JAIST Repository
https://dspace.jaist.ac.jp/

Realistic Pentesting Training Framework for

Title Reinforcement Learning Agents
Author(s) Nguyen, Huynh Phuong Thanh
Citation

Issue Date 2024-09

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/19357
Rights

o Supervisor: BEURAN, Razvan Florin, 5& i El 4 i
Description

ZeRL, Bt (I HmAHT)

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Master’s Thesis

Realistic Pentesting Training Framework for
Reinforcement Learning Agents

2210406 NGUYEN Huynh Phuong Thanh

Supervisor: Associate Professor BEURAN Razvan

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology
(Information Science)

September, 2024

Acknowledgment
“When you want to give up, remember why you started.”

Words cannot express my gratitude to my supervisor, Associate Professor
Beuran Razvan, for warmly welcoming me to the Cybersecurity Laboratory
and for his invaluable patience and feedback. These have helped me become
a better version of myself day by day. I am thankful for his belief in me, the
opportunity he provided, and for accepting me as a Master’s student even
though I had no background in network security and was a recent undergrad-
uate. I appreciate being diligently guided in conducting research, identifying
and solving problems, and exploring new insights through scientific publica-
tions. His deep commitment to his students and valuable guidance motivates
me to persist in my research endeavors, even when faced with difficulties.

I sincerely thank Prof. Tan, my second supervisor, and Prof. Shinoda,
Assoc. Prof. Lim, and Assoc. Prof. Uda, who are my defense examiners. I
could not undertake this journey without them, as they generously provided
valuable expertise and suggestions. I am deeply indebted to my minor re-
search supervisor, Prof. Sakti, for advising me on completing my research
in the speech field. Her guidance and support have given me new research
directions and helped with the presentation of my research publication.

I had the pleasure of collaborating with KDDI Research, Inc. Their
valuable comments and suggestions and their support in writing papers sig-
nificantly improved and completed my research work.

Many thanks to all sections of JAIST for their support in documentation
work and consultancy. I am also grateful for the tuition fee reduction and
scholarship for financial support from JAIST. I could not have completed my
research work well without their help.

I'd like to acknowledge my previous advisor, Assoc. Prof. Kha Tu Huynh,
and my senior, Dr. Duy Tan Le, at IU VNU-HCM University, for introducing
me and allowing me to become a Master’s student at the Cybersecurity
Laboratory. These changes have changed my mind about research work
and research environments. I extend my thanks to all lab members and my
friends, who were warm and caring throughout my time here. My life in
Japan and JAIST would not be memorable and meaningful without them.

Lastly, I would be remiss not to mention my family for their constant
motivation and encouragement. Their belief in me has kept my strength
high throughout this process. I also thank myself for continuing to move
forward and never giving up, even facing challenges, mistakes, and failures
during this journey. As this unforgettable Master’s journey concludes, a new
chapter in my research journey begins.

Abstract

Penetration testing, or pentesting, refers to assessing and enhancing network
system security by trying to identify and exploit any existing vulnerabili-
ties. This is one of the critical methods widely used by organizations to
strengthen their defenses against malicious attacks. The pentester executed
an authorized attack on the network systems to gain administrator permis-
sions, allowing them to evaluate overall security characteristics. However,
traditional manual pentesting raises several challenges and becomes ineffec-
tive due to its time-consuming nature and the need for technical security
skills. With modern network systems becoming more complex and threats
increasingly sophisticated, manual pentesting can not adapt slowly.

Applying Artificial Intelligence (AI) techniques to the cybersecurity do-
main is proposed to solve this problem and enable the automation of pen-
testing procedures. Reinforcement Learning (RL) was created as an Al opti-
mization technique to produce an attack policy that learns the best strategy
through environmental interaction. Due to this learn-via-interaction mech-
anism, it has recently become an effective method for creating autonomous
pentesting agents. These agents are trained to replicate the actions of hu-
mans with enhanced speed, scale, precision, and automation. Many pro-
posed approaches involve using simulation environments to train pentesting
RL agents. The main advantages of these studies are their speed, low re-
source consumption, and ease of design, making them a potential solution to
shift from manual to automated procedures.

However, due to the logical modeling of attack actions and observations,
there is a heavy reliance on predefined constants and probabilistic values
for agent actions and environment states. This can lead to inaccuracies in
replicating real-world behavior due to unexpected factors, decreasing agent
accuracy and performance. Additionally, the simulated network may not
accurately represent the configuration and topology of an actual network.
Thus, simulation environments for training RL pentesting agents present
challenges when deploying them in actual network infrastructure due to the
lack of realism in the simulation-trained agents.

We propose PenGym, a framework for training pentesting RL agents in
realistic environments, to address this issue. The most significant features of
PenGym are its support for real pentesting actions, full automation of the
network environment creation, and good execution performance. PenGym

covers network discovery and host-based exploitation actions that are avail-
able to train, test, and validate RL agents in an emulated network envi-
ronment. Compared to typical simulation-based agent training, the main
advantage is that PenGym can execute actual actions in a real network en-
vironment while providing a reasonable training time. We conducted several
experiments to demonstrate the effectiveness of using PenGym as a realistic
training environment compared to a simulation approach (NASim).

For the smallest scenario, agents trained in both simulation and emula-
tion environments achieved equivalent results with minor differences. For
the mid-size scenario, simulation-related limitations occurred. Although the
agents trained in the NASim environment performed well in the simulation
environment, they were ineffective when tested in the emulation environ-
ment, showing high variation and large attack step counts. In contrast, after
fixing logical modeling issues in the simulation to create the revised version
called NASim(rev.), testing results were comparable to PenGym in both the
simulation and emulation environments.

For the largest scenario, the effectiveness of the PenGym approach is
emphasized. Agents trained in the original NASim environment behaved
poorly when tested in a realistic environment, having a high failure rate.
In contrast, agents trained in PenGym successfully reached the pentesting
goal in all our trials. Even though NASim(rev.) was revised with a more
accurate model, experiment results with the largest scenario indicated that
agents trained in PenGym slightly outperformed and were more stable than
those trained in NASim(rev.). Thus, the average number of step differences
required to reach the pentesting goal ranged from 1.4 to 8, which is better for
PenGym. Consequently, PenGym provides a reliable and realistic training
environment for pentesting RL agents, eliminating the need to model agent
actions via simulation. This finding justifies the use of realistic environments
for creating and training RL agents for pentesting purposes.

Regarding time performance, due to the actual action execution on the
cyber range, PenGym requires more training time than simulation environ-
ments. However, it provides a reasonable training time in more complex
scenarios while preserving realism and feasibility as real networks become
more sophisticated. In particular, for the most complicated scenario and
most intricate RL algorithm, PenGym training takes around 17,000 s com-
pared to 14,000 s in NASim, with a ratio of roughly 1.2.

Future work involves proposing a realistic automatic scenario generator
to assist in constructing a realistic pentesting scenario for training RL agents.

Keywords: Penetration Testing, Reinforcement Learning, Agent Train-
ing Environment, Realistic Environment, Cyber Range, Cybersecurity

Contents

1 Introduction

1.1 Traditional Pentesting
1.2 Reinforcement Learning for Pentesting
1.3 Problem Statement
1.4 Contributions L
1.5 Thesis Structure.

