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Abstract

Engagement is an essential component of the learning processes associated
with positive learning outcomes. Measuring learner engagement in learning
processes is important for providing insights for enhancing learning activ-
ities. Because the learning paradigm has shifted to enable more distance
learning practices, machine learning-based automatic engagement estimation
methods have been proposed as a new way to measure learner engagement.
Nevertheless, most existing methods are built standalone and have yet to be
integrated into actual distance learning practice. Furthermore, implementing
automatic engagement estimation should ensure technological and ethical
impact responsibilities.

This study aims to provide an intermediary knowledge and solution to
analyse learners’ engagement in the distance learning process by addressing
the main research question: ”How do educators or education institutions safely
apply automatic engagement estimation in their distance learning process?”
A systematic review is conducted to gain basic knowledge of the current trend
of automatic engagement estimation in the literature to achieve this goal.
The engagement types, datasets, and methods are defined and theoretically
investigated. Secondly, the technical investigation to understand the basic
requirement for automatic engagement estimation is done by building an
engagement estimation module using deep learning methods. We introduce a
design principle for end-to-end integration of real-time automatic engagement
estimation in distance learning practice. Thirdly, we introduce a design
principle for the ethical implementation of automatic engagement estimation
so that the technology can benefit actual distance learning in practice.

From the literature review, we found that clearer engagement definitions
and cues are crucial for developing an applicable automatic engagement
estimation. However, there is no clear taxonomy to define engagement,
especially for distance learning implementations. Therefore, we introduced a
taxonomy of engagement definitions and cues, categorized the engagement
datasets, and conducted method categorization, which mainly utilised machine
learning-based methods. The combination of a clear definition of engagement
and suitable machine learning methods allows learners’ engagement during
learning activities to be measured automatically, including in human-human
interactions, human-computer interactions, and human-robot interactions.

Two deep learning models were experimented with, i.e., long short-term
memory (LSTM) and convolutional neural network (CNN), and a publicly
available engagement dataset. However, we found that classic machine learning



would be the best practice, especially for real-time engagement estimation,
while LSTM is less feasible for practical implementation compared to CNN
from a runtime perspective. Furthermore, a framework for real-time automatic
engagement estimation is proposed for implementation in distance learning
practices. Furthermore, we introduce system designs and prototypes for both
an asynchronous and a synchronous setting.

We propose the design of RAMALAN, a real-time engagement assessment
for asynchronous distance learning, and MeetmEE (pronounced as ’meet
me’), a real-time video conference integrated with automatic engagement
estimation for synchronous distance learning. The MeetmEE prototype was
deployed in a pilot experiment to evaluate the MeetmEE system design. A
total of 20 participants joined the experiment in a one-hour meeting session
with the author via MeetmEE online either as educators (n = 13; 65%) or
learners (n = 7; 35%) with 60%. The participants completed two survey forms
(Forms A and B) based on their roles in their affiliations. The experiment
results of Form A demonstrate that most of the responses were very positive
to the automatic engagement estimation concept, represented in MeetmEE.
MeetmEE is favourable for 70% of the participants, where, for educators, this
technology will motivate them to improve their teaching strategies and give
support to their students, while students can measure their own engagement
as well. Furthermore, the results of Form B showed a positive evaluation,
demonstrating that MeetmEE is sufficient, particularly in scales of stimulation,
attractiveness, perspicuity, and novelty. However, MeetmEE is perceived as
relatively low in terms of dependability and efficiency.

Finally, the user evaluation results are considered to construct the design
principle of ethical implementation. The automatic engagement estimation
implementation’s design principle incorporates technical and operational mea-
sures. While the current automatic engagement estimation studies focused
on only the ICT point of view instead of the feasibility of the actual educa-
tion process, the development of an engagement estimation design principle
incorporated with its real-time application in the distance learning process is
a part of the originality of this research. We believed that this contribution
would be beneficial in designing a broader distance learning framework where
the learners’ internal state and affective factors are considered.

Index Terms: Distance learning, automatic engagement estimation, emo-
tional engagement, machine learning, WebRTC, design principle, ethical
impact.
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Chapter 1

Introduction

1.1 Background

Due to rapid developments in information and communications technology
(ICT) and the spread of the COVID-19 pandemic, the learning model shifted
from a traditional classroom to distance learning. Distance learning, includ-
ing self-directed and online learning, has become a major learning setting.
Distance learning enables learners to have more freedom to participate via
synchronous learning (such as live communication) or asynchronous learning
(such as a learning portal through a learning management system (LMS)).
This freedom affects learner interaction, engagement, motivation, and learning
assessments.

Learner engagement is an inner state associated with a learning process and
positively correlated with academic achievement [122], and higher engagement
levels lead to better learning outcomes [164]. A good engagement state is
associated with curiosity, interest, optimism, and passion, which enhances
motivation to continue learning and pursue achievement [78]. Therefore,
understanding learners’ engagement is an essential component in a learning
process that: (1) increases productivity and learning; (2) provides insight
for enhancing learner-educator, learner-learning material, and learner-learner
interactions; (3) yields insights to improve course content delivery and lecture
planning; (4) provides personalized support to learners; (5) reduces the
dropout rates in online courses [7, 146, 223, 60, 197].

Unlike face-to-face offline learning, assessing learners’ engagement in the
distance learning process is more challenging. In traditional classrooms,
educators can directly recognize how to engage their students in the class. For
example, some learners show active participation, frustration, or distraction
during learning (Figure 1.1). In contrast, learner engagement is more difficult
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to estimate due to a limitation of learner-educator interaction in distance
learning settings. Therefore, educators are called to seek different ways to
assess and monitor affective behaviours in real time, including boredom,
frustration, confusion, and engagement. Real-time engagement assessment
benefits educators to adjust their teaching strategy the way they do in a
traditional classroom, e.g., by suggesting some useful reading materials or
changing the course contents [229].

(a) (b)

Figure 1.1: Problem statement of traditional classroom vs distance learning.

The recent success of artificial intelligence research and applications that
support classic machine learning and deep neural networks have led to promis-
ing research on automatic engagement estimation [90, 43]. Several automatic
engagement estimation methods have been proposed in recent years [111].
Among them, computer vision-based techniques are the most popular meth-
ods because nonverbal behaviours (including head motion, eye gaze, and
body pose) play key roles in determining engagement levels [27]. In addition,
computer vision-based approaches offer unobtrusive assessments, similar to
classroom situations where teachers observe learners without interrupting
their activities. These methods are also cost-effective and usable in the near
term [64].

Moreover, physiological information-based methods have also received
considerable attention in automatic engagement estimation research. The de-
velopment of cost-effective bio-signal hardware, such as electroencephalogram
(EEG), electrocardiogram (ECG), facial electromyogram (fEMG), and gal-
vanic skin response (GSR), have provided simple and easy-to-use solutions [6].
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Furthermore, physiological signals support personalized analyses, which is
pertinent for learners with special needs, such as those with autism [175].

Despite the massive development of automatic engagement estimation
[110, 111], there is no research on using engagement estimation modules in
distance learning practice. The current automatic engagement estimation
studies focused only on the ICT point of view instead of the implementation
of actual distance learning processes. This challenge motivates this thesis to
focus on the framework and requirements to optimize the benefit of automatic
engagement estimation in accordance with distance learning characteristics.

The rest of this chapter states the motivation of the study with regard to
automatic engagement estimation development to address distance learning
problems. The motivations include research problems on defining engagement
to be measured, dataset and methods used for the automatic engagement
estimation module, and an overview of existing solutions and remaining issues.
Subsequently, the significance and objective of this research will be defined in
the succeeding section, followed by a section that describes distance learning
characteristics. Finally, the organization of the thesis is shown at the end of
this chapter.

1.2 Research Motivation

Studies on automatic engagement estimation methods have been introduced
by multidisciplinary fields, including human-computer interactions (HCIs),
human-robot interactions (HRIs), and embodied conversational agents (ECAs).
Some studies have different methods and perspectives in defining the engage-
ment to be measured. Therefore, there is bias in defining engagement in
literature, particularly for distance learning purposes.

Besides, machine learning-based automatic engagement estimation is the
existing solution for analysing learner engagement automatically [111]. For
developing automatic engagement estimation methods, adequately labeled
data and a sufficient amount of data that includes as many generalized vari-
ables as possible are important criteria, such as using publicly available or
self-collected datasets. Publicly available datasets are open, freely down-
loadable, and may have some terms and conditions, such as use only in
research contexts or with author consent. Moreover, self-collected datasets
(also referred to as non-public datasets) are built according to specific tasks
and cannot be publicly shared due to privacy policies and ethics. However,
to our knowledge, no research has reviewed the datasets and methods used
in literature to develop an automatic engagement estimation in education.
Therefore, the systematic review will cover the dataset and methods used in
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the literature to develop an automatic engagement estimation module.
Furthermore, there is a gap between ICT development (i.e., automatic

engagement estimation studies) and educational practices (i.e., distance learn-
ing studies). Various types of distance lectures have been used in the past
distance education, such as open universities and MOOCs. Automatic engage-
ment estimation is aimed at analysing learner engagement when traditional
face-to-face methods are transferred to distance education. However, the
current engagement estimation research focuses more on computer science.

For example, school principals who do not have the support of a data
specialist to assist them and their teachers in adhering to demands to use data
being exerted upon them by policy created above the school level [142]. In
other words, although automatic engagement estimation has been introduced,
it cannot immediately impact the distance learning process, especially with
the lack of a technologically savvy environment for educators and education
managers to interpret the report. Besides, involving a third party potentially
raises a budget issue, harms data privacy, and can be ethically abusive.
Therefore, the problem arising from automatic engagement estimation needs
to be considered.

This issue motivates this study to bridge the computer science results
with educational practice. It is wrapped in the main research question: ”How
do educators or education institutions safely apply automatic engagement
estimation in their distance learning process?”

1.3 Research Objectives

The ultimate goal of this study is to provide an intermediary solution to
analyse learners’ engagement in the distance learning process, which aims to
address the main research question as shown in Figure 1.2.
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Figure 1.2: The objective of this work.

We propose a framework for enhancing distance learning performance using
an automatic engagement estimation module to recognize learner engagement.
To reach this objective, the main research question is broken down into three
research questions:

1. What requirements did literature develop for automatic engagement
estimation?

(a) How should the type of engagement to be measured be defined?

(b) What datasets are suitable for developing automatic engagement
estimation methods?

(c) What automatic engagement estimation methods have been devel-
oped in the literature?

2. How to develop real-time engagement estimation tools for distance
learning practice?

3. How to implement automatic engagement estimation in distance learning
while taking into account distance learning characteristics and ethical
impact?

First, the basic knowledge of developing automatic engagement estimation
in the literature will be studied. The engagement types, datasets, and methods
are defined and investigated to address the RQ1. Secondly, we introduce a
framework to show an end-to-end real-time automatic engagement estimation
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integration based on the proposed mechanism to address RQ2. We propose
MeetmEE (pronounced as ’meet me’), a real-time video conference integrated
with automatic engagement estimation for enhanced distance learning. Finally,
to address the RQ3, MeetmEE is deployed in a pilot experiment to evaluate
the MeetmEE system design, where the user evaluation results are considered
to construct the design principle of ethical implementation. We introduce
the design principle of the automatic engagement estimation implementation
that incorporates both technical and operational measures.

1.4 Organization of the Thesis

This thesis is comprised of six chapters. Apart from this introduction chapter,
the organization of the remaining chapters, from Chapter 2 to Chapter 6, is
as follows.

Chapter 1 (this chapter) describes the research’s background, motivation,
and objective. The thesis outline is also presented.

Chapter 2 presents a systematic review to understand the fundamental
concepts, techniques, and algorithms used in engagement estimation research.

Chapter 3 investigates technical requirements to build an automatic
engagement estimation module and presents our proposed real-time automatic
engagement estimation framework.

Chapter 4 presents the RAMALAN and MeetmEE system design as
the implementation of automatic engagement estimation in distance learning
practice.

Chapter 5 discusses the ethical issues of implementing automatic engage-
ment estimation in actual distance learning and proposes the design principle
of an automatic engagement estimation system in a synchronous distance
learning Practice.

Chapter 6 concludes the thesis, mentions the contribution and limitation
of this thesis, and provides some insights for future works.
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Chapter 2

Literature Review

This chapter is an update and abridged version of the following publications:

1. S. N. Karimah and S. Hasegawa, “Automatic Engagement Recogni-
tion for Distance Learning Systems: A Literature Study of Engage-
ment Datasets and Methods,” in International Conference on Human-
Computer Interaction, 2021, pp. 264–276, doi: 10.1007/978-3-030-78114-
9 19,

2. S. N. Karimah and Shinobu Hasegawa, ”Automatic engagement esti-
mation in smart education/learning settings: a systematic review of
engagement definitions, datasets, and methods. Smart Learning Envi-
ronments, 9(1):31, 11 2022, doi: 10.1186/s40561-022-00212-y.

2.1 Chapter Introduction

To address RQ1, this chapter reviews the background knowledge related to
engagement definitions, datasets, and methods based on 47 articles selected in
the systematic review method. The systematic review methodology employed
in this study was adopted from the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) model [158]. A literature search
was carried out based on the PRISMA flow diagram, with modifications
made to the eligibility phase. Therefore, there are 4 phases in the flow,
i.e., identification, screening, eligibility, and inclusion. We also modify the
flowchart by adding initial inclusion criteria (such as keywords, timeline, and
literature type), and focus discussion (i.,e., engagement definition, dataset,
and method). Figure 2.1 shows the modified PRISMA flowchart used to
select articles in this review, where the detail of each phase is explained in
Appendix A.
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Figure 2.1: Illustration of the article selection process.

2.2 Engagement Definition for Automatic En-

gagement Estimation

RQ1.1: How should the type of engagement to be mea-
sured be defined?

In engagement estimation studies, the definition of engagement varies consid-
erably. The definition of engagement depends on the main focus of the study
[49, 113] and stimuli, such as human-computer interactions (HCIs), human-
robot interactions (HRIs), and embodied conversational agents (ECAs), in-
cluding human-human interactions (HHIs).

HRI researchers defined engagement via two approaches. The first ap-
proach defines engagement as a process during interactions that combines
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verbal and nonverbal communication between two (or more) partners. The
second approach defines engagement as an interaction quality metric. More-
over, researchers who focused on ECAs [161] and intelligent tutor systems
(ITSs) [65] viewed engagement as a value that indicates how likely a person
is to remain with their partner and continue an interaction. Furthermore,
engagement estimation research in the field of HCI defined engagement based
on engagement cues in computer-based learning, such as learners watching
videos, writing, and playing educational games, or in classroom recordings
[223, 146, 197].

This inconsistent definition of engagement in the literature due to the lack
of consensus and taxonomy for learning engagement [234] may confuse new
researchers in this field. To address this challenge, we introduce a taxonomy
for engagement and systematically review the definition of engagement used
in the selected articles (Figure 2.2). As a baseline, we follow the definition of
engagement in education and learning environments proposed by Fredricks et
al. ([78]), which has been widely used in engagement research [227, 77, 89,
231, 16].

Engagement is associated with internal states constructed by various cues
and may not be visually apparent. Fredricks et al. ([78]) divided engagement
into three categories: behavioural, emotional, and cognitive engagement.
However, in this definition of engagement, the components to construct each
type of engagement overlap considerably, as shown in Figure 2.2.
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Figure 2.2: Proposed taxonomy to define engagement definition based on
Fredrick’s engagement category [78].

Behavioural engagement describes learners’ participation in learning
and tasks [78]. In classroom settings, behavioural engagement is shown by
actively participating in class, such as by asking questions or displaying
attention and concentration [197]. Emotional engagement refers to learners’
affective reactions in the classroom or during learning, including interest,
boredom, happiness, sadness, and anxiety [78]. Cognitive engagement, also
referred to as self-regulation, incorporates learners’ psychological investment
in learning, including flexibility in problem-solving, learning motivation, and
coping mechanisms when faced with failure.

The components for assessing engagement include effort, attention, and
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persistence for behavioural engagement; various emotional reactions (such
as anger, surprise, disgust, enjoyment, fear, and sadness [72]) to the learning
materials for emotional engagement; and metacognitive strategies, namely,
how learners set goals, plan, and organize their study efforts, for cognitive
engagement [78].

In developing automatic engagement estimation methods, these compo-
nents can be obtained with several modalities (Table 1), such as log files,
which include information related to learner performance, reaction times,
and errors [41, 155, 233]; affective cues, including face and body analyses
from video/images [223, 32, 31]; and physiological cues, such as galvanic
skin responses [63, 140], electroencephalograms (EEGs) [165, 29], heart rates
[52, 146], and combinations of these cues [64].

The engagement level can be determined by grouping emotions according
to Ekman’s basic emotions [72] or Russel’s model [179]. For example, Al-
tuwairqi et al. ([9]) suggested that ‘surprised’ indicates strong engagement;
‘enthusiastic’, ‘excited’, and ‘nervous’ indicate high engagement; ‘satisfied’
and ‘happy’ indicate medium engagement; and ‘bored’ indicates low engage-
ment. Other behaviours, such as not looking at the computer and playing
with hair, are classified as disengagement. For the two-level classification,
strong, high, and medium engagement are grouped into the high engagement
class, while low and disengagement are grouped into the disengagement class.
In addition, Olivetti et al. ([37]) divided engagement level into three classes
based on the first and fourth quadrants of Russell’s model: Class 1 included
bored, relaxed, and unresponsive; Class 2 included happy, attentive, content,
and perplexed; and Class 3 included surprised, astonished, and embarrassed.

Consulting the taxonomy, we then reviewed the definition of engagement
with a two-step approach. First, we examined the modalities used in each
article and how the engagement level was determined. The articles included
three common engagement modalities: affective cues (including audio and
visual), physiological cues, and log files that were annotated to determine
engagement. Some works used publicly available datasets or facial expression
tools that already included basic emotion labels. Therefore, we included basic
emotions in the taxonomy at the same level as the other modalities to further
define the type of engagement (i.e., behavioural, emotional, or cognitive). As
previously discussed, one engagement cue does not exclusively correspond to
one engagement type.

For example, Apicella et al. ([13]) estimated emotional and cognitive
engagement with a physiological sensor, i.e., EEG signal acquisition, because
the type of stimuli considered during data collection was related to internal
emotions and the cognitive task. In this case, two types of stimuli, namely,
social feedback and background music, which were organized based on Rus-
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sel’s four quadrants, were used to estimate emotional engagement, while a
cognitive task (Continuous Performance Test) was used to estimate cognitive
engagement.

Moreover, Goldberg et al. ([85]) analysed three types of engagement
with one modality, namely, videos recorded in an offline classroom. The
behaviour of the students (on- or off-task) in the videos and a knowledge
test presented during the lecture was used to estimate the behavioural and
cognitive engagement levels, while facial features were extracted from the video
to analyse emotional engagement. Therefore, in addition to the engagement
cues used, defining what type of engagement is being measured depends on
what stimuli were presented to the participant during data collection and
what physical or cognitive behaviours were observed.

Overall, most of the selected articles analysed emotional engagement
(n = 40; 65.57%) with affective cues (n = 38; 57.58%), including visual (from
videos, which show facial, body, and head information) and audio (speech)
cues (Figures 2.3a and 2.3b) (See Appendix Table 1). In this thesis, we follow
the majority of studies to use visual-based analysis from video to estimate
emotional engagement.

(a) Engagement type. (b) Engagement cues.

Figure 2.3: Pie chart of the engagement types estimated and cues measured
in the selected articles.
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2.3 Engagement Dataset to Build Engage-

ment Estimation Methods

RQ1.2: What datasets are suitable for developing auto-
matic engagement estimation methods?

Adequately labeled data and sufficient data that includes as many generalized
variables as possible are important criteria for developing automatic engage-
ment estimation methods. Automatic engagement estimation approaches
can be developed using publicly available or self-collected datasets. Publicly
available datasets are open, freely downloadable, and may have some terms
and conditions, such as use only in research contexts or with author consent.
Moreover, self-collected datasets (also referred to as non-public datasets) are
built according to specific tasks and cannot be publicly shared due to privacy
policies and ethics.

In contrast to emotion recognition datasets, which are typically labeled
based on Ekman’s basic expressions (e.g., anger, disgust, fear, happiness, sad-
ness, surprise, and neutral), there are only a few publicly available engagement
datasets, i.e., datasets that include ‘engagement’ in their labeling process.
However, as shown in the taxonomy of engagement estimation (Figure 2.2), an
emotion recognition dataset can be used for automatic engagement estimation
by modifying labels or by introducing other measurement metrics to define
engagement types. In this article, we refer to datasets used in the automatic
engagement estimation literature even though they have no straightforward
engagement labels as engagement-related datasets and datasets with
’engagement’ as a label as engagement datasets.

