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Chapter 1

Introduction

1.1 Introduction

1.1.1 Backgrounds and purpose

The proof theoretic methods and algebraic methods are two important basic ways in study
of logic. The former focuses on finite syntactically structures and the latter take methods
like set theory and so on. So relation of these had not discussed. But for example in these
years there are studies in which the cut elimination theorem is used in proving the finite
model property and the cut elimination is proved by algebraic methods.

The study of logics by algebraic methods studied actively from 1950 to 1960. After that
Kripke semantics become mainstream of semantical study. The conventional algebraic
study turn off study of logics and develop as universal algebra. In 1990s , it is used for
study of substructural logic and modal logic.

Roughly substructural logics are logics obtained from intuitionistic logic LJ and clas-
sical logic LK by deleting structural rules. The study starts from the study of categorial
grammar by Lambek and it get active in 1990.

An algebraic study for substructural logics has been developed remarkably in these
years. Also, collaborations of logicians with algebraists who interested in ordered algebraic
structures are on-going. A syntactical proof of the cut elimination is not necessarily easy
to understand for algebraist. Recently we get purely algebraic proof of cut elimination
theorem.

In this thesis we principally take up residuated lattices which does not necessarily
assume integrality '. This corresponds to substructural logic FL.

1.1.2 Outline of this thesis

This thesis consists of 5 chapters. In chapter 5 we give an algebraic proof of the disjunction
property of FLe, FL.[Ex] and FL.[DN], which is our main theorem. Chapters 2,3 and 4
are the chapters for the preparation.

!The integrality is a property that the maximum element is equal to an identity element in a monoid.



At first we introduce logics which is principally taken up in this thesis. Substructural
logic FL. and logics over FL, which is obtained from FL, by adding some axiom. Next
we define a commutative residuated lattices (CRLs) which is the algebraic model for FL,,
and we show some properties for CRLs. Third we explain relations between logics and
algebras. The completeness theorem is one of well known result. Finally we show main
theorems. We extend Maksimova’s theorem. Then, we show disjunction property (d.p.)
for some logics over FL, on a characterization of logics with d.p..

1.2 Notation of algebras

Definition 1.2.1 (partial order) A structure A = (A, <) is a partially ordered set
(p.o.set) if it satisfies the following. For all z,y, 2 € A.

(P1) z < z.
(P2) If x <y and y < x then x = y.
(

P3) If <y and y < z then z < z.

Moreover if a p.o.set A = (A, <) satisfies
(P4) x <yory<zxforany z,y € A
then A is a totally ordered set.

Definition 1.2.2 (lattice) A structure L = (L, N, U) is a latticeif it satisfies the follow-

ing. For all x,y,z € L.
L) zNnz=z,zUx =12x.

L3

(L1)
(L2) zNn(ynz)=(zNny)Nz,zU(yUz) = (zUy) U 2.
(L3) zNy=yNzx,zUy=yUux.

(L4)

L4) zN(zUy) =z, zU(xNy) =x.

Let L = (L,N,U) be a lattice. Define a binary relation < by
r<y&s Ny =uo.

Then, we can show that < is a partial order. We note that x Ny = x is equivalent to the
condition z Uy = y. Thus each lattice induces always a partial order on it.

Definition 1.2.3 (monoid) A structure A = (A - 1) is a monoid if it satisfies the
following. For all z,y, z € A.

M1) (z-y)-z=2-(y-2)



(M2) there exists some e € A such that e-a=a-e=a.

We can show that such an element e exists uniquely, if any. Therefore, this element e
is called ¢dentity element. In the following, we consider only commutative monoids, i.e.
monoids satisfying x -y = y - x for all z, y.



Chapter 2

Sequent calculus of the substructural
logic FLg

In this section, we introduce a substructural logic FL, and its extensions.

2.1 Sequent calculus LJ for intuitionistic logic

First, we introduce sequent calculus LJ for intuitionistic logic. We use A(conjunction),
V(disjunction), D(implication) and —(negation) as logical connectives. By using these
connectives we define formulas inductively as follows.

Definition 2.1.1 (formula) Formulas are defined inductively as follows.
i. all propositional variables and propositional constants(T, L) are formulas,

ii. if a, B are formulas then a A B,V 3,a D  and -« are formulas.

A sequent is an expression of the following form.

ay, Oy, ..., 0y _>ﬁ
(where oy, ..., qn, 3 are formulas and m > 0. 3 can be empty.)

Here after we use capital Greek letters I', A, . .. for finite sequences of formulas, separated
by commas. Next we define the sequent calculus LJ.

Initial sequent The initial sequents of LJ are following.
1. a =«
2.'—=T

3. L.I' =«



Inference rules

Weakening rule:

=6
a,l'—= (3

I'—
' -5«

(left-weakening) (right-weakening)

Contraction rule:

a,o, ' = [

. (contraction)

Exchange rule:

F7O{7/37A—>7
F7/87a7A—>fY

(ezchange)

Cut rule:

'-a aoA—=pf
A= pj

(cut)
Logical rule:

'3, =~

oA BT 1 (left-N2)

a, ' — 7

'a I'>p
' aAp

(right-A)

a,l' =~ BT —vy
aV gl =7y

(left-V)

r—pg

I oa . - P
(left-V 1) TS avi

TS avi (left-Vv 2)

[a— (3
'—->aD>p

'—>a [B,A—7y
aD A=y

(left-D) (right-D)

a, ' —
I' > -«

['—a —
—a, ' — (left-")

(right-—)

A sequent I' — ¢ is provable in LJ if it can be obtained from initial sequents by applying
rules of inference repeatedly. A formula ¢ is provable if a sequent — ¢ is provable. A
figure which shows how a given sequent [' — ¢ is obtained is called a proof of ' — ¢ and
we say that ¢ is provable in LJ.



2.2 Substructural logics over FL,

In this section, we define a substructural logics over FL,. It is obtained from LJ. FLg,
is a logic obtained from LJ by deleting the contraction rule. FL, is a logic obtained from
LJ by deleting the contraction rule and the weakening rule.

2.2.1 weakening rule and propositional constants

Here we explain the relation between propositional constants (T, L) and weakening rule.
In LI ' — T is a initial sequent. So we can show the following.

A formula ¢ is provable <= ¢ is equivalent to T.

(=)
— ¢
o—T T =09
—¢DT —=>TDo
(<)
- T ¢o—¢
5T2¢ Toé—o
— ¢

Moreover we can show that —¢ is equivalent to ¢ D L.

o= ¢
g, 0 — L o—>¢ 1L —
0, ¢ DL, ¢—
0] DL — ¢

To show these two equivalence we need weakening rule. Because FL, doesn’t have weak-
ening rules we can’t show these conditions. So we introduce new propositional constants
t, f and initial sequents and inference rules.

1. — ¢t

2. f—

LA — vy

LA S (tw) L= (fw)

'—f
The constant t is the weakest provable formula and f is the greatest formula in a set of
formulas of it’s contradiction be provable. We can show that —¢ is equivalent to ¢ D f
as follows.

¢— ¢

¢, ¢ = ¢—=¢ f—
0,9 = f ¢D f,¢—
~9—=>¢Df ¢6Df—=-¢




2.2.2 structural rule and comma

In LJ we can show the following.
O1, G2y« - oy Gy — 1 is provable iff o1 A pa A ... A ¢, — 1 is provable.

To show only-if part we need contraction rule, and to show if-part we need weakening
rule. In substructural logics commas on the left-hand side of sequents don’t behave as
conjunctions. So we introduce new logical connective * called fusion, which represents a
comma in substructural logics. We add following rules for x.

a,3,T —~ '>a A—=>Q
ax (B, — v A —axf

(left-fusion) (right-fusion)

FL.[Ex] (FL.[DN]) is the logic obtained from FL. by adding Ey: p* «» p**! (weak k-
potency) (DN: =—p — p (double negation), respectively) as an axiom. Similarly, we can
define FLegw[Ex] and FLew[DN].

Suppose that & = 1. Then Ey is p ¢ p?. Then p — p? means a contraction. Thus
FLew[E1] is a intuitionistic logic and FLe[p — p?] is a FLec.

2.3 Logics over substructural logic FL,

Here we define a logic as a set of formulas which closed under modus ponens and substi-
tution. Exactly we define following.

Definition 2.3.1 (logic) A set L of formulas is a logic if the followings consist
1. FL. C L.

2. If a formula ¢(p) which include a propositional variable p is a element of L then
#(v) € L for any formula 1. ¢(¢)) means that all p that appearing in ¢ is replaced
with ).

3. If ¢, D1 € L then ¢ € L.

4. If ¢, € L then p A1) € L.
(If L is logic over FLey then a condition 4 is derived from a condition 2 and ¢ D (¢ D

(@A) € Flew).

It is clear that ® which is a set of all formulas is a logic. In addition a set of all formulas
which is provable in FL, is a logic. After here we express a set of all formulas which is
provable in FL, by FL, if no confusion will occur.

A set of logics is a ordered set by relation of inclusion. The maximum logic is the .
Hence logics over FL, means that logics exist between FL, and ®. Let £ = {L|L is a
logic and FL, C L}. Then it is clear that L; N Ly € £ for any L, Ly € £. But union
L, U L, is not necessarily element of £. So we define Ly V Ly as a minimum logic including
Ly U Ls. Thus (£,N,V,FLg, ®) is a bounded lattice whose greatest element is ® and the
least element FL,. In this thesis we treat logics belonging L.