2 Background
2.1 Pentesting Mechanisms and RL Overview
2.2 Motivation

3 Literature Review

3.1 Pentesting and Related Tools
3.2 RL Training Environments
3.2.1 Simulation Environments
3.2.2 Emulation Environments
3.3 Cyber Range Creation for Pentesting

4 PenGym Framework

4.1 PenGym Overview,
4.2 Action Implementation
4.2.1 Service Scan
422 OSScan
423 Subnet Scano
424 Exploit.
425 ProcessScan
4.2.6 Privilege Escalation
4.3 Action Optimizations
4.3.1 Single Action Optimization
4.3.2 Training Time Optimization
4.4 Cyber Range Creation

4.4.1 Cyber Range Composition 31

4.4.2 Cyber Range Description Generation 32

4.4.3 Bridge Functionality 33

5 Functionality Validation 35
5.1 Action Implementation Validation 35
5.1.1 Service Scan 35

5.1.2 OSScan 36

5.1.3 Subnet Scan oL 37

514 Exploit. 37

5.1.5 Process Scan 37

5.1.6 Privilege Escalation 38

5.2 Cyber Range Creation Validation 38
5.2.1 Configuration Validation 38

5.2.2 Creation Time 39

6 Experiment Results 40
6.1 Experiment Scenarios 40
6.1.1 Tiny Scenario 41

6.1.2 Small Scenario L. 41

6.1.3 Medium Scenario 42

6.2 Preliminary Experiments L. 43
6.3 Detailed Experiments 46
6.3.1 Agent Training 46

6.3.2 Agent Testing L. 48

7 Discussion 53
7.1 Comparative Analysis of Simulation and Emulation Approaches 53
7.1.1 Host Configuration 53

7.1.2 Actions 55

7.1.3 Observations, 56

7.2 Simulation Modeling Issues 56
7.2.1 Firewall Functionality Issue 56

7.2.2 Scan Action Issue L. 57

7.2.3 Remote Action Issue 58

8 Conclusion 59
81 Summary 59

8.2

Future Work 60

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3

6.1

6.2

6.3

6.4

6.5

7.1
7.2
7.3

Pentesting execution process in practice. 6
Application of RL in pentesting procedure. 7
Limitations of using a simulation environment. 8
Overview of PenGym architecture. 16
Flowchart of the training time optimization mechanism. 29
Processing flow of the CyRIS cyber range description file gen-

eration module. 33

Cyber range constructed in PenGym based on the tiny scenario

in NASim. 42
Cyber range constructed in PenGym based on the small-linear
scenario in NASim. oL 43
Cyber range constructed in PenGym based on the medium-
multi-site scenario in NASim. 44

Average training reward versus episode number for the QLearn-

ing and QLearning Replay agents trained in the NASim, NASim(rev.),
and PenGym environments for the three representative exper-

iment scenarios. L. 49
Average number of attack steps for the trained QLearning

and QLearning Replay agents when tested in the NASim" and
PenGym environments for the three representative experiment
scenarios (NASim" refers to either NASim or NASim(rev.),

depending on the simulator variant used for training). 50
Visualization of the firewall functionality issue. 57
Visualization of the scan action issue. o7
Visualization of the remote action issue. 58

List of Tables

3.1

4.1

4.2

4.3

4.4

5.1

5.2

6.1
6.2

6.3

7.1

Comparison of related frameworks from abstraction level and
environment feature perspectives. 10

Comparison of action implementation mechanisms between

NASim and PenGym environment 19
Summary of the methods and Metasploit modules used for the

PenGym action space implementation. 20
Summary of the implementation and validation of action op-

timization techniques. L. 27
Description of the parameters used to specify the composition

of a cyber range in PenGym. 32
Action validations between NASim and PenGym 36
Cyber range creation time for all scenarios 39
Overview of all the experiment scenarios in PenGym. 41

Results of preliminary experiments conducted for all the avail-
able scenarios (NASim” refers to either NASim or NASim(rev.),
according to the simulator variant used for training). 45
Detailed experiment results for the QLearning and QLearning
Replay agents trained and tested in the NASim, NASim(rev.)
and PenGym environments using the medium-multi-site scenario. 51

Summary of the differences between the PenGym and NASim
environments. oL Lo o4

List of Algorithms

0 O Ul W

Service Scan Action 21
OS Scan Action 22
Subnet Scan Action 23
Exploit Action 24
Process Scan Action 25
Privilege Escalation Action 26
Training Time Optimization 30

Bridge Functionality 34

Chapter 1

Introduction

The development of the interconnected digital world, where the Internet is
central, has changed how businesses, governments, and individuals operate,
leading to significant economic and social benefits [1]. This has enhanced
communication and created more opportunities for cybercriminals to launch
attacks to steal sensitive data. These attacks can range from massive state-
sponsored attempts to disrupt events like the US election to simple attacks
on individuals to gain passwords or credit card details for monetary gain
[2, 3]. As more people rely on globally connected computer systems, securing
these systems against malicious attacks is becoming increasingly important
[4]. Ensuring the security of network systems and infrastructure is a critical
aspect of cybersecurity [5, 6]. An effective method and technologies are
needed to secure computer systems against these threats.

1.1 Traditional Pentesting

Penetration testing, or pentesting, is widely considered to be the most ef-
fective method for evaluating network security [7]. This approach involves
authorized network attacks on computer systems to identify vulnerabilities
that could be exploited by an attacker and assess their overall security char-
acteristics [8, 9]. However, traditional pentesting, which is conducted man-
ually, poses several challenges, as it has high demands in terms of time and
technique security skills. This high cost will become a big challenge as dig-
ital systems grow larger and more complex, causing a demand for security
professionals that is not being met immediately.

Given the lack of skilled resources and the necessity for pentesting in
network security, several tools have been developed to assist pentesters and
improve their efficiency. They include network and vulnerability scanners,

as well as libraries of known security vulnerabilities. One of the most pop-
ular tools is the open-source Metasploit framework [10]. The Metasploit
framework contains a rich library of known system vulnerability exploits and
other useful tools, such as scanners for information gathering on a target.
Pentesters can focus on finding vulnerabilities and selecting exploits rather
than manually developing them. This enables faster work and makes security
assessment more accessible to non-experts [11].

1.2 Reinforcement Learning for Pentesting

Nowadays, due to the inability to conduct manual pentesting in complicated
networks, Artificial Intelligence (AI) is used to achieve efficient and reliable
pentesting techniques to automate the process. The original concept for this
took the form of “attack graphs”, which modeled an existing computer net-
work as a graph of connected computers. Attacks can then be simulated on
the network using known vulnerabilities and exploits [12]. Attack graphs can
effectively identify possible ways to breach a system. However, using these
graphs requires complete knowledge of the system, which is unrealistic from a
real-world point of view of attackers. Additionally, the manual construction
of the attack graph for each system being assessed is required.

