starts the election process. The process that detects the

absence of the leader becomes a candidate as a starting process and sends a mes-

sage including its own process ID to the neighboring process. If the process that

received the message is a non-candidate, the message is relayed to the neighboring

process, and if the process that received the message is a candidate, it compares

its own process ID with the process ID in the received message. If its own process

ID is higher, it sends the received message to its neighbor. Conversely, if its own

process ID is lower, it discards the received message. This process is continued un-

til only the message containing the lowest process ID has gone around the ring. In

this report, we formalize and specify the Chang-Roberts algorithm, which operates

as described above, as a state transition system with four observable components,

and nine rewriting rules for state transitions. The five properties that the algo-

rithm must satisfy are described as LTL formulas. We then used model checking to

verify that the algorithm enjoys the five properties based on the formal specifica-

tion created. In the verification experiments, the number of processes targeted by

the Chang-Roberts algorithm was set to five, two initial states were defined that

considered the sorting order, and model checking was performed. The results of

the verification experiments confirmed that the Chang-Roberts algorithm satisfies

the properties of a leader election algorithm, regardless of the order of processes

arranged in a ring. Additionally, it was confirmed that the three properties specific

to the Chang-Roberts algorithm were also satisfied.

In the Franklin algorithm, a non-initiator process starts the election process

when it detects the absence of a leader. The process that detects the absence of

the leader becomes the initiator and sends a message including its own process

ID to both neighboring processes. If a process receiving the message is a non-

initiator, it relays the message to the neighboring process as a passive process.

However, if a process that received the message is an initiator, it compares its

own process ID with the higher of the process IDs of the messages received from

3



both neighboring processes. If its own process ID is higher, it sends a message

including its own process ID to both neighboring processes again. If its own

process ID is lower, it becomes a passive process. If it is equal to its own process

ID, it becomes a leader. In this report, we formalize and specify the Franklin

algorithm, which operates as described above, as a state transition system with

four observable components, and 12 rewriting rules for state transitions. The two

properties that the algorithm must satisfy are described as LTL formulas. We then

used model checking to verify that the algorithm enjoys the two properties based

on the formal specification created. In the verification experiments, the number

of processes targeted by the Franklin algorithm was set to five, two initial states

were defined that considered the sorting order, and model checking was performed.

The results of the verification experiments confirmed that the Franklin algorithm

satisfies the properties of a leader election algorithm, regardless of the order of

processes arranged in a ring.

keywords: model checking, distributed algorithm, leader election, Maude, safety

property, liveness property, state transition system

4