Chapter 3

Commutative residuated Lattices

In this section we introduce an algebraic structures corresponding to logics over FL,.
They are called commutative residuated lattices (CRLs). We show basic properties of
commutative residuated lattice from the viewpoint of universal algebra.

3.1 Commutative residuated lattices

Definition 3.1.1 An algebra A = (A, A,V,-,—,0,1)is a CRL if A satisfies the following
three conditions.

(R1) (A, A,V,0,1) is a lattice,
(R2) (A, -, 1) is a commutative monoid with the unit 1,
(R3) forz,y,z€ A,z-y<zeor<y— 2z

When (A, A,V,0,1) is a bounded lattice with the greatest element 1 and the least 0,
A = (AN V,,—,0,1) is called a commutative integral residuated lattice (CIRL). It is
easy to see that a commutative integral residuated lattice is a Heyting algebra if and only
if the semigroup operation - is equal to A. The set A of A is called the universe of A.

The condition (R3) of this definition is called residuation. This condition means that
— behaves similarly to an inverse operation of -.

3.2 Basic properties for CRLs

Subalgebras, homomorphisms and so on which play a important role in study of algebra
can be introduced into CRLs. In this section we show some basic properties.

10



3.2.1 Homomorphism and isomorphism

Definition 3.2.1 (Homomorphism) Let A = (A AA,Va,A,—4a,0a,1a) and B =
(B, A\B, VB, ‘B, 7B, 0B, 1B) be CRLs. A mapping o : A — B is a homomorphism if «
satisfies the following conditions.

e a(lp) =1g, a(0a) = 0p,

e for any a;,ay € A, a(a®a) = ala)) @ ala), (for & € {A,V,-, =} ).
Furthermore,

1. if « is an one-to-one mapping then « is called a monomorphism or a embedding.

2. if a is an onto mapping then « is called a epimorphism or an onto homomorphism.

3. if « is an one-to-one and onto mapping then « is called an isomorphism. If there
exist an isomorphism « from A to B then A is said to be isomorphic to B, written
A =B.

From here @& means one of operations A, V, - and —.

Definition 3.2.2 (kernel and image) Let @ : A — B be a homomorphism. Then the
kernel of o, written ker(«), and the image of «, written I'm(«), are defined by

ker(a) = {{a,b) € A? : a(a) = a(b)}, Im(a)={ala) EB:a€A}.

If o is a surjective then I'm(«) is equal to B and we say that B is the homomorphic
image of A. Sometime I'm(«) is expressed also by a(A).

3.2.2 Subalgebra and quotient algebra

Definition 3.2.3 (subalgebra) Let A and B be two CRLs. Then B is a subalgebra of
A if B C A and every operation &g € {Ag, VB, B, —p} of B is the restriction of the
corresponding operation of A. We write simply B < A when B is a subalgebra of A. A
subuniverse of A is a subset B of A which is closed under the operations of A, i.e. if @4
is a operation of A and a1, as € B we would require a; ®a as € B.

Definition 3.2.4 Given an algebra A define, for every X C A,
Sg(X)=N{B: X C B and B is a subuniverse of A}

We read Sg(X) as the subuniverse generated by X.

For information on Sg, see [3].

11



Definition 3.2.5 (congruence) Let A be a CRL and let 6 is equivalence relation on
A. Then 6 is a congruence on A if 0 satisfies the following compatibility property:

CP: For each operation & € {A,V,-,—} and elements aj,as,by,by € A, if
a10b; and a960by holds then

(Cll D a2)9(b1 D b2)
holds.

We can consider that congruences on A are a subset of A x A and thus they are ordered
by the set inclusion. Hence we define maximum congruence V and minimum congruence
A as follows.

V ={{(a,b);a,b € A}
A = {{a,a);a € A}

The set of all congruences on A is denoted by Con A. Then we can easily show that Con A
is a bounded lattice which has the maximum element V and the minimum element A. So
the congruence lattice on A denoted by Con A. Followings are a definition of A and V,
where 6, o 6, denote the set {(a,b) | Ic € A s.t. abychsb}.

91/\92:91ﬂ92
91\/92:91U(91092)U(91092091)U(91092091092)U....

Definition 3.2.6 Let A be a CRL and ay,...,a, € A. Then O(ay,...,a,) is the mini-
mum congruence such that ay,...,a, are contained in a same equivalence class.

Proposition 3.2.1 Let a : A — B be a homomorphism. Then ker(«) is actually a
congruence on A.

Proof If (ay,as,b,by) € ker(a), then

ala; ®a az) = ala) ®p afa)
= a(bl) @B a/(bz)
= Oé(bl @A b2)

hence
(a1 @4 az,b; ®p by) € ker(a).
Clearly ker(a) is an equivalence relation, so it follows that ker(«a is actually a congruence

on A.

Let # is a congruence on a CRL A. Then 6 is equivalence relation. So we define a
equivalence class (a/6) include a € A as follows.

12



a/f = {r € A;z0a}.
In addition we define quotient set A /6 as follows.
A/0 ={a/0;a € A}.

Definition 3.2.7 (quotient algebra) Let § be a congruence on A. Then the quotient
algebra of A by 0, written A /6, is the algebra whose universe is A /¢ and whose operations
satisfy

al/GEBag/Gz (Cll @CEQ)/G

where aj,a; € A and @ € {A,V, -, —}.

Definition 3.2.8 (natural maps) Let A be an algebra and let # € Con A. The natural
map vy : A — A/ is defined by vy(a) = a/0 for any a € A. (When there is no ambiguity
we write simply v instead of vy.)

Proposition 3.2.2 A natural map from A to A/ is a onto homomorphism.

Proof It is clear that the natural map is onto. For any a,b € A

ve(a®b) = (aDb)/O
— a0 b8
= wvp(a) ® vy(b)

Thus vy is a homomorphism.

Proposition 3.2.3 (Homomorphism theorem) Let «: A — B be an onto homomor-
phism. Then there is an isomorphism 3 from A /ker(«) to B defined by « = fov, where
v is the natural homomorphism from A to A/ker(a).

Proof First note that if « = (o v then we must have 3(a/0) = «(a). The second
of these equalities does indeed define a function [, and [ satisfies a = o v. It is not
difficult to verify that (3 is a bijection. To show that [ is actually an isomorphism, suppose
® € {A,V,,—} and ay,ay € A. Then

Blar/0 ©aysp az/0) = B((a1 Da az)/0)

(
= a(a; ®a Clg)
(
(

|
e

a1) ®p a(az)
= ﬁa1/9) @B ((a2/0).

13



Let A be a CRL and ¢,6 € Con A and 0 C ¢. Then we define ¢/ as follows.

¢/0 = {{a/0,b/0) € (A/0) : (a,b) € ¢}
The next proposition holds.
Proposition 3.2.4 Let ¢,0 € Con A and 8 C ¢. Then ¢/0 is a congruence on A/6.
Proof Let (a1/0,b,/6) € ¢/6. Then (ay,b1), (az, bs) € ¢ from definition of ¢/6. So
(a1 ®a az,b; BB bs) € .
Hence
((a1 @A a2)/0, (b ®B b2)/0) € ¢/0.
Form this
(a1/0 Dajg az/0,b1/0 ®gjg bs/0) € .
Thus ¢/6 is a congruence on A/#.
Let A be a CRL and # € Con(A). Then we define sublattice [#, V] of Con A which
holds a following.
0,V]={p€eCon A:0C p CV}

Proposition 3.2.5 (Correspondence theorem) Let A be a CRL and § € Con A.
Then a mapping o on [0, V] defined by

a(¢) = ¢/0
is a isomorphism from [0, V] to Con A /6

Proof First we show « is a one-to-one. Let ¢, € [0, V] (¢ # ). Suppose that ¢ Z o).
Then there are a,b € A such that (a,b) € ¢ — 1». Hence

(a/0,0/0) € (¢/0) — (¥/0)
So
a(g) # a(y)

Thus « is a one-to-one. Next we show « is a onto. Let ¢ € ConA/#, and ¢ = ker(vyovy).
vy is a natural homomorphism from Con A/# to (Con A/6)/+. Hence for any a,b € A

(a/0,0/0) € 6/0
(a,b) € ¢
(a)0,b/0) € 1b.

==
==
So

14



= 9¢/0=a(p).
Thus « is a onto. Finally we show « is a isomorphism.
(6Nav)/0 = {{a/0,b/0) € (A/0)*: (a,b) € pNa ¢}
= {{a/0,b/0) € (A/H)*: (a,b) € ¢ and (a,b) € 1}
= {{a/0,b/0) € (A/0)*: (a,b) € ¢} and {(a/0,b/0) € (A/0)*: (a,b) € ¥}
= ¢/0 and /0
= d)/@ ﬂCon A/o 1/)/9

(6Va)/0 = {{a/0,b/0) € (A/0)": (a,b) € pVa v}
= {{a/0,b/0) € (A/0)* : 3cp = a,cy,...,cp, =bEA
s.t. {ciycip1) € por (¢, i) €Y (0<i<k—-1)}
= {{a/0,b/0) € (A/0)*:3co/0 = a/O,c.1/0,...,c,/0 =b/0 € AJO
s.t. (¢;[0,¢i41/0) € /0 or (c;/0,ci41/0) € /0 (0<i<k—1)}
= ¢/0Vcon aj9 /0

Thus CY(QZS Da @/})/9 = ¢/9@C0n A/ holds.

