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LETTER

Factor Graph-based Technique for Trajectory Tracking of Target with High
Mobility

Lei Jiang A1, a), Nopphon Keerativoranan A1, b), Tad Matsumoto A1, 2, c), and Jun-ichi Takada A1, d)

Abstract This paper presents a trajectory tracking algorithm for high-
mobility targets using an extended Kalman smoothing (EKS)-based factor
graph (FG). Traditional tracking methods often face challenges in maintain-
ing accuracy and computational efficiency when dealing with fast-moving
objects. Leveraging the probabilistic framework of factor graphs and ro-
bust estimation of EKS, the algorithm enhances tracking precision for
fast-moving objects. Extensive simulations across various motion mod-
els demonstrate improved accuracy and robustness. The results indicate
that this method effectively addresses the limitations of conventional track-
ing algorithms, providing a promising solution for applications in aviation,
autonomous vehicles, and other domains requiring high-mobility tracking.
Keywords: Factor graph (FG), extended Kalman smoothing (EKS), trajec-
tory tracking, high mobility
Classification: Navigation, Guidance and Control Systems

1. Introduction

The ability to accurately track high mobility targets is crit-
ical in various wireless location-based services (LBSs), in-
cluding aviation, autonomous vehicles, and telecommunica-
tions [1]. Effective tracking enhances operational efficiency,
safety, and reliability, making it a significant area of research
and development. However, the high mobility of targets in
these applications poses unique challenges, such as rapid
changes in motion and environmental conditions that can
degrade tracking accuracy and reliability.

Traditional tracking methods, such as Kalman and particle
filters, have been widely used for tracking applications [2].
Kalman filters offer optimal estimation for linear systems
with Gaussian noise but struggle with non-linear dynamics
and non-Gaussian noise. Particle filters provide a robust
solution for non-linear and non-Gaussian problems but at a
high computational cost. These methods often face difficul-
ties in maintaining accuracy and computational efficiency
when applied to high-mobility targets.

Recent advances have focused on integrating advanced
filtering techniques with probabilistic models to enhance
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tracking performance. Extended Kalman filters (EKF) [3]
and unscented Kalman filters (UKF) [4] have been proposed
to handle nonlinear systems more effectively. However,
these methods require significant computational resources
and may not be suitable for real-time applications involving
fast-moving targets. Factor graphs (FG) have emerged as
a powerful framework for probabilistic modeling, offering
flexibility and robustness in representing complex relation-
ships within tracking problems [5, 6]. The application of
factor graphs in high-mobility tracking is still evolving with
ongoing research exploring their potential benefits and lim-
itations.

To address the limitations of conventional tracking al-
gorithms, this paper proposes a novel trajectory tracking
algorithm that leverages the strengths of extended Kalman
smoothing (EKS) within an FG framework. Factor graphs
provide a unified representation of the probabilistic de-
pendencies between variables, allowing efficient inference
and estimation. By integrating EKS, the proposed method
smooths state estimates over time, reducing the impact of
noise and improving tracking accuracy.

The proposed method, named the FG-EKS algorithm, op-
erates by constructing an FG that represents the relationships
between the target’s states and observations. The extended
Kalman smoother is then applied to this graph, iteratively re-
fining the state estimates by incorporating information from
both past and future approximations. This approach not
only improves tracking accuracy, but also maintains compu-
tational efficiency, making it suitable for real-time applica-
tions in high-mobility scenarios.

2. System model

In this paper, a distributed sensor-based FG is proposed.
Each sensor receives direction of arrival (DoA) measure-
ments as inputs. Similar to [5], the trigonometric relation-
ship between DoA and position output is represented by the
following connecting function:

tan 𝜙𝑖 =

(
𝑌𝑖 − 𝑦𝑡

𝑋𝑖 − 𝑥𝑡

)
+ 𝑢𝑖,𝑡 (1)

where 𝜙𝑖 denotes the DoA at 𝑖-th sensor, and (𝑋𝑖 , 𝑌𝑖), (𝑥𝑡 , 𝑦𝑡 )
are the position of the 𝑖-th sensor and the target at time step
𝑡, respectively. It is assumed that the measurement noise
follows the Gaussian distribution 𝑢𝑖,𝑡 ∼ N(0, 𝜎2

