JAIST Repository

https://dspace.jaist.ac.jp/

Title gobodoooooooboobobouooooo

Author(s) oo, 00

Citation

Issue Date 2005-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 10109/ 1915
Rights

Description Supervisor: goooo, ooooooo, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Inline Expansion for Functional Languages

Koji Sato (310046)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 10, 2005

Keywords: inline expansion, functional languages, closure conversion.

Inline expansion, which replaces a function call by the function body, is
an optimization executed by many compilers. Inline expansion has two im-
portant benefits. First, it eliminates function call overhead. This overhead
includes the cost of passing arguments, saving and restoring registers, and
updating stack information. Second, it creates new program code that can
be specialized. Since it creates a separate copy of a function body at a call
site, the body can be specialized to the call site.

Since functional languages including ML have free variables in function
body, simple inline expansion may change the meaning of the program.
Therefore, a free variable in the function has to be able to be referred to
correctly in the inlined code. Name capture is a famous problem that a
free variable is not referred to correctly in the inlined code. This problem
is caused by inserting a new declaration with the same name between
the declaration of inlining function and the use of a free variable. It can
happen when substituting a variable by its definition, since the definition
might refer to variables that are redefined before the variable reference.
A solution for this problem is to rename every bound variable so that
every bound variable is unique in the whole program. However, all the free
variables cannot be necessarily referred to correctly only by the technique.

Higher-order functions can return the function as a result of the function
call. For example consider the expression: let val f = g M in f N end
This is a code in which a certain function is returned by applying function

Copyright © 2005 by Koji Sato



g to the argument M, the function is bound to the variable f, and the
argument N is applied to the function f. Even if we know the code of the
function that is bound to the variable f, it is impossible to refer to the
free variable in the function application £ N if the free variable exists in
the code and the free variable is defined in the function g. Because the
free variable can be referred only in function g. Therefore, when executing
inline expansion in this case, it may change the meaning of the program
because a free variable cannot be referred to correctly. That is, it is not
allowed to execute inline expansion directly in this case.

To solve this problem, we propose to execute inline expansion after clo-
sure conversion. An important difference of the code before and after
closure conversion is as follows. By doing closure conversion, a function is
replaced by a closure that is a tuple of the function code and the environ-
ment. And, all free variables in the function are replaced with the reference
from the environment. Therefore, it is the same meaning to be able to re-
fer to a environment correctly, and to be able to refer to a free variable
correctly. Closure is a tuple of the function code and the environment
when executing program. Closure is not a special data structure. Closure
is considered to be a tuple. Taking out the second element of Closure is
same as taking out the environment. Therefore, when the environment of
Closure cannot be referred to directly, the environment can be referred to
by taking the second element of Closure.

Based on the above idea, we propose the algorithm of inline expansion
executed after closure conversion. Because it can be executed regardless of
a free variable, This inline expansion can make more candidates of inline
expansion. And this paper shows that the type of the code before and after
inline expansion is the same. In addition, We have implemented the inline
expansion and some optimization on IML compiler, which is an extension
of Standard ML. For the programs in some benchmark suite, this inline
expansion with some optimization improved execution times by an average
of 40%, and reduced code size by an average of about 40%. We individually
evaluated inline expansion that refers to the environment in the closure.
As a result, it is a little less efficient compared with the method where
the environment is referred to directly. Yet, the new inline expansion also
improves execution times.