3.2.3 Direct product and subdirect product

Definition 3.2.9 (Direct product) Let (A;);<;<y is an indexed family of algebras. De-
fine the direct product [],<;<,, A; to be the algebra whose universe is the set [];<;<, A;
and such that for ® € {A,V,-, =} and a;,a] € A;, 1 <1 < n,

(a1,az,...,a0,) O, A (ai,ay, ... al)y = (a; ®a, a},as Ba, ab,...,a, Ba,

al).

After here x(j) means jth element of x.

Proposition 3.2.6 Let Ay, Ao, Az be algebras. Then the following isomorphic relations
hold.

1. A]_XAngzXAl
2. AIX(A2XA3)§A1XA2XA3

Proof Let homomorphisms of 1 and 2 be a({a1,a2)) = (az,a;) and a((ay, (az,as3))) =
(a1, ag, az), respectively. Clearly that aq, gy are isomorphisms.

The mapping 7; : [T1<;<, Ai — A; (1 <7 < n) defined by
7Ti(<01, az, ..., an>) = a;

15



is called the projection map on the ith coordinate of T],<;<, A;. We can easily show that
projection map is an onto homomorphism.

Definition 3.2.10 (Subdirect product) An algebra A is a subdirect product of an in-
dexed family (A;);c; of algebras if

A < Tlier A
and

mi(A) = A; for each i € I.

A subdirect product of (A;);cs is an algebra which is a subalgebra of [];c; A; and
satisfies the condition 2. Moreover because A satisfies the condition 2, it is not necessarily
that A is isomorphic to [[;c; A;. For example, if Ay = {a,b}, Ay = {¢,d,e}, A =
{(a,c), (a,d), (b,c), (b,e)}, then it satisfies 2. But A is not isomorphic to [];c; A; from
[licpioy Ai = {(a,0),(a,d), (a,e),(b,c),(b,d),(be)}. An intuitive meaning of subdirect
products is that they are sufficiently large subalgebras among direct products.

Definition 3.2.11 The mapping o : A — [[;c; A; is a subdirect embedding if « is a
embedding and «(A) is a subdirect product of [T;c; A;.

Proposition 3.2.7 Let § € Con A (i € 1) and Nic;0; = A. Then a homomorphism
v:A — TLicr A/6; defined by

v()(i) = a/b;
1S a subdirect embedding.

Proof If we define the nu by v; = m; ov for any ¢ € I then the v; is a natural homomor-
phism from A to A/6;. First we show that v(A) is a subalgebra of [T;c; A/6;.
For all v(a),v(b) € ¥(A) (a,b € A)

V(@) @1, a, V(D) = (a @ B) € v(A).
Furthermore

{THing/ai, J—HiglA/Gia 1Hi61 A/ai,OHiEI asot ={v(Ta),v(La) v(1a,v(04)} C
v(A).

Hence v(A) is a subalgebra of [;c; A/6;.
Moreover for all i € I v(A) is a subdirect product of [[;c; A/6; from v;(A) = A/0;.
Next we show that v is an embedding. For all a,b € A (a # b)

<a, b> ¢ Nier 0;

from N;c; 0 = A. Hence there exist some j € I such that

<CL, b> ¢ 9]"
From this v;(a) # v;(b). So v(a) # v(b). Thus v is an embedding.

16



3.3 properties of classes of CRLs

In the previous section we show some properties of algebras. In this section we show
properties of classes of algebras.

3.3.1 Variety

Definition 3.3.1 (class operator) We define mappings from class K of algebras to
class I(K), S(K), H(K), P(K) and P,(K) as follows.

e A € ](K) < A is isomorphic to some member of K.

e A € S(K) < A is a subalgebra of some member of K.

e A ¢ H(K) < A is a homomorphic image of some member of K.

e A € P(K) < A is a direct product of a nonempty family of algebras in K.

e A € P(K) < A is a subdirect product of a nonempty family of algebras in K.

Let O; and O, are two operators on classes of algebras.We write 0,05 for the compo-
sition and < denotes the usual partial order, i.e. O; < O, if O1(K) C O(K) for every
class K of algebras.

Definition 3.3.2 (idempotent operator, closed class) Let K be a class of CRLs and
O be a operator on class of CRLs. Then O is a idempotent if O? = O, and K is closed
under O if O(K) C K.

Proposition 3.3.1 Following inequalities hold.

SH<HS
PS <SP
PH<HP

Also the operators H, S, and I P are idempotent.

Proof Suppose A = SH(K). Then for some B € K and onto homomorphism « : B —
C, we have A < C. Thus a™!'(A) < B, and as a(a™'(A)) = A, we have A € HS(K).
If A€ PS(K) then A =T[;c; A; for suitable A; < B; € K, i € I. As [[ie; Ai < ILicr By,
we have A € SP(K).

Next if A € PH(K), then there are algebras B; € K and epimorphisms «; : B; — A;
such that A = [[;c; A;. It is easy to check that the mapping a : [[;c; Bi — Ilicr Ay
defined by «(b)(i) = a;(b(7)) is an epimorphism; hence A € HP(K).

We show H = H?. H C H?is clear. If A € H?(K) then there exist onto homomorphisms
a:B—C,3:C— AandB € K. So foa is an onto homomorphism. Thus A € H(K).
We can show that S, and [P are idempotent in the same way.
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A class of algebra (variety) defined by following is especially major class.

Definition 3.3.3 (variety) Let K is nonempty class of algebra. K is a wvariety if it is
closed under class operators S, H, P.

If K is a class of algebras let V(K') denote the smallest variety containing K. We say
that V(K) is the variety generated by K. If K consists of a single member A then we
write simply V(A).

Proposition 3.3.2 (Tarski) V = HSP.

Proof Since HV = SV = IPV =V and I <V, it follows that HSP < HSPV =V.
From above lemma we see that H(HSP) = HSP, S(HSP) < HSSP = HSP, and

P(HSP) HPSP
HSPP
HSIPIP
HSIP
HSHP
HHSP

HSP.

I VAN VAN VAN

IA A

Hence for any K, HSP(K) is closed under H, S, and P. As V(K) is the smallest class
containing K and closed under H, S, and P, we must have V = HSP.

3.4 Free algebra

Definition 3.4.1 Let X be a set of (distinct) objects called variables. The set T'(X) of
terms over X is the smallest set such that

1. X U{0,1} C T(X).

2. If p1,po € T(X) and & € {A,V,-,—} then the “string” p; & py € T(X).

For p € T(X) we often write p as p(z1, ..., x,) to indicate that the variables occurring in
p are among Ty, ..., Z,.
Definition 3.4.2 Given a term p(z1,...,x,) over some set X and given an algebra A

we define a mapping p® : A® — A as follows:
(1) if p is a variable z;, then
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PA(CH, .- -,an) = a4

for ai,...,a, € A, i.e., p is the ith projection map;
(2) if p is of the form py(x1,...,2,) ® pa(z1,...,x,) then

PAar, ., an) = pA(T1, ., 30) Ba pA(21, -, T0).
In particular if p is @ then p® is @a. The expression p? is called the term function on

A corresponding to the term p. (Often we will drop the superscript A).

The next proposition gives some useful properties of term functions.

Proposition 3.4.1 For any algebras A and B we have the following.
(a) Let p be an n-ary term, let € Con A, and suppose (a;, b;) € 0 for 1 <i <n. Then

Alay,...,a,)0p2(by, ..., by).

(b) If p is an n-ary term and « : A — B is a homomorphism, then

D

a(p(ai,...,a,)) = pBlalay), ..., ala,))

foray,...,a, € A.
(c) Let S be a subset of A. Then

Sg(S) = {pA(ar,...,a,) : p is an n-ary term, n < w, and ai,...,a, € S}.

Proof Given a term p define the length I(p) of p to be a number of occurrences of n-ary
operation symbols in p for n > 1. Note that [(p) =0 iff p € X U {0, 1}.
(a) We proceed by induction on I(p). If I(p) = 0, then either p = z; for some i, whence

<pA(a17' . '7an)7pA(b17 - 7bn)> = <ai7bi> €0
or p = a for some a € {0, 1}, whence
(pA(ar, ..., a,),p2(by, ..., by)) = (a®, bA) € 0.

Now suppose I(p) > 0 and the assertion holds for every term ¢ with [(p) < I(¢). Then we
know p is of the form

pl(xla s 7xn) 69]72(3317 s 71‘n)7

and as [(p;) < I(p) we must have, for i € {1, 2},

<p?(a‘17 o '7an)7piA(b17 o 7bn) S 9,

hence

<(pi&(a17 v '7an) Da p?(ala R an))a (pi&(bla .. 7bn) Da pQA(bla v 7bn))> € 97

and consequently
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(pA(ay,...,a,),p™(by,...,b,) € 0.