Recently, Reinforcement Learning (RL) [13] appeared as a promising so-
lution to bridge this gap by automating pentesting. The use of RL gained lots
of attention in recent years with its success in producing World Go champion-
beating agents [14]. Although it is not as widely applied as other supervised
machine learning approaches, it has been successfully used in several realistic
robotics tasks [15]. RL pentesting agents are designed to mimic the actions
of human pentesters but with enhanced speed, scale, and precision. This
is achieved by enabling the RL agents to navigate complex network envi-
ronments, detect vulnerabilities, and exploit them to evaluate security risks.
Fundamentally, through a process of trial and error, the RL agents learn to
optimize their actions by adapting to various environment challenges [16].

1.3 Problem Statement

Regarding the application of RL techniques to enhance the pentesting pro-
cess, many simulation environments have been introduced to train RL agents
to automate these tasks. These environments utilize logical modeling for both
the agents and network environments. Simulators provide an in-memory ab-
straction of processes in real computer networks, making them faster and

easier to use. However, their heavy reliance on predefined constants and
probabilistic values for agent actions and environment states leads to poten-
tial inaccuracies in replicating real-world behavior due to unexpected factors,
decreasing agent accuracy and performance. For example, the authors of Cy-
berBattleSim themselves argue that their framework is too simplistic to be
used in the real world [17]. This means that agent performance may suffer
when used with real networks due to the differences with the simulated en-
vironment. In particular, the translation of simulated actions (e.g., exploits,
privilege escalation) to real actions is not trivial. Additionally, the simulated
network may not accurately represent the configuration and topology of an
actual network. As a result, creating and operating realistic environments
for the training of pentesting Al agents is crucial.

1.4 Contributions

In this research, we present an effective and reliable realistic training frame-
work for RL pentesting agents, named PenGym. It enables RL agents to
execute actual actions on hosts in a network environment (a.k.a cyber range)
dedicated to agent training. Thus, it eliminates the need to model agent ac-
tions via execution assumptions and success probability. The applicability of
PenGym was shown in several perspectives, as follows: i) Support for various
complex pentesting scenarios; (ii) Full automation of cyber range creation by
leveraging the tools presented in [18]; (iii) Improved execution performance
by applying optimization mechanisms to minimize the execution time for
each action, as well as the training time. Moreover, several experiments
with more complex and challenging pentesting scenarios were conducted to
demonstrate the usefulness and effectiveness of using PenGym compared to
simulation, particularly the simulation environment named NASim [19].

The realism of PenGym comes from the use of real actions in the action
space, and the use of a real network, including actual hosts created using
KVM technology. These hosts contain actual services, processes, operating
systems, and vulnerabilities. The actions can be executed on these hosts to
obtain interactive shell objects. We aim to achieve a realistic RL training
environment with these real characteristics to deploy the trained agents in
actual infrastructure.

Using PenGym, security researchers and practitioners can train RL agents
to perform pentesting tasks in a safe and controlled environment, thus ob-
taining more realistic results than simulation but without the risks associated
with real network pentesting. By providing the environment for executing
actions, the framework assists in evaluating and comparing the effectiveness

of various pentesting RL techniques in real network environments.
Our contributions cover a wide variety of aspects, as summarized below:

1. Discuss the advantages and motivations of using RL techniques for
pentesting purposes and a realistic training environment approach for
pentesting agents, as opposed to simulation (Chapter 2)

2. Present the design and implementation of PenGym, with a particular
focus on the action implementation that represents its key feature,
action execution and training time optimization, and automated cyber
range creation (Chapter 4)

3. Validate PenGym functionality and cyber range creation in various
pentesting scenarios (Chapter 5).

4. Present set of experiments that demonstrate the effectiveness of us-
ing PenGym compared to NASim in different complicated pentesting
scenarios (Chapter 6)

5. Propose a revision of NASim, named NASim(rev.), that fixes all the
unrealistic modeling issues that we identified (Chapter 7)

1.5 Thesis Structure

This thesis is organized as follows. Chapter 2 provides the background of
pentesting mechanisms, an overview of RL, and the application of RL in
the pentesting area. This chapter also clarifies the motivation for using RL
and a realistic environment for pentesting. Chapter 3 covers related works
regarding pentesting and assisting tools and training environments for RL,
especially simulation and emulation approaches, with a detailed comparison
to our proposed approach. Moreover, the cyber range creation process for
pentesting preparation in existing studies is included. Chapter 4 introduces
our framework, PenGym, with a detailed description of action implementa-
tion, performance optimization, and automated cyber range creation. The
functionality validation and full-scale experiment results are presented in
Chapters 5 and 6, respectively. Chapter 7 provides a comparative analysis
between simulation and emulation approaches, pointing out the modeling
issues within the simulation environment and presenting our solution. The
thesis ends with a conclusion and references.

Chapter 2

Background

This chapter discusses the background of pentesting mechanisms and pro-
vides an overview of the RL technique. It clarifies the relationship between
RL and the pentesting process. This also mentions the advantages and moti-
vation of using a realistic training environment to train RL pentesting agents.

2.1 Pentesting Mechanisms and RL Overview

From a practical perspective, pentesting is a multi-stage process that de-
mands high competence and technical expertise due to the complexity of
computer networks [20]. As illustrated in Figure 2.1, a pentester needs to
gather information about the target system and determine the type of attack
to execute. The target system then responds to its attack action. After that,
the pentester analyzes this response to choose an appropriate next step. This
continues until testing is completed and a report is created.

As alluded to earlier, pentesting is a process that relies on learning from
the current state or observation of an action to decide the next step. Without
previous experience, a brute force or random approach is used to explore
all possible testing methods for the system. However, this approach can
become overwhelming as the network grows in complexity and size, making
it impossible for the real infrastructures.

Cybersecurity researchers have recently identified the need for an intel-
ligent pentesting framework to support human experts by handling high-
demand tasks, including information gathering, vulnerability assessment, and
exploitation [21, 22]. RL is considered a promising approach in this area, as
it allows an automated pentesting system to operate and gain skills gradu-
ally, similar to a real tester. Moreover, RL algorithms have been proven to
work well for cybersecurity [23]. In particular, RL agents can leverage their

A&

Pentester InPormation

. Attock
é;o(the_rmg Generation
||| = - o7
— ol 7

Re,por‘t Data
Av\alt/sis

Figure 2.1: Pentesting execution process in practice.

exploration capabilities to discover previously unknown attack scenarios.

Theoretically, an RL agent interacts with its environment by performing
actions and observing the results. Each action results in positive or negative
feedback, depending on its outcome. Through trial and error, the agent learns
an optimal policy to solve sequential decision-making problems [13]. This
process starts with an initial, typically random, policy. It then iteratively
learns the values of taking certain actions in given states, (s,a). This is
done by choosing an action based on the current policy, applying that action
to the environment, and then updating the state-action value, Q(s, a), based
on the received experience.