𝜙
). The

geolocation-based FG algorithm (FG-GE) is detailed in [5].
The output of FG-GE serves as the observation state in the
tracking phase described in this paper.
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In the tracking system, a non-linear discrete state-space
model (SSM) is introduced to describe the real trajectory.
The current state representing the target location is denoted
as s(𝑡) = [𝑥𝑡 , 𝑦𝑡 ]𝑇 at the time step 𝑡 (𝑡 = {1, 2, · · · , 𝑇}). The
SSM is formulated as follows:

s𝑡 = 𝑓 (s𝑡−1) + e𝑡 (2)

where 𝑓 (·) is the non-linear function that connects two ad-
jacent states, and e𝑡 = [𝑒𝑥,𝑡 , 𝑒𝑦,𝑡 ]𝑇 is the noise vector of the
current position state. Similar to [5], the first-order Taylor
series is used to linearize the function 𝑓 (·), resulting in the
expression:

s𝑡 ≈ s𝑡−1 + v𝑡−1 + e𝑡 (3)

where v𝑡−1 is the previous velocity state, defined as:

v𝑡−1 = v𝑡−2 + a𝑡−1 (4)

where a𝑡−1 denotes the acceleration component. It should
be noted that the relative time is normalized as △𝑡 = 1 in this
paper.

3. EKS-based Factor graph

The tracking phase consists of two passes: forward pass
(filtering) and backward pass (smoothing). In the forward
pass, the prediction state is obtained by maximizing the
posterior probability of states and observations up to time 𝑡,
given by:

𝑝(s𝑡 , v𝑡 , a𝑡 |j1:𝑡 ) =
∑︁

∼s𝑡 ,∼v𝑡 ,∼a𝑡
𝑝(s1:𝑡 , v1:𝑡 , a1:𝑡 |j1:𝑡 ) (5)

where ∼ denotes the exclusion operation, and the subscript
{1 : 𝑡} denotes the time series. j1:𝑡 is the observation state.
Similar to [5], using the Bayes theorem, Eq. (5) can be
expressed as

𝑝(s1:𝑡 , v1:𝑡 , a1:𝑡 |j1:𝑡 )

∝
∏
1:𝑡

𝑝(s𝑡 |s𝑡−1, v𝑡−1)𝑝(v𝑡 |v𝑡−1, a𝑡−1)𝑝(a𝑡 |a𝑡−1)𝑝(j𝑡 |s𝑡 )

(6)
where

∏
denotes iteration steps from 1 to 𝑡.

In the backward pass, the state in the current time step 𝑡

can be updated using the state in the next time step 𝑡 + 1.
Therefore, we are interested in updating the state at time 𝑡

using the state at time 𝑡 + 1, given by:

𝑝(s𝑡−1 |s𝑡 , v𝑡 , a𝑡 , j1:𝑡+1)
∝ 𝑝(j𝑡+1 |s𝑡−1, v𝑡−1, a𝑡−1, j1:𝑡 )𝑝(s𝑡−1, v𝑡−1, a𝑡−1, j1:𝑡 ).

(7)

Since j𝑡+1 depends only on s𝑡+1, 𝑝(j𝑡+1 |s𝑡−1, v𝑡−1, a𝑡−1, j1:𝑡 )
can be expressed as:

𝑝(j𝑡+1 |s𝑡−1, v𝑡−1, a𝑡−1, j1:𝑡 ) = 𝑝(j𝑡+1 |s𝑡+1). (8)

Therefore, the joint probability can be decomposed as:

𝑝(s𝑡−1, v𝑡−1, a𝑡−1, j1:𝑡 )
= 𝑝(s𝑡−1 |s𝑡 , v𝑡 )𝑝(v𝑡−1 |v𝑡 , a𝑡 )𝑝(a𝑡−1 |a𝑡 )𝑝(s𝑡 , v𝑡 , a𝑡 , j1:𝑡 ).