(b) The proof of this is an induction argument on I(p).
(c) Referring to chapter II §3 of [3] one can give an induction proof, for & > 1, of

Ek(S) = {p*(ai,...,a,) : pisan n-ary term, [(p) < k,n < w, ai,...,a, € S},
and thus

S9(S) = Uk<oo E*(5)
= {pA(ai,...,a,) : pis an n-ary term, n < w, ay,...,a, € S}.

One can, in a natural way, transform the set 7'(X) into an algebra.

Definition 3.4.3 (term algebra) Given X, if T'(X) # () then the term algebra over X,
written T(X), has as its universe the set T'(X), and operations satisfy

P1 Dr(x) P2 = P1 D P2
for ® € {A,V,-,—} and py, ps € T(X).

Definition 3.4.4 (universal mapping property) Let K be a class of algebras and let
U(X) be an algebra which is generated by X. If for every A € K and for every map

a: X — A
there is a homomorphism
f:UX)— A

which extends « (i.e., f(z) = a(z) for z € X), then we say U(X) has the universal
mapping property for K over X, X is called a set of free generators of U(X), and U(X)
is said to be freely generated by X.

Lemma 3.4.2 Suppose U(X) has the universal mapping property for K over X. Then
if we are given A € K and o : X — A, there is a unique extension 3 of a such that § is
a homomorphism from U(X) to A.

Proof This follows simply from noting that a homomorphism is completely determined
by how it maps a set of generators from the domain.

The next result says that for a given cardinal m there is, up to isomorphism, at most
one algebra in a class K which has the universal mapping property for K over a set of
free generators of size m.
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Proposition 3.4.3 Suppose Ui(X;) and Uy(Xy) are two algebras in a class K with
the universal mapping property for K over the indicated sets. If | X, |=| Xy |, then
U;(X1) 2 Uy(Xy).

Proof First note that the identity map
by X=X (G=1,2),

has as its unique extension to a homomorphism from U,;(X;) to U;(Xj) the identity map.
Now let

a: X — Xy

be a bijection. Then we have a homomorphism
B U (X)) = Uy(Xy)

extending «, and a homomorphism
7 Us(Xz) = Ui (Xy)

extending a!. As o is an endomorphism of Uy(X3) extending o, it follows by lemma
3.4.2 that o~y is the identity map on Uy(X,). Likewise vy o f is the identity map on
U;(Xy). Thus g is a bijection, so Uy (X;) = Uy(Xy).

Proposition 3.4.4 For any set X of variables, where x # () if there are no constants,
the term algebra T(X) has the universal mapping property for the class of all algebras
over X.

Proof Let a: X — A. Define
f:T(X)—A
recursively by
Bz) = alz)
for r € X, and

B(p1 ® p2) = B(p1) Da B(p2)

for p1,po € T(X). Then B(p(x1,...,7,)) = p*(a(x1),...,a(x,)), and B is the desired
homomorphism extending o.
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Thus given any class K of algebras the term algebras provide algebras which have the
universal mapping property for K. To study properties of classes of algebras we often try
to find special kinds of algebras in these classes which yield the desired information. In
order to find algebras with the universal mapping property for K which give more insight
into K we will introduce K-free algebras. Unfortunately not every class K contains
algebras with the universal mapping property for K. Nonetheless we will be able to show
that any class closed under 7, S, and P contains its K-free algebras. There is reasonable
difficulty in providing transparent descriptions of K-free algebras for most K. However,
most of the applications of K-free algebras come directly from the universal mapping
property, the fact that they exist in varieties, and their relation to identities holding in
K. A proper understanding of free algebras is essential in our development of universal
algebra (see [3]).

Definition 3.4.5 Let K be a family of algebras. Given a set X of variables define the
congruence 0 (X) on T(X) by
Ok (X) =Ndk(X)
where
By (X) = {6 € Con T(X) : T(X)/6 € IS(K)};
and then define F(X), the K-free algebra over X, by
Fie(X) = T(X)/0x (X),

Proposition 3.4.5 (Birkhoff) Suppose T(X) exists. Then Fg(X) has the universal
mapping property for K over X.

Proof Given A € K let @ be a map from X to A. Let v : T(X) — Fg(X) be
the natural homomorphism. Then « o ¥ maps X into A, so by the universal mapping
property of T(X) there is a homomorphism p : T(X) — A extending aov Tx. From the
definition of Ok (X) it is clear that 0 (X) C ker(u) (as ker(u) € ®x(X)). Thus there is

a homomorphism (3 : Fx(X) — A such that y = fowv as ker(v) = 0k (X). But then, for
r e X,

B(E) = Bov(x)

so 3 extends o. Thus F(X) has the universal mapping property for K over X.
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Corollary 3.4.6 [F K s a class of algebras and A € K, then for sufficiently largeX,

A € HFg(X)).

Proof Choose |X| > |A| and let
a: X — A

be a surjection. Then let
B:Fg(X)— A

be a homomorphism extending a.

Proposition 3.4.7 (Birkhoff) Suppose T(X) exists. Then for K # 0, Fx(X) € ISP(K).
Thus if K is closed under I, S, and P, in particular if K is a variety, then Fg(X € K.

Proof As
O (X) = NPk (X)
it follows that
Fie(X) = T(X)/0x(X) € IR,{T(X)/0:0 € B(X)}),

SO

Fy(X) € IPsIS(K),
and thus by proposition 3.3.1 and the fact that P < SP,

Fr(X) € ISP(K).

Definition 3.4.6 An identity over X is an expression of the form

p=q

where p,q € T(X). Let Id(X) be the set of identities overX. An algebra A satisfies an
identity

p(x1, .. xn) =gy, ..., T,)

(or the identity is true in A, or holds in A), abbreviated by

A Ep(ry,...,z) =q(e, ... z,),

or more briefly
AkEprg
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if for every choice of aq,...,a, € A we have

pA(ay,...,a,) = q*(a1,...,a,).

A class K of algebras satisfies p &~ ¢, written
KEp~y,

if each member of K satisfies p ~ ¢. If ¥ is a set of identities, we say K satisfies ¥,
written

KEY,

if K =p~=qforeach px~geX. Given K and X let
Idg(X)={p=qeldX): K Ep~=q}.

We use the symbol [~ for “does not satisfy.”

We can reformulate the above definition of satisfaction using the notion of homomor-
phism.

Lemma 3.4.8 If K is a class of algebras and p ~ q is an identity over X, then
KEp~q

iff for everyA € K and for every homomorphism o : T(X) — A we have
a(p) = a(g)

Proof (=) Let p =p(xy,...,2,), ¢ = q(z1,...,2,). Suppose K Ep=~gq, A € K, and
a:T(X)— A is a homomorphism. Then

pH(a(@1), ..., aza)) = p*(a(2), ..., alza))
p“m(-- n)) = aw(Khww%D

(<) For the converse choose A € K and ay,...,a, € A. By the universal mapping
property of T(X) — A such that

alz;) =a;, 1<i<n.

But then
pA(al,...,an) = pA(Oé(l‘l), ca(xy,))
= a(p)
= aq)
= qA(a(xl), oo a(xy))
q*(ai, ..., a,),
so K Ep~gq.
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Next we see that the basic class operators preserve identities.

Proposition 3.4.9 For any class K, all of the classes K, 1(K), S(K), H(K), P(K)

and V(K) satisfy the same identities over any set of variables X.

Proof Clearly K and I(K) satisfy the same identities. As
I<IS, I<H,and I <IP,
we must have
I1dg(X) 2 Ids(ry(X), Idpk)(X), and Idpky(X).
For the remainder of the proof suppose
K Ep(zy,...,x0) =gz, ..., 2,).
Then if B< A € K and by,...,b, € B, then as by,...,b, € A we have
pA(by, ..., by) = q?(by,. .., by);
hence
PB(by, ... bn) = ¢B(by, ..., by),
&)
BEp=~qg.
Thus
Idg(X) = Ids()(X).

Next suppose o : A — B is a surjective homomorphism with A € K. If by, ...

choose ay,...,a, € A such that

alay) =by,...,a(a,) = by.

Then

pA(ay,...,a,) = q*(a1,...,a,)
implies

a(pt(ar, ... an)) = alq®(ar, - ., a));
hence

pB(bh ,bn) = qB(bh ,bn)
Thus

BEp~yg,
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SO
Lastly, suppose A; € K for ¢ € I. Then for a,...,a, € A =[];c; A; we have

pAi(al(i)7 ceey an(l)) = in(al(i)a .- '7an(i));

hence

pA(ay,...,a,)(0) = ¢*(ay, ..., a,) (%)
fori € I, so

pA(ay,...,a,) = q*(a1, ..., a,).
Thus

As V = HSP by 3.3.2, the proof is complete.

Now we will formulate the crucial connection between K-free algebras and identities.

Lemma 3.4.10 Given a class K of CRLs and terms p,q € T(X) we have

Proof Let F=Fg(X),p=p(z1,...,2,), ¢=q(z1,...,2,), and let
v:T(X)—F

be the natural homomorphism. Certainly K = p ~ ¢ implies F Ep~qas F € ISP(K).
Suppose next that F = p ~ ¢. Then

P (T, .. T0) = ¢F (@1, ..., T0),

hence p =¢. Now suppose p = ¢ in F. Then
v(p) =Pp=7=r(q),

SO
(p,q) € ker(v) =0k (X).