Figure 2.2 displays the procedure of using RL for pentesting. An RL
agent interacts with a training environment over time. At each time step t,
the agent receives a state s(t) in a state space S that details the environment,
such as network topology, host configuration, etc. It then selects an action
a(t) from an action space A, according to a learning policy that maps the
state s(t) to an action a(t). After acting, the agent receives a r(t) reward and
transitions to the next state s(t+1). The reward r(¢) is based on the quality
of the results from the action. The agent aims to optimize the learning policy
by selecting the most suitable action at each step to achieve its objective,
which is for pentesting purposes to gain unauthorized access to the system.

(~ ™)
?

a Action Selection Policy
_ Learning Algorithm

_ Aﬁe’"tj Reward

Action <)
o(t)

Stote

r 'T'r'odning Environment) e s(t)

L

Figure 2.2: Application of RL in pentesting procedure.

2.2 Motivation

Several simulation frameworks have been proposed in recent years to create
a training environment for RL pentesting agents. However, they may en-
counter functional issues caused by the modeling of agent actions and the
required environment state. Figure 2.3 visualizes the potential limitations of
using a simulation environment for training pentesting RL agents. The simu-
lation environment attempts to model network characteristics and mimic real
actions and observations by checking several logical conditions. Training the
pentest agent in this environment poses high risks when deploying in a re-
alistic setting. The root cause is the difficulty and complexity of accurately
modeling a realistic network and real action behaviors.

The specific issues that we have identified for NASim [19], which is one
of the most recent environments of this type, will be described in detail in
Chapter 7. These problems indicate that the logic in NASim is incorrect
for some actions, and the simulation mechanisms do not cover all situations,
such as the lack of firewalls in some attacks. Several niche conditions may
arise in more complex pentesting scenarios that reflect real-world networks.
Handling these conditions efficiently with a list of condition statements is
not always possible. This highlights the need for a realistic environment
for training pentesting RL agents where observations are derived from real
actions executed in an actual cyber range.

Ky
Logical
Action

S/mulate
Action

Slmulate a\
Resu/t

Logical

Observation

Checking
logic conditions
A Simulation Environment

: It’s hard to model correctly a
complex real network

Agent

Real
Action

(:m Execute
~_~ Action 'i%ﬁ:,‘,

Conversion

Real Network

Observation
Analysis

Realistic Environment

The pentest RL agent trained in a simulation environment

cannot work well when deployed in a real network

Figure 2.3: Limitations of using a simulation environment.

Furthermore, preparing the training environment in existing frameworks
presents challenges due to the manual cyber range creation inside this envi-
ronment. Creating complex networks involving numerous hosts with multiple
services or processes is time-consuming and difficult. This issue motivated

us to automate the creation of the cyber range.

Chapter 3

Literature Review

A growing number of research works have been published on automated pen-
testing topics by creating a training environment for RL pentesting agents.
The use of RL to support the development of autonomous intelligent pentest-
ing agents has become increasingly popular and efficient. Moreover, recent
studies have explored the design and implementation of cyber range environ-
ments for conducting cyber attack simulations and for training RL agents
in tasks such as intrusion detection, malware analysis, and penetration test-
ing. Table 3.1 provides a summary of the most representative studies in this
context and their characteristics when compared to PenGym.

All approaches are compared based on their abstraction level and execu-
tion environment features. Regarding the abstraction level, simulation-based
approaches use a simulation environment to execute actions. In these ap-
proaches, actions are modeled by checking several required conditions and
returning success if all the conditions are met [19]. On the other hand, em-
ulation environments require actual hosts, an actual network topology, and
agents that execute real actions on those hosts [24]. When considering execu-
tion environment features, the configurable elements are used for comparison,
including features such as firewalls and host actions.

This chapter provides an overview of recent studies related to pentesting
techniques and associated tools. The related works on RL training envi-
ronments are discussed in detail, covering both simulation and emulation
approaches, along with their advantages and limitations. Moreover, the pro-
cess of creating a cyber range for pentesting is also included.

Comparison of related frameworks from abstraction level and

Table 3.1:

environment feature perspectives.

TOIYR[RIST 930[IALL]

syoydxy

(uag adLAIRG ‘TRIG S8001]

‘eag §()) Suruuedg IS0

Sumeg yroMpN

~

S[[emaIL]

§AUNIDI] JUIWUOLINUL

uoryeytofdxy] poseq-ioa3N

~

~

~

noryeyofdxy peseq-150g

Ty 10j pousisa

SUOTYRAIaS(() [83Y]

e s

STOTY 89y

A3ojodo, yiomjaN [eay

D i e B e B

e i

e i

e o

SJ90] T80}

R i B B B I A

R e B i B I A

e o e N

D o i e i i

poseg] Torye[Ig

1900T UOYIDLSQY

wAnUsJ

[1¢]
NUWISYN

l61]
wmgyN

log]
ANVTIVA

1] sa0
JOSOIOI[

izd
JIRLY)

[8¢] vy
Ayunoag jrewg

13]
AXVTVD

[og]
TMVHE

fxd
PII0M [[eUg

10

3.1 Pentesting and Related Tools

Pentesting has existed for more than four decades and has become a critical
process in the development life cycle from a system security perspective [32].
It involves performing an authorized and controlled attack on the network to
evaluate its security posture. The process begins with information gathering,
aiming to find vulnerabilities in the network and then exploiting them. This
is repeated using the newly gained access until the target is reached [11].
Specifically, the information-gathering step typically uses tools such as port
scanning and OS detection to collect system information. It can determine
potential vulnerabilities that can be exploited. Then, the pentester executes
an exploit action that takes advantage of the discovered vulnerabilities, caus-
ing unintended behavior in the system aimed at compromising the target and
gaining privileged access to it. Even though the systems and networks eval-
uated using pentesting can differ significantly, the same general steps are
followed in each case. This has allowed the development of various tools and
frameworks to make pentesting more efficient.

Network scanner techniques are used to find useful information about the
network, with the best-known tool being Nmap [33, 34]. It provides several
functions to detect the OS, open ports, and services currently running on
the system. The Metasploit framework launches exploits, enabling tactical
operations rather than technical tasks. This automation increases efficiency
during pentesting. The tools available to pentesters have significantly im-
proved efficiency but still require considerable expertise and execution time.

3.2 RL Training Environments

Several frameworks have been developed for various pentesting purposes.
SmallWorld [25] and BRAWL [26] utilize cloud-based infrastructure and vir-
tualization technologies to create realistic scenarios for teaching and learning
in security-related areas. Another study focused on designing a pentesting
training environment. For instance, GALAXY [27] was proposed as an emu-
lated cybersecurity environment for training red agents to blend with regular
user traffic using evolutionary algorithms. However, these frameworks lack
RL capabilities, essential for creating intelligent pentesting agents. Although
some Al-assisted pentesting training environments have been introduced,
such as those in [28, 35], they primarily focus on host-based exploitation
and offer a limited range of goals and actions. In 2018, a training environ-
ment for network penetration testers based on a Partially Observable Markov
Decision Process (POMDP) was proposed [22]. Still, the details about the

11

environment and RL training were not mentioned.

The research works related to pentesting frameworks include environ-
ments for security education (SmallWorld, BRAWL), as well as pentesting
training environments using Al assistants and Markov decision processes.
However, these frameworks lack detailed information on the RL training en-
vironment and have limited actions and scenarios. Simulation and emulation
have emerged as the primary approaches for designing training environments
where RL-based agents can automatically carry out attacks and enhance
their learning algorithms.