(9)
Combining Eq. (7) through Eq. (9), the posterior probability
using future state information can be expressed as:

𝑝(s𝑡−1, v𝑡−1, a𝑡−1 |j1:𝑡+1)
∝ 𝑝(j𝑡+1 |s𝑡+1)𝑝(s𝑡−1 |s𝑡 , v𝑡 )𝑝(v𝑡−1 |v𝑡 , a𝑡 )𝑝(a𝑡−1 |a𝑡 ).

(10)
Based on the recursive form of the posterior probability

in both the forward pass and backward pass, the FG can
be constructed, as depicted in Fig. 1. The entire FG-EKS
tracking system can be divided into 5 steps.

Fig. 1 FG-EKS for tracking system

• Step 1: Forward pass prediction
The forward pass prediction ŝ𝑡 |𝑡−1 is calculated based
on the previous state s𝑡−1. The corresponding message
flow 𝜍 𝑓 is given by:

𝜍 𝑓 (ŝ𝑡 |𝑡−1)

=
∑︁
s𝑡−1

∑̂︁
v𝑡−1

𝑓1 (s𝑡 |s𝑡−1, v̂𝑡−1)𝜍𝑎 (s𝑡−1)𝜍𝑐 (v̂𝑡−1) (11)

where 𝜍𝑎 (s𝑡−1) and 𝜍𝑐 (v̂𝑡−1) represent the mes-
sage flows of the previous position state and veloc-
ity state, respectively. The state prediction function
𝑓1 (s𝑡 |s𝑡−1, v̂𝑡−1) is given by:

𝑓1 (s𝑡 |s𝑡−1, v̂𝑡−1) = 𝛼 · s𝑡−1 + v̂𝑡−1 (12)

where 𝛼 is the forgetting factor used to balance the
weight between position state and velocity state. This
adjustment is necessary in high mobility tracking sce-
narios due to the significant distance changes between
consecutive time steps caused by the fast speed of the
target.

• Step 2: Forward state update
The estimated current state ŝ𝑡 is refined using the ob-
servation state j𝑡 to update the forward pass prediction
ŝ𝑡 |𝑡−1

𝜍𝑔 (ŝ𝑡 ) = 𝜍 𝑓 (ŝ𝑡 |𝑡−1)𝜍𝑛 (j𝑡 ). (13)
• Step 3: Backward state smoothing

In this step, the updated forward state ŝ𝑡 serves as an
approximate future message to smooth the backward
state s𝑡−1 |𝑡

𝜍𝑟 (s𝑡−1 |𝑡 ) =
∑︁

s𝑡

∑̂︁
v𝑡−1

𝑓6 (s𝑡−1 |𝑡 |s𝑡 , v̂𝑡−1)𝜍𝑔 (s𝑡 )𝜍𝑐 (v̂𝑡−1)

(14)

2



IEICE Communications Express, Vol.12, No.1, 1–4

where backward pass function 𝑓6 (s𝑡−1 |𝑡 |s𝑡 , v̂𝑡−1) is
given by

𝑓6 (s𝑡−1 |𝑡 |s𝑡 , v̂𝑡−1) = s𝑡 − v̂𝑡−1. (15)

It should be noted that, compared with the conventional
off-line Kalman smoothing method, the proposed FG-
EKS only uses the approximated current state as future
message to estimate the previous state. Hence, the
real-time processing is possible through FG-EKS.

• Step 4: Prediction Refinement
The smoothed backward state s𝑡−1 |𝑡 is further combined
with the filtered forward state to refine the prediction
state ŝ𝑡 |𝑡−1 to estimate the current state s𝑡 , given by:

𝜍𝑤(ŝ𝑡 |𝑡−1) =
∏

𝜍𝑟 (s𝑡−1 |𝑡 )𝜍 𝑓 (s𝑡 |𝑡−1), (16)

𝜍𝑔 (s𝑡 ) = 𝜍 𝑓 (s𝑡 |𝑡−1)𝜍𝑛 (j𝑡 ). (17)
Note that same as in position state, the forward pass
update and backward pass update can be also applied
to velocity state.