The selected articles include four engagement-related datasets and three
engagement datasets that are publicly available. The public engagement-
related datasets include: 1) the NVIE dataset1 [219], 2) BAUM-12 [240], 3)
the MASR dataset3, which is used in [167] but was proposed in [167], and
4) AffectNet [144]. The public engagement datasets include: 1) DAiSEE4

1A Natural Visible and Infrared Facial Expression Database for Expression Recognition
and Emotion Inference

2https://archive.ics.uci.edu/ml/datasets/BAUM-1
3https://vcl.iti.gr/masr-dataset
4Dataset for Affective States in E-Environment https://people.iith.ac.in/

vineethnb/resources/daisee/index.html
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[91], 2) UE-HRI5 [26], 3) MHHRI6 [40], and 4) MES dataset7 (Table 2.1).
DAiSEE is one of the most popular publicly available engagement datasets

used in the literature [157, 127, 136, 202, 141]. Another popular publicly avail-
able engagement dataset is the Emotion Recognition in the Wild (EmotiW)
dataset. This dataset was excluded from this review because the dataset is
being continuously updated; however, EmotiW 2018 [61] and 2020 [62], are
accessible for academic research [3].

The data in DAiSEE and EmotiW were collected in ‘in-the-wild’ en-
vironments, where participants contributed to the data collection process
by recording themselves showing their upper body while watching learning
videos. The participants could join from anywhere, and no camera or lighting
specifications were considered. Therefore, the videos’ quality (e.g., illumi-
nation, background noise, and occlusion) varies. Although in-the-wild data
have considerable variations, they are believed to be the closest to real-world
conditions [91, 61, 62].

Despite the ease and amount of available data, DAiSEE, EmotiW, and
other publicly available datasets, most of the datasets were collected with
participants of a certain ethnicity, which may not be appropriate for all target
subjects. Moreover, large variations may make’ in-the-wild’ data difficult
to process. Therefore, most engagement studies build custom engagement
datasets that address the requirements of their model or system (see Appendix
A.2.2).

In contrast to publicly available datasets, the non-public (also referred
to as custom) engagement datasets (Table 2, 3) were collected more than
engagement-related datasets (Table 4). We found that a different way of
interpreting and defining engagement is a reasonable decision to have an
engagement label explicitly in the dataset. However, because data collection
is costly and time-consuming, the amount of data collected may be insufficient.
In such cases, self-collected data can be combined with engagement-related
datasets or transfer learning data to enhance the estimation performance.

Transfer learning is a type of fine-tuning described in Section 2.4. Transfer
learning generally involves using a pre-trained neural network on a large
dataset to extract features for tasks with smaller datasets. Some image
datasets used for transfer learning include FER-2013 [87], VGGFace [159],
VGGFace2 [35], FaceNet [188], AffectNet [144], 300W-LP and AFLW2000

5User Engagement in Spontaneous Human-Robot Interactions https://adasp.

telecom-paris.fr/resources/2017-05-18-ue-hri/
6Multimodal Human-Human-Robot Interactions Dataset for Studying Personality and

Engagement https://www.cl.cam.ac.uk/research/rainbow/projects/mhhri/
7Partially https://github.com/Harsh9524/MES-Dataset/blob/main/MES_dataset.

csv
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[249], JAFFE [135], CK+ [133], and RAF-DB [125] .

2.3.1 Engagement Measurement

Various approaches for measuring engagement include self-reports, experience
sampling techniques, teacher ratings, interviews, and observations [79]. In
addition, different indices (such as performance indices, number of clicks, and
sensor data) have been used to assess engagement [234, 13, 235]. However,
external observations (n = 20; 43.48%), self-reported measures (n = 9; 19.57%)
and ratings are commonly used to measure engagement [223, 49] (Figure 2.4).
Moreover, most publicly available engagement datasets were collected based
on external observations by external annotators.

Self-reported measures are cheaper and easier to collect than external
observations, which require more personnel to measure engagement [49]. Self-
reports can be performed by self-annotating or completing questionnaires
related to self-engagement [154]. However, self-reported measures are prone
to Dunning-Kruger effects, as people are biased in recognizing self-competence
[119, 160]. In addition, these measures are dependent strongly on participant
compliance and diligence [71]. The bias associated with self-reported measures
was also observed by Ramanarayanan et al. [170, 169].

Furthermore, observational measures limit the judgment quality of learners’
actual effort, participation, or thinking [78, 162]. An external observer is
an overhearer [186] that may not consider nonverbal behaviours as signs of
engagement. For example, learners who are judged to be on-task or engaged
by observers may not actually be thinking about the learning material. In
contrast, some learners who appear to be off-task or disengaged may be
attempting to understand or relate new ideas to what they have learned
[162]. In addition, in terms of cognitive engagement, cognition is not easily
observable and must be inferred from behaviours or assessed according to
performance or self-reported measures [78, 225].

Alternatively, index measurements and combination approaches have been
applied to reduce bias. Among the selected articles, four (8.70%) studies used
index measurements, six (13.04%) studies combined self-reported measures
with external observations, and two (4.35%) studies combined self-reported
measures with some index.

Trindade et al. [172] performed calculations on log data from courses in
Moodle to evaluate engagement. Similarly, Hasnine et al. [92] calculated
concentration indices, Apicella et al. [13] combined self-reported measures
with performance indices, and Yue et al. [234] combined self-reported measures
with quiz scores to assess engagement.
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Figure 2.4: Pie chart of the engagement measurements and annotations used
in the selected articles.

2.3.2 Annotations

Annotation is a crucial step in building a good dataset. Single data points can
be annotated manually by one or multiple annotators or by using a framework
[48] or annotation tools such as CARMA [84], ANVIL [115], NOVA [24], and
ELAN [226, 34] (see Appendix A.2.2).

To determine whether the labels are consistent, an agreed-upon final label
must be determined by several annotators, for example, by using Cohen’s
kappa value [219, 11, 223, 240, 14, 199]. Cohen’s kappa has also been used to
evaluate the efficiency of classifiers for multiclass and imbalanced data [202].

The final label can also be determined by measuring intraclass correlations
(ICCs) [85, 175] or by applying the majority-vote aggregation technique
[237, 157, 240]. Highly consistent labeled data usually indicates high credibility
[243].

Visual computer vision-based engagement estimation datasets encounter
several challenges, such as various camera angles and image quality (illumi-
nation, background, occlusion, etc.). In addition, the difficulty in capturing
subtle changes in visual appearance leads to mislabelling issues. For example,
one video clip may show more than one engagement state annotated as one
state. As a result, some frames may be mislabelled, potentially influenc-
ing the frame-by-frame estimation process [237]. Frame-based labeling is
viewed as the easiest solution. However, this approach lacks continuous labels,
which provide more precise information [197]. To address this issue, temporal
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dynamics features need to be extracted [237].
However, in some cases, some frames are more significant for determining

engagement levels, while other frames can mislead the final estimation result
[247]. One solution for addressing this problem is applying an attention
mechanism. The attention mechanism in deep learning directs attention to
effectively choose important frames [213, 224].

Another labeling issue is a false interpretation. For example, learners
may be engaged regardless of where they are looking, and observers might
label a learner who looks down as disengaged while the learner is actually
thinking or processing the learning material. Especially in higher grade levels,
learners may show/hide their engagement, and engagement cues may thus be
more difficult to identify [134]. Moreover, age can affect attention levels [134].
Therefore, collecting an engagement dataset representing learners’ authentic
internal states is challenging.

2.4 Machine Learning-based Methods for Au-

tomatic Engagement Estimation Module

RQ1.3: What automatic engagement estimation meth-
ods have been developed in the literature?

Machine learning, which is a subset of artificial intelligence (AI), is known for
its capability to acquire knowledge to make decisions by extracting patterns
from raw data [86]. Machine learning techniques have been applied in various
fields, including agriculture, transportation, business, and education. Machine
learning has led to the development of affective computing methods that
automatically recognize human emotions and behaviours [189, 116, 245, 174],
supporting the advancement of artificial intelligence in education applications
[46, 156]. Therefore, automatic engagement estimation methods are generally
referred to as machine learning (ML)-based algorithms.

Since machine and deep learning methods are the most commonly used
approaches for developing automatic engagement estimation tools in the
literature (Figure 2.5), in this section, we briefly discuss the pre-processing
steps and estimation methods (classification or regression). We classified the
estimation methods as classic machine learning and deep learning techniques.

Deep learning is a subset of machine learning. Both techniques work by
mapping raw data features to extract the desired information. Nevertheless,
it may be difficult for computers to extract features from raw data with
large variations, and these features may be identified only using a nearly
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Figure 2.5: The general method used in the selected articles.

human-level understanding of data [86]. Therefore, classic machine learning
methods require hand-designed features. Moreover, deep learning approaches
reduce the desired complicated mapping into a series of nested mappings that
can be described by layers [86]. For example, the input is presented as a
visible layer to identify image features. Then, the next layers, namely, the
hidden layers, divide the image into smaller maps such as edges, corners and
contours, object parts, and finally, the object identity. Figure 2.6 depicts a
Venn diagram showing how deep learning is distinguished from classic machine
learning.

Figure 2.6: The difference between machine learning and deep learning.
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Table 2.2: Face recognition tools for face detection and feature extraction

Tools name Used in

OpenFace [22, 23] [112, 175, 85, 136, 230, 241, 247, 204,
126, 73]

OpenCV [232, 220, 54, 30, 92]
Dlib [92, 141]
OpenPose [36] [212, 246, 230, 247]
RetinaFace [59] [197]
FasterRCNN [171] [177]
faceAPI [39]
Affectiva API in iMotion [68]

Pre-processing

Before data can be fed into a network, the raw data must be pre-processed to
extract the features. Video/image-based data can be pre-processed with face
detection, tracking, and cropping techniques [237]. Alternatively, statistical
values can be extracted to obtain representation information from features in
a given time window [94, 180, 237]. Statistical rules such as sum, max, min,
and mode can be utilized to aggregate meaningful information as input for
classifiers, including support vector machines (SVMs) and neural networks
[237].

Face Detection and Feature Extraction Appearance-based features
can be divided into two categories: low-level features and high-level features.
Low-level features include the information generated in each video frame in
a given time window. In particular, HCI engagement research has adopted
low-dimensional geometry and appearance descriptors as features [197, 223].
Additional low-level features include local binary patterns in three orthogonal
planes (LBP-TOP), Gabor features, and box filters (BFs) [124].

High-level features are features extracted by aggregating low-level features
[237], such as facial action units (FAUs) and head poses. Facial features and
head poses are some of the most commonly used features for determining
engagement and attention [5, 17, 66, 216, 244]. These features can be extracted
statistically or by using facial recognition tools, as shown in Table 2.2.

OpenFace is a popular computer vision toolkit for extracting facial fea-
tures, including for automatic engagement estimation research (Table 2.2).
OpenFace implements multitask cascaded convolutional networks (MTCNNs)
[242] for face detection, constrained local models [21, 238] for landmark
detection and tracking, eye rendering [228] for eye gaze estimation, and cross-
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dataset learning and person-specific normalisation for facial action unit (FAU)
detection. Figure 2.7 shows the output features extracted from OpenFace.

Figure 2.7: The output features of OpenFace [200].

In addition, the OpenCV1 face detection library (Haar Cascade [215,
214, 185]) and Dlib library for face and landmark detection are widely used.
The mean shift-based object tracker in OpenCV can also be used for face
tracking. Furthermore, in HRI, face recognition can be performed by utilizing
the software development kit (SDK) built into the robot, for example, the
NAOqi People Perception in the Pepper robot [25]. Interested readers are
referred to [218] for an in-depth explanation, especially deep learning-based
face recognition.

Data Augmentation Data augmentation is the process of creating new
data based on real data without changing the original data. Data augmenta-
tion can be performed for image inputs by flipping (horizontally or vertically),
cropping, scaling, or translating/rotating the images. As a result, the sam-

1https://opencv.org/
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pling rate for the input can be increased by adding the augmented data to
the original dataset [193, 199, 157].

Feature Selection Feature selection not only determines the optimal set of
features but also ranks and compares the most discriminative features. Some
feature selection methods include F-scores [47], RELIEF-F [223], DeepLift
[175], and recursive feature elimination random forests (RFE-RFs). Alter-
natively, ANOVA can be used to analyse the significance of labeled features
[184].

Dimensional Reduction Dimensional reduction is the process of decreas-
ing the dimension of the input feature to prevent overfitting [237]. Dimensional
reduction can be applied to a dataset before the data are fed into the network.
Some dimensional reduction methods include principal component analysis
(PCA) [197, 219] and forward feature selection (FFS) [11]. However, the
dimensional reduction can also be performed by layer reduction using various
pooling layers (max, average, and variance pooling, 1x1 convolutional layers)
when a convolutional neural network is utilized [237].

Addressing Imbalanced Data One major issue with engagement datasets
is imbalanced data that are severely skewed towards the majority class [237].
Imbalanced class labels often occur because disengagement is rarely observed
in continuous labeling. Many methods have been proposed to address this
issue [82, 45, 83, 67]. There are three categories of re-sampling techniques
[25]: 1) under-sampling methods, which aim to balance class distributions
by eliminating majority class examples; 2) oversampling methods, which
generate minority class examples, e.g., the synthetic minority oversampling
technique (SMOTE) [45]; and 3) hybrid methods that combine both sampling
methods [83, 45]. Moreover, continuous scales may be discretized into groups
[178, 176], and weighting techniques [67, 129] have also been used to address
this problem.

Classic Machine Learning Methods

Engagement is estimated by calculating probabilities. To calculate the engage-
ment probability, several classic machine learning methods can be utilized,
such as the support vector machine (SVM) and its variations (including sup-
port vector regression (SVR)), naive Bayes (NB), decision trees (DTs), logistic
regression (LR), clustering techniques (e.g., K-nearest neighbour (KNN)),
and random forest (RF). These machine learning techniques are conveniently
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available in machine learning toolboxes such as Waikato Environment for
Knowledge Analysis (WEKA) [97, 101] (as used in [50, 146, 172]), the Com-
puter Expression Recognition Toolbox (CERT) [130] (as used in [223]), and
the MATLAB library ([44, 11].

Between 2010 and 2022, classic machine learning methods dominated the
automatic engagement estimation literature (Figure 2.5), especially SVMs
(2.8a). Note that some of the selected articles examined more than one
algorithm. Therefore, the totals in Figure 2.8a do not correspond to the
number of selected articles (see Appendix Table 5).

(a) The use of classic machine learning
methods.

(b) The use of deep learning meth-
ods.

Figure 2.8: Pie chart of the use of a) classic machine learning and b) deep
learning methods for automatic engagement estimation.

Deep Learning Methods

This section briefly introduces some deep learning methods, including those
used in the selected articles. For a more detailed explanation of deep learning
techniques (especially for face recognition), interested readers are referred to
[218, 80, 124].

Multilayer Perceptron (MLP) The multilayer perceptron (MLP), also
called the feedforward neural network or deep forward network, was one of
the first deep learning algorithms. The MLP is a mathematical function
formed by combining many simpler functions to map some input values to
output values [86]. An MLP consists of at least three layers of nodes, i.e.,
the input f (1), hidden f (2), and output f (3) layers, to define the mapping
y ≈ f ∗(x) = f(x) = f (3)(f (2)(f (1)(x))). The first and last layers are called
the input and output layers, respectively, while the number of hidden layers
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may vary, determining the model’s depth. Furthermore, depending on the
number of inputs and outputs, each layer may contain more than one unit.
This algorithm has also been used in automatic engagement estimation for
performance comparison with other algorithms [27, 197, 175].

Convolutional Neural Network (CNN) A convolutional neural network
(CNN) is a specialized kind of deep learning (DL) algorithm for processing
data that employs mathematical linear operations known as convolutions as
opposed to matrix multiplication [86]. The convolution operation is typically
denoted with an asterisk: x′(t) = (x ∗ w)(t), where x′ is the feature map,
i.e., the estimated value from the convolution of the input x with a kernel
w at time t [86].

CNNs are currently one of the most popular methods in different fields
(Figure 2.8b). This technique has been widely used in various computer vision
applications, including image classification [93], semantic segmentation [152],
object detection [198], face recognition [159], spatiotemporal feature learning
[208, 99, 106, 237, 177, 2, 15, 234], and automatic engagement estimation
(see Appendix Table 5).

CNNs are popular because they can be highly modified and pre-trained.
Some CNNs include AlexNet [117], i3D [38], VGG16 [194], and ResNet
[93, 198].

The inputs to a CNN are usually greyscaled or RGB images. Using multiple
small filtering kernels allows the network to extract more discriminative
features because multiple small kernels are easier to optimize than one large
filter kernel [143, 220]. However, CNNs have some crucial issues, such as large
training times, gradient vanishing due to the use of deep networks, and a
large number of parameters [202].

Recurrent Neural Network (RNN) A facial expression changes through
three stages, i.e., onset, apex, and offset [131]. In recurrent neural network
(RNN) algorithms for engagement estimation, time-series images are more
reasonable than static images as input since time-series present sequence-
related task information [108]. RNNs capture information at earlier and later
time steps by remembering each piece of information over time [1]. Therefore,
this algorithm has become a more popular automatic engagement estimation
method (see Appendix Table 5).

Some types of RNNs include long short-term memory (LSTM) [96] [234,
27, 56, 127, 197, 73], gated recurrent units (GRUs) [27], and network Turing
machines (NTMs)[168] [136].

However, despite advantages such as considerable computational power in

24



temporal processing models and applications, RNNs are difficult to train in
practice due to network instability [1]. Moreover, the networks may suffer
from short-term memory issues if the input sequences are too long. Thus,
RNNs may have difficulty capturing earlier time step information due to
vanishing gradients [1].

Therefore, the attention mechanism was introduced to learn to associate
the elements in the sequence C with the elements in the output sequence [18].
The attention mechanism essentially determines a weighted average that is
used to focus on specific parts of the input sequence at each time step [86].
Although the attention mechanism was originally introduced in the context
of machine translation [18], it has also been utilized in DL applications for
automatic engagement estimation [127, 197, 141, 193].

Other Classifiers Other neural network techniques that have been used for
automatic engagement estimation include the fuzzy min-max neural network
(FMMNN) classifier [195, 81], which was implemented by [235] for automatic
engagement estimation, the deep belief network [95], which was used in [60],
and linear discriminant analysis (LDA) [13, 219].

Fine-Tuning and Transfer Learning Techniques

One fine-tuning technique for addressing insufficient training data is applying
transfer learning, which utilizes networks pre-trained on a large number of
images [28, 218]. Various models have been trained on large face image
datasets. For example, [197] used AffectNet [144] and 300W-LP [249], which
were trained on ResNet50, for transfer learning. The pre-trained models help
the engagement estimation network learn general features related to face
identification [237]. As mentioned in Section 2.3, other large datasets that
have been used for transfer learning include FER-2013 [87], VGGFace [159],
VGGFace2 [35], FaceNet [188], AffectNet [144], 300W-LP and AFLW2000
[249].

Performance Metrics

To judge the automatic engagement estimation performance, the prediction
results should be compared with human judgments in the dataset [223,
237]. In the machine learning pipeline, performance metrics are used to
monitor and measure the performance of a model depending on the task.
Automatic engagement estimation problems can be seen either as classification
or regression tasks. An engagement estimation is a classification task if the
engagement is estimated in discreet classes, e.g., low engagement class vs
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high engagement class. Otherwise, an engagement estimation is a regression
task when continuous output is desired. Some metrics used to measure the
performance of regression tasks are Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root Mean Squared Error (RMSE), which mainly
calculate the distance between the predicted and the ground truth.

Classification performance metrics evaluate the estimation model that
compares discrete classes, such as accuracy, precision and recall, F1-score,
and Area Under the Curve-Receiver Operating Characteristics (AUC-ROC).
Moreover, a confusion matrix is also used to visualize the ground-truth labels
versus the predicted results in a table.

The accuracy metric defines the number of correct predictions (true posi-
tive (TP)) divided by the total number of predictions. It is the most common
metric for evaluating classification performance due to its simplicity. However,
Accuracy may not be reliable when the dataset is severely unbalanced. In a
severely skewed dataset, the classifier may not discriminate well despite high
accuracy values because the classifier identifies only the most common class.

Alternatively, the Precision/Recall (PR) trade-off curve (used in [123])
and F1-score [184] are used to overcome the limitation of Accuracy. Precision
determines the performance by calculating the proportion of TP prediction
to the total positive prediction (TP + false positive (FP)). Similarly, Recall
calculates the TP prediction to the total number of TP and false negative
(FN). Meanwhile, the F1-score is the harmonic mean between the precision
and recall.

Some alternative metrics that are more informative and ”imbalance-
friendly” include the balanced accuracy, AUC-ROC [94, 123] and 2-alternative
forced choice (2AFC) [223].