3.2.1 Simulation Environments

Recently, RL methods to train automatic pentesting agents have become in-
creasingly popular among researchers. There has been a rise in the simulation
of pentesting environments for training and testing RL agents.

Network Attack Simulator (NASim) [19] proposed an RL agent train-
ing approach for network-wide penetration tests using the API of OpenAl
Gym [36]. Using abstractions modeled with a finite state machine, NASim
represents networks and cyber assets, including hosts, devices, subnets, fire-
walls, services, and applications. The simplified action space includes net-
work and host discovery, service exploitation for each configured service vul-
nerability, and privilege escalation for each hackable process running in the
network. The agent can simulate a simplified kill chain through discov-
ery, privilege escalation, and service exploits across the network. However,
NASim assumes that the simulated actions must satisfy various predefined
conditions and uses probabilities to determine their success. While NASim
contributes a comprehensive perspective on real-world pentesting environ-
ments, such as network characteristics and host configuration, it also leads
to a reality gap due to its assumptions about pentesting actions. The success
or failure of the action spaces is determined by various predefined conditions
and probability factors.

Microsoft released CyberBattleSim (CBS) [17], an open-source RL agent
network training environment built using the OpenAl Gym API. It is de-
signed to train a ‘red agent’ that focuses on the lateral movement phase of
a cyberattack in a simulated fixed network with predefined configured vul-
nerabilities. However, the authors have noted that due to its highly abstract
nature, CBS cannot be directly applied to real-world systems.

Regarding the simulation-based approach, given NASim as an example,
highlighting in Chapter 2, the use of simulation logical actions could lead to
unexpected issues, resulting in unrealistic results and affecting the applica-
bility of the agent in real-world networks. This is particularly evident when

12

dealing with complex scenarios that require numerous logical conditions.

3.2.2 Emulation Environments

Researchers have started studying an emulation approach to design a real-
istic RL-based network environment to overcome the limitations of using a
simulation environment for training pentesting RL agents. It enables the
ability to execute actual actions on real hosts, and the results are obtained
based on how these hosts respond to the actions.

CyGIL [24] is an experimental testbed for emulated RL training that in-
cludes both network-level and host-level action space. It uses a stateless en-
vironment architecture and executes actions through the MITRE ATT&CK
framework. While CyGIL employs real hosts and real actions, it omits the
network traffic rules. Furthermore, it skips discovery phases in the pentesting
process, such as host scanning. This can result in an unrealistic reflection
of real-world conditions, where a service should be explored before executing
service-based exploit actions.

Another framework, called CybORG [29], has been developed as a train-
ing platform for autonomous RL decision-making agents in adversarial sce-
narios. It provides simulation and emulation environments for training and
testing agents. CybORG primarily focuses on developing an autonomous
pentesting agent using RL and host-based exploitation. However, it does not
consider network traffic discovery or connections between subnets. Further-
more, only the defense agent uses the RL method to learn attack strategies,
while the attack agent follows a predefined attack flow.

The FARLAND framework [30] is another promising approach designed
for training agents via simulation and testing agents via emulation. It pro-
vides attack and defense agents with traditional and deception actions, which
can mislead the opposing agent and reduce its performance. Moreover, it
offers functionality such as probabilistic state representations and support
for adversarial red agents. However, rather than RL algorithms, red agents
determine future actions through a probabilistic program. Moreover, FAR-
LAND emphasizes network-based discovery over host-based exploitation.

Recently, NASimEmu [31] was introduced as the latest realistic frame-
work for training RL pentesting agents and is based on NASim. This allows
agents to be trained in simulation and then deployed in the emulator, thereby
verifying the realism of the abstraction used. Actual exploits and privilege
escalation actions are implemented in NASimEmu. However, as the authors
stated, process scanning is still unavailable due to the lack of process config-
uration of virtual hosts. Furthermore, firewall rules are also a limitation in
NASimEmu. Although the results show the ability to verify the realism of

13

trained agents in simulation by deploying in emulation, the action space is
still limited and does not accurately reflect the available actions in the orig-
inal NASim environment. The absence of a firewall and the limited actions
potentially affect the experiment results when dealing with more complex
scenarios. The logical conditions may encounter unexpected issues as well.

In summary, all the frameworks mentioned above have their limitations.
Simulation environments designed for autonomous RL pentesting agents have
a fast execution time and require limited resources. However, they contain
modeled elements that may lead to unexpected issues, resulting in unrealistic
results and affecting the applicability of a trained agent on actual networks.
Other environments use an emulation approach to bridge the reality gap of
simulation. Some support only host-based exploitation or network-based dis-
covery actions. Moreover, some systems fail to consider the host configuration
before attempting an attack or do not support external firewalls.

3.3 Cyber Range Creation for Pentesting

Cyber Range is a crucial component of the training environment. It sets
up a network environment with multiple actual hosts connected following
a specific scenario. The services, processes, vulnerabilities, and traffic rules
from this scenario are configured within the Cyber Range, accurately reflect-
ing the network architecture and host configuration of the training scenario.
Previous studies have noted that some frameworks support full virtualization
using KVM, but they lack automatic virtual interfaces and bridge setups
[27, 29]. Some emulated frameworks require pre-built VMs and vulnerable
applications to be built from scratch [25].

In our research, we use CyRIS to enable the automatic creation of the net-
work environment. CyRIS, known for facilitating the automatic creation of
network environments using KVM technology, covers both host configuration
and network connection. Bridges and virtual interfaces can be created via
CyRIS. A generation module is developed to connect CyRIS and PenGym,
which provides mechanisms to convert the pentesting scenario into a CyRIS
description for cyber range creation.

Considering the limitations of NASim and inspiration from emulation
approaches, we developed PenGym as an effective and realistic pentesting
training framework for RL agents. It provides network exploration and host-
based exploitation actions, all of which are conducted in the real environment.
The capability of using realistic environments for training pentesting RL
agents is demonstrated through various network scenarios. Moreover, CyRIS
was integrated with PenGym to automate the cyber range creation process.

14

Chapter 4

PenGym Framework

This chapter introduces the architecture and workflow of PenGym, along with
a typical cycle of training or testing an RL pentesting agent. We detail the
implementation of the entire action space, from both theoretical and technical
perspectives. Additionally, we propose optimization mechanisms to minimize
the time of action execution and the RL agent training process. The module
implementation for automated cyber range creation is also described.

4.1 PenGym Overview

PenGym is a framework for creating and managing realistic environments
aimed at training RL Al agents for pentesting purposes. It provides a net-
work environment that supports various pentesting tasks, including scan,
exploit, and privilege escalation actions, allowing RL agents to learn action
selection strategies through interaction experiences. PenGym uses the same
API with the OpenAl Gymnasium (formerly Gym) [36] library, thus making
it possible to employ it with all the RL agents that follow those specifica-
tions. An overview of PenGym is shown in Figure 4.1, which consists of
two main components: a training environment and the Cyber Range. In
the training environment, the Action/State Module serves as a core element
in communication between the agents and the environment. The automatic
Cyber Range creation mechanism is integrated into PenGym using CyRIS.
In this paper, NASim scenario files are utilized for the training environment
and Cyber Range preparation.