• Step 5: Gradient update
Since the prediction state of velocity v̂𝑡 |𝑡−1 is updated
and refined as that in position state, we focus on the
two gradient vector updates v𝑡 and a𝑡 in this step. The
velocity can be updated using a correction term v̄𝑡 to
refine the predicted velocity v𝑡 |𝑡−1 that is refined by the
forward pass update v̂𝑡−1 and the backward pass update
v𝑡−1 |𝑡 . The current velocity v𝑡 is given by:

𝜍𝑙 (v𝑡 ) = 𝜍 𝑗 (v̂𝑡 )𝜍𝑘 (v𝑡 |𝑡−1) (18)

where the message flow 𝜍 𝑗 (v̂𝑡 ) is calculated from the
state difference between two adjacent positions, given
by:

𝜍 𝑗 (v̂𝑡 ) =
∑︁
s𝑡−1

∑︁
s𝑡

𝑓4 (v̂𝑡 |s𝑡 , s𝑡−1)𝜍𝑎 (s𝑡−1)𝜍𝑔 (s𝑡 ) (19)

where the state difference function 𝑓4 (v̂𝑡 |s𝑡 , s𝑡−1) is
given by:

𝑓4 (v̂𝑡 |s𝑡 , s𝑡−1) = s𝑡 − s𝑡−1 (20)
The forward pass prediction state 𝜍𝑘 (v𝑡 |𝑡−1) is achieved
by combining the previous velocity state and accelera-
tion component, given by:

𝜍𝑘 (v̂𝑡 |𝑡−1)

=
∑︁
v𝑡−1

∑︁
a𝑡−1

𝑓3 (v̂𝑡 |𝑡−1 |v𝑡−1, a𝑡−1)𝜍𝑐 (v𝑡−1)𝜍𝑑 (a𝑡−1)

(21)
where the function 𝑓3 (v̂𝑡 |𝑡−1 |v𝑡−1, a𝑡−1) is given by:

𝑓3 (v𝑡 |𝑡−1 |v̂𝑡−1, a𝑡−1) = v̂𝑡−1 + a𝑡−1 (22)

Similarly as in updating the velocity state, a correction
term â𝑡 is introduced to update the acceleration. Using
two adjacent velocity, the acceleration is given by:

𝜍𝑚 (â𝑡 ) =
∑︁
v𝑡−1

∑︁
v𝑡

𝑓5 (â𝑡 )𝜍𝑐 (v𝑡−1)𝜍𝑙 (v𝑡 ) (23)

where the function 𝑓5 (â𝑡 ) is given by:

𝑓5 (â𝑡 ) = v𝑡 − v𝑡−1 (24)

Thereby, the updated acceleration is given by:

𝜍𝑜 (a𝑡 ) = 𝜍𝑒 (a𝑡−1)𝜍𝑚 (â𝑡 ) (25)

4. Simulation results

To assess the robustness of the proposed FG-EKS tech-
nique, several outdoor trajectory models of a small com-
mercial UAV are employed. The positions of three sensors
are distributed as follows: (𝑋1, 𝑌1) = (0, 0) m, (𝑋2, 𝑌2) =

(70, 12) m, (𝑋3, 𝑌3) = (−60, 81) m. The relative time be-
tween two states is normalized as △𝑡 = 1.

4.1 Constant velocity (CV) model
The constant velocity (CV) model assumes that the UAV’s
velocity remains unchanged over time, resulting in linear
changes in its position. The CV trajectory is described by:

𝑦𝑡 = 𝑦𝑡−1 + 𝑣𝑦 + 𝜀𝑦

𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑥 + 𝜀𝑥
(26)

where 𝑣𝑥 and 𝑣𝑦 denote the speed on the x-axis and the y-
axis, respectively. Small consumer UAVs typically operate
at speeds ranging from 15 to 50 km/h (approximately 4.17
to 13.89 m/s). Here, 𝑣𝑦 = 𝑣𝑥 = 10 m/s. 𝜺 = [𝜀𝑦, 𝜀𝑥]𝑇
represents the random trajectory deviation from the ideal
path, assumed to follow a Gaussian distribution 𝜺 ∼ (0, 𝜎2).
Let 𝜎 = 0.5 m to account for the trajectory perturbations.
The time step 𝑡 is set within 𝑡 = {1, · · · , 25} s. The tracking
performance is illustrated in Fig. 2. Clearly, the proposed
FG-EKS can achieve higher accuracy in trajectory tracking
compared to FG-EKF, as indicated by the average root mean
square error (RMSE).