Finally suppose (p,q) € 0x(X). Given A € K and a,...,a, € A choose o : T(X) — A
such that a(z;) = a;, 1 <i < n. As ker(a) € ®x(X) we have
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ker(a) D ker(v) = 0k (X),
so it follows that is a homomorphism (5 : F — A such that o« = fov. Then

a(p) = Bov(p) =pBov(q) =alq).
Consequently

KEp~q

by reformulation of definition of satisfaction.
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Chapter 4

Relation between logics and algebras

In this section we show some relations between logics over FL, and CRLs.

4.1 Relation between FL. and CRL.

Definition 4.1.1 ¢ is valid in a CRL A if v(¢) > 1 for every valuation v.

Definition 4.1.2 (valuation) Let A = (A A, V,-,—,0,1) is a CRL. A valuation v is a
mapping from set of all propositional variable to A. Furthermore this v is extended to a
mapping from set of all formulas to A as follows.

Lov(¢ Ay) = v(g) Ao(th)

2. (V) =v(d)Vu(y)

3. (¢ DY) =v(¢) = v(y)
(&
(

4. v(dx ) =v(9) - v(y)

5. v(=¢) = v(g) = 0

Proposition 4.1.1 (valid) Let ¢ be a formula. A formula ¢ is valid in a CRL A if
v(@) > 1 for every valuation v on A.

For a given CRL A, and let L(A) be the set of all formulas such that v(¢) for any
valuation v on A.

Proposition 4.1.2 For each CRL A, L(A) is a logic.
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Proof Let ¢(p) be a formula containing a propositional variable p and ¢(p) € L(A). By
our assumption, v(¢p(p)) > 1 for any valuation v. Now, consider any substitution instance
() of ¢(p) and any valuation w on A. Let w(a) = a. Then, define a valuation v’
by v'(p) = @ and v'(q) = w(q) if ¢ is different from p. Then, ¢ < v'(¢(p)) = w(P(w)).
Therefore, ¢(a) is valid in A. Thus ¢(a) € L(A).

Next let ¢, D ¢ € L(A). Then for any valuation v v(¢) > 1, v(¢ D ) > 1. By the
definition of valuations we can show v(¢) < v(¢). So from v(¢) > 1 and v(¢) < v())
v(¢) > 1. Hence v(¢)) > 1 for any valuation v. Thus ¢ € L(A). Thus L(A) is closed
under modus ponens.

Finally let ¢,1 € L(A). Then v(¢) > 1, v(¢)) > 1 for any valuation v. By the definition
of valuations v(¢ A1) = v(d) A v(). So v(p) Av() > 1 from v(¢p) > 1 and v(¢)) > 1.
Hence v(¢ A 1) > 1 for any valuation. Thus ¢ A € L(A).

Therefore L(A) is a logic.

The logic L(A) is called the logic characterized by A.

Proposition 4.1.3 For any logic L over ¥FLe there exists some CRL A such that
L=1L(A).

(Out line of proof) We show this by constructing the Lindenbaum algebra of L.
First we define a binary relation = between formula ¢ and 1 as follows.

o=y oDdyYelandy DpeL

¢ = 19 means that ¢ and ¢ are logically equivalent. It is clear that = is an equivalence
relation. We can show moreover that = is a congruence relation, i.e. if ¢ = ¢, ¢' = ¢
then ¢ @ ¢' = ¢ @ 1’ for any logical connectives .

Next by using this congruence relation =, construct the quotient set ®/ = where ® is
a set of all formulas. We write [¢] equivalence class including ¢. We can show that
A=(0/=nU,-,—,[T],[L]) is a CRL where N,U, -, — are defined as follows.

[PlUY] = [P AY]
[PIN[Y] = [PVl
[0]-[v] = l¢*4l
(0] =[] = [¢D 9]

Finally we show that L and L(A) correspond to each other, i.e.

¢ € L < for any valuation on A, v(A) > [1]

This algebra A is called the Lindenbaum algebra of a logic L.

Proposition 4.1.4 (completeness theorem) For any formula ¢, ¢ is provable in FL,
if and only if for any CRL A and for any valuation v on A, v(¢p) > 1.
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(Outline of proof) We show only-if part.
We define a valuation v for a sequent aq,...,«a, — (3 as follows.

v(ag,...,an = B) =v(ag % ... % a,) = a(fF)

However if left-hand side of a sequent is empty then v(— ) = 1 — v(f) and if right-hand
side of a sequent is empty then v(ay,...,a, =) =v(ag * ... xay,) — 0.

We show this by induction on the construction of a proof of a formula ¢. That is, for a
given valuation v, every sequent S in a proof v(S) > 1. First we show base case. Initial
sequents are satisfies following condition. For example,

L vla—a)>1,
2. v — T)> 1,
3. v([, L,A—~) > 1.

Second we show induction case. Let for each inference rule upper sequents S; and Sy are
satisfies v(S7) > 1 and v(S;) > 1. Then lower sequent S is satisfies v(S) > 1.

Next we show if-part.

We show the contraposition of if-part. Suppose that for a given a formula ¢ such that ¢
is not provable in FL,. Then by using Lindenbaum algebra of FL, there exist some CRL
A and some valuation v such that v(¢) 2 1.

From a proposition 4.1.4 we transcribe a proposition 4.1.2 as follows.
Proposition 4.1.5 A logic L(A) characterized by a CRL A is a logic over FL.

Proof It is clear from a proposition 4.1.4 that FL, C L(A) for all CRL A.

4.2 Algebraic operations and inclusion relation among
logics
In previous section,we show that the L(A) is a logic L(A) over FL, for each CRL A,

and conversely every logic L over FL, can be represented as L(A) for some CRL A.
Hereinafter we show the relations between three basic algebraic operations and logic.

Proposition 4.2.1 (subalgebras) Let A and B are CRLs and A < B. Then L(B) C
L(A) hold.

Proof Suppose thatA < B. Then any valuation on A can be considered to be the

restriction of a valuation on B of A. So if ¢ is a element of L(B), i.e. v(¢) > 1 for any
valuation v, then u(¢) > 1 for any valuation v on A. Thus L(B) C L(A).
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Proposition 4.2.2 (quotient algebras) Let A is CRL and 0 is a congruence on A.
Then L(A) C L(A/0)

Proof Let ¢(p1,...p,) be a formula, where py,...p, are all propositional variables ap-
pearing in ¢. And for some formula ¢(py,...p,) we express a replacing logical connec-
tives A, V, %, D with N, U, -, — and a replacing propositional variables p; with z; by
fo(z1,...,2,). Then this is a element of CRL.

Suppose that ¢(p1,...p,) € L(A). In other words for any valuation v on A

v(p) = f;}(v(pl), ooy 0(pn)) > 1a.

Let 0 is a congruence on A. Then we can get
fj(xlaaxn)/e = fq?/e(xl/gaaxn/e)
> 1a/6

= lay-

This holds for any x,/6,...,2,/0 € A/#. So ¢ € L(A/#). Thus L(A) C L(A/9).

Proposition 4.2.3 (homomorphisms) Let A and B are CRLs and o : A — B is a
homomorphism. Then the following holds.

1. If « is surjective then L(A) C L(B).
2. If « is injective then L(B) C L(A).
3. If « is bijective then L(A) = L(B).

Proof They follow from previous two propositions. In fact if « is surjective then
A /ker(a) ~ B and if « is injective then A ~ Im(a) < B. Moreover 3 is clear from
1 and 2.

Proposition 4.2.4 (direct products) L([Tic; Ai) = Nier L(A))

Proof We show this only for the case of I = {1, 2}.

C

Evl ): A x Ay — Ay, as : A1 Xx Ay —> A, are onto homomorphism. So from previous
proposition L(A; X As) C L(Ay), L(A; X Ay) C L(A,). Thus L(A; x Ay) C L(A;) N
L(A,).

(2)

Let ¢ € L(A;) and ¢ € L(A3). In other words Let v1(¢) > 1, and ve(¢p) > 14, for any
valuation v; and v on A; and A, respectively. Since any valuation v on A; x Ay can be
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expressed as v(¢) = (v1(¢),v2(p)) for valuations v; and vy on Ay and Ay, respectively.
So from assumption

v(p) = (vi(9),va2(0))
= <1A171A2>

— ]-A1><A2'

\%

Hence ¢ € L(A; x Ay).

Above propositions intuitively mean that if an algebra become bigger then a logic
become smaller and if an algebra become smaller then a logic become bigger.

4.3 Logics over FL, and varieties of CRLs

In previous two sections we discuss relations between logics and algebras. In this section
we discuss relation between logics and classes of CRLs.

4.3.1 From logic to variety
Definition 4.3.1 Let L be a logic over FL,. We define a class V;, of CRLs by

Vi = {Q L C L(Q)}

Proposition 4.3.1 For every logic over FLg a class Vi, of CRLs is a variety.

Proof It is enough to show that Vj, is closed under homomorphic images, subalgebras,
direct products.

(homomorphic images)

Let A € V.Then L C L(A). If a(A) is a homomorphic image of A then by proposition
4.2.3 we can get L(A) C L(a(A)). So L C L(«(A)). Thus we can get a(A) € V.
(subalgebras)

Let A € V, and B < A. Then by proposition 4.2.1

L C L(A) C L(B)

Thus B € V7.