The Action/State Module provides a range of actions that are operated
on actual hosts, reflecting the pentesting in conditions similar to real-world
scenarios. It is responsible for handling action execution and observation
between agents and the environment, which has two main functionalities:

15

Action |, State

Agent /¢

" Reward

Action/State Module

action state

Scenario file

|
I
|
|
|
I
I Convert Interpret
— : wion Lo & Ovberrange X 4
|
I
|
|
|
I
I

% Environment
S|
CyRIS —
description p— CyRIS
conversion —
I Description file PenGym

Figure 4.1: Overview of PenGym architecture.

e Convert the logical actions generated by the RL agent into executable

realistic actions that are executed in the Cyber Range (an actual net-
work environment used for cybersecurity training purposes).

e Interpret the actual results of the actions, then return the environment

state and the reward to the agent, allowing for further learning.

The Cyber Range is created by leveraging CyRIS functionality. PenGym
converts a scenario file into a CyRIS description file using a conversion mod-

ule.

Then, CyRIS automatically creates the Cyber Range based on this

description. The architecture of a Cyber Range is determined based on the
content of this scenario file to build an equivalent environment in PenGym.
A typical cycle of training or testing of an autonomous agent includes:

(1)
(i)

(iii)

(iv)

PenGym resets the environment to get the start state

The RL agent chooses an action from the available space, using the
current state and an algorithm suited to its learning objectives

PenGym converts this logical action from the RL agent into an exe-
cutable real action, which is then executed in the Cyber Range envi-
ronment setup using KVM virtual machines

PenGym interprets the actual observations, such as the status of avail-
able services, along with the new state of the environment, and sends
back to the agent

16

(v) The RL agent utilizes the acquired state information and the corre-
sponding reward to refine and enhance the underlying algorithm, ulti-
mately fostering the agent learning and optimization process.

(vi) The agent selects the next appropriate action until the goal is reached
or the step limit is exceeded, based on the updated learning policy

This complete cycle would be a single episode, and an agent would then
reset the environment and repeat this for as many episodes as desired.

In PenGym, rewards are predefined in the scenario file, including the
rewards for target hosts and each action. The reward for each action is de-
termined by the complexity score generated by the Common Vulnerability
Scoring System (CVSS). This score reflects the difficulty of finding an ex-
ploitable machine, the probability of success, and the skill required to use a
given exploit [37]. The total reward is the value of all exploited machines
minus the cost of actions performed.

The agents receive the rewards and update their learning algorithm to
optimize strategies for the next action. Thus, if no machine is compromised,
the reward is simply the cost of the action performed. With these reward
rules, the goal of the agent is to compromise all target machines on the
network while minimizing the number or cost of actions used. This simulates
a real-world malicious attacker whose assumed goal is to retrieve privileged
information or gain privileged access to the system.

4.2 Action Implementation

In NASim, the action space is a collection of feasible actions that an agent can
execute. This encompasses a range of scan actions, including service scan,
OS scan, process scan, and subnet scan, which allow for identifying potential
vulnerabilities and access points in the network. The purpose of the scan
actions is to imitate the capabilities of the Nmap utility for network discovery,
and security auditing [38], such as providing details about the active services
on every port of a specified host or operating system information.
Additionally, the action space includes an exploit action for each service
and a privilege escalation action for each process. These actions enable the
exploitation of vulnerabilities in a running service or process, leading to unau-
thorized access to the system. In NASim, the success of any exploit action
is determined by checking the reachability of the target host, the availability
of the target service, the permissions of firewall rules, and the predefined
success probability of the action in the description file. The success proba-
bilities of each exploit can be chosen. However, by default, probabilities are

17

randomly sampled from a distribution based on the attack complexity score
distribution of the top 10 most common exploits used in 2017 [39], as stated
in the NASim paper. Privilege escalation, on the other hand, simulates root-
level access to the target host. Overall, the comprehensive action space in
NASim provides a simulation of the tactics and techniques that attackers use
to compromise network security:.

The limitations of using a simulation environment include potential in-
accuracies in replicating real-world behavior due to unexpected factors. Al-
though the result of an action is determined by checking specific conditions
in the description file, it is important to recognize that other factors can also
impact the success of the action. Moreover, the network environment itself
may not be accurately replicated in simulation due to the high complexity of
a realistic system, including the configuration and topology of the network.
Therefore, while simulation can provide valuable insights into network secu-
rity, real-world execution is the only way to determine the effectiveness of
penetration testing agents.

The Action/State Module in PenGym aims to bridge this gap by enabling
the actual execution of RL agent actions in the target cyber range. The
outcome of each action is determined based on the current status of the host
in the network environment, reflecting the realistic conditions of the system.
The actions currently implemented in PenGym cover the entire available
actions of NASim, divided into six categories:

1. Service Scan

2. Operating System (OS) Scan
3. Subnet Scan

4. Exploit

5. Process Scan

6. Privilege Escalation

The real action implementation for Service Scan, OS Scan, and Subnet
Scan is based on the Nmap utility to retrieve information about the services
and operating systems running on each host and the accessible subnets. By
leveraging this information, agents can better understand the overall system
architecture and identify potential vulnerabilities. Specifically, we use the
python-nmap library [40] to control Nmap execution via the Python pro-
gramming language. As for Process Scan, it is implemented by using the ps
command available in Linux operating systems.

18

The Exploit and Privilege Escalation actions are implemented using the
Metasploit pentesting framework [10] to execute the corresponding actions
on the real target hosts. They allow agents to interact with the target virtual
machine and gain escalated access privileges, enabling them to perform more
advanced attacks and compromise the system. In particular, we use the
pymetasploit3 library [41] to control Metasploit execution via Python.

Table 4.1 provides the comparison of action implementation, with dif-
ferences highlighted in bold font and validation results between NASim and
PenGym environments. All actions in NASim are replaced with actual ac-
tions utilizing nmap and metasploit as the main techniques in PenGym.

Table 4.1: Comparison of action implementation mechanisms between
NASim and PenGym environment

‘ Action H NASim Implementation ‘ PenGym Implementation ‘

Check if the host is discovered and Check if the host is discovered and

Service Scan . . .
scan the running services using nmap
Check if the host is discovered and

scan the OS type using nmap

return its configured services

Check if the host is discovered and

OS Scan)
return its configured OS type

Process Scan

Check if the host is compromised and

return its configured processes

Check if the host is compromised and

scan the running processes using ps

Subnet Scan

Check if the host is compromised and

return the connected hosts within

Check if the host is compromised and

scan the connected hosts within

the subnet its subnet using nmap

Check if the host is discovered and

Check if the host is discovered and

Exploit probabilistically update its state execute a corresponding metasploit
to “compromised” module to compromise it
L. Check if the host is compromised and | Check if the host is compromised and
Privilege .
. update the access level of the host execute a corresponding metasploit
Escalation

to ROOT module to gain ROOT access

Table 4.2 summarizes the implementation of all actions, showing for each
of them the method used, the action description, the requirement, and the
acquired access level for host-exploitation actions (i.e., the available user
access permissions after successful exploitation).