AUC-ROC visualizes the classification performance based on correct and
incorrect classifications (Figure 2.9). The ROC curve plotted the trade-off
between the TP rate (Recall) to the FP rate. AUC represents the degree
or measure of separability between classes as a summary of the ROC curve
[33]. The AUC scores between 0.7 − 0.8, 0.8 − 0.9, and > 0.9 are considered
acceptable, excellent, and outstanding, respectively [137, 126].

Precision =
TP

(TP + FP )

Recall/TP rate =
TP

TP + FN

FP rate = 1 − TP rate =
FP

TN + FP
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F1 − Score = 2 ∗ precision ∗ recall
precision + recall

Figure 2.9: AUC-ROC curve illustration.

The 2-alternative forced choice (2AFC) [138, 206] is an unbiased estimate
of the AUC-ROC curve since it expresses the probability of discriminating true
positives (TP) from true negatives (TN). A 2AFC value of 1 indicates perfect
discrimination, while a value of 0.5 indicates that the classifier performs at
chance levels.

Furthermore, other metrics such as Matthews correlation coefficient (MCC)
[206] and specificity and sensitivity [237] are also used in the engagement
estimation literature (see Appendix Table 5).

2.5 Chapter Conclusion

This chapter reviewed recent research on automatic engagement estimation
in education/learning settings, focusing on work published between 2010 and
2022. In particular, this review examined engagement definitions, datasets,
and machine learning-based methods from forty-seven selected articles. The
article selection and review methodology were adopted from the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model
[158] to answer three sub-RQs of RQ1:

• RQ1.1: How should the type of engagement to be measured be defined?

• RQ1.2: What datasets are suitable for developing automatic engagement
estimation methods?
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• RQ1.3: What automatic engagement estimation methods have been
developed in the literature?

The results and discussion in Section 2.2, 2.3, and 2.4 with the presented
information, figures, and tables aims at providing new researchers or educators
with insight on automatic engagement estimation to enhance smart learning
with automatic engagement recognition methods.

To answer RQ1.1, we examined the definitions of engagement used in the
selected articles and introduced an engagement definition taxonomy (Figure
2.2) as a guide for educators and engagement estimation research, particu-
larly for education/learning purposes. The taxonomy defined three types of
engagement: behavioural engagement, emotional engagement, and cognitive
engagement. Each engagement type was connected with some engagement
cues, including affective, physiological, log files, and basic emotions. The
modalities for obtaining engagement cues were also discussed, including speech
cues, visual cues (face, head, and eye gaze), physiological sensor data, and
log data.

From the discussion, we found that defining what type of engagement
is being measured depends on engagement cues used, what stimulus was
presented to the participant during data collection, and what physical or
cognitive behaviours were observed. We believe the proposed taxonomy will
allow for enhanced research on automatic engagement estimation.

The datasets used in the literature were summarized in this review to
address the RQ1.2. The datasets include publicly available datasets and
self-collected datasets. In this review, publicly available datasets were divided
into two categories, namely, engagement datasets and engagement-related
datasets, to distinguish the availability of engagement labels. The engagement
measurement methods and annotations were highlighted because incorrect
interpretations in this step led to severe bias. The number of participants, type
of samples, number of annotators, and label information were summarized in
a table to provide a reference for building engagement datasets.

Finally, in addressing RQ1.3, we discuss machine learning-based meth-
ods that have been applied to develop automatic engagement estimation
approaches in the literature. We found that between 2010 and 2022, clas-
sic machine learning algorithms (including support vector machines (SVMs)
and decision trees (DTs)) were used more in previous work. However, since
2019, the trend has moved to deep learning algorithms, especially convolu-
tional neural network (CNN)- and recurrent neural network (RNN)-based
algorithms.
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2.5.1 Remaining issue

The combination of a clear definition of engagement and suitable machine-
learning methods allows learners’ engagement during learning activities to
be measured automatically, including human-human interactions, human-
computer interactions, and human-robot interactions. The estimation per-
formance is especially promising for deep learning-based methods. However,
the practicality of the implementation in real educational settings remains
the challenge, especially in addressing the main research question, ”How do
educators or education institutions apply automatic engagement estimation in
their distance learning process?” Therefore, experiments on a deep learning-
based automatic engagement estimation module will be discussed in the
subsequent section as the further step to address the main RQ. Furthermore,
the ethical impact remains unaddressed in the existing works. We believe that
the haphazard implementation of this technology could abuse user privacy
and ethics.
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Chapter 3

Automatic Engagement
Estimation Model

This chapter is an updated and abridged version of the following publications:

1. S. N. Karimah and S. Hasegawa, “A Real-time Engagement Assessment
in Online Learning Process Using Convolutional Neural Network,” in
The 12th Asian Conference on Education (ACE2020) , Jan. 2020, pp.
437–448, doi: 10.22492/issn.2186-5892.2021.39,

2. S. N. Karimah, T. Unoki, and S. Hasegawa, “Implementation of Long
Short-Term Memory (LSTM) Models for Engagement Estimation in
Online Learning,” in 2021 IEEE International Conference on Engineer-
ing, Technology & Education (TALE), Dec. 2021, pp. 283–289, doi:
10.1109/TALE52509.2021.9678909.

3.1 Chapter Introduction

According to the systematic review results in Section 2, computer vision-
based methods are the most popular methods in the literature for automatic
engagement estimation. Therefore, in this thesis, we follow the majority
of studies that use visual-based analysis from video to estimate emotional
engagement.

Computer vision-based methods offer several ways to estimate learners’
engagement by optimizing the appearance features such as body pose, eye
gaze, and facial expression. Grafsgaard et al. [88], Whitehill et al. [223],
and Monkaresi et al. [146] using machine learning to estimate engagement
from facial expression features. They used machine learning toolboxes, e.g.,
Computer Expression Recognition Toolbox (CERT) [130] and WEKA [97,
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101], to track the face and classification. However, using the toolboxes for
engagement estimation will automate a part of the classification process but
not the implementation in the real-time education process since humans
manually input the extracted features. On the other hand, Nezami et al. [148,
143] and Dewan et al. [60] use deep learning to build their own classification
model to estimate the engagement of online learners which possibly enables to
make the pre-processing both in the implementation process and the training
process is done in the same way so that the input for engagement prediction
is in the same distribution as the input for classification model training.
Thus, the deep learning methods have been the state-of-the-art (SOTA) for
automatic engagement estimation in the past five years (Figure 2.5).

Following SOTA, in this chapter, we build engagement classification mod-
els using deep learning to classify the real-time image into very engaged,
normally engaged, or not engaged classes. Furthermore, the existing studies
on automatically recognising learner engagement have focused on the accu-
racy performance of machine learning-based recognition to estimate learner
engagement. However, a development framework is required to be able to use
the advantage of automatic engagement estimation in actual distance learning
settings. Therefore, this chapter proposes a framework for the practical use
of a real-time engagement estimation to assess the learner’s engagement state
while participating in a distance learning process. The framework depicts the
end-to-end process of an engagement estimation tool in an online learning
management system (LMS) or a web-based environment, where the input is
the real-time images of the learners from a webcam.

Firstly, we conducted sequence-based experiments considering that en-
gagement as a dynamic inner state. Four long short-term memory (LSTM)
models were investigated by experimenting with six pre-processing scenarios.
The experiment result shows the best combination or order of pre-processing
methods with the models. The models experimented on Dataset for Affective
States in E-Environments (DAiSEE) [91] with modification. As mentioned in
Section 2.3, DAiSEE is the most popular publicly available dataset used in
learner engagement studies.

Secondly, a face recognition and engagement classification model to analyse
learners’ facial features was developed, leading to the development of an
automatic engagement estimation module. Using the same public engagement
dataset, a convolutional neural network (CNN) was adopted to classify them
into one of the three engagement classes: very engaged, normally engaged, or
not engaged. At the end of the chapter, we propose an automatic engagement
estimation framework for real-time implementation and discuss the estimation
performance and practicality, leading to the following chapter.
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3.2 Dataset Overview

The Dataset for Affective States in E-Environment (DAiSEE) is a publicly
available dataset with a multi-label video classification of 112 participants
[91]. The data were collected in an “in-the-wild” environment to simulate the
real-world distance learning environment where a learner may join the online
class anywhere. To limit the occurrence of the Hawthorne effect [145, 139],
the participants were recorded without being trained, and no parameters for
the experiment were set. Therefore, the illumination of the videos in the
dataset varies in three different settings, i.e., light, dark, and neutral.

Each participant watched one educational video and one recreational video
to capture both focused and relaxed settings. The total length of the two
videos was 20 minutes. The recorded videos of each participant (approximately
13 to 20 minutes) were split into 10-second video snippets resulting in 9068
video snippets in the dataset. 8925 snippets were annotated based on the
”wisdom of the crowd” of 10 annotators. To obtain the ground truth label
of each video snippet, the Dawid-Skene [53] vote aggregation algorithm was
used.

Image features and high-level features were extracted using our self-built
Python script and OpenFace 2.0 [23], respectively. Figure 3.1 shows the
structure of DAiSEE and two feature extraction methods we employed.

Figure 3.1: The structure of DAiSEE.
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The dataset was divided into training (N = 5358), validation (N = 1429),
and test sets (N = 1784), as shown in Table 3.1. Note that the engagement
label distribution, as shown in Table 3.1, is based on the amount of actual
data we obtained after feature extraction.

Table 3.1: Engagement Label Distribution of the dataset

Label 0 1 2 3 Σ
Training 34 213 2617 2494 5358

Validation 23 143 813 450 1429
Test 4 84 882 814 1784

Σ 61 440 4312 3758 8571

Figure 3.2: Samples of extracted images from DAiSEE. (a)-(e), (d)-(h), and
(i)-(m) are images with labelled as very-engaged, not-engaged and normal-
engaged, respectively.

We modified the label by combining the 0 and 1 labels to have three-level
engagement states, which represent Not Engaged, Normally Engaged, and
Very Engaged. The rationale for this modification is that because engagement

33



is a subtle state, annotators have different intuitions when discriminating
between very low and low engagement levels, and the two labels are visually
interchangeable. Another reason for this label modification was the severe
imbalance distribution, as the number of very low and low level classes was
far lower than the high and very high-level classes. The three-level label
modification has also been done in [60]. The sample images extracted from
the Python script are shown in Figure 3.2, whereas Figure 3.3 shows the
extracted features and information extracted from OpenFace.

Figure 3.3: Extracted features with respect to the scheme of one participant
in DAiSEE.

3.3 Implementation of Long Short-Term

Memory (LSTM) Models for Engagement

Estimation

Since engagement is a dynamic state that frequently changes and is influenced
by a sequence of previous states, we employ LSTM models, which enable us
to consider a time-series scenario. This chapter investigates the suitability of
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four Long-Short-Term Memory LSTM models: single LSTM, stacked LSTM,
Bidirectional LSTM (Bi-LSTM), and Bi- LSTM with additional precedent
neural network layers (Multilayer Bi-LSTM) for engagement estimation. The
practical contribution of this chapter is two-fold: (1) provide baseline results
of time-series-based engagement estimation on the Dataset for the Affec-
tive States in E-Environments (DAiSEE) following the result of previous
researches [91, 98, 127, 246]; (2) suggest pre-processing combinations method,
i.e., downsampling, oversampling, and Principal Component Analysis (PCA),
to improve the prediction accuracy.

3.3.1 Dataset modification

We modified the set division to ensure that the training set and the validation
set were treated in the same way in pre-processing. Instead of using separate
training and validation sets, we first combined the two sets to create a
training set. The validation set was 20% of the new training set obtained
automatically during model compiling and training. The modified label and set
distribution are shown in Figure 3.4, in which the detail N = 2944(43.377%),
3430 (50.538%), 413(6.085%) for Very Engaged, Normally Engaged, and Not
Engaged labels in the training set (total 6787), and N = 814(45.628%),
882(49.439%), 88(4.933%) in the test set (total 1784).

Figure 3.4: Modified engagement label distribution for LSTM models experi-
ment.

3.3.2 Feature extraction

Since the release of OpenFace [22] and OpenPose [36] in 2017, the trend in
engagement estimation research has been to use high-level features such as
face analysis results rather than low-level features such as pixel-based features
[110]. OpenFace and OpenPose are open-source toolkits used for facial and
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body behavior analysis. OpenFace is capable of facial landmark detection,
head pose estimation, facial action unit recognition, and eye-gaze estimation,
while OpenPose can estimate 2D body pose (see Section 2.4).

Following [42, 150, 112], we used OpenFace 2.0 [23] toolkit to extract the
information of head pose, eye gaze, and gaze direction [228], and Action Units
(AUs) [20] for automatic engagement estimation. We configured OpenFace
2.0 and used Multi-task Cascaded Convolutional Network (MTCNN) as a
face detector and Convolutional Experts Constrained Local Model (CE-CLM)
as a landmark detector. They obtained 329 dimensions of features for each
video snippet (Figure 3.3). These features include:

1. Eye gaze contains two 3D eye gaze direction vectors, one 2D eye gaze
direction in radians, and fifty-six 2D and 3D eye region landmarks (total
288 features).

2. Head Pose contains six dimensions in total, with the detailed 3D location
of the head with respect to the camera and 3D rotation in radians.

3. Facial Action Units (AUs) contain the intensity (from 0-5) of 17 AUs
and the presence (0 for the absent and 1 for the present) of 18 AUs
(total 35 features).

3.3.3 Pre-process

We aim to use the averaged intuition of a video to express the learning situation
and investigate the effect of the pre-processed method on the model. Since
the video rate is 30 frames per second (FPS), there are 300 frames extracted
in 10 seconds. We averaged all of the frames in a video, used the averaged
value, and considered the resulting frame as one time-step in sequence data.
We then added the label to the averaged frame and concatenated it with the
averaged frames of all videos into a file. The rationale for the averaging is
that some video snippets were not exactly 10 seconds long.

We used both undersampling and oversampling techniques in the training
data since the number of data belonging to Not Engaged class is far fewer
than the other two classes (Figure 3.4) (Figure 3.5). First, we undersample
the Very Engaged and Normally Engaged classes by 50%, then oversample
the Not Engaged class using Synthetic Minority Oversampling Technique
(SMOTE)[45].

For data normalization, we used min-max normalization to re-scale the
range of features to range in [0, 1], where the general formula:

x′ =
x− min(x)

max(x) − min(x)
, (3.1)
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Figure 3.5: Resampled distribution.

where x and x′ are the original and the normalized values, respectively. To
reduce the dimension of the dataset while preserving as much information as
possible, we then used Principle Component Analysis (PCA) by n = 250.

We experimented with the dataset pre-processing in six scenarios to
investigate which combination or order of pre-processing methods yielded the
best prediction accuracy. All the scenarios were applied with re-sampling,
except for scenario 6.

• Scenario 1 : no normalization, no PCA.

• Scenario 2 : only apply normalization.

• Scenario 3 : only apply PCA with n = 250.

• Scenario 4 : apply PCA first, then Normalization.

• Scenario 5 : apply normalization first, then PCA.

• Scenario 6 : apply scenario 5 with the original data distribution (no
undersampling nor oversampling).

The summary of the data pre-processing is shown in Figure 3.6.
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Figure 3.6: Data pre-process of Scenario 5.

Table 3.2: Experiment Results

3.3.4 Experiment Setup and Result

We carried out experiments on the modified dataset to evaluate the four
models. The experiments were conducted using the following hardware and
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software settings:

1. Processor Intel Core™ i9-10900K CPU 3.70 GHz.

2. 32.0 GB RAM.

3. Windows 10 Pro 64-bit, version 20H2.

4. Keras 2.3 using Tensorflow 2.1 backend, and Python 3.7.

5. NVIDIA GPU Computing Toolkit with CUDA version 10.2.

All the experiments were compiled using the mean squared error loss
function and Adam optimizer with 1e− 3 learning rate and trained in 150
epochs. Table 3.2 shows the results of all experiment scenarios; the best
performance of each model is shown in Figure 3.7.

Overall, the Multilayer Bi-LSTM in the scenario 4 yield shows the best
performance, with a validation accuracy of 0.902. The Stacked-LSTM is the
most robust compared to other models because it shows the best performance
in scenarios 2, 3, 5, and 6. Scenario 5 works well on all models, with
a validation accuracy of 0.732, 0.800, 0.786, and 0.729 for Single-LSTM,
Stacked-LSTM, Bi-LSTM, and Multilayer Bi-LSTM, respectively.
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(a) Single-LSTM Scenario 5.

(b) Stacked-LSTM Scenario 5.

(c) Bi-LSTM Scenario 5.

(d) Multilayer Bi-LSTM Scenario 4.

Figure 3.7: Plot Accuracy and Loss (MSE) of the best performance of each
model.
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3.4 CNN Classification Model for a real-time

Engagement Estimation Tool

This work employed a convolutional neural network (CNN) for engagement
classification using the image features obtained from Viola-Jones (V&J)
face detection. We use CNN because it is relatively simple and one of
the deep learning methods broadly used in literature [90, 124, 147, 148].
Furthermore, we believe simplicity and cost efficiency are the keys to a
reliable implementation of engagement estimation in the real-world online
learning process.

3.4.1 Pre-process

The pre-processing comprises V&J face detector [215], where rectangle features
are used to detect the presence of that feature in the given face images.
Figure 3.8 shows three types of rectangle features used in V&J face detection,
i.e., two-rectangle feature, three-rectangle feature, and four-rectangle feature.
The sum of pixels under the white rectangle is subtracted from the sum of
pixels under the black rectangle, resulting in a single value in each feature.

Figure 3.8: Rectangle features used in V&J face detection.

The rectangle features are computed rapidly using integral images to be
processed in real-time [214, 215]. Given that the base window is 24x24, the
dimensionality of the set of rectangle features is quite large, e.g., 160,000+
features. Therefore, Adaboost is used for dimensionality reduction (from
160,000+ features to 6,000 features) and to find the single rectangular feature
and threshold that best separates the positive (faces) and negative (non-faces)
images. Then, all the features are grouped into several stages using a cascade
classifier. Each stage has a certain number of features to form complete
face images while discarding the negative images. The face images are then
represented in a rectangular region of interest (RoI) to be then fed to the
Neural Network for training.
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The classification used a typical CNN architecture which contains an input
layer, multiple hidden layers, and an output layer. The hidden layers combine
convolutional layers, activation layers, pooling layers, normalization layers,
and fully connected layers that we classified into convolution blocks and fully
connected blocks as depicted in Figure 3.9.

Figure 3.9: CNN architecture used in this work.

3.4.2 Experiment Setup and Result

To build an engagement estimation tool prototype, we experimented with
5045 face images for training and 1525 face images for validation tests. We
then exported the model and the weights into JSON and H5 files, respectively.
We set the number of convolution and filter layers in the convolutional blocks
as the primal hyper-parameters, i.e., 64 (3,3), 128 (5,5), 512 (3,3) 512 (3,3) for
convolutional blocks 1,2,3, and 4, respectively. We use Dense layers 256, 512,
and 3 for fully connected blocks and softmax layers. Other hyper-parameters
we also set are Max Pooling (2,2), dropout (0.25), and rectified linear unit
(RELU) activation in all convolutional blocks, while for optimisation, we used
Adam optimizer with learning rate 0.0005 and L2 regularization 0.0001. From
the network and hyper-parameters set above, the training accuracy is 59.25%,
and the validation accuracy is 56.91%.

3.4.3 A Real-time Engagement Assessment Framework

There appears to be a practical knowledge gap in the prior research (Section
2). Most automatic engagement estimation studies have primarily focused
on the theoretical aspects of the machine learning-based method, as we have
done in the previous sections of this chapter. However, there are very few
practical studies or action research in the field of education, especially distance
learning.

For example, when traditional face-to-face methods are transferred to
distance education, we assume that the engagement recognition should be
done in real-time, as in the traditional classroom. Therefore, to support the
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real-time implementation in an actual distance learning setting, we propose
a framework as shown in Figure 3.10. The general ideas of the proposed
framework are: 1) a web-based application to enable multi-platform access,
and 2) using the same face detection and feature extraction methods in both
training the model and real-time implementation. Our proposed framework
allows the generated log file can be downloaded anytime by the educator to
evaluate their teaching or course planning.

Figure 3.10: Proposed framework for a real-time engagement assessment.

The trained model and weight were exported and served in Flask Python
to build the web application using the CNN experiment result. The screenshot
of the running application is shown in Figure 3.11.
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Figure 3.11: Screenshot of the running engagement estimation tool with CNN
classification module.