(direct products)

Let A € V7, for each i € I. Then by proposition 4.2.4 we can get L([T;c; Ai) = Nier L(A;).
Moreover from our assumption 2L C L(A;) for any i € I. So we can get

L C ﬂiel L(Ai) = L(Hiel Ai)-
Thus [[;er A € Vi
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4.3.2 From varieties to logics

Definition 4.3.2 Let K be a class of CRLs. K is an equational class if there exists some
sets 2 of identities, i.e.

K={A:AEs~tforany s~tecX}.

We note that all identities can be expressed of a form 1 < r for a term r. Because for
any identity s ~ ¢

& s<tandt<s
S 1<s—tandl <t—s
& 1< (s=t)N(({t—s).

s~ t

The next proposition is a well-known theorem by Birkhoff.

Proposition 4.3.2 (Birkhoff’s theorem) K is an equational class if and only if K is
a variety.
Actually a class of all CRLs is an equational class by following identities
L.xz-(yvVz)=(z-y)V(x-z2)
2.2 = (yVz)=(x =y A —2)
3. (x-(x—=y))Vy=y
4 (z—(z-y)ry=y
together with monoid and lattice identities.

Let V is a variety of CRLs. Then by Birkhoff’s theorem, there exists a set ¥ of identities.
We define Ly following

Ly ={r(¢): 6 >1€X}

Here a 7 is a inverse mapping of valuation v defined by definition 4.1.2, i.e. 7((zAy)Vz) =

(pAg)Vr.
A intuitive image of Ly is a set of all formula (¢) for all equation t which satisfies

ViEt>1
Then a following proposition holds.

Proposition 4.3.3 For any variety V' of CRLs Ly is a logic over FL,.
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Proof We show that Ly is closed under modus ponens and substitution and FLs C Ly, .
(substitution)

Let ¢(p1,...p,) be a formula (pi,...p, are all propositional variable appearing in ¢).
And for some formula ¢(py,...p,) we express a replacing logical connectives A, V, ast,
supset and propositional variables p; with N, U, -, —, x; respectively by fy(z1,...,2,).
Then fy(x1,...,z,) is a element of CRL. Let ¢(p1,...pn) € Ly. Then ¢(pi,...p,) =
T(fo(x1, ..., zy)) and fy(z1,...,2n) > 1. fo(z1,...,2,) > 1 means that for any CRL
AinV and for any aq,...,a, € A

f¢(1‘1, . ,l‘n) Z lA.
So for any substitution ¢(¢1, ..., ¢,) of ¢

P(D1,. .. 0n) = T(fs(v(1),...,v(dn))) (v is a valuation)
Suppose that v(¢;) = b; then

f¢(v(¢)1)v - 7U(¢n))) = fd)(bla .- abn) > 1a

Thus closed under substitution.
(modus ponens)
Let ¢, ¢ D ¢ € Ly. Then there exist some s,t such that

7(s) =¢,7(t) =t and s > 1,s -t > 1.
Hence
1<s—>t&es<.

So 1 <t. Thus ¢ € Ly.

(FLe g LV)

Let ¢ € FLo. Then from completeness theorem for any CRL and for any valuation v,
v(¢) > 1. For any CRL A € V

v($) > 1a.

Ly is a logic which is a set of any formula 1 satisfying V' = v(1). So
¢ € Ly

Thus FLe C Ly.
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Chapter 5

Disjunction property for logics over
FLe

5.1 well-connectedness and disjunction property
First we give some definitions.

Definition 5.1.1 (well-connectedness) A CRL A is well-connected if for any z,y € A
from x V y > 1 there follows > 1 or y > 1.

Definition 5.1.2 (disjunction property) A logic L has the disjunction property if for
any formula ¢ and v the condition that ¢ V ¢ is provable implies that at least one of the
formulas ¢ and v is provable.

5.2 Main theorem and its proof

Theorem 5.2.1 (Maksimova) Suppose that a logic L over Int is complete with respect
to a class K of Heyting algebras. Then, the following are equivalent;

i. L has the disjunction property,

1. For all Heyting algebras A, B € K there exist a well-connected Heyting algebra C
such that L is valid in C, and there is a surjective homomorphism from C onto
A x B.

In the same way as this, we can show the following theorem 5.2.2. So we omit a proof.

Theorem 5.2.2 Suppose that a logic L over FLe is complete with respect to a class K
of CRLs. Then, the following are equivalent;
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i. L has the disjunction property,

ii. For all CRLs A,B € K there exist a well-connected CRL C such that L is valid in
C, and there is a surjective homomorphism from C onto A x B.

Proof ii —i. Let ii be true and ¢ v is not valid in L for some formulas ¢ and . Show

that v(¢ V ) # 1.

Because of the completeness of L we have va (@) #a 1a and vg(y)) #s 1l for some
valuations v in A and vg in B. From ii there exist a well-connected CRL C, such that
L is valid in C, and a surjective homomorphism « from C onto A x B. We define a
valuation v in C following. For any propositional variable p, define v(p) = a, where a is
an arbitrary element in o *((va(p), vs(p))). So for any variable p,

a(v(p)) = (va(p), vB(p))-

From properties of homomorphisms we can show inductively that for any formula ¢.
a(v(d)) = (va(d),vs(d)). In particular,

a(v(d)) = (va(®),vB(¢)) < (1a,1B)
and a(v(¢)) = (va(¥), vB(¢¥)) < (1a,1B)-

Hence, we have v(¢) < 1, v(¢)) < 1c and v(¢ V1)) < 1¢ by the well-connectedness of C.
Thus ¢ V v is not valid in C.

i — ii. If L has the disjunction property, then all free algebras of the corresponding variety
V(L) ={C | L is valid in C} are well-connected. At the same time, if A, B € V(L) then
A x B € V(L). Any algebra in V(L) is a homomorphic image of a suitable free algebra
of V(L). This completes the proof.

We show the disjunction property of logics over FL, by using this theorem. First we
show the disjunction property of FL, and FL¢[Ey].

Theorem 5.2.3 (Disjunction property for FL, and FL.[E]) FL. and FL[Ey] has
a disjunction property.

To prove this theorem we construct a suitable CRL for given A and B. Define a CRL
C= <Ca /\7 \/7 e 07 ]-> by’
1. C=AxBx {0}U{(a,b,1>| a>a lA, b >B 1]3},

o 1= <1A7 1B7 1>7
o 0= (0a,0g,0).

2. Define a binary relation < on C as follows.

(a,b,i) < (' V,j) & a<pd, b<gl,i<j
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3. Define - as follows.
(a,b,i) - (a', b, 5y = (a-aAd,b-gl,i-j)
4. Define — as follows.

o If (lA ﬁA a —A a' or 1g ﬁB b —A bl) and i — ] = 1 then <a,b,i> —
(a',V,j) = (a—ad,b—pl,0).
e Otherwise, (a,b,i) — (a’,V',j) = {(a —a d,b =V, i— j).

We show that C = (C, A, V,-,—,0,1) is a CRL.

Lemma 5.2.4 The tuple (C,A\,V,0,1) is a lattice.

Proof Clearly binary relation < is a partial order on the set C.
For every (a,b,i) and (a’, ', j) in C,

(a,b,i) < (aVad,bVpb,iVj),
(', 0,7) < {(aVad,bVel,6iVj).

Let (z,y,k) in C as follows.

(aVad,bveb,iVj) <{(z,yk).
So we can show
sup{{a, b, i), (a',b',j}} = (aVa d',bVB UV, iV j).
Similarly inf{({a, b, i), (a’, V', j)} = (a Aa @', b A U',i A j). Thus C is a lattice.

Lemma 5.2.5 The tuple (C,-,1) is a commutative monoid.
Proof For every (a,b,i) in C,
(a,b,i) - (1,1, 1) = (1a,1B,1) - (a,b,i) = (a-a d',b-gb,i-j).

So (1a,1m,1) is a identity element.
For every (a,b,1), (a',b',j) and (a", 0", k) in C, following equality hold.

({a,b,i) - (a',b', 7)) - (", b" k) = (a-pnd,b-gb,i-j)-{(a",b" k)
= ((@a-ad)ad, (b-slt) st (i) k)
= (a-a(a-ad"), b 8b"),i (j-k))
= (a,b,i)-{a"-ad" V' -g0",j-k)
= (a,b,4) - ((a,V/, ) - (a", 0", k))

Thus (C, -, 1) is a monoid.
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Lemma 5.2.6 The algebra C satisfies residuated law.