4.2.1 Service Scan

Service scan is an essential cybersecurity technique employed to identify the
various services running on a host system. It aims to identify the specific
software applications running on a given machine and other essential details
about each service. For instance, a service scan can help pinpoint which

19

Table 4.2: Summary of the methods and Metasploit modules used for the
PenGym action space implementation.

Method/ Lo Access
Description
Metasploit module Level

Actions

. Scan the running services
service_scan || nmap scan]
of the current machine

Scan the OS type
os_scan nmap scan) N/A
of the current machine
Scan

. . Scan the running processes
Actions | process_scan || ps command line]
of the current machine

Scan the connected hosts within
subnet_scan nmap scan) .
the subnet of the current machine

) Execute a SSH dictionary attack
e_ssh ssh_login [42] USER

to get the user shell

Send the specific bytes on port 21
e ftp vsftpd 234 backdoor [43] to trigger the vsf_sysutil extra() | ROOT
function (CVE-2011-2523 [44])

Exploit an unauthenticated Remote

Command Execution vulnerability

e_http apache normalize_path_rce [45] USER

via the misconfiguration of the
package (CVE-2021-41773 [46])

Exploit the Remote Command

Exploit

Actions])
Execution vulnerability by triggering

e_samba is_known _pipename [47] an arbitrary shared library load ROOT
vulnerability in Samba
(CVE-2017-7494 [48])

Exploit a command injection in the
MAIL FROM field to execute a
e_smtp opensmtpd_mail_from rce [49] ROOT
command as the root user

(CVE-2020-7247 [50])

Exploit a bug in the polkit pkexec
pe_tomcat cve_2021 4034 _pwnkit_lpe_pkexec [51] | binary that relates to how it processes | ROOT
arguments (CVE-2021-4034 [52])
Privilege Exploit a malicious backdoor
Escalation | pe_proftpd proftpd_133c_backdoor [53] that was added to the ProFTPD ROOT

Actions download archive (CVE-2015-3306 [54])

- Create a cron or crontab entry to

pe_cron cron persistence [55] ROOT

execute a payload

ports are open on a machine and which services are listening to those ports.
Additionally, it can aid in detecting potential vulnerabilities in those services.

To implement the Service Scan action, we use the nmap, enabling PenGym
to identify a wide range of services. The service scan will proceed once
PenGym identifies the target host as reachable. This involves scanning the
active services of the target host. PenGym attempts to connect to various
services on the machine to gather data. Upon success, the list of running
services on the target host is returned. By utilizing nmap, PenGym is able to

20

identify a wide range of services, including web servers, email servers, SSH
services, and many others. This allows PenGym to perform a comprehen-
sive analysis of the target system and identify any potential vulnerabilities
that may exist. The pseudocode for the implementation is provided in Al-
gorithm 1. Several arguments are used to obtain necessary information and
minimize the execution time of Nmap, such as -Pn, -n, -T5, -sS, and -sV
explained details in Section 4.3.

Algorithm 1 Service Scan Action

Require: host, nmap, port=False

1: if port exist then

2 result < nmap.scan(host,port,args =‘Pn -n -sS -sV -T5’)
3: else

4: result <— nmap.scan(host,args=‘-Pn -n -sS -sV -T5’)
5. end if

6: service_list <« list()

7. for host in result do

8: existed_ports ¢ get_existed_ports(host)
9: for port in existed_ports do

10: if host [port] [state] is OPEN then

11: service_list.append(service name)
12: end if

13: end for
14: end for

15: Return service_list

4.2.2 0OS Scan

OS scanning is used to identify the operating system running on a target
host. It is a crucial component of pentesting as it can inform decisions
regarding subsequent steps and tools to be used. This functionality works by
sending a series of probes to the target machine and analyzing the responses
to determine the characteristics of the operating system. The accuracy of
the scan results depends on the response from the target machine and the
effectiveness of the probing technique used.

The OS Scan action is also implemented by leveraging the nmap utility.
This is accomplished in a manner similar to the service scan action. Once it

21

is confirmed that the host is reachable, PenGym initiates an OS scan of each
IP address associated with the target host. The output indicates the success
or failure of the action. When the scan is successful, it returns a potential
operating system running on the target host; if the scan fails, it returns
an appropriate failure message. The pseudocode for the implementation is
provided in Algorithm 2. In addition to time-optimization arguments, the
argument -0 is used to activate OS detection.

Algorithm 2 OS Scan Action

Require: host, nmap, port=False

1: if port exist then

2 result < nmap.scan(host,port,args = ‘-Pn -n -0 -T5’
3: else

4: result < nmap.scan(host,args=‘-Pn -n -0 -T5’
5. end if

6: 0os < get_os_name(result)

7. Return os

4.2.3 Subnet Scan

The subnet scan is used to identify the active hosts within a specified net-
work range and determine the potential targets in that subnet. This scan is
useful in scenarios where the attacker wants to identify all the hosts that are
connected to the network or subnet. In PenGym, we used nmap to implement
this action. It sends a ping message to each IP address within the specified
network range of interconnected subnets to identify active neighboring hosts.
First, it checks the permission of the target host to perform a subnet scan.
Once the target host is compromised, PenGym performs an actual scan to
retrieve a list of active hosts within the target host subnet. This list includes
discovered and newly discovered hosts so that new potential targets can be
easily identified. If the execution fails, the system will provide detailed er-
ror messages that will help determine the root cause of the issue. After the
successful completion of a subnet scan, the state of any newly discovered
hosts will be updated to indicate that they are reachable within the network.
Additionally, the state of the subnet connection itself will also be updated
accordingly. The pseudocode for the implementation is provided in Algo-
rithm 3. In addition to the time-optimization arguments, -—-minparallel
and --maxparallel are used to enable the parallel probing of the hosts.

22

Algorithm 3 Subnet Scan Action

Require: subnet, nmap, port=False

1: host_list < list()

2: if port exist then
3: result < nmap.scan(subnet,port,args = ‘-Pn -n -sS -T5
--minparallel 100 --maxparallel 100’)

4: for host in result do

5: if host[‘tcp’] [port] [state] is OPEN then

6: host_list.append(host)

7 end if

8: end for

9: else

10: result — nmap.scan(host,args =‘-Pn -n -sS -T5
—--minparallel 100 --maxparallel 100’)

11: for host in result do

12: if host [status] [state] is UP then

13: host_list.append(host)

14: end if

15: end for
16: end if

17: Return host_list

4.2.4 Exploit

Exploits are techniques for finding and taking advantage of vulnerabilities in
software or systems to gain unauthorized access or perform malicious actions.
A successful exploit will result in the target machine becoming compromised,
and further steps can be performed, such as stealing sensitive data, installing
malware, or taking control of the system. Therefore, exploits are critical
components of the penetration testing process for advancing toward a target.