3.5 Performance Evaluation for Practical Im-

plementation

In this section, we evaluate the performance of LSTM and CNN models to
build an engagement estimation model by comparing the prediction accuracy
and the runtime on the test set of the DAiSEE and the runtime. In addition,
we also compare it with a classic machine learning method. Since we want
to solve the multi-class classification task, choose Logistic Regression (LR)
among the classic machine learning methods from the Scikitlearn library.

For comparison purposes, we modify the input features and simplify the
model to evaluate the test set. The experiment is conducted using the same
hardware and software as the previous LSTM experiment (Section 3.3.4) in
scenario 5 (normalisation first, then PCA). The input is an average of all
frames of data (1 timestep). The training settings are in single validation (SV)
with Training/Validation/Test set (5467/1703/1782) and 5-Fold stratified
cross-validation (8952), where the results are shown in Tables ??.
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Table 3.3: Performance Evaluation: Single Validation (SV).

Models Train. acc. Val. acc. Test acc. Training time (mm:ss)

LR-SV 0.522 0.522 0.329 00:00.2
CNN-SV 0.919 0.868 0.3424 02:10.1
SingleLSTM-SV 0.944 0.858 0.3779 03:02.3
StackedLSTM-SV 0.935 0.92 0.3484 01:19.9
BiLSTM-SV 0.969 0.885 0.3567 03:01.9
MultilayerLSTM-SV 0.843 0.853 0.3499 03:01.6

Table 3.4: Performance Evaluation: Single Validation (CV).

Models Mean acc. Training time (mm:ss)

LR-CV 0.502 00:01.7
CNN-CV 0.822 09:09.3
SingleLSTM-CV 0.82 05:21.1
StackedLSTM-CV 0.82 05:21.1
BiLSTM-SV 0.811 05:31.5
MultilayerLSTM-CV 0.747 06:56.8

3.6 Discussions

We have presented the efficacy of the four LSTM models in the DAiSEE dataset
to estimate the engagement state of learners, extending the existing research,
such as has been done in [42]. In this work, we use the DAiSEE dataset
because it includes an engagement label and has been used for engagement
estimation research in literature (Section 2.3). However, we found that dataset
preparation to build the classification model is the most challenging issue.
For example, there is a significant difference in the number of images between
the classes. As shown in Table 3.1, the number of images in intensity 3
(i.e., very engaged class) is much larger than in other intensities/classes,
especially intensity 0 and 1 (i.e., not engaged class). Furthermore, as shown
in Figure 3.2, it is difficult to distinguish between the images with different
class labels. Additionally, the different illumination settings in the data cause
the extracted features, not to be in the same distribution. Therefore, we
introduce pre-processing scenarios in Section 3.3.3 to investigate the different
pre-processing methods affecting the engagement data behaviour during the
training.
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The best performance (0.902 accuracy) was achieved using Multilayer-
LSTM with scenario 4, where the re-sampled data was pre-processed with
PCA before applying the normalization. The other three LSTM models
also performed well in scenario 5, with validation accuracy of 0.732, 0.800,
0.786, and 0.729 for Single-LSTM, Stacked-LSTM, Bi-LSTM, and Multilayer
Bi-LSTM, respectively.

One of the hypotheses for these good results is to consider one time step by
averaging all the frames in a video. During a labeling process, the annotators
are unable to recognize detail behaviors, rather annotate based on the overall
impression which may be shown in average data. However, the average of
all the frames may have resulted in data loss or merged the important and
unimportant information resulting in the failure of the model to capture the
general information [150].

Future work should consider more important time steps, which may
possibly give more representation of the subtle change in time and thus
potentially avoid such problems. In addition, future work may put more
attention on the pre-processing to the occurrence where the face is widely
turned away such that OpenFace might not be able to recognize the face
feature. Such extreme behaviour may result in high gaps in data and bias in
the training process.

When the aforementioned issue is addressed, we believe that LSTM
provides a promising solution for more accurate estimation. However, when
it comes to real implementation, LSTM is computationally expensive and
unstable, especially for real-time implementation, as shown in the performance
evaluation in Table ??. Compared to CNN and Logistic Regression, LSTM
takes a longer runtime to predict the test set.

Despite the low accuracy of the evaluation performance, we still can see
that CNN is a more practical deep learning network than LSTM. However,
classic machine learning (Logistic regression) shows the best practice in terms
of runtime.

3.7 Chapter Conclusion

In this chapter, we build deep learning-based automatic engagement estima-
tions. LSTM and CNN were experimented with to build the classification
models trained on DAiSEE. Considering the sequential characteristic of the
engagement state, we apply LSTM models on the DAiSEE and suggest the
data pre-processing scenarios in Section 3.3.3. The models were trained
on the DAiSEE in six pre-processing scenarios (Section 3.3.3) to determine
which combination or order of pre-processing methods work best with the
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models. The results show that scenario 5 works well, performing > 0.729 in
all models and that Multilayer Bi-LSTM achieved the best performance in
scenario 4 (0.902 accuracy). This work is the first stage for reliable automatic
engagement estimation in online learning, taking into account the sequential
characteristic of the engagement state. Further improvement, as discussed in
Section 3.6, needs to be done for more robust estimation and applicability in
the real-world distance learning system.

Meanwhile, although the sequential characteristic of engagement is missing,
the CNN model is more practical for tool development. Therefore, this chapter
uses the CNN classification model to bridge the practical knowledge gap.

A framework of automatic engagement assessment of learners in online
learning has been introduced to give an image for implementing real-time
engagement assessment in an actual distance learning scenario (Figure 3.10).
The term automatic not only regards the classification method but also
includes the end-to-end real-time process when the learner is conducting
online learning. The face detection methods in the model development and
online application should be the same to yield the input for the engagement
classification in the same distribution as the input for building the classification
model.

The implementation of the framework is the engagement estimation tool
prototype as a web-based application, as shown in Figure 3.11. The proposed
framework shows that the pre-process to build the classification model from
the dataset, and the online implementation of learners’ engagement estimation
must be done in the same way. Therefore, our experiment on LSTM is not
suitable for real-time applications since it uses OpenFace for feature extraction,
which cannot be run simultaneously when the system runs online. In contrast,
the CNN model allows real-time estimation since the input to be estimated in
the classifier is an image, which can be done using OpenCV. Therefore, the
CNN model is used to evaluate the proposed framework suitably for real-time
engagement estimation.

Furthermore, the current prototype shows the proposed framework’s po-
tential for real-time engagement estimation (Figure 3.11). However, the classic
machine learning method is lighter. Therefore, we will further investigate
the practicality of the proposed framework using a classic machine-learning
method. Furthermore, distance learning characteristics and implementation
mechanisms, including the possible ethical impacts, must be considered to
fully address the practical knowledge gap in an actual distance learning pro-
cess, which will be discussed in the next chapter. Therefore, the implication
and application of these automatic engagement estimation methods will be
addressed in the subsequent section.
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Chapter 4

System Design of automatic
engagement estimation models
in distance learning practice

This chapter is an updated and abridged version of the following publications:

1. S. N. Karimah and S. Hasegawa, “MeetmEE: Engagement Estimation-
based Online Meeting Room for Distance Learning,” in IEEE Interna-
tional Conference on Teaching, Assessment, and Learning for Engineer-
ing (TALE) 2022, 4-7 December 2022,

2. S. N. Karimah and S. Hasegawa, “A Real-time Engagement Assessment
for Learner in Asynchronous Distance Learning,” in The 17th Interna-
tional Conference on Knowledge, Information and Creativity Support
Systems (KICSS), November 23-25, 2022, doi: 10.52731/liir.v003.064,

3. S. N. Karimah, H. Phan, Miftakhurrokhmat and S. Hasegawa, ”Design
Principle of an Automatic Engagement Estimation System in a Syn-
chronous Distance Learning Practice,” in IEEE Access, vol. 12, pp.
25598-25611, 2024, doi: 10.1109/ACCESS.2024.3366552.

4.1 Chapter Introduction

Most existing automatic engagement estimation modules were built from
Python, run on a local computer, or developed for robots [111]. To measure
cognitive engagement, engagement estimation can be done in parallel with
learning activities using LMS log activities for automatic engagement estima-
tion. However, in most cases, the engagement estimation process was done
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separately. The learners’ video, audio, or physiological cues during learning
were recorded, while the estimation process was conducted separately, espe-
cially to define emotional and behavioral engagements. Therefore, a real-time
accessible engagement report in the actual distance learning process remains
unaddressed from the existing studies.

In the previous chapter, we examined two deep learning models for en-
gagement prediction and proposed a framework for a real-time automatic
engagement estimation system to analyse learner engagement. A prototype
of an automatic engagement estimation tool was developed, based on the
proposed framework, partly also to address the RQ3 for helping educators
obtain the emotional engagement level records of their learner(s) during the
learning process for further evaluation.

This chapter aims at system designs of automatic engagement estimation-
based distance learning tools, namely, RAMALAN (a Real-time engAgeMent
Assessment for Learner in Asynchronous distaNce learning) and MeetmEE
(pronounced as ”meet me”). The prototype of RAMALAN and MeetmEE are
developed and evaluated by comparing the available feature with the ideal
mechanism.

4.2 Distance Learning Characteristics

Due to ICT development and the impact of the COVID-19 pandemic, a
paradigm of the learning process has shifted from a traditional classroom
to a distance learning system, e.g., massive open online courses (MOOCs)
or other online learning activities. As shown in Figure 4.1, in particular, in
2021, 14 articles (29.79%) on the topic of automatic engagement estimation
were published (doubled from the previous year) following the outbreak of
the COVID-19 pandemic, which started in 2020.

Everybody with technology access can participate and learn anything in
distance learning with time and space flexibility. However, distance learning
̸= self-learning ̸= general online communication. In this thesis, we define
that distance learning should at least have: (1) a learner, (2) an educator, (3)
learning materials, and (4) an assessment. We use the terms ’learner’ and
’educator’ instead of ’student’ and ’teacher’ to note that we aim for distance
learning in general and not particularly in a formal education institution.

Based on the interactivity between learner and educator, we character-
ized distance learning into synchronous and asynchronous distance learning
(Figure 4.2). In synchronous distance learning, the learning is conducted
through direct communication between a learner and an educator. Video
conference applications, such as Zoom, Webex, and Google Meet, are common
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Figure 4.1: Number of reviewed articles per year [109].

applications for one-on-one online meetings in a synchronous distance learning
setting. Unlike in synchronous distance learning settings, the learners’ visuals
in asynchronous distance learning might not be accessible. The learner in
asynchronous distance learning is mainly interacting with learning material
in a learning portal, massive open online courses (MOOCs), or a learning
management system (LMS) (such as Moodle1) during the learning. There-
fore, educators normally cannot see the learners’ faces while interacting with
learning material. Thus, measuring their engagement is more complicated
than checking their cognitive activity, e.g., by specific tasks, assignments, or
exam scores.

In short, distance learning characteristics can be summarized in 5W1H as
follow:

• What distance learning should have? a learner, an educator, learning
materials, and assessment.

• Who can participate in distance learning? Everyone with technology
access can be a learner.

• Why does a learner participate in distance learning? To learn something
or a skill.

• When does the learning take place? Anytime/scheduled.

• Where does the learning happen? In a place where there is a distance

1https://moodle.org/

50

https://moodle.org/


(a) Synchronous distance learning.

(b) Asynchronous distance learning.

Figure 4.2: Synchronous vs asynchronous distance learning.
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between the learner and the educator but connected through online
communication or learning materials.

• How does distance learning conduct? Synchronous or Asynchronous.

4.3 Design System for Asynchronous and Syn-

chronous Distance Learning Tools

With the preliminary knowledge related to distance learning characteristics,
we construct systems to integrate the automatic engagement estimation
model into distance learning tools. We propose the design of RAMALAN and
MeetmEE for asynchronous and synchronous distance learning, respectively.

4.3.1 RAMALAN: a Real-time engAgeMent
Assessment for Learner in Asynchronous
distaNce learning

A learning management system (LMS), such as Moodle2, is one practical
example of asynchronous distance learning. The LMS has shaped the face of
e-learning nowadays since it facilitates many essential educational activities
including managing enrollments, creating learning plans, delivering learning
content, and grading works in one platform.

In asynchronous LMS, educators normally cannot see the learners’ faces
while interacting with learning material. Thus, measuring their engagement
is difficult other than by checking their cognitive activity, e.g., by certain
tasks, assignments, or exam scores. However, the result cannot guarantee
that the learners are actually engaged. Besides, due to lack of visibility, the
educator cannot check if the learner did the assignment or exam in the LMS
by themselves. Therefore, we believe that additional visual information about
learners would be beneficial in understanding learners’ emotional engagement
in asynchronous learning.

Visual analysis through facial recognition is suitable for assessing non-
verbal behaviours without interrupting learning. However, unlike in syn-
chronous distance learning settings, where the educator can visually observe
learner engagement, a learner is mostly alone in an asynchronous distance
learning setting. Therefore, real-time automatic engagement assessment not
only benefits educators in adjusting their teaching strategy the way they do
in a traditional classroom (e.g., by suggesting some useful reading materials

2https://moodle.org/
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Figure 4.3: Asynchronous learning scenario.

or changing the course contents [229]) but also for self-monitoring by the
learner her/himself.

Not to mention the limited bandwidth can be an additional problem for
multimedia streaming. Alternatively, a log file that contains log information
of learners during their interaction with the learning materials in an LMS can
be an option, as shown in Figure 4.3, where the problems should be solved
with the following system architecture.

System Architecture

One of the important steps in estimating appearance-based emotional en-
gagement is face detection. Face detection is important to provide the input
images and features for the engagement level classification. With the ad-
vanced development of artificial intelligence, several real-time facial expression
libraries exist, such as OpenCV face rocognition4, Dlib face recognition5, and

4https://docs.opencv.org/3.4/da/d60/tutorial_face_main.html
5http://dlib.net/face_recognition.py.html
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Mediapipe6. These libraries help researchers to develop a facial expression-
based application. For real-time/online implementation, the face detection
application can be deployed in a browser.

In the previous chapter, this dissertation discussed ways to build automatic
engagement estimation models using deep learning models, i.e., LSTM and
CNN, to predict the emotional engagement of learners in distance learning
settings. A real-time automatic engagement estimation system (Figure 4.4)
was then proposed using the CNN model, where our LSTM model is not
feasible for real-time scenarios due to the feature extraction method.

The initial prototype works well using CNN run in Python Flask. However,
a model in JavaScript might be more desirable for web application deployment
flexibility in the integration process. Currently, TensorFlow has provided
TensorFlow.js, a library for machine learning in JavaScript. It allows machine
learning in the browser on the client side, which gives the benefit of higher
privacy and lower serving costs. The available pre-made models3 is easy to
use as JavaScript classes. Some pre-made models, such as Pose detection and
face landmark detection, can be utilised together to build an engagement
estimation model. Alternatively, the existing models can be run by pre-packed
them to JavaScript or converted from Python.

While TensorFlow.js can be one potential alternative to develop a distance
learning application with real-time engagement estimation, we do not use
TensorFlow.js in the early stage of developing the tool; although we might
use it for future work. Despite its advantages, we want to further investigate
the practicality of our proposed framework in a JavaScript environment web
application. Therefore, only the classical machine learning model will be
implemented in the proposed framework. Moreover, we decided not to use
DAiSEE due to the labeling problem. As shown in Figure 3.2, it is difficult
to distinguish between the images with different class labels.

Instead, we defined the poses representing the three engagement levels by
obviously visible gestures to build a new dataset. The labeling is mainly based
on the distance between the learner’s face from the monitor and if the learner
is facing the monitor. Very engaged means that the learner continuously
faces the monitor closely. Similarly, normally engaged also shows the learner’s
fully attention to the monitor only with more distance than the very engaged.
Meanwhile, not engaged is to classify the learners when their faces were away
from the monitor. In this work, we did not take into account more situations,
such as note-taking, in which the learner is concentrating by taking a note
but looking away from the monitor. Even though facial expressions are not

6https://google.github.io/mediapipe/
3https://www.tensorflow.org/js/models
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used to define the class label, facial and body features are captured and used
for training and prediction.

The system is incorporated with three main steps: data collection, model
training, and online implementation. The data were collected by using a face
detector to extract the landmarks (face, hand, and body) and the class label
for supervised learning. It was packed in an engagement dataset, which is
called Engagement.csv in this work, to be trained in some classic machine
learning models, such as logistic regression (LR), random forest (RF), and
gradient boosting (GB). The trained model aimed to classify three engagement
levels: very engaged, normally engaged, and not engaged.

The trained model is saved and implemented in a web-based application
that learners can access at the same time during their visit to an LMS.
Therefore, their engagement was estimated in real time. The engagement
states are automatically recorded in a log file when the estimation process
starts to run, analysing learners’ faces and body features. The log files
were accessible so that the educator could understand the engagement of
the learners and give further feedback. In the current architecture, the
data is stored independently of the LMS or, possibly, learning record stores
(LRS) for simplicity in implementation, and it can be reusable for synchronous
architecture as well. However, the current architecture can be further modified
to store the data directly in the LMS or LRS for more secure storage.

Prototype Development

The system was implemented in a web-based application with Python run on
Flask. We used Mediapipe1 for the face detector used in both data collection
as well as the online running. Before building the web application for real-time
estimation, we also first built an application for data collection. We used
Mediapipe because it is a community-based open-source work that offers
several machine learning solutions, including face detection, face mesh, iris,
hands, pose, and holistic. Most importantly, it offers cross-platform, and
customisable for live and streaming media, which is suitable for our current
work.

Figure 4.5 shows the running application in four states, i.e., the three
engagement states plus the idle state, in which the estimation is not running.
For ethical reasons, the estimation was not running immediately when the
application first ran. Instead, we provided three buttons: start, stop, and
capture, which gives the student free will to activate (start button) and
deactivate (stop button) the engagement prediction. The capture button

1https://google.github.io/mediapipe/
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Figure 4.4: The proposed system architecture for asynchronous distance
learning.

is additional in case images are needed for further analysis. As a reference,
Figure 4.6 shows the screenshot of the engagement log file.

4.3.2 MeetmEE for Synchronous Distance Learning

In a synchronous distance learning setting, the educator can see the learner’s
face in a traditional classroom. In this learning setting, video conference ap-
plications, such as Zoom, Webex, and Google Meet, are common applications
used for one-on-one online meetings. In general, estimating a learner’s engage-
ment in a synchronous learning setting is not difficult because the learning is
mainly conversational, especially, when no learning materials are presented.
However, the educator faces challenges tracking the learner’s engagement
during the meeting due to the difficulty of paying attention to the learner’s
facial expression [19]. For example, when an educator focuses on giving a
lecture through his/her teaching materials, it is difficult to pay attention
to the learner’s face to assess their engagement simultaneously. Without a
real-time engagement estimation system, the subtle changes in engagement
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(a) No prediction. (b) Very engaged state.

(c) Normally engaged state. (d) Not engaged state.

Figure 4.5: Web-based application of engagement estimation. (4.5a) is the
screen in the first load or when the stop button was pressed, whereas (4.5b-
4.5d) are the screen views showing the three engagement stages when the
start button was pressed.

state in time series are not recorded; therefore, the early states are forgotten.
The engagement state log is important as it helps educators monitor and
record their learner’s engagement for further analysis and to improve the
distance learning process.

Current video conference applications do not include automatic engage-
ment estimation. Although many automatic engagement estimation modules
have been proposed, most of them were standalone systems that were not inte-
grated with synchronous distance learning practices such as video conference
applications. Therefore, we propose the idea of MeetmEE, an engagement
estimation-based meeting room for a one-on-one online meeting, e.g., for
private tutoring and educator-learner communication. As the initial design of
MeetmEE, we focus on one-on-one online meetings in this study.

MeetmEE is designed to enable the educator and the learner to assess
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Figure 4.6: A snapshot of the automatic engagement log in a CSV file.

their engagement during the meeting and retrospectively evaluate distance
learning. We utilized: (1) Web real-time communication (WebRTC) to
construct peer-to-peer audio/video communication, (2) facial recognition and
engagement estimation modules, and (3) a live diagram plot to show the
real-time engagement state graph. An engagement log can be downloaded for
further analysis.

Web Real-Time Communications (WebRTC)

Several video conferencing systems have been described in the literature,
including peer-to-peer (P2P) [251, 196, 70] and star topology [222]. WebRTC
can be integrated with an existing distance learning system to enhance
distance learning implementation [8], such as an additional feature for video
conferencing in a learning management system (LMS) [211]. However, the
WebRTC in the existing application merely served a single purpose, i.e.,
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audio/video/data transmission, instead of providing additional features. By
adding face and object detections in WebRTC implementation [163, 105], the
system has more functionality, such as enabling a remote image collection to
create an initial database for enhancing face recognition [104].