Proof First we prove only-if part.
From assumption, we can easily show a; -a as <a a3, by B by <g bs and 7-j5 < k.
Hence we can get a; <a ay —a a3, by <g by =g b3, 1 < j — k.

o If <a2,b2,j> — <03,b3,]€> = <a2 —A a3,b2 —B bg,j — k> then
<a1,blai> < <a2 —A a3,b2 =B b3, 7 — k> = <a2ab27j> - <a3,b3,k>.
o If <02,b2,j> — <03a53,k> = <02 —A a3, by —B 53,0>

then we can prove ay; #a 14 from a; <z ay —a a3 and ay —>a a3 ?a 1a. Similarly
we can prove b; 2 1p. So i # 1. Thus

<a1,bl,i> < <az —A a3, by —B b3,0> = <a2,b2,j> - <a3ab3,k>-

Next we prove if-part.

o Let (as, by, j) — (a3, b3, k) = (a2 —a a3, ba =B b3, 5 = k).
Then we can prove a; -p as <a a3, by - by < b3, 1 -7 < k easily.
Thus

(ay,b1,1) < (ag, be,j) — (as, bs, k).

o Let (as, by, j) — (a3, b3, k) = (az —a a3, by =B b3,0).
Then similarly we can prove aj -o as <a a3, by -Bby <g b3. i-7 =0 < k from ¢ = 0.
Thus

(a1,b1,0) < (ag, be,j) — (as, bs, k).

Lemma 5.2.7 A mapping a from C to A x B defined by
a((a,b,1)) = (a,b)
1S a surjective homomorphism.

Proof A mapping « is clearly surjective.

a({a,b,iy v {d,V,j)) = al{avad,bVvgb,iVj))
== <a \/A a',b\/B b,>
= {(a,b) Vv {d, V)
= a((a,b,7)) Va({d,V,j))
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We can show «a({(a,b,i) A {(d',V, 7)) = a({a,b,i)) ANa({(d,V, 7)) and a({(a,b,i)-{(a',V,])) =
a({a,b,i)) - a({a’, 1/, j)) in the same way as above.
If (a,b,i) — (a',V,j) = (a —a d',b —p b',i — j), then

a({a,b,iy — (d',b,7)) = a(a—ad,b—=b,i—7))
= <a —A a,,b—>]3 bl>
= {(a,b) — {d,b")
= a(a,b,7)) = a({d,V,j)).

If (a,b,i) — (a',V, j) = (a —a d',b —p V',0), then

a({a,b,iy — (d',b',7)) = a(a—ad,b—pb,0))
= (a—=ad,b—pl)
{a,by — (a', V)
= a((a,b, 1)) = a({d,V,7)).

Thus « is surjective homomorphism.

Lemma 5.2.8 If A and B satisfy a condition Ey then the algebra C satisfies Ey.
Proof For every (a,b,i) in C

(a,b,0)F = (a,b,0)*t = (a" =4 a1 0" —p BT F T
= {a® —=p a0 =g OFT i d)
= (l4,1p,1).
Similarly we can show
<CL, ba 7:>k+1 - <a7 ba Z>k = <]-A7 ]-Ba 1>
Thus C satisfies F.
Proof of Theorem 5.2.3 We construct a suitable algebra is enough to prove this theo-

rem. From above lemmas we can show that C is a CRL which satisfies Ex and there is a
surjective homomorphism from C onto A x B.

Generally a constructed CRL C is not satisfies DN. We need some modification of C
in proving the disjunction property of FL¢[DN].

Theorem 5.2.9 (Disjunction property for FL.[DN]) FL.[DN] has a disjunction prop-
erty.

Define a CRL C = (C, A, V, -, —,0,1) by;
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1. C=AxBx{1/2}U{(a,b,1)| a >a 1a, b >p 1n} U{(a,b,0)| a <a Oa, b <p Ogl,

o 1= <1A7 1B7 1>7
o 0= (0a,0g,0).

2. Define a binary relation < as follows.

(a,b,1) < (@,V,j) & a<ad, b<l, i<

3. Define - as follows, where 7 - j = min{i, j}.

elfa-pad < 0pand b-gb <g Op and i,j # 1 then (a,b,i) - (d',V, )
<CL ‘A a’,b-B b,,0>.

o [f (a ‘A a ﬁA OA or b ‘B b iB 0]3) and ¢ ] = 0 then (a,b,i> . <a’,b',j>
<CL ‘A a’,b-B b,,1/2>

e Otherwise,
<a7b7i> ’ <alab,7j> = <a ‘A alab'B blai ]>

4. Define — as follows, where i — j =1 when i < j, 4 — j = 1/2 when ¢ = 1 and
j=1/2,and i — j = 0 otherwise.

o If (1o» €A a —a d or 1g €p b —p V') and i — j = 1 then (a,b,i) —
(a',V,j) =(a —ad,b—opl, 1/2).

e If i = 1/2 and (d/,V,j) < (0a,08,0) then (a,b,i) — (a’,V,j) = (a —a
a,b—pl,1/2).

e Otherwise,
(a,b,i) — (a',V,j) ={(a —a d,b =g V,i—j).

Lemma 5.2.10 The tuple (C,A,V,0,1) is a lattice.

Proof Clearly < is a partial order on the set C.
By the same way as FL, and FL,[Ex] We can show that for every (a,b,1), {(a’,V,j) € C
both sup{{a, b, i), (a’,b', )} and inf{({a, b, i), (a', V', j)} exist.

Lemma 5.2.11 The tuple (C,-,1) is a commutative monoid.

Proof For every (a,b,i) in C, {(a,b,i) - (1a,18,1) = (1a, 18, 1) - {a,b,i) = (a,b,i). So
(1a, 1B, 1) is a identity element. Next we prove associative law.

Let (a1, b1,1), (a2, by, j), (a3, b3, k) € C.

Suppose that

(ar,b1,i) - (a2, ba, j) = (a1 -a a2, b1 B b2, i+ j),
(a1 ‘A Q2,01 B by, 7 - j> : (a3,b3, k> = ((a1 ‘A CLQ) A a3, (b1 ‘B bz) ‘B b3, (Z : j) ’ k>
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then

(ag, ba, j) - (as, bs, k) = (az -a a3, by -B b3, j - k),
(a1,b1,0) - (a2 A as, by B b3, J - k) = (a1 -a (a2 -a a3),b1 -B (b2 B b3),0- (J - k)).

So
((a1,b1,1) - (az, b2,7)) - (a3, b3, k) = ((a1-a az)-a az, (b1 B ba) B b3, (i) k)

= (aj-a (ag-a a3),b1 B (by B b3),i-(5-k))
= <a1,b1,i> . (<ag,b2,j> : <a37b37k>)‘

Suppose that <611, bhi) : <02, 52;j> = <a1 ‘A Q2,01 -B ba, 1/2>-

e Let £ =1. Then we can show
(a1-a a2)-a a3 £a 0a or (b B b2) ‘B b3 £B 0B

from a; A Qo ﬁA OA and b1 ‘B b2 ﬁB 0]3.
So

({a1,b1,9) - {az,b2,7)) - (as, b3, k) = (a1 -a az,b1 B by, 1/2) - (as, b3, k)
= <(al ‘A a2) *A a3, (b1 ‘B bz) ‘B b3, 1/2>-

We can easily show (ag, by, j) - (as, b3, k) = (as -a as, by -B b3, 1) such that [ = j or
[=1/2.

If | = j then from i-j =0, (a1 -a a2) -a a3 €a 0a and (b; ‘B b2) ‘B b3 £B O We can
show

{a1,b1,1) - {az -a a3, by -B b3, j) = (ay -a (a2 -a a3),b1 ‘B (by 'B b3),1/2).
If I =1/2 then from (a; -a a2) -a a3 €a 0a and (b; - b2) ‘B b3 £ OB We can get
(a1, b1,1) - {as -a a3, bs -g b3, 1/2) = (ay -a (a2 -a a3),by B (b2 B b3),1/2).
e Let k=1/2. Then
(a1 -A ag,b1 -B b2, 1/2) - (as,b3,1/2) = ((a1 ‘A a2) -a a3, (by ‘B b2) ‘B b3, )

such that [ =1/2 or [ = 0.
If | = 1/2 then

(a1 -a a2) -a a3 £a 0a or (by B b2) ‘B b3 £B OB.

Let <a2,b2,j> : <03,b3, k‘> = <a2 ‘A a3,b2 ‘B b3,m> such that m € {0, 1/2}
If 2 = 0 then from (a1 A ag) ‘A 43 iA OA or (b1 ‘B bg) ‘B b3 iB 0]3,

<a1,bl,0> : (a2 ‘A 03,02 B b3,m> = <01 ‘A (az ‘A 03), b ‘B (b2 ‘B ba), 1/2>-
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If i #0,i.e. j =0. Then by same way of former case

<a1,bl,i> : <612 ‘A 3,00 B b3,m> = <a1 A (az A a3), b1 B (bz ‘B 53), 1/2>-
If [ =0 then

(a1 -4 az) -a a3 <a 0p and (b; ‘B b2) ‘B b3 < OB.

Suppose that (ag, by, j) - (as, b3, 0) = (as -a as, by -B b, m) such that m € {0,1/2}.
So

(a1,b1,1) - {az -4 as,bs - by, m) = (ay -a (a2 -a a3), b1 -B (b -B b3),0)
by (a1 a a2) -a a3 <a 0a and (b; B b2) ‘B b3 < Op.
Let k = 0. Then

(a1 -A ag,b1 -B ba, 1/2) - (ag, b3,0) = ((ay -a ag) -a as, (by -B b2) B b3, 1)

such that [ =1/2 or [ = 0.
If { =0 then

(ag, b, j) - (as, b3, 0) = (ag -a as, by - bs, m) such that m € {0,1/2}.
So

(a1,b1,1) - {ay -a az,be -g by, m) = (ay -a (a2 -a a3),b1 ‘B (by '8 b3),0).
by (a1 -a az) -a a3 <a 0a and (b ‘B b2) B b3 <B 0B
If | = 1/2 then

(a1 -A a2) -a a3 £a 0a and (by ‘B by) ‘B b3 LB 0.