Fig. 2 Trajectory tracking of CV model

4.2 Constant acceleration (CA) model
n a CA model, the velocity of the UAV changes at a constant
rate over time, resulting in linear equations for position and
velocity updates. The CA model is defined as

𝑦𝑡 = 𝑦𝑡−1 + 𝑣𝑦,𝑡 + 𝜀𝑦

𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑥,𝑡 + 𝜀𝑥
(27)

where
𝑣𝑦,𝑡 = 𝑣𝑦,𝑡−1 + 𝑎𝑦

𝑣𝑥,𝑡 = 𝑣𝑥,𝑡−1 + 𝑎𝑥
(28)

Here, a = [𝑎𝑦, 𝑎𝑥]𝑇 is the acceleration component. Let 𝑎𝑦 =
𝑎𝑥 = 0.1m/s2, and the initial speeds 𝑣𝑦,0 = 𝑣𝑥,0 = 0.1m/s.
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As shown in Fig. 3, the proposed technique accurately tracks
the trajectory of the CA model, even as the speed increases.

Fig. 3 Trajectory tracking of CA model

4.3 Constant turn rate and velocity (CTRV) model
The CTRV model describes the motion of the UAV, where
it maintains a constant speed while executing turns at a
constant rate. The CTRV model is defined as

s𝑡 = s𝑡−1 + v𝑡 + 𝝊 (29)

where the velocity v𝑡 is given by:

v𝑡 =
[
cos(𝜃𝑡 )
sin(𝜃𝑡 )

]
· ∥v𝑡−1∥ (30)

where 𝜃𝑡 is heading angle, given by:

𝜃𝑡 = 𝜃𝑡−1 + 𝜔 (31)

Here, 𝜔 denotes the constant turn rate. Let the turn rate
𝜔 = 𝜋

180 rad/s and the initial heading angle 𝜃0 = 𝜋
10 rad.

The results are depicted in Fig. 4. Compared to CV and
CA models, the tracking accuracy of the proposed technique
is initially affected by nonlinear motion. However, the per-
formance improves over time as the iterative process in the
factor graph suppresses the prediction errors.

Fig. 4 Trajectory tracking of CTRV model

The tracking accuracy of the proposed technique is fur-
ther evaluated by calculating the average root mean square

error across varying direction of arrival (DoA) measure-
ment errors. The results are summarized in Table. I, where
it is evident that the proposed FG-EKS achieves superior
performance across different models, demonstrating its high
robustness.

Table I Average root mean square error (m) of tracking vs. standard
deviation of DOA

𝜎𝜙 (◦) 1 5 15 20 25

CV EKS 0.15 0.51 1.32 3.58 8.56
EKF 0.47 1.56 3.78 8.99 17.11

CA EKS 0.18 0.63 1.45 4.13 12.36
EKF 0.83 1.75 4.15 11.46 20.78

CTRV EKS 0.66 1.55 4.46 9.89 15.20
EKF 1.40 3.46 8.85 16.66 28.92

5. Conclusion

In this paper, we have proposed a novel trajectory tracking
algorithm for high-mobility targets using an EKS-based FG.
This approach addresses limitations of traditional tracking
methods by leveraging EKS’s robust estimation capabili-
ties within a probabilistic FG framework. We have evalu-
ated our method through extensive simulations of various
motion models, including CV, CA, and CTRV. The results
demonstrate that the FG-EKS algorithm significantly im-
proves tracking accuracy and robustness. The results high-
light the method’s effectiveness in mitigating prediction er-
rors associated with nonlinear and high-speed trajectories,
making it a promising solution for diverse applications.
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