WebRTC is a standard that includes protocols and JavaScript APIs to
enable real-time communication among web browsers [102, 132]. WebRTC
works by defining an API that allows browsers and scripting languages to
interact with media devices (microphones, webcams, and speakers), processing
devices (encoders/decoders), and transmission functions [132]. The architec-
ture of WebRTC includes end-user clients, back-end media components (for
example, a WebRTC media broadcasting server), and signaling servers [173].

WebRTC utilizes three primary APIs of a browser, i.e., MediaStream for
acquiring audio and video streams, RTCPeerConnection for communication of
audio and video data, and RTCDataChannel for communication of arbitrary
application data [102]. Besides APIs, signaling plays a significant role in
WebRTC implementation. A signaling protocol employs Interactivity Connec-
tion Establishment (ICE), Session Traversal Utilities for NAT1 (STUN), and
Traversal Using Relays around NAT (TURN), to exchange session descriptions
in the form of Session Description Protocol (SDP) [132, 102].

Open-access signaling server libraries and SDK, such as socket.IO2 and
SkyWay3, are available to develop the communication between a client and
a server in WebRTC. Socket.IO is a library built on top of the WebSocket
protocol. Its server implementations are available for Javascript, Java, Python,
and Golang, whereas the client implementations are available in most major
languages, such as Javascript, Java, C++, and Python [? ]. SkyWay (ECLWe-
bRTC) provides SDK and API for easy implementation of WebRTC. It also
provides all the required servers for WebRTC, including signaling servers,
STUN, TURN, and SFU servers. The SDKs are available in multi-platform
such as Javascript, iOS, and Android. In addition, peer authentication is
available to prevent billing problems caused by the unauthorized use of API
keys. Moreover, SkyWay also provides a WebRTC gateway for more imple-
mentation on IoT devices (such as Raspberry Pi) and game engines (such as
unity)[? ].

Skyway is a quick and easy solution for developing a WebRTC. However,
registration is required to use the service. Therefore, we used socket.IO in this
work because it enables bidirectional communications without registration
and provides more room for experimentation and modification.

1Network Address Translation
2https://socket.io/
3https://webrtc.ecl.ntt.com/en/skyway/overview.html
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System Architecture and Protoype development

To develop MeetmEE, we integrate web real-time communication (WebRTC)
and engagement estimation modules as shown in Figure 4.7, where the data
collection and engagement training model uses the model as the one used in
RAMALAN.

Figure 4.7: MeetmEE Architecture for synchronous distance learning.

The proposed system design comprises three major components, i.e.,
output, communication, and engagement modules, represented in green,
yellow, and blue color boxes in Figure 4.7. The output component consists of
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modules to serve the video streams (from both peers), the facial landmark
drawings, the engagement predictions and graphs, and other menus shown on
the front end. The communication component plays a key role in WebRTC
communications, including giving ID for both peers, streaming the audio/video
data, and call/answer/hang up functions. Likewise, the engagement modules
consist of facial recognition and engagement modules; the output component
will serve as the result on the page. The engagement estimation log can also
be downloaded from the main page for further analysis. Figure 4.8 shows the
current development of the MeetmEE prototype.

One of the constraints of the proposed system design is that it currently
works only for one-on-one meetings. Improving the scalability of the sys-
tem design to enable multiple participants (e.g., an online classroom) would
improve its practicality in synchronous distance learning practices. More-
over, the current work focuses on defining the engagement level by frontal
images and the distance of the participant from the monitor. Therefore,
some behaviours during the meeting, where the face is directed away from
the monitor, such as writing or doing other related assignments, would be
estimated as low engagement. Including more engagement cues, such as log
files and physiological cues, in addition to frontal-images analysis will improve
the estimation accuracy.

Furthermore, there is a possibility that this technology could easily be
abused from an ethical impact perspective. Therefore, developing the proposed
design system should include message encryption, authentication and access
control, and automated data expiry rules to mitigate the potential abuse of
the technology used. In addition, the implementation should also follow the
mechanism in Figure 5.1 that addresses technical and operational measures.

4.4 User experience evaluation

The evaluation phase aims to collect feedback regarding the user perspective
of automatic engagement estimation implementation. In this work, Meet-
mEE is deployed as a representative implementation to understand the user
perspective in actual distance learning practise.

The current prototypes show how the emotional engagement of both the
learner and educator is recorded during one-on-one synchronous learning,
where the engagement module can be added to the present common video
conference application (such as Zoom, Webex, Google Meet, etc.) for full
implementation.

In this pilot experiment, we evaluate the usability of the MeetmEE system
and the uncertainty that users face in the automatic engagement estimation
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Educator Learner

Figure 4.8: Screenshot of the MeetmEE prototype from educator’s side, where
both face mesh and prediction buttons are on

implementation concerning engagement estimation results, data security, or
privacy.

A total of 20 participants joined the experiment either as educators
(n = 13; 65%) or learners (n = 7; 35%), with 60% of them participating in
distance learning for one to three years. The participants completed the
survey based on their roles in their affiliations in Indonesia, Japan, or Taiwan.
Note that the evaluation is conducted fully online to reach the participants
in Indonesia and Japan. Figure 4.9 shows the details of the participation
profiles.
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(a) Age.

(b) Role in distance learning.

(c) Distance Learning Experience.

22.7%

68.2%

4.5%
4.5%

(d) Country of affiliationa.

aOne participant filled 2 affiliations.

Figure 4.9: Profiles of the participants.
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4.4.1 Experiment settings

The term experiment refers to a pilot user experience experiment conducted as
a one-on-one online meeting in MeetmEE. Depending on the role, either as an
educator or a learner, each participant joined a one-hour meeting session with
the author via MeetmEE (Figure 4.10). During the session, the participants
discussed their experience in distance learning with the author while filling
out two survey forms, Form A and Form B. Form A focuses on evaluating
the idea and system design, whereas Form B focuses on the technological
evaluation through the user experience. Each participant provided informed
consent before the experiment.

Figure 4.10: MeetmEE use case on the experiment.
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Form A

Form A is intended to evaluate the idea and users’ perspective on the imple-
mentation of automatic engagement estimation in distance learning practice.
The questions on Form A were formed to understand how engagement esti-
mation in synchronous distance learning would help educators improve their
teaching methods and learners become more engaged in learning. Extending
the survey on [120], we present the most remarkable questions as shown in
Table 4.1.

Except for Q1, the most remarkable questions of Form A are answered
with a five-point Likert scale: strongly disagree (1), disagree (2), neutral
(neither agree nor disagree) (3), agree (4), and strongly agree (5).

From B

To evaluate the user experience on the MeetmEE interface, we utilised the
User Experience Questionnaire (UEQ) tool[187], which interprets the items
in the questionnaire into six scales:

1. Attractiveness: Overall impression of MeetmEE, whether users like or
dislike.

2. Perspicuity: Whether it is easy to get familiar with and learn to use
MeetmEE.

3. Efficiency: Whether the users can solve their tasks without unnecessary
effort.

4. Dependability: Whether the user feels in control of the interaction.

5. Stimulation: Whether it is exciting and motivating to use MeetmEE.

6. Novelty: Whether the product is innovative and creative as well as
catches users’ interest.

Table 4.2 shows 26 pairs of contrast items to construct UEQ scales. Each
pair of contrast items is represented in 1 to 7 values, where 1 is on the extreme
left item and 7 is on the extreme right item. Note that the order of the
positive and negative items is randomized in the questionnaire. Not that
UEQ does not produce an overall score for the user experience, which can be
done using the KPI extension.
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Table 4.1: The most remarkable questions of Form A.

Q Nr General questions for educators and learners
1 I know my peers are engaged with the distance learning/meeting from..... (The

facial expression and body language / The active participation in the class / The
assignments and scores)

2 I notice any changes in my emotions and my peer/student’s emotions in any distance
learning process.

3 It is appropriate and ethically fair to monitor learners’ engagement from their facial
features in the distance learning process.

4 To understand learners’ emotional engagement, automatic engagement estimation
should be implemented in distance learning tools such as learning management
systems (LMS), and online classrooms through video conference apps (e.g., Zoom,
Google Meet, Webex).

5 I feel that automatically estimating emotional engagement is a reasonable and
appropriate feature in distance learning practice.

6 MeetmEE is easy to use.
7 MeetmEE will make the lecture more interesting.
8 MeetmEE is practical.
9 I think that MeetmEE is a reasonable and appropriate feature for automatically

estimating emotional engagement in distance learning practice.
10 MeetmEE would be a welcome addition to a lecture.
11 I notice any changes in my emotions and my peer’s emotions as a result of MeetmEE’s

emotion estimation.
12 MeetmEE is a potential feature to enhance distance learning.

Q Nr Educator questions
1 I was aware and comfortable with automatic engagement estimation recording my

engagement state from my face and body looks while doing the learning activities.
2 Having learner engagement records from MeetmEE gives me insights to understand

learner engagement in the entire learning session.
3 I think monitoring learners’ engagement will disturb learners’ activities in distance

learning.
4 The use of this technology will motivate me to improve my teaching strategies and

give personal support to my students.
5 Therefore, I would like to use MeetmEE to enhance my teaching.

Q Nr Learner questions
1 I was aware and comfortable with automatic engagement estimation recording my

engagement state from my face and body looks while doing the learning activities.
2 If I could choose, I would let MeetmEE capture my emotional engagement states

during learning activities so my teacher would know when I show a disengagement
sign and give me personal support or change his/her teaching strategy.

3 MeetmEE enabled me to measure my own engagement.
4 MeetmEE stimulated my motivation to keep engaged during the learning session.
5 MeetmEE made the learning interesting to me.
6 MeetmEE distracted me from learning.
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Table 4.2: UEQ Scale[187]

Nr Item Scale
1 annoying/enjoyable Attractiveness
2 bad/good
3 unlikable/pleasing
4 unpleasant/pleasant
5 unattractive/attractive
6 unfriendly/friendly
7 (not) understandable Perspicuity
8 difficult to learn/easy to learn
9 complicated/easy
10 confusing/clear
11 inferior/valuable Stimulation
12 boring/exciting
13 not interesting/interesting
14 demotivating/motivating
15 unpredictable/predictable Dependability
16 obstructive/supportive
17 not secure/secure
18 (does not) meet expectations
19 slow/fast Efficiency
20 inefficient/efficient
21 impractical/practical
22 cluttered/organized
23 dull/creative Novelty
24 conventional/inventive
25 usual/leading edge
26 conservative/innovative
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Figure 4.11: Survey results of Q1 general questions

4.4.2 Experiment Results

The results of Q1 (Figure 4.11) demonstrate that most of the participants
knew the engagement of the other participants in an online meeting from
active participation in the class (behavioral engagement), facial expressions
and body language (emotional engagement), and assignments and scores
(cognitive engagement). Furthermore, Table 4.3 analyses the results of Form
A individually, whereas Figure 4.13 and 4.12 show the results of Form B after
value transformation.

Form A results

Based on the results in Table 4.3 and Figure 4.13, most of the responses
were very positive to the concept of automatic engagement estimation, which
is represented in MeetmEE. In the general questions, although 60% of the
participants claimed that they could notice any changes in their emotions
and their peers, 30% claimed otherwise (Q2). However, most participants
agreed, with an average of 4.05 points on a five-point Likert scale, that auto-
matic engagement estimation technology should be implemented in distance
learning practices to understand learners’ emotional engagement (Q4). In
particular, the participants noticed any changes in their emotions and their
peers’ emotions as a result of MeetmEE’s estimation, in which participants
agreed with an average of 3.9 points on a five-point Likert scale on Q11.
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Table 4.3: Form A results

Q Nr Strongly disagree Disagree Neutral Agree Strongly agree Average points
General questions results (%, n = 20)

2 20.00 10.00 10.00 45.00 15.00 3.25
3 0.00 0.00 20.00 55.00 25.00 4.05
4 0.00 10.00 20.00 25.00 45.00 4.05
5 0.00 5.00 10.00 30.00 55.00 4.35
6 5.00 15.00 25.00 15.00 40.00 3.70
7 0.00 15.00 20.00 40.00 25.00 3.75
8 0.00 10.00 0.00 55.00 35.00 4.15
9 0.00 20.00 0.00 45.00 35.00 3.95
10 0.00 15.00 15.00 30.00 40.00 3.95
11 0.00 15.00 5.00 55.00 25.00 3.90
12 0.00 5.00 0.00 50.00 45.00 4.35

Educators questions results (%, n = 13)
1 0.00 30.76 0.00 38.46 30.76 3.69
2 0.00 7.69 7.69 61.54 23.08 4.00
3 15.38 30.76 23.08 23.08 7.69 2.77
4 0.00 0.00 7.69 30.76 61.54 4.54
5 0.00 15.38 15.38 23.08 46.15 4.00

Learners questions results (%, n = 7)
1 0.00 14.28 0 28.57 57.14 4.28
2 0.00 0.00 14.28 28.57 57.14 4.28
3 0.00 0.00 28.57 42.86 28.57 4.00
4 14.28 0.00 28.57 14.28 42.86 3.71
5 0.00 28.57 14.28 28.57 28.57 3.57
6 14.28 28.57 14.28 14.28 28.57 3.14
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Moreover, MeetmEE is a potential feature for enhancing distance learning
(Q12), in which the participants agree on an average of 4.35 points on a
five-point Likert scale.

In general questions Q3 and Q5, the participants were asked whether an
automatic engagement estimation system is appropriate and ethically fair to
monitor learners’ engagement from their facial features; thus, it is a reasonable
feature in the distance learning process. The participants gave an average of
4.05 and 4.35 points on a five-point Likert scale, respectively.

The reason why MeetmEE as an implementation of the automatic engage-
ment estimation feature in distance learning is so favourable for the 70% of
the participants is that, for educators, this technology will motivate them to
improve their teaching strategies and give support to their students, while
students can measure their own engagement as well. Most importantly, the
participants, either educators or learners, were aware of and comfortable
with automatic engagement estimation recording their engagement state from
their face and body looks while performing the learning activities. Note that
in MeetmEE, participants can see each other’s engagement state, enabling
the learner to see the educator’s engagement state. An educator participant
responded positively to this because she did not feel ignored when her students
tracked her engagement during her teaching.

However, despite MeetmEE’s capability, the participants responded vari-
ably regarding whether implementing this technology disturbs learning activi-
ties in distance learning settings. The results Q3 for educators and Q6 for
learners suggest that potential disturbance caused by meetmEE showed an
almost equal agreement distribution.

Form B results

The overall result of the questionnaire in Form B is depicted in Figure 4.12,
in which the scale was transformed into a -2 to +2 scale for better readability
interpretation [187]. The results showed a positive evaluation, demonstrating
that MeetmEE is sufficient, particularly in scales of stimulation, attractiveness,
perspicuity, and novelty.

However, MeetmEE is perceived as relatively low in terms of dependability
and efficiency, the details of which are shown in Figure 4.13. The figure shows
that most participants experienced MeetmEE as slow and relatively insecure,
leading to low efficiency and dependability.
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Figure 4.12: UEQ Scale results (mean and variance).

Mean value per Item
annoying/enjoyable

not understandable/understandable

dull/crea3ve

difficult to learn/easy to learn
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not interes3ng/interes3ng

unpredictable/predictable

slow/fast

conven3onal/inven3ve

obstruc3ve/suppor3ve

bad/good
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unlikable/pleasing
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unpleasant/pleasant

not secure/secure

demo3va3ng/mo3va3ng

does not meet expecta3ons/meets expecta3ons

inefficient/efficient

confusing/clear

imprac3cal/prac3cal

clu<ered/organized

una<rac3ve/a<rac3ve
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-3 -2 -2 -1 0 1 2 2 3

Figure 4.13: UEQ mean value per item after transformation
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4.5 Chapter conclusion

In this chapter, distance learning characteristics were discussed to clarify the
learning setting aimed, i.e., synchronous and asynchronous distance learning.

We propose the design of RAMALAN (Figure 4.4) for a distance learning
tool with integrated engagement estimation technology while considering the
ethical impact. We integrate the automatic engagement estimation modules
in LMS for real-time engagement assessment in an asynchronous distance
learning setting and in WebRTC as a one-on-one online meeting platform for
a synchronous distance learning setting.

We presented the problem definition (Figure 4.3 as a simplification image
of Figure 4.2b) to give an overview of the scenario where learners, which
mainly interact with the learning materials in LMS, had no direct interaction
with the educator. Our proposed solution (Figure 4.4) enabled the educator
to obtain engagement state logs of their student in less-bandwidth-demand
form.

Although the images and videos of learners will not be recorded, our
proposed system analysed emotional engagement, where visual information
of face and body were extracted. Therefore, we provided the application with
start/stop buttons so they are aware of when their faces will be analysed
(Figure 4.5).

We also propose MeetmEE, a potential means of enhancing synchronous
distance learning practices through a one-on-one online meeting with en-
gagement estimation. The automatic engagement estimation modules in the
system consisted of a face detection module and an engagement recognition
module to estimate the engagement level during the meeting and record it as
a downloadable log file.

A pilot experiment was conducted as a user experience survey to evaluate
the MeetmEE system design and construct the ethical implementation design
principle. A total of 20 participants joined the experiment in a one-hour
meeting session with the author via MeetmEE online either as educators
(n = 13; 65%) or learners (n = 7; 35%) with 60%. The participants completed
two survey forms (Forms A and B) based on their roles in their affiliations.
The experiment results of Form A demonstrate that most of the responses were
very positive to the automatic engagement estimation concept, represented
in MeetmEE.

MeetmEE is favourable for 70% of the participants, where, for educa-
tors, this technology will motivate them to improve their teaching strategies
and give support to their students, while students can measure their own
engagement as well. Furthermore, the results of Form B showed a positive
evaluation, demonstrating that MeetmEE is sufficient, particularly in scales
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of stimulation, attractiveness, perspicuity, and novelty. However, most partic-
ipants experienced MeetmEE as slow and relatively insecure, leading to low
efficiency and dependability, and therefore, leading to potential abuse of an
ethical perspective.

Despite the merits of the proposed designs, the RAMALAN has not been
tested in actual LMS for real implementation in an educational learning
process. Meanwhile, the MeetmEE implementation is lacking in scalability,
stability, and estimation reliability. Furthermore, although the ethical issues
have been taken into consideration in the current system designs, i.e., adding
control buttons for prediction, more measures are required to ensure the
ethical implementation, which will be discussed in the subsequent chapter.
Meanwhile, the ethical remain unaddressed in the existing works (Chapter 2).
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Chapter 5

Design Principle of an
Automatic Engagement
Estimation System in a
Synchronous Distance Learning
Practice

This chapter is an updated and abridged version of the following publications:

1. S. N. Karimah, H. Phan, Miftakhurrokhmat and S. Hasegawa, ”Design
Principle of an Automatic Engagement Estimation System in a Syn-
chronous Distance Learning Practice,” in IEEE Access, vol. 12, pp.
25598-25611, 2024, doi: 10.1109/ACCESS.2024.3366552.

5.1 Chapter Introduction

Although the participants in the user experience experiments agreed that
an automatic engagement estimation system is appropriate, implementing
this technology in distance learning settings could easily be abused from an
ethical impact perspective. Not to mention whether the application is not
secure. Therefore, ethical procedures should be considered when deploying the
proposed design system to mitigate potential abuse of technology. This chapter
discusses the ethical risks pertinent to privacy protection. Furthermore, the
design principle of the automatic engagement estimation implementation is
proposed.

Furthermore, the design principle of the automatic engagement estimation
implementation is proposed.
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5.2 Ethical Risks Pertinent to Privacy Pro-

tection

The four ethical values and issues principles are autonomy, non-maleficence,
beneficence, and justice [207]. Autonomy, which is perceived as the ability to
make own decisions, and beneficence, which concerns the positive impact of
an act, have implications regarding privacy rights [103]. Ethical violations
are present, such as privacy infringement, disclosure of identifiable individuals
to the public, or data misuse [103].

Ethically, the information owners must provide informed consent before
any party can legally use their data. They have the right to access that
information, correct it, and request no further data to be collected [114].
Informed consent is given with the knowledge of all the facts needed to make
a rational decision [114]. However, if a person is not aware of the basic concept
of information security, s/he is more prone to information security threats
than others [118]. In addition, many services and ICT applications collect
users’ consent in absolute terms of use, which leaves no option for people to
use the service or application without agreeing to all terms [183, 250, 103].
Such consent is ethically dubious and inadequate for protecting privacy.

In distance learning terms, users as information owners, especially learners,
are the aggrieved party if their affective information is leaked. Therefore, in
addition to information security awareness, the implementation of automatic
engagement estimation in the distance learning process should provide a built-
in information security mechanism to ensure that information is not accessed,
used, disclosed, recorded, or modified by unauthorized entities [114, 75].
Before proposing a safe implementation mechanism, discussing possible ethical
issues resulting from inadequate privacy protection is important to understand
ethical standardization.