Suppose that (ag, by, j) - (as, b3, 0) = (as -a as, by -B b3, m) such that m € {0,1/2}.
So

<a1,bl,i> : (a2 ‘A 03,0 B b3am> = (a1 ‘A (CLQ ‘A a3), by ‘B (bz ‘B ba), 0>-

by (a1 -a a2) -a a3 £a 0a and (by B b2) ‘B b3 €8 OB
Suppose that <CL1, bl, Z> . <CL2, bg,j> == <a1 ‘A 49, b1 ‘B bg, 0>
If <al *A A9, bi ‘B b2,0> : <a3, b3, lf> = <(al A az) *A a3, (b1 ‘B b2) ‘B b3,0> then

(a1 A az) -a a3 <a 0a and (by - b2) B b3 <p Op.
Then
<a2,b2,j> ’ <03,b3, k> = <02 ‘A 03,02 B b3am>'

(m€{0,1/2,1}.)
So
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{a1,b1,1) - {as -a az, by -g b3, m) = {ay -a (a2 -a a3),b1 ‘B (by B b3),0).

If {ay -a as,by B b2, 0) - (a3, b3, k) = ((ay -a a2) -a a3, (b ‘B by) -B b3, 1/2) then
(a1 -A a2) A a3 £a 0a and (by ‘B by) ‘B b3 LB 0.

Then
(ag,bq,7) - (a3, b3, k) = (ag -a as, by - bz, m)

fromi#1and j #1. (me€{0,1/2,}.)
So

<a1,bl,i> : (a2 ‘A a3,b2 B b3am> = (a1 A (CLQ A a3), b1 B (bz ‘B ba), 1/2>-
by (a1 -a az) -a a3 £a Oa and (b1 - b2) ‘B b3 £B OB.
Lemma 5.2.12 The algebra C satisfies residuated law.

Proof First we show only-if part.

e Let

(a1, by,17) - (ag, ba, j) = (a1 A az,b1 -B ba, i - j),
(ag,be, j) — (as, bs, k) = (az —a ag,by =B b3, j — k),

then clearly

<a1,bl,i> : <a2,b2,j> < <a3,b3,k> if and only if <a1,b1,i) < <a2ab27j> —

(as, b3, k).
o Let
(ay1,b1,1) - {as, by, j) = (ay -a az,b1 - ba,i-J),
(ag,ba,7) — (as, bs, k) = (ay —a az, by —p b3, 1/2).
Then

ar <a a2 —a a3, by <pby =g b3, i <j— k.
If 5 — k =0 then

i<jok<1/2.
If j — k = 1 then

as —A a3 ZA la,
by =B b3 ?B 1B.

So
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a; A 1a and by ? 1s.
Thus ¢ # 1. Hence
(ay,b1,7) < (ag, ba, j) — (as, bs, k).

o Let <a1,b1,i> . <a2,b2,j> = <CL1 ‘A ag,bl ‘B bg, ]_/2>, i.e. 7,] =0.Sot=0or ] =0.
If 2+ = 0 then clearly

<a‘17b17i> S <a27b27j> — <a‘37b37k>

If i # 0 then j = 0.
When i = 1, we can get

j—= k=1,
1a <a a1 <a ap —a ag,
1 <g b1 <B by —B bs.

So

(ay,b1,1) < (ag, by, 0) — (as, bz, k).
Ifi=1/2thenby j = k=1,

{a1,01,1) < (ag —a az,by —p b3,1/2) < {as, by, j) — (a3, bs, k).

o Let (a1,b1,%) - (az, by, j) = (a1 A a2,b1 ‘B 02,0), i.e. a-5 a' <o 04 and b-g ¥ <g O
and 7,7 # 1.
Suppose that k£ > 1/2 then we can get

<a2 —A a3,b2 —B b3, 1/2> < <a2ab27j> - <a3,b3,k>
from 7 - k=1. So
(a1,b1,i) < (ag —a as, by =B b3, 1/2) < (as,bs, j) — (as, b3, k).

Suppose that k£ = 0.
If 7 =0 then

<a2 —A a3, b2 —B b3, 1/2> < <a2ab27j> - <a3,b3,k>

by j - k=1.
If j =1/2 then (as,bs, j) — (a3, b3, k) = (a2 —a a3, by —p b3, 1/2) from definition.
So

(a1,b1,i) < (ag —a as, by =8 b3,1/2) < (as,bs, j) — (as, b3, k).

Next we prove if-part.
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e Let (ag, ba,j) — {(as, b3, k) = (ay —a a3, by =5 b3, j — k).
If

<a1,bl,i> : <a2,b2,j> = (a1 ‘A Q2,01 B by, 1 'j>
or (ay, by, i) - {ag, ba, j) = (a1 -a az, b1 - b2, 0),

then we can show a; ‘A as <a a3, by -gby <g bzand 0 <i-j5 <k.
Thus

(a1 -A a2,by -B b2, 0) < (ay,by,1) - (ag, ba, j) < {as, bs, k).
If

{a1,b1,1) - {az, by, 7) = (a1 -a az, by -B by, 1/2)
then

a; <A ay —a a3, by <p by —p b3, a1 A az LA 0a by B by LB 0p.
So clearly a3 £a 0a and b3 £g Og. Hence k # 0. Thus

{a1,b1,1) - {as, by, 7) < (aq -a ag, by - by, 1/2) < {as, bs, k).

o Let <a2,b2,j> — <a3,b3,k> = <Cl2 —A Cl3,b2 —B b3,1/2>, i.e. ] — k =1 or
j—k=0.
If j = k=1and (a1, b,1) - (az,b2,7) = (a1 -a a2, b1 -B by, 1/2) then

a; A ay €A 0a or by - by £ OB.
So
az £a 0a or bs £ Op.

Hence k # 0.
If j = k=1 and (ay, by,4) - (az, bs, j) is otherwise then 0-i-j < j < k. Thus

(a1, b1,1) - (az, b2, 7) < (as, bs, k).
If j - k=0then j=1/2 and £k =0. So

ay A a2 <a a3z <p Oa,
by ‘B by < b3 <p OB

from a; <A as —a a3 and by <g by —p b3 respectively. Hence
(a1, b1,1) - (ag, b2, j) = (a1 -a ag,b1 - b2, 0) < (as, b3, k).

Lemma 5.2.13 A mapping o from C onto A x B defined by
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a({a,b,i)) = {(a,b).

15 a surjective homomorphism.

Proof We can easily show that

al{a,b,i) ®(d',b,j5)) = a({a®ad,bBsl, k))

(a ®a a,bds b'>

(a,b,i) ®axs (a', b, 7)

= o({a,b,7)) ®axs a(d, V', j)).

So « is homomorphism. A mapping « clearly holds a condition o(C) = A x B. Thus «
is surjective homomorphism.

Lemma 5.2.14 If A and B satisfy a condition DN then C satisfies a condition DN.

Proof Let (a,b,i) in C (—(a,b,i) means (a,b,i) — (0a,0m,0)).
When ; =1,

(a,b,1) — (0a,0p,0) = (—a,—b,0)
<—|a, —b, 0> — <0A; OB, 0> = <_'_'CL, ——b, 1>
<—|—|a, _|_|b, 1> — <a, b, 1> = <—|—|a —A Q, —=b —g b, 1— 1> > <1A, 1gm, 1>

When ¢ = 0,

(a,b,0) — (0a,08,0) = (—a, b, 1)
(ma,—b,1) — (04,08, 0) = (——a, 2—b,0)
<—|—|a, _|_|b, 0> — <a, b, 0> = <—|—|a —A G, ——b —p b, 0— 0> > <1A, 1g, 1>

When i = 1/2,

{(a,b,1/2) — (0a,08,0) = (—a,—b,1/2)

(—na,—b,1/2) — (0,0, 0) = (=—a, b, 1/2)

(-=a,—=b,1/2) — (a,b,1/2) = (=—a —a a,——b —p b,1/2 — 1/2) >
(1a,1B,1).

Thus C satisfies DN.

Proof of Theorem 5.2.9 From these lemma we can easily show that C is a CRL which
satisfies DN and there are a surjective homomorphism from C onto A x B. Thus we
construct suitable algebra.

Our proof works well also for FLew, FLew[Ex] and FLew[DN]. In these cases, 15 and
1g are the greatest, 0o and Og are the leastest elements of A and B, respectively. Thus,
we can obtain C of the following forms.
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Chapter 6

Further works

We have following problems for further works.

e What kind of axioms can be preserved by construction of the algebra in Chapter 57
More precisely, for which formula ¢does the following hold?

If a formula ¢ is valid in both A and B then ¢ is valid also in C.

For example, how about the distributive law, and how about the axiom —pFt! —
ko
—|p !

e The following result is shown independently by P. Minari and M. Zakharyaschev.

If a logic L over Int has the disjunction property then L correspond to
Int with formulas which include no V.
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