Failing to develop ethical standards and procedures in a distance learning
environment minimises the effectiveness of automatic engagement technology
and therefore decreases the value perception of the system [4]. The following
subsections outline three ethical issues that will be conflicted in a haphazard
implementation of automatic engagement estimation in distance learning
practice: data misuse, undermining trust and learning mood, and reluctance
to join the learning.

5.2.1 Data misuse

A primary ethical concern for any system that processes personal data is
that it may be misused in such a way as to cause harm to data owners or

75



their property [103]. Educational technology systems could misuse this by
educational institutions (e.g., school principals), educators, or others with
access to data, such as operators.

Appropriately, the principals use learners’ data mostly to evaluate the
institution, make improvements, and model best practices of data use, while
educators use the data to improve instruction and outcomes for the learners
[142]. However, some actions are ethically in the grey area. For example,
educators use learners’ data to communicate with colleagues outside the
content area or to initiate conversations and support collaboration among
educators [142].

Should a data specialist, a technology assistant, or an external operator
outside the educational institution and the responsible educators gain access
to the data, they could engage in various data misuses. For example, a
data specialist or any other external party could use learners’ affective data
for another research purpose outside the agreed terms with the educational
institution or even learners. Affective data can also be used for deep-face
databases that are not related to distance learning purposes in this context.
Therefore, technical and operational security measures should be implemented
to reduce the risk of data misuse by restricting unauthorized parties from
accessing system data [103].

5.2.2 Undermining trust

Trust is a major concern in distance learning [4]. For learners, the main
concern is trust in the learning system they use as well as the protection
of their sensitive personal information [4, 12]. Implementing an automatic
engagement estimation without a privacy plan or consideration leads to
learners’ perception of being unethically monitored and observed. Therefore,
in addition to data misuse, there is a risk of undermining learners’ trust in using
distance learning tools integrated with automatic engagement estimation.

5.2.3 Reluctance to participate in distance learning

One ethical aspect of e-learning, including distance learning, is the motivation
to use ICT tools in education [190]. Many learners and educators are not
motivated to effectively use new technology in learning and teaching because
of factors such as satisfaction with the tool, interest level, and joy when using
the tool [190, 191]. Moreover, failing to establish trust between the users
involved in the system will minimize the value perception of distance learning
systems [4]. Furthermore, flexibility is one benefit that a distance learning
setting offers learners participation in a learning process, even in private
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time and place. However, participating in learning in private time and places
causes inconvenience for learners when turning on their cameras, especially
in synchronous distance learning. In addition, some learners merely do not
like to show their faces either because of shyness or privacy concerns, which
hinders the assessment of learner engagement using visual cues. Therefore, the
forced implementation of automatic engagement estimation leads to learning
demotivation and reluctance to participate, which is contra-productive for
assessing engagement in distance learning, such as reducing dropout.

5.3 Design principle of ethical engagement

estimation technology implementation in

distance learning process

To implement an enhanced distance learning tool while considering the ethical
impact, we introduced a design principle for the ethical implementation of
automatic engagement estimation in distance learning practice (Figure 5.1).
Protecting privacy in an online network requires cooperation from both the
control authority and individual users [248]. Therefore, the design principle
involves technical and operational measures that include the participation
of both authorities (e.g., education institutions) and individual users (e.g.,
learners and educators) while attempting to mitigate the aforementioned
risks.

5.3.1 Technical Measures

Technical measures to mitigate the risks include trustworthy architecture,
estimation models, and data security.

Trustworthy architecture

A trustworthy architecture for automatic engagement estimation leads to a
good user experience, especially in terms of attractiveness, perspicuity, and
efficiency. However, a non-trustworthy architecture potentially causes poor
development and performance, which leads to reluctance to use the feature in
the distance learning process.

For instance, in the pilot experiment, MeetmEE obtained a good user
perception in terms of attractiveness and perspicuity, yet low efficiency owing
to its slow performance. As shown in the MeetmEE architecture (Figure 4.7),
the face detector takes and tags the images from the streamed video and then
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Figure 5.1: Design principle of automatic engagement estimation implementa-
tion in distance learning settings. The user in the figure can be the educator
or learner.

sends the tagged images to the prediction server. In this architecture, the
latency from capturing the first snapshot to be predicted and serving the
result back over the online network was high, even though only plain images
were processed. This process causes the application to operate slowly when
the prediction feature is on.

Therefore, the MeetmEE system design provides two control buttons for
the face mesh and prediction to give the user awareness of the prediction
feature and technical stability. The future implementation of automatic
engagement estimation should consider a system design architecture with
alternative input for the prediction server while maintaining good performance.

Trustworthy estimation model

Once an automatic engagement estimation model is prepared and deployed as
a feature in a synchronous distance learning setting, the model outcomes (i.e.,
the predicted engagement states) must be regularly monitored and measured to
gain insight into the learning-teaching experience. The trustworthy estimation
model addresses key issues regarding model quality metrics, model fairness,
drift detection, and explainability [69].
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Model quality metrics Model quality metrics such as accuracy, precision,
and areas under the ROC, etc. measure the model quality during the entire
lifecycle and allow corrective actions to be taken in model development
[111, 69].

Model fairness Model fairness refers to bias related to preferences for
certain values of the chosen features such as gender, age, ethnicity, nationality,
etc. [69]. The automatic engagement estimation model in the MeetmEE
prototype was built based on the Asian facial type and tested on specific user
profiles (Figure 4.9). Databases from different cultural and ethnic backgrounds
may require more adjustments for model development [110, 111].

Drift detection Drift detection measures accuracy and prediction con-
sistency. We observed that the predicted engagement level decreased and
was inconsistent when the MeetmEE ran online. The drop in accuracy is
conceivably due to the high latency in the client-server processing, which
refers to the front-end application to the prediction server. Meanwhile, the
inconsistency is owing to false class encoding on the front-end side.

Explainability Explainability provides insight and transparency of the
engagement model outcomes to educators with no data science skills. The live
graph under the video stream on MeetmEE shows the real-time engagement
state as an outcome of the engagement estimation model.

Trustworthy data security

In a synchronous learning session, the audio-video stream data are the main
inputs for automatic engagement estimation. In MeetmEE, the face detector
takes and tags the images from the streamed video and sends the tagged images
to the prediction server. One prediction cycle in MeetmEE incorporates plain
images without encryption or security measures.

Ideally, the data sent between the educator and learner in the run system
should be encrypted to avoid the risk of third-party interception if the mes-
sages contain potentially identifiable data. An encoder-decoder mechanism is
desirable in the application of automatic engagement estimation. For example,
when the system runs, only the extracted features or compressed data at a
certain period are shared under appropriate encryption. A conceivable system
should be designed with a decoder to handle encrypted data. Therefore,
without the correct decoder, the data would be meaningless. Encrypted
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data should include messages as well as any interactions, such as the esti-
mated engagement levels. However, applying secure end-to-end integration of
automatic engagement-estimation applications remains challenging.

Furthermore, a secure database implementation is suggested to defend
against hacking or any other unauthorised access [103]. Additional software
measures include message encryption, authentication and access control,
automated data expiry rules, log reports, and data anonymisation [103, 151].
The security mechanism can also include how long the data should be archived
(including backups) and the measures to delete the content [4].

5.3.2 Operational Measures

Operational measures are required in the implementation of automatic engage-
ment estimation because mere technological tools are insufficient to protect
information security, in which the human factor remains a major vulnera-
bility [103]. An operational efficacy approach that supports effective human
decision-making is necessary to mitigate risks and end-user behaviour. The
following operational measures are recommended to ensure the ethically safe
implementation of automatic engagement estimation in distance learning:

Self awareness Both authorities and users of automatic engagement estima-
tion should protect learners’ personal information. Likewise, users should be
aware of their personal information and provide their consent. Furthermore,
both authorities and users should be aware of the threats and risks of data
exposure.

In the MeetmEE interface, the on/off buttons for face mess and prediction
enable the user to be aware of the automatic engagement feature that predicts
their engagement during the learning session. Users have free will to activate
or deactivate the feature so that no ethical issues are violated.

Fair consent Authorities should form the policy and provide fair consent
following ethical standards and laws. Fair consent is one approach to list
a policy framework that should encourage user awareness to protect the
data they would or would not provide. However, a major problem in most
privacy policy agreements regarding the use of technology is the presence
of NO-OPTION. For example, after the long privacy policy points, there is
only one option: to agree. Otherwise, the use of the technology is impossible.
Therefore, policy consent should be written fairly, considering the main goal
of distance learning. In the case of children, they must be accompanied by
their parents or responsible adults to provide consent.
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Multiple options should be available in the implemented system so that
both the educator and learner benefit from automatic engagement estimation
in the distance learning process. A good distance learning system should allow
the learner to choose what data are shared (video stream or engagement log),
and what data to show. For example, if a learner does not want to show their
face, let the engagement estimation run on a local computer. The system
shows an emoji representing the engagement state instead of the actual face.
Only engagement-level data were sent in this case, and no actual affective
data were sent. Although MeetmEE has not been provided with this feature,
improvement in that direction is a potential measure.

Training/Workshop/User Manuals Authorities are encouraged to pro-
vide a user manual for the system and hold training regarding its use. When
the human factor remains vulnerable to information security, humans must be
influenced and trained to practice good judgment within a policy framework
[103]. Therefore, a workshop is required to assist educators in using data
to inform instruction. Besides technical training, ethical education through
workshops is seen as a positive approach to avoid the risk of perpetuating
existing patterns of unethical and inequitable technology development [209].

More importantly, the consent list, instruction, policy consent, and control
mechanism must be made concise, clear, and transparent for users and
understood by them [76]. After all, the effort towards information security
must permeate all parties, both the organization and individual users.

5.4 Chapter Conclusion

This article discusses the design principle that was proposed to address the
ethical gap in implementing automatic engagement estimation in distance
learning practice. In addition to the user experience experiment results
(Chapter 4), three ethical issues were considered when constructing the design
principle to implement an automatic engagement estimation in distance
learning practice.

The design principle (Figure 5.1) incorporates both technical and opera-
tional measures. Technical measures include the consideration of a trustworthy
estimation model, architecture, and data security. Whereas the operational
measures involve the participation of authorities such as education institutions,
and the technology users, that is, educators and learners.
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Chapter 6

Conclusion

This chapter contains the summary and highlights of this research contribution.
Finally, the remaining works and ideas for improving this research in the
future are also described.

6.1 Summary

This study addressed the practical knowledge gap of automatic recognition and
analysis of learners’ engagement in the distance learning process. In contrast
to the other works that focus on ICT development, this study investigated
automatic engagement estimation from the perspective of distance learning
practices. This study mainly addresses the main research question, ”How
do educators or education institutions safely apply automatic engagement
estimation in their distance learning process?”, which is broken down into
several research questions:

• RQ1: What requirements did the literature develop for automatic
engagement estimation?

• RQ2: How to develop real-time engagement estimation tools for distance
learning practice?

• RQ3: How to implement automatic engagement estimation in distance
learning with taking into account distance learning characteristics and
ethical impact?

To address the RQ1, we did a systematic review in Chapter 2 and experi-
mented on LSTM and CNN models to build automatic engagement estimation
in Chapter 3. From the engagement taxonomy, we introduced (Figure 2.2),
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we can define what type of engagement is being measured from the available
cues, the stimuli presented to the participant during data collection, and the
observed physical or cognitive behaviours. Furthermore, the review of the
dataset and machine learning-based methods used in the literature gives an
insight into the current trend in automatic engagement estimation. Therefore,
we believe that the combination of a clear engagement definition, a suitable
dataset, and machine learning methods are the basic requirements to develop
an automatic engagement estimation.

To address the RQ2, Chapter 3 technically investigated the requirements
by developing automatic engagement estimation modules using LSTM and
CNN, while Chapter 4 proposed system designs to implement the automatic
engagement estimation module in distance learning practice.

As discussed in Chapter 2, LSTM is gaining popularity in engagement
estimation research due to its sequential characteristics, while CNN is already
the most popular method in computer vision-based engagement estimation.
Likewise, the DAiSEE is the most popular and publicly available engagement
dataset. Our engagement estimation models can successfully distinguish the
engagement level. Although the prediction accuracy is low, we could analysed
the suitability of the DAiSEE dataset and the feasibility of LSTM and
CNN for real-time implementation. The experiment justifies the statement
that incorrect interpretation and inconsistency in engagement measurement
methods and annotations lead to severe bias. Moreover, LSTM is less feasible
for practical implementation compared to CNN from a runtime perspective.
However, we found that classic machine learning would be the best practice,
especially for real-time engagement estimation. Finally, a framework for real-
time automatic engagement estimation (Figure 3.10) was proposed for further
implementation of automatic engagement estimation in distance learning
practice.

Furthermore, we proposed design systems to develop a prototype for
asynchronous and synchronous distance learning settings, i.e., RAMALAN,
a real-time engagement assessment in an asynchronous system (Figure 4.4)
based on the framework in Figure 3.10, and MeetmEE (Figure 4.7) for one-
on-one synchronous distance learning.

A pilot experiment was conducted as a user experience survey to evaluate
the MeetmEE system design and construct the ethical implementation design
principle. The user experience experiment results show that most of the
responses were very positive toward the automatic engagement estimation
concept, represented in MeetmEE. Likewise, the user experience evaluation
demonstrated positive perceptions of scales of stimulation, attractiveness,
perspicuity, and novelty, yet low dependability and negative perception of
efficiency due to low performance.
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In addition to the user experience experiment results, three ethical issues
were considered when constructing the design principle to implement an
automatic engagement estimation in distance learning practice. The design
principle incorporates both technical and operational measures. Technical
measures include the consideration of a trustworthy estimation model, archi-
tecture, and data security. The operational measures involve the participation
of authorities such as education institutions and technology users: educators
and learners.

Finally, the combined proposed MeetmEE system design and the design
principle for the implementation leads to the contribution of this work, i.e.,
an end-to-end integration of automatic engagement estimation.

6.2 Contribution

The main contributions of this study are as follows:

1. A systematic review of automatic engagement estimation: definition,
datasets, and methods.

2. RAMALAN and MeetmEE system designs for asynchronous and syn-
chronous distance learning.

3. Design principle of the automatic engagement estimation for ethical
implementation.

6.3 Limitation

The knowledge and application of our model and method are meant to help
educators and education institutions better understand learner engagement in
distance learning settings with respect to privacy (e.g., learners’ affective data
and information). The ethical implementation mechanism aims to empower
web and software developers to optimize privacy-enhancing distance learning
technologies in this respect. However, further evaluation is required to justify
this claim.

Furthermore, this study has several limitations as follows:

1. In the systematic review to address RQ1, there is bias in the subjective
determination of whether an article was aimed at education/learning
settings. For example, some articles appear to be aimed at other
purposes, such as therapy for children with autism [175] or human-robot
interactions [27]. However, the articles were included if the authors
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perceived that there was subtle information about a learning activity
or the possibility that the proposed action could be applied in the
education process.

2. We experimented with six pre-processing scenarios and found that
Multilayer-LSTM with scenario 4 performs best. However, further
discussion regarding the correlation between the pre-processing scenarios
and the LSTM models is still open for future work.

3. The proposed MeetmEE system design currently only works for one-
on-one meetings. Improving the scalability of the system design to
enable multiple participants (e.g., an online classroom) would improve
its practicality in synchronous distance learning practices.

4. Furthermore, the automatic engagement estimation model in MeetmEE
merely defines the engagement level using frontal images and the distance
of the participant from the monitor, which leads to the drawback of
false interpretation. For example, some behaviours during the meeting,
such as writing or doing other related assignments, where the face is
directed away from the monitor, would be estimated as low engagement.
Moreover, learners may look attentive while, in fact, not following at all
[153]. Therefore, Including more engagement cues, such as log files and
physiological cues, in addition to frontal-image analysis, will improve
estimation outcome reliability.

5. Regarding output, our proposed system is useful for educators to know
when learners lose their general engagement. However, a more detailed
report is a challenge for future work, which not only provides individual
feedback but also provides feedback to educators by putting them
together. For example, implementing the prototype in an actual LMS is
suggested for real implementation in the educational learning process.

6. Regarding the technical measures for ethical implementation based on
the proposed design principle, the current MeetmEE system must be
adjusted to meet the requirements, especially in terms of trustworthy
data security. Furthermore, deploying a machine-learning model in
practice, in this case, the end-to-end integration of the automatic
engagement estimation model, remains challenging. Particularly in a
synchronous learning session, in which audio-video stream data are the
main input for the automatic engagement estimation module.
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6.4 Future Work

Furthermore, we found several remaining challenges that have room for
improvement, including MeetmEE scalability, cognitive engagement, person-
alized engagement, and machine-learning pitfalls.

MeetmEE Scalability MeetmEE will be more beneficial with bigger scal-
ability, for instance, not only for one-on-one scenarios but also for multi-user.
The system design can be improved by taking more consideration of software
architecture and data communication between front-end applications, predic-
tion servers, and back-end servers. Furthermore, the safe implementation can
be improved with software measures, for instance, by adding an authentication
login system and data anonymisation.

Cognitive Engagement Table 1 shows that most automatic engagement
research has focused on behavioural and emotional engagement and that
affective data, especially appearance-based video data, were mostly utilized
to estimate engagement. However, cognitive engagement, which can be deter-
mined through self-regulated learning or pre-post tests, plays an important
role in successful distance learning. Similar to behavioural and emotional
engagement, cognitive engagement can be measured using questionnaires
[126]. However, few studies (Table 1) have considered this type of engage-
ment. For example, Turan et al. [210] have studied the relationship between
facial expression and cognitive engagement. However, we believe that more
engagement cues for cognitive engagement should be developed in future
automatic engagement estimation research.

Personalized Engagement Various definitions of engagement have been
constructed in the field of education. Although engagement can be divided
into three types (i.e., behavioural, emotional, and cognitive engagement),
conceptualizations of engagement sometimes include only one or two of the
three types. All three types can be considered to determine engagement
levels [78]. To the best of our knowledge, no research has answered how
these engagement types evolve and change over time. Therefore, whether
the engagement cues may take different forms depending on the age range,
gender, ethnicity, and education level of the participants is unknown.

Moreover, facial physiognomy differences between people with different
ethnic backgrounds may result in various distributions of engagement levels
[177]. Several automatic engagement estimations target participants with
specific cultures or backgrounds. For example, as shown by [128], a child’s
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background, including their cultural or psychological profile, needs to be
considered when designing therapeutic strategies.

Network personalization can be achieved using demographic information
(culture and gender), followed by individual network layers for each child [175].
The existing engagement estimation research has used datasets based on one
ethnicity [110]. Similarly, as we have done in Section 3, the participants in the
DAiSEE dataset used in this study are of a single ethnicity. Engagement is an
inner state that sometimes does not appear visually, which may be influenced
by individual factors such as age, gender, ethnicity, and prior experience.
Future automatic engagement estimation should consider individual factors
and differences in the analysis for more reliable engagement estimation.

However, it is unknown how engagement estimation results can be gen-
eralized in actual applications [32]. Thus, the user target must be defined,
and the data must be collected from participants with the appropriate cul-
tural background (for example, learners with autism spectrum conditions
(ASCs) [205, 51]) to train the model [177]. Therefore, automatic engagement
estimation, which considers individual differences, remains an open challenge.

Machine Learning Pitfalls Machine learning (ML) methods have been
applied in various fields; however, reproducibility is an issue, as reviewed
by Kapoor et al. [182, 181]. The review examined 20 reviews across 17
research fields and found errors in 329 papers that used ML-based methods.
While experienced machine learning practitioners are well aware of these
errors, researchers in other disciplines may not be [201]. Although education
research was not included in the review [181], we found similar issues (such
as no training-testing splits, sampling biases, and pre-processing the training
and test sets together) in the selected articles (see Appendix Table 5-8).
The misuse of ML can generate invalid results that are irreproducible in
implementations in real-world educational settings. Therefore, automatic
engagement researchers should be aware of these issues [181]. Furthermore,
education experts and ML experts could collaborate on engagement research
to develop more effective models [201].
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[212] Pieter Vanneste, José Oramas, Thomas Verelst, Tinne Tuytelaars,
Annelies Raes, Fien Depaepe, and Wim Van den Noortgate. Computer

110



vision and human behaviour, emotion and cognition detection: A use
case on student engagement. Mathematics, 9(3):1–20, 2 2021.

[213] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention
is All You Need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, pages 6000–6010,
Red Hook, NY, USA, 2017. Curran Associates Inc.

[214] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
volume 1, pages I–511–I–518, 2001.

[215] Paul Viola and Michael J. Jones. Robust Real-Time Face Detection.
International Journal of Computer Vision, 57(2):137–154, 5 2004.

[216] Michael Voit and Rainer Stiefelhagen. Deducing the visual focus of
attention from head pose estimation in dynamic multi-view meeting
scenarios. In Proceedings of the 10th international conference on Mul-
timodal interfaces - IMCI ’08, page 173, New York, New York, USA,
2008. ACM Press.

[217] J. Wagner, Jonghwa Kim, and E. Andre. From Physiological Signals to
Emotions: Implementing and Comparing Selected Methods for Feature
Extraction and Classification. In 2005 IEEE International Conference
on Multimedia and Expo, pages 940–943. IEEE.

[218] Mei Wang and Weihong Deng. Deep face recognition: A survey. Neuro-
computing, 429:215–244, 3 2021.

[219] Shangfei Wang, Zhilei Liu, Siliang Lv, Yanpeng Lv, Guobing Wu, Peng
Peng, Fei Chen, and Xufa Wang. A Natural Visible and Infrared Facial
Expression Database for Expression Recognition and Emotion Inference.
IEEE Transactions on Multimedia, 12(7):682–691, 11 2010.

[220] Yuehua Wang, Anuhya Kotha, Pei Heng Hong, and Meikang Qiu.
Automated Student Engagement Monitoring and Evaluation during
Learning in the Wild. In Proceedings - 2020 7th IEEE International
Conference on Cyber Security and Cloud Computing and 2020 6th
IEEE International Conference on Edge Computing and Scalable Cloud,
CSCloud-EdgeCom 2020, pages 270–275, 2020.

111



[221] David Watson, Lee Anna Clark, and Auke Tellegen. Development and
validation of brief measures of positive and negative affect: The PANAS
scales. Journal of Personality and Social Psychology, 54(6):1063–1070,
1988.

[222] Matthias Wenzel and Christoph Meinel. Full-body WebRTC video
conferencing in a web-based real-time collaboration system. In 2016
IEEE 20th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), pages 334–339. IEEE, 5 2016.

[223] Jacob Whitehill, Zewelanji Serpell, Yi Ching Lin, Aysha Foster, and
Javier R. Movellan. The faces of engagement: Automatic recognition
of student engagement from facial expressions. IEEE Transactions on
Affective Computing, 5(1):86–98, 2014.

[224] Genta Indra Winata, Onno Pepijn Kampman, and Pascale Fung.
Attention-Based LSTM for Psychological Stress Detection from Spoken
Language Using Distant Supervision. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages
6204–6208, 2018.

[225] Philip H. Winne and Nancy E. Perry. Measuring Self-Regulated Learn-
ing. Handbook of Self-Regulation, pages 531–566, 1 2000.

[226] Peter Wittenburg, Hennie Brugman, Albert Russel, Alexander Klass-
mann, and Han Sloetjes. ELAN: a Professional Framework for Multi-
modality Research. In LREC, 2006.

[227] Christopher A. Wolters and Daniel J. Taylor. A Self-regulated Learning
Perspective on Student Engagement. In Handbook of Research on
Student Engagement, pages 635–651. Springer US, Boston, MA, 2012.

[228] Erroll Wood, Tadas Baltruaitis, Xucong Zhang, Yusuke Sugano, Peter
Robinson, and Andreas Bulling. Rendering of Eyes for Eye-Shape Reg-
istration and Gaze Estimation. In 2015 IEEE International Conference
on Computer Vision (ICCV), volume 2015 Inter, pages 3756–3764, 2015.

[229] Beverly Woolf, Winslow Burleson, Ivon Arroyo, Toby Dragon, David
Cooper, and Rosalind Picard. Affect-aware tutors: recognising and
responding to student affect. International Journal of Learning Tech-
nology, 4(3/4):129, 2009.

[230] Jianming Wu, Bo Yang, Yanan Wang, and Gen Hattori. Advanced
Multi-Instance Learning Method with Multi-features Engineering and

112



Conservative Optimization for Engagement Intensity Prediction. In Pro-
ceedings of the 2020 International Conference on Multimodal Interaction,
pages 777–783, New York, NY, USA, 10 2020. ACM.

[231] Kui Xie, Benjamin C. Heddy, and Barbara A. Greene. Affordances
of using mobile technology to support experience-sampling method
in examining college students’ engagement. Computers & Education,
128:183–198, 1 2019.

[232] D. Yang, Abeer Alsadoon, P. W.C. Prasad, A. K. Singh, and A. El-
chouemi. An Emotion Recognition Model Based on Facial Recognition in
Virtual Learning Environment. In Procedia Computer Science, volume
125, pages 2–10. Elsevier B.V., 2018.

[233] Ji Won You. Identifying significant indicators using LMS data to
predict course achievement in online learning. The Internet and Higher
Education, 29:23–30, 4 2016.

[234] Jia Yue, Feng Tian, Kuo-Min Chao, Nazaraf Shah, Longzhuang Li, Yan
Chen, and Qinghua Zheng. Recognizing Multidimensional Engagement
of E-Learners Based on Multi-Channel Data in E-Learning Environment.
IEEE Access, 7:149554–149567, 2019.

[235] Sang-Seok Yun, Mun-Taek Choi, Munsang Kim, and Jae-Bok Song.
Intention Reading from a Fuzzy-Based Human Engagement Model
and Behavioural Features. International Journal of Advanced Robotic
Systems, 9(2), 8 2012.

[236] Woo-Han Yun, Dongjin Lee, Chankyu Park, and Jaehong Kim. Auto-
matic Engagement Level Estimation of Kids in a Learning Environment.
International Journal of Machine Learning and Computing, 5(2):148–
152, 4 2015.

[237] Woo Han Yun, Dongjin Lee, Chankyu Park, Jaehong Kim, and Junmo
Kim. Automatic Recognition of Children Engagement from Facial Video
Using Convolutional Neural Networks. IEEE Transactions on Affective
Computing, 11(4):696–707, 10 2020.

[238] Amir Zadeh, Yao Chong Lim, Tadas Baltrusaitis, and Louis-Philippe
Morency. Convolutional Experts Constrained Local Model for 3D
Facial Landmark Detection. In 2017 IEEE International Conference
on Computer Vision Workshops (ICCVW), volume 2018-Janua, pages
2519–2528, 2017.

113
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Appendix A – Systematic
Review Method

A.1 – PRISMA Phase

A.1.1 - Identification

The literature search was carried out by selecting research articles from the
following electronic databases and libraries: Scopus, Mendeley, IEEE Xplore,
and ScienceDirect. The following criteria were used to define the included
studies:

• Focused on automatic estimation

• Deployed in education/learning settings

• Journal publications or conference proceedings only if they developed
an influential dataset for engagement estimation.

Based on the above criteria, we identified articles that satisfied the follow-
ing terms: (1) keywords: automatic AND engagement OR student engagement
OR learner engagement AND estimation OR prediction OR recognition; (2)
publication year: 2010-2022; and (3) literature type: research article, exclud-
ing books, magazines, news articles, and posters. Additionally, to obtain more
references, we used the snowballing approach by searching Google Scholar. A
total of 429 articles were obtained in the identification phase according to
the aforementioned search terms.

A.1.2 - Screening

In this phase, duplicate articles were excluded. Then, the titles and abstracts
were scrutinized to determine whether they met the review criteria. The
exclusion criteria included systematic reviews, surveys, and preliminary works
(e.g., only report designs).

With the exclusion criteria, 352 articles were excluded, yielding 124 articles.
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A.1.3 - Eligibility

Journal articles and conference proceedings were assessed for eligibility in this
phase. The titles, abstracts, main contents, and conclusions were examined
to ensure that they met the inclusion criteria. In addition to the exclusion
criteria mentioned in the screening phase, we also excluded articles that
did not focus on automatic engagement estimation or were not related to
education/learning settings. Even though face detection/recognition is a
component of engagement estimation in some cases, we excluded articles that
focused more on face detection/recognition than on engagement estimation.

A total of 10 journal articles were excluded in this phase according to the
exclusion criteria. For the conference proceedings, only articles that proposed
an influential dataset for engagement estimation were included. With this
condition, 73 out of 76 articles were excluded.

A.1.4 - Inclusion

Finally, a total of 47 articles were selected, including 44 journal articles and
3 conference proceedings. In this review, we focused on three main topics:
engagement definitions, datasets, and methods. In the discussion section, we
also present some supporting articles with citations in the literature.
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A.2 – Literature Tables

A.2.1 - Engagement defined in the selected articles.

Table 1: An overview of the selected articles to address RQ1.

Domains Engagement Type Engagement Cues

Author HCI HRI A/H Cls. B. E. C. Aff. BE PC LF

Wang et al. [219] • ◦ •
Cocea et al. [50] • ◦ •
AlZoubi et al. [11] A ◦ •
S-Syun et al. [235] • ◦ •
Whitehill et al. [223] • ◦ •
Schiavo et al. [184] • ◦ ◦ •
W-H Yun et al. [236] • ◦ •
Gupta et al. [91] • ◦ •
Zaletelj et al. [239] • ◦ •
Monkaresi [146] • ◦ • •
Youssef et al. [26] •
Zhalehpour et al. [240] •
Hussain et al. [100] • ◦ ◦ •
Psaltis et al. [166] • ◦ • •
Rudovic et al. [175] • ◦ • •
Ninaus et al. [149] • ◦ •
Yue et al. [234] • ◦ ◦ ◦ • • •
Mollahosseini et al. [144] • ◦ •
Celiktutan [40] • ◦ • •
Youssef et al. [27] • ◦ •
Olivetti et al. [37] • ◦ •
Ashwin et al. [199] • ◦ ◦ •
Ashwin et al. [14] • ◦ • •
Pabba et al. [157] • ◦ • •
Duchetto [56] • ◦ •
Yun et al. [237] • ◦ ◦ •
Zhang et al. [243] • ◦ ◦ • •
Liao et al. [127] • ◦ •
Li et al. [126] • ◦ ◦ • •
Bhardwaj [30] • ◦ • •
Goldberg [85] • ◦ ◦ ◦ •
Chatterjee [44] H ◦ •
Youssef et al. [25] • ◦ •
Sümer et al. [197] • ◦ •
Trindade [172] • ◦ •
Ma et al. ([136]) • ◦ •
Thiruthvanathan et al. [202] • ◦ •
Altuwairqi [10] • ◦ ◦ • •
Vanneste [212] • ◦ ◦ •
Hasnine et al. [92] • ◦ •
Delgado et al. ([57]) • ◦ •
Engwall et al. [73] • ◦ • •
Mehta et al. [141] • ◦ •
Dubovi et al. [68] • ◦ ◦ • •
Thomas et al. [203] • ◦ • •
Shen et al. [193] • ◦ • •
Apicella et al. [13] • ◦ ◦ •

HCI - Human-computer interaction; HRI - Human-robot interaction; A - embodied conversational Agent;

H - Human-human interaction; Cls. - Classroom; B. - Behavior; E. - Emotional; C. - Cognitive; Aff. -
Affective; BE - Basic Emotions; PC - Physiological cues; LF - Log file (including log activity).



A.2.2 - Engagement dataset

Non-Public engagement datasets (Table 2, Table 3) and engagement-related
dataset (Table 4).

Table 2: Non-Public engagement dataset.

Dataset Setting Stimuli Participants Samples Annotators Label

Cocea
et al.
[50]

WE An online course
(HTML-tutor) in 7
sessions

48 users 14 logged
events

3 EA engaged, disengaged,
or neutral

AlZoubi
et al.
[11]

S an intelligent tu-
toring system with
conversational dia-
logues (AutoTutor)
in 45 mins learning
session

27 students 20-second
interval of
biosensor sig-
nals

Retrospective
self-report

8 affective states:
boredom, confusion,
curiosity, delight,
flow/engagement,
surprise, and neutral.

Whitehill
et al.
([223])

S A cognitive skills
training software.

34 undergradu-
ate students

10 seconds
videos

7EA Engage, Not En-
gage ([Very en-
gaged,Engaged],[Nominally
engaged,Not En-
gaged])

Schiavo
et al.
([184])

S A video game: sin-
gle player level,
”Operation 40” of
”Call of Duty -
Black Ops” video
game.

22 participants
(3 F, 19 M)

12420 samples self-
annotate
using Ex-
perience-
Sampling
Method
(ESM)
[121]

Neutral, Engaged,
Stress

Woo-
Han
Yun
et al.
([236])

S An interactive test-
ing software.

12 Children 2,745 of 30-
second video
clips

1 EA 4 engagement levels:
high/low interest,
low/high boredom

Zaletelj
et al.
([239])

S 4 lecturing sessions
(@25-min) in of-
fline classroom set-
ting

18 students videos and
Kinect features

5 EA 3-level scale attention
score (high, medium,
low)

Monkaresi
et al.
([146])

S Writing task
(draft-feedback-
review)

22 students 1,325 video seg-
ments

Concurrent
and retro-
spective
self-report

Not engaged, engaged

Hussain
et al.
([100])

WE Social science
course on virtual
learning environ-
ment (VLE)

383 students Log file N/A IF (score on the assess-
ment ¿= 90) OR (fi-
nal results=Pass AND
a total number of clicks
- average clicks), then
label = high engage-
ment. Otherwise -¿
Low engagement

Rudovic
et al.
([175])

S 25 min therapy
session with NAO
robot to learn
four basic emo-
tions: sadness,
fear, anger, and
happines

35 Chld.(17
from Japan, 18
from Serbia)
ages 3 to 13
with autism

10s video frag-
ment

5EA 6 engagement level
[0-5] = evasive, non-
compliance, indiffer-
ent, low engagement,
mid engagement, high
engagement

Olivetti
et al.
([37])

S A virtual learning
environment (A
European En-
trepreneurship
VET Model and
Assessment)

12 participants
(6 F, 6 M)

3D videos 2 EA and
self-report

Engagement level 1,2,3

Ashwin
et al.
([199])

S&P Offline classroom 50 students 24000 posed
images of
50 students,
36000 images
spontaneous

self-
annotate
and 2 EA

Engaged, boredom
and neutral

S - Spontaneous; P - Posed; W - in-the-Wild; WE - Web-based learning environment; W - in-the-Wild; EA - External

annotator;
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Table 3: (Cont. 1) non-public engagement dataset.

Dataset Setting Stimuli Participants Samples Annotators Label

Ashwin
et al.
([14])

S&P Offline classroom 350 students
(Indian)

2900 posed
images (1450
are multiple
students in a
single frame),
72000 sponta-
neous images

30 EA Attentive (happiness,
surprise, delight, en-
gaged), in-attentive
(sadness, fear, disgust,
boredom, sleepy, frus-
trated, confused).

Pabba
et al.
([157])

S Offline classroom 50 (31 M and
19 F) (Indian)

1193 images
(30 minutes)

5 EA Engagement level
academic affective
states (low:Boredom,
sleepy;Medium: Yawn-
ing, frustrated, con-
fused;High: Focused)

Duchetto
et al.
([56])

S 227 people (122
F, 105 M. 138
adults, 89 mi-
nors)

3,106 videos
(10 fpr)

3 EA Using
NOVA

Engagement score
:High, low, medium

Yun
et al.
([237])

S interactive multi-
intelligence mate-
rial

20 children
(Asian)

356
video/images

3 and 7 EA Engaged, Disengaged
([High Engagement,
Low Engagement],
[Low Disengagement,
and High Disengage-
ment]) [17:11:5:1]

Zhang
et al.
([243])

47 students (28
M,19 F)

26 hours video
(2 seconds im-
age) and mouse
movement

8 EA 1-5 engagement scale
(but only 2 class classi-
fications Engaged, not
engaged)

Goldberg
et al.
([85])

S offline classroom
(90 mins), knowl-
edge test

52 students
(only 30 were
used due to
occlusions)

Videos self-report
and 6
EA using
CARMA

-2 to +2 engagement
scale

Chatterjee
et al.
([44])

S Dyadic conversa-
tion

16 dyads Naturalistic
conversations
(15 minutes)

self-report Engagement level
(none to very high),
Engagement scale
(0-100)

Youssef
et al.
([25])

S Interaction using
Pepper robot

195 partici-
pants (70 F,
125 M)

124 interac-
tions to feature
a single user,
71 multiparty
interactions
(40 started as
multiparty and
ended as a
single user)

EA Signs of User En-
gagement Breakdown
(UEB): Breakdown,
No Breakdown

Sumer
et al.
([197])

S Offline classroom 15 students 360 audio-
visual record-
ing

2 EA using
CARMA
every sec-
ond

3 engagement class la-
bel (0,1,2)

Altuwairqi
2021
et al.
([10])

S Writing task 42 participants 164 videos,
mouse and
keyboard log

self-
annotation

strong, high, and
medium engagements

Vanneste
et al.
([212])

S On lectures (hy-
brid virtual class-
room)

14 students (4
F,10 M)

1031 clips (only
37-185 were an-
notated)

Self-report,
EA

0,1,2 engagement

Hasnine
et al.
([92])

S interactive lecture,
lecture video taken
from YouTube
(28s)

11 students N/A (con-
centration
index (CI))

Highly-engaged, en-
gaged, disengaged

Delgado
et al.
([57])

WE Math problem on
MathSpring.org

19 students 400
videos(18,721
frames)

3 EA Engaged (looking at
the screen or looking
at their paper), wan-
dering

Engwall
et al.
([73])

S Robot interaction
(with Furhat an-
thropomorphic
robotic head)
in Wizard-of-Oz
setup

33 language
learners

50 audio-visual
conversational
videos (38
video record-
ings, 353 of 5s
clips)

1 EA
(audio
record-
ings), 3
EA (video
record-
ings), 9 EA
(2s clips)

High and Low engage-
ment. Clips (very dis-
engaged, disengaged,
neutral, engaged, very
engaged)

Apicella
et al.
([13])

S Cognitive task
(Continuous Per-
formance Test),
background music,
social feedback

21 students 45 seconds ac-
quisition EEG
signals

Self-report,
Perfor-
mance
index

High or low emotion
engagement, high or
low cognitive engage-
ment

S - Spontaneous; P - Posed; W - in-the-Wild; WE - Web-based learning environment; W - in-the-Wild; EA - External

annotator;
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Table 4: (Cont. 2) non-Public engagement-related dataset.

Dataset Setting Stimuli Participants Samples Annotators Label

Ninaus
et al.
([149])

S 1) The number line
estimation task, 2)
watching a short
clip.

122 partici-
pants

Image frames Self-report joy = ”excited”
or ”inspired”, ac-
tivity/interest =
”attentive”, ”active”,
afraid = ”distressed”,
”scared”, upset =
”irritable”, ”hostile”

Yue
et al.
([234])

S&WE MOOC course ti-
tled ”Data Process-
ing Using Python”
with course 5=10
mins videos, teach-
ing materials, and
quizzes.

46 participants 7224 learning
performance in-
stances

self-report
and quiz
score

7 emotions (Neu-
tral, Happy, Disgust,
Sad, Surprise, Fear,
Anger),Eye Movement
(writing, read, type),
course: score

Li et al.
([126])

S A virtual patient in
BioWorld

61 medicalstu-
dents

167 segments,
videos (10 sec-
onds)

self-report,
1 EA

8 clinical behav-
iors, 2 performances
(shallow/surface,
high/deep)

Trindade
et al.
([172])

WE Courses in Moodle 2752 Moodle
record data
from 2015-2019

Dubovi
et al.
([68])

S 1. The Medi-
cation Administra-
tion Test (MAT),
3 PANAS question-
naires

61 nursing stu-
dents

Data streams,
and pre-and
post-test con-
text knowledge
test

Self-report
using
PANAS

10 positive emotions
and 10 negative emo-
tions Positive and
Negative Affect Scale
(PANAS)[221]

S - Spontaneous; P - Posed; W - in-the-Wild; WE - Web-based learning environment; W - in-the-Wild; EA - External

annotator;
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A.2.2 - Machine Learning-based Methods

Table 5: An overview of the method used in the selected articles to address
RQ3.

Author Input De-
vice/Modality

Input Features Estimation Method Performance
Metrics

Wang et al.
[219]

Thermal cam-
era

Grayscale images
pixels

Feature extraction: PCA, PCA + LDA, AAM, and
AAM+LDA. Classification: KNN.Validation: LOOCV

Accuracy

Cocea et al.
[50]

Log file 30 log attributes WEKA. 8 algorithms: 1) BNs, 2) LR, 3) simple logistic
classification (SL), 4) Instance-based classification with
Ibk algorithm (IBk), 5) Attribute selected classification
using J48 classifier and Best first search (ASC), 6) Bag-
ging using REP (reduced error pruning) tree classifier
(B), 7) Classification via Regression (CvR), 8) DTs

Accuracy
(highest 91%)

AlZoubi et
al. [11]

3 sensors (elec-
trocardiogram
(ECG), facial
electromyo-
gram (EMG),
galvanic skin
response
(GSR)), web-
cam, screen
recorder.

117 features (EEG,
corrugator muscle
EMG, finger tips
GSR)

Preprocess: low/high pass filter. Feature extraction:
using Augsburg Biosignal Toolbox [217].Classification:
PRTools 4.0 [55], a pattern recognition library for Matlab.
9 classifiers: 1) SVM with the linear kernel (SVM1), 2).
SVM with polynomial (SVM2), 3) KNN (k = 3). 4)
KNN (k = 5), 5) KNN (k = 7). 6) NB, 7) Linear
Bayes Normal Classifier (LBNC), 8) Multinomial LR,
9) C4.5 DT. Validation: 10-fold cross-validation with
20:7 train:test ratio

Kappa statistic
and F1-scores.
(KNN and
LBNC yielded
the best detec-
tion)

S-Syun et
al. [235]

Microphone,
camera, Depth
sensor

Oculesic, kinesic,
proxemic, vocalic,
person identity cue
features

Oculesic (gaze direction), Kinesic (facial expression,
movement, body posture/gesture), proxemic (body pos-
ture/gesture, spatial relation), vocalic (user call), person
identity cue (Spatial relation, face identification). Fea-
ture extraction: OpenNI library. Binary classifica-
tions (inattention and attention): Fuzzy-based classifi-
cation algorithm (FMMNN classifier). Fuzzy min-max
neural networks (FMMNN) with 7 input nodes. Valida-
tion: 7:3 training:test samples

Accuracy 86%

Whitehill
et al. [223]

Camera Facial features Feature extraction: using CERT. Binary Classifica-
tion: Boost (BF), SVM (Gabor), MLR (CERT). Valida-
tion: 4-fold cross-validation

2-alternative
forced choice
(2AFC)

Schiavo et
al. [184]

Camera Head movement
and face features

Features extraction: using face actions and expression
recognition [107]. 3-class classification: SVM. Valida-
tion: LOOCV

Accuracy=73%,
F-score = 63%

Woo-Han
Yun et al.
[236]

Camera 55 features of face
and head informa-
tion

Pre-processing: median filtering and aggregation
method (mean, median, max, min, standard deviation
(STD), range, rate of zero crossings (ZCR). 4-class clas-
sification: relevance vector classifier (RVC), a spare
version of Bayesian kernel logistic regression or Gaussian
process classification (GPC).

Accuracy
= 78.53%,
Balanced Accu-
racy = 70.64%

Gupta et al.
[91]

Camera Image pixels Classification: InceptionNet, C3D, LRCN. Accuracy

Zaletelj et
al. [239]

Kinect one sen-
sor

2D and 3D gaze
point and body
posture data

3-class classification: DT (simple and medium), KNN
(coarse, medium, and weight), Bagged Trees, Subspace
KNN

Accuracy =
75.3%

Monkaresi
et al. [146]

Kinect face
tracker and
ECG sensors
(BIOPAC
MP150 sys-
tem)

kinect face tracker
features, LBP-
TOP, heart rate
data

Pre-process: RELIEF-F for feature selection, Synthetic
Minority Oversampling Technique (SMOTE) to handle
the data imbalanced. Classifications using WEKA: Up-
dateable NB, BN, LR, classification via cLustering, rota-
tion forest, dagging. Validation: LOOCV.

AUC = 0.758
and 0.733.

Zhalehpour
et al. [240]

Camera Images Face tracking: CHEHRA tracker. Classification: SVM.
Accuracy: 5-class classification = 75.32%, 8-class =
65.84%

Hussain et
al. [100]

Log file Number of clicks
and activity types

Activity types includes dataplus, forumng, glossary, oucol-
laborate, oucontent, resource, subpage, homepage, and
URL. Binary classification: decision tree (DT), J48 (be-
longs to DT family), CART, JRIP decision rules, GBDT,
NB. Validation: 10-fold cross validation

Accuracy,
Recall, AUC,
Kappa

Psaltis et
al. [166]

Kinect face
tracker

Facial expression,
Body motion fea-
tures, average time
of responsiveness.

Feature for emotional engagement: facial expression and
body motion. Feature for behavioral engagement: average
time of responsiveness. Binary classification: unimodal
ANN classifiers. Validation: 4-fold validation. Testing
on: three primary schools.

Accuracy =
85%

AAM - active appearance model; BNs - Bayesian Nets; CARS - childhood autism rating scale; CART - classification

and regression tree; DTs - Decision Trees; GBDT - gradient boosting trees; GRU - gated recurrent unit; KNN -
K-nearest neighbors; LBP-TOP - three orthogonal planes; LDA - linear discriminant analysis; LR - logistic regression;
LSTM - long-short term memory; LOOCV - leave-one-subject-out cross validation; NB - Naive Bayes; PCA - principle
component analysis;
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Table 6: (Cont. 1) An overview of the method used in the selected articles to
address RQ3.

Author Input De-
vice/Modality

Input Features Estimation Method Performance Metrics

Rudovic et
al. [175]

Audiovisual
sensors from
NAO robot
and physiolog-
ical sensors
to provide
heart rate,
electrodermal
activity, body
temperature,
and accelerom-
eter data.

Face, body, phys-
iology features,
CARS, the demo-
graphic features
(culture and gen-
der)

Pre-process: OpenFace, OpenPose openSMILE
[74], and self-built tools for feature extraction.
DeepLift for feature selection. Regression: per-
sonalized perception of affect network (PPA-net)
whis based on ANN and clustering using t-SNE.

Intra-class correlation
(ICC) = 65% ± 24 (av-
erage ± SD)

Ninaus et
al. [149]

Webcam Image frames Pre-process: Microsoft’s Emotion-API classify-
ing the prevalence of the 6 basic emotions for each
frame of the captured videos (’fear’ and ’disgust’
are excluded to enhance the quality of the data).
Classification: SVM ensembles using ”classyfire”
package in R statistical environment. Question-
naires were analyzed using separate multivariate
ANOVAs

Accuracy ≈ 64.18%

Yue et al.
[234]

Microsoft Life-
Cam webcam
and Tobii Eye
Tracker 4C

Video/images, eye
movement, and
click stream data.

Fine-tuning parameters by transfer learning for
CNN: VGG16, InceptionResNetv2. Classifica-
tion: CNN and LSTM. Regression: CART, ran-
dom forest, GBDT. Validation: 10-fold cross-
validation.

Accuracy = 76.08%
for facial expressions
recognition, 81% for
eye movement behav-
ior. R2 metric =
0.98 ofof course perfor-
mance prediction.

Mollahosseini
et al. [144]

N/A Images CNN (AlexNet) and SVR on Valnce and Arousal
labels

RMSE, CORR, SAGR,
CCC.

Celiktutan
et al. ([40])

Cameras (2
static & 2
dynamic), 2
biosensors

Image, sensor data Binary classifictions: SVMs. Validation: a
double LOOCV.

Youssef et
al. [27]

Robot’s cam-
era

Distance; head,
gaze and face
streams; speech;
looking and listen-
ing.

Feature extraction: OpenFace and Pepper
OKAO software. Binary classification: LR,
DNN, GRU, LSTM. Validation: 3-fold cross val-
idation

Accuracy, F1-Score,
AUC

Olivetti et
al. [37]

Camera Images (geometri-
cal description)

3-class classification: SVM The classification
result was compared
with the questionnaire.

Ashwin et
al. [199]

Camera 299x299x3 image
with RGB with
facial expressions,
hand gestures and
body postures
present

Pre-processing = data augmentation. Clas-
sification: transfer learning with inception v3.
Hybrid CNN = CNN-1 + CNN-2. CNN-1 for
a single student in a single image frame. CNN-
2 for multiple students in a single image frame.
Validation: 10-fold cross validation

Posed: accuracy =
86%, recall = 89%, pre-
cision = 91%, F1-score
= 84%, AUC = 90%.
Spontaneous: accu-
racy = 70%, recall =
72%, precision = 77%,
F1-score = 62%, AUC
= 69%

Ashwin et
al. [14]

Camera Images with facial
expressions, hand
gestures and body
postures present

Classification: CNN with pre-trained on
GoogleNet architecture[117]. Validation: 10-
fold cross-validation.

Accuracy = 76%

Pabba et al.
[157]

Camera 48x48 image pixels Add additional public dataset: BAUM-1,DAiSEE,
and Yawning Detection Dataset (YawDD)[192].
Pre-process: face and head detection (using
multi-task cascade CNN (MTCNN)), face align-
ment, data augmentation. 6-class classification:
CNN.

Accuracy = 76.9%

Duchetto
et al. [56]

Head camera of
the robot

RGB frame-by-
frame image

Face detection: CNN. Regression: LSTM.
Build the model using TOGURO dataset and
evaluated on UE-HRI.

AUC=0.89

Yun et al.
[237]

Camera,
Kinect V2

Facial features Classification: CNN with fine tunning by using
a pre-trained network (VGG-3D model). Vali-
dation: 6-fold cross-validation, leave-one-labeler-
out cross-validation (LOLOCV).

accuracy, AUC of
ROC (ROC), AUC
of PRs (PRs), MCC,
F1-score, balanced
accuracy, specificity
(true positive and
negative rate).

Zhang et al.
[243]

Camera grayscale image
(100 x 100 pixel)

Feature extraction: adaptive weighted LGCP.
Binary classification: fast sparse representa-
tion (AWLGCP&FSR). Validation: 10-fold vali-
dation. Compare: the four methods (CLBP-SRC,
Gabor-SVM, active shape model-SVM, and AWL-
GCP&FSR).

AAM - active appearance model; BNs - Bayesian Nets; CARS - childhood autism rating scale; CART - classification

and regression tree; DTs - Decision Trees; GBDT - gradient boosting trees; GRU - gated recurrent unit; KNN -
K-nearest neighbors; LBP-TOP - three orthogonal planes; LDA - linear discriminant analysis; LR - logistic regression;
LSTM - long-short term memory; LOOCV - leave-one-subject-out cross validation; NB - Naive Bayes; PCA - principle
component analysis;



Table 7: (Cont. 2) An overview of the method used in the selected articles to
address RQ3.

Author Input De-
vice/Modality

Input Features Estimation Method Performance Met-
rics

Liao et al.
[127]

N/A DAiSEE and
EmotiW images

Face detection: MTCNN. Pre-process: re-
size images to 224 ×224 and pre-trained on VG-
GFace2. 4-class classification and regression:
Deep Facial Spatiotemporal Network (DFSTN) =
pre-trained SE-ResNet-50 (SENet) for extracting
facial spatial features, and LSTM Network with
Global Attention (GALN). Validation: 5-fold
cross-validation.

Accuracy =
58.84% and MSE
= 0.0422 on
DAiSEE. MSE =
0.0736 on EmotiW.

Li et al. [126] Camera, log
file

Facial features
(Gaze, Pose, FAU)
and 8 clinical
behaviors

Performance (correcteness) labelling: for
problem solving process (Measure cognitive en-
gagement). Feature extraction: using Open-
Face. Calculate mean and std of each facial fea-
ture. Feature selection: recursive feature elim-
ination random forest (RFE-RF). Binary clas-
sification: NB, KNN, DT, RF, SVM. Valida-
tion: 10-fold-cv for feature selection. Use stu-
dents’ self-reports of cognitive engagement states
as the ground-truth

Bhardwaj et al.
[30]

FER-2013
dataset (im-
age), and MES
dataset

images Face detection: OpenCV. Binary classifica-
tion: CNN. First, calculating weights matrix of
emotions, then calculating MES and detecting
engagement.

Goldberg et al.
[85]

3 Cameras Eye gaze, head
pose, and facial ex-
pressions.

Feature extraction: OpenFace. Regression:
Model 1 : multiple linear regression. Model 2 : two
additional linear regression. Model 3 : add learn-
ing prerequisites.

MSE= 0.05. Pear-
son correlation
coefficient between
manual annota-
tions’ mean level
and prediction
models r = .70 , p
= 0

Chatterjee et
al. [44]

electrocardiography,
skin conduc-
tance, respi-
ration, skin
temperature,
Yeti X mi-
crophone,
webcams

electrocardiography,
skin conductance,
respiration, skin
temperature sig-
nals

Pre-process: lowpass/highpass filter using MAT-
LAB/Simulink. Regression: a binary decision
tree, least-squares boosting, and random forest
implemented in MATLAB 2020b. Validation:
LOOCV

Youssef et al.
[25]

Robot’s cam-
era

Distance; head,
gaze and face
streams; Speech;
Laser

Face detection: NAOqi People Perception.Face
extraction: OKAO Vision software. Imbalanced
issue: undersampling ”No breakdown”, oversam-
pling ”Breakdown” class using SMOTE. Binary
classification: LR, LDA, RF, and MLP. Valida-
tion: 5-fold cross-validation.

AUC ≈ 0.72

Sümer et al.
[197]

Camera Face features, head
pose (without fa-
cial landmarks)

Face detection: RetinaFace. Multi-channel set-
tings: training Attention-Net for head pose esti-
mation and Affect-Net for facial expression recog-
nition CNN. Pre-Process: : PCA (for SVM).
3-class classification: SVM (use majority vot-
ing), RF, MLP, LSTM with fine tunning (trans-
fer learning) with AffectNet for facial expression
and Attention-Net (300W-LP) for head pose with
ResNet-50. Tested using different fusion strate-
gies using RF engagement classifiers. Use of self-
supervision and representation learning on unla-
belled classroom data.

AUC = 0.84 (with
personalization).
Attention-Net is
better than Affect,
given that the
criteria for the
manual annotation
of engagement
are not directly
related to gaze
direction or facial
expression.

Trindade et al.
[172]

Log file Teacher and stu-
dents attributes

WEKA. Random Forest generated the best re-
sult.

AUC

Ma et al. [136] Use DAiSEE Eye gaze, facial
action unit, head
pose (117 dimen-
sions); and body
pose (60 dimen-
sions)

Feature extraction: OpenFace 2.0. Pre-
process: 640x640 resolution at 10fps. Feature
Fusion: Neural Turing Machine (NTM) archi-
tecture, which contains two basic components: a
neural network controller and a memory bank.
NTM workflow: read heads and write heads.

Accuracy = 60.2%

Thiruthvanathan
et al. ([202])

Indian origin
faces datasets
DAiSEE,
iSAFE, ISED

508 images from
ISED and iSAFE,
5295 images from
DAiSEE.

Feature extraction: lightweight ResNet. Clas-
sification: ResNet classifier (CNN with 50 layers
deep).

Accuracy, Pre-
cision, Recall,
Sensitivity, Speci-
ficity, and F1 score

Altuwairqi
2021 et al.
([10])

Camera,
mouse, key-
board be-
haviour

Key frame facial
expressions.

Transfer learning using FER2013 and real-world
affective faces (RAF). 3-class classification:
Naive Bayes (NB) classifier.

Accuracy and
MSE.

Vanneste et al.
([212])

Camera upper body key-
points, eye gaze di-
rection

Feature for individual classification: upper
body keypoints (from 2s clips), for collective
classifications: eye gaze direction. Classifica-
tion: i3D model (CNN based) [38]. Multilevel
regression: to investigate how the engagement
cues relate to the engagement scores. Calculate
the CST (collective state transition) to measure
classroom engagement.

Recall and Preci-
sion. Hand-raising
and note-taking
are not related to
students individ-
ual self-reported
engagement scores.

AAM - active appearance model; BNs - Bayesian Nets; CARS - childhood autism rating scale; CART - classification

and regression tree; DTs - Decision Trees; GBDT - gradient boosting trees; GRU - gated recurrent unit; KNN -
K-nearest neighbors; LBP-TOP - three orthogonal planes; LDA - linear discriminant analysis; LR - logistic regression;
LSTM - long-short term memory; LOOCV - leave-one-subject-out cross validation; NB - Naive Bayes; PCA - principle
component analysis;



Table 8: (Cont. 3) An overview of the method used in the selected articles to
address RQ3.

Author Input De-
vice/Modality

Input Fea-
tures

Estimation Method Performance Met-
rics

Hasnine et al.
([92])

Camera Video Face detection: Dlib. 3-class classification: training
with FER2013, then calculate the concentration index
(CI) based on eye gaze and emotion weights. CI = (Emo-
tion Weight x Gaze Weight) / 4.5

Accuracy = 68%

Delgado et al.
([57])

Camera Images Classification: utilizing CNN family including Mo-
bileNet (Mobilenets: Efficient convolutional neural net-
works for mobile vision applications), VGG (Very deep
convolutional network for large-scale image recognition),
Xception: Deep learning with depth-wise separable con-
volutions.

Engwall et al.
([73])

Cameras and
microphone

Audio and
visual fea-
tures

Feature extraction: OpenFace 2.0. Feature selec-
tion: verbal classifications using bag-of-words represen-
tations, acoustic-based classification,video-based classi-
fication. Engagement classification through acous-
tic and visual: classification using SVM, DT, Condi-
tional Random Fields, KNN, HMM, Gaussian model, BN,
and ANN. Engagement classification through vocal
arousal: bidirectional LSTM network Speech Emotion
Recognition implementation in the Matlab Deep Learning
Toolbox. Output: anger and happiness = High, neutral
= Neutral, boredom and sadness = Low. Engagement
classification through face expression: two SVM with
linear and radial basis function (RBF) as the kernel.

Listener engage-
ment classification
reached 65% bal-
anced accuracy

Mehta et al.
([141])

Use DAiSEE
and Emoti-W
dataset

Images Pre-processing: Dlib face detector. 4-class classifi-
cation and regression: 3D CNN with a self-attention
module, which enhances the discovery of new patterns
in data by allowing models to learn deeper correlations
between spatial or temporal dependencies between any
two points in the input feature maps.

Classification
accuracy = 63.59%
on DAiSEE, regres-
sion MSE = 0.0347
on DAiSEE and
0.0877 = Emoti-W

Dubovi et al.
([68])

Eye tracker,
EDA wearable
wristband
sensor, and
webcam

Facial
expres-
sion, eye-
tracking,
and EDA
data

The stream data was collected and analysed using iMotion
9.0 with 7 basic emotions annotation (joy, anger, surprise,
contempt, fear, sadness, and disgust). Emotional en-
gagement: a Linear Mixed Effects Model (LMM) was
established to estimate the self-reported changes in the
PANAS self-report. Cognitive engagement: ANOVA
was performed to assess the eye-tracking metrics differ-
ences.

Thomas et al.
([203])

Use existing
dataset1

visual and
verbal fea-
tures

Pre-process: slide area and figure detection using Reti-
naNet, unique slide detection using Siamese network, text
detection using Character-Region Awareness For Text de-
tection (CRAFT) model. Prediction: pre-trained with
pre-trained VGG-16 network. Supervised: LR with three
classes (visual, verbal, or balanced). Unsupervised: clus-
tering model with two clusters (visual, verbal). Binary
lassification: sequential modeling using Temporal Con-
volutional Network (TCN) pre-trained with Micro-Macro-
Motion (MIMAMO) Net model [58].

At the segment
level: accuracy =
76%, F1-score =
0.82, MSE = 0.04.
At video level
(binary clas-
sification: en-
gaged/distracted):
accuracy = 95%,
F1-score = 0.97,
MSE = 0.15

Shen et al.
([193])

Use JAFFE,
CK+, RAF-
DB dataset

Images Pre-process: MK-MMD to calculate the distribution
distance between the extracted features. Transfer learn-
ing: Domain adaptation technique was used to explore
the additional facial images. Imbalanced issue: undersam-
pling, and data augmentation. 4-class classification:
lightweight attention convolutional network for facial ex-
pression recognition. A soft attention module (SE) was
adopted to reduce the impact of the complex background.

Accuracy = 56%

Apicella et al.
([13])

EEG EEg Signal Pipeline: Filter bank, Common Spatial Pattern, SVM.
Pre-process: artifact removal using independent com-
ponent analysis (ICA), namely the Runica module of the
EEGLab tool. Feature extraction: 12-component Fil-
ter Bank. Imbalanced problem: Stratified leace-2-trials
out. Binary classification: SVM, Linear Discriminant
Analysis (LDA), KNN, shallow ANN, DNN, CNN (pre-
trained in Common spatial pattern (CSP)).

SVM achieved the
highest score accu-
racy = 76.9% for
cognitive engage-
ment, and 76.7%
for emotional en-
gagement.

AAM - active appearance model; BNs - Bayesian Nets; CARS - childhood autism rating scale; CART - classification

and regression tree; DTs - Decision Trees; GBDT - gradient boosting trees; GRU - gated recurrent unit; KNN -
K-nearest neighbors; LBP-TOP - three orthogonal planes; LDA - linear discriminant analysis; LR - logistic regression;
LSTM - long-short term memory; LOOCV - leave-one-subject-out cross validation; NB - Naive Bayes; PCA - principle
component analysis;

1
ClassX, LectureVideoDB, IIIT-AR-13K, IIITB Online Lecture, IIITB Classroom Lecture dataset
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