In PenGym, the exploit action category contains five actions, each corre-
sponding to a different service. Each action attacks the host based on the vul-
nerability of its respective service. They are implemented via pymetasploit3
library. The success of an exploit action is determined by various factors, such
as whether the target machine is reachable, whether the service is present,
and whether the service is blocked by a firewall. First, PenGym checks the
discovered target host and its traffic permissions. If these conditions are not

23

satisfied, a connection error will be returned. It is important to ensure that
the exploit attack is conducted only on the intended target and has all per-
mission for exploitation. Once the target host state is satisfied, the exploit
attack uses the Metasploit module to gain user access to the system.

The shell object and the access level (typically USER) are returned upon
successful completion. This shell object can execute commands to navigate
the file system, and the access level is used to determine what actions are al-
lowed or restricted for the current user. According to the implementation pre-
sented in Algorithm 4, depending on the specific service, the corresponding
module is called with the required parameters to execute the action. For in-
stance, the e_smtp action calls the module smtp/opensmtpd mail from rce
to gain unauthorized access through the vulnerability of the smtp service and
returns a shell object that allows shell command execution.

Algorithm 4 Exploit Action

Require: host, service
1: msfprc < get msfprc_client()
2: shell < check_shell exist()
3: if shell exist then
4 shell < get_existed_shell_of _host()
5: access_level < get_host_access_level(shell)
6
7
8
9

Return shell, access_level
. else
module <— get_exploit module(service)

: result < execute_exploit_module(module, host)
10: end if
11: shell < get_shell(result)

12: access_level < get_host_access_level(shell)
13: Return shell, access_level

4.2.5 Process Scan

Process Scan enables pentesters to conduct a thorough security assessment
by identifying the processes running on a target host. This is done by de-
termining which vulnerabilities can potentially be exploited to gain further
control of the host, such as via privilege escalation techniques. Note that
process scanning requires access to the target host, which is executed after
successfully gaining access to it.

The implementation in PenGym uses the shell object obtained through
the exploit action. This shell object executes the ps command, which gath-

24

ers data about the processes on a host. A list of processes running on the
target host is returned if successful. Before running the process scan, the
system verifies that the host is compromised and the necessary access level
has been achieved. The current access level should equal or exceed the USER
level access required for this scan. PenGym generates a comprehensive and
detailed list of active processes within the target host by executing a process
scan. The results obtained from the process scan function can be leveraged to
identify potential vulnerabilities in the host system and determine the best
approach for gaining root privilege escalation to the target machine. The
pseudocode for the implementation is provided in Algorithm 5.

Algorithm 5 Process Scan Action
1: shell < get_shell from target_host()

if shell exist then
shell.write(‘ps’)
result < shell.read()

process_list < get_process_list(result)
end if

: Return process_list

4.2.6 Privilege Escalation

Privilege escalation is an essential step in pentesting, in which one attempts
to gain administrator (ROOT) access to the target system. By obtaining a
higher access level than that of a regular user, a pentester gains complete
control of the target system and can perform any actions on it. Privilege
escalation is achieved by exploiting specific vulnerabilities or misconfigura-
tions of the system to gain root-level access. Note that privilege escalation
is conducted after successfully gaining regular user access to the target host.

In PenGym, the privilege escalation consists of three actions, each cor-
responding to a different process. Their success depends on several factors,
including the level of access already obtained, the security controls, and the
techniques used to bypass the controls. The privilege escalation action in
PenGym requires checking the required access level and ensuring that the
necessary permissions are in place before running the action. Similar to ex-
ploit actions, the attack module and the following parameters are changed
to be compatible with the specific process. Each module gains unauthorized
access to the target through different vulnerabilities, so the configuration of
each module is adjusted accordingly. For instance, the pe_cron action calls

25

the local/cron_persistence module to attack the target host and gains
root access due to a misconfiguration in the cron process. A shell object
with root access is obtained as the outcome of this action. The pseudocode
of the privilege escalation actions is shown in Algorithm 6.

Algorithm 6 Privilege Escalation Action

Require: host, process
1: msfprc < get msfprc_client()
2: root_shell < check_root_shell exist()
3: if root_shell exists then
4 root_shell < get_root_shell()
5: access_level ¢ get_host_access_level(root_shell)
6 Return root_shell, access_level
7: else
8 shell < get_existed_shell_of _host()
9: module < get_exploit module(process)
10: result < execute_pe module(module, host, shell)
11: end if
12: root_shell < get_shell(result)
13: access_level < get_host_access_level(root_shell)
14: Return root_shell, access_level

We note that, for the PenGym implementation, some logical NASim ac-
tions in the privilege escalation category were replaced with similar actions
due to OS limitations. Thus, the pe_tomcat action in NASim was revised to
use the pkexec package instead of the tomcat package due to the inability
to gain root access directly through a vulnerability in the tomcat process in
recent OSes. Moreover, the pe_daclsvc and pe_schtask Window-based ac-
tions in NASim are replaced with pe_proftpd and pe_cron. This is because
only Linux OS is currently supported in the PenGym cyber range.

4.3 Action Optimizations

This research implemented two optimization mechanisms to enhance execu-
tion performance. The individual action optimization reduces the execution
time for a single action, while the training time optimization aims to mini-
mize total training time by avoiding unnecessary repeated actions.

26

4.3.1 Single Action Optimization

We summarize in Table 4.3 the implementation and validation results of all
individual action optimization techniques.

Table 4.3: Summary of the implementation and validation of action opti-
mization techniques.

. Initial Optimized Optimization
Actions
Execution Time [s] | Execution Time [s] Techniques
service_scan 15.4799 6.6132 | Add ports, arguments:
. os_scan 9.5054 4.5023 | -Pn, -n, -T5
Scan Actions
process_scan 1.0552 1.0552 | --min-parallel
subnet_scan 55.9613 15.3443 | --max-parallel
e_ssh 1.3303 1.3303 | .
Disable the AutoCheck
e_ftp 10.0423 9.1394 o ,
. . attribute in Metasploit
Exploit Actions | e http 20.6608 6.5873
e_samba 10.9031 9.8926 .
Stop Metasploit job
e_smtp 8.1215 6.5839
— as soon as all the
Privilege pe_tomcat 219.931 13.0525) .
N necessary information
Escalation pe_proftpd 28.8921 20.617 | .))
X in a shell is obtained
Actions pe-cron 75.6347 68.0839

Scan Actions Several arguments are used to scan only necessary infor-
mation and optimize the scan process in Nmap to minimize execution time.
Additionally, providing the list of available ports in the current scenario im-
proves performance by reducing the time spent scanning unavailable ports.
The arguments used in these actions are listed below:

e -Pn: Disable the ping function to skill the initial host discovery step
and proceed to scan all specified targets as if they are active.

e —n: Disable the DNS resolution in nmap scan function
e -T5: Use the most aggressive timing template

e —-min-parallel: Specifies the minimum number of parallel probes to
perform at once

e —-max-parallel: Specifies the maximum number of parallel probes to
perform at once

e —-sS: Use TCP SYN scanning for nmap scan function

27

e —sV: Activate version detection
e —0: Activate OS detection

Each scan function uses corresponding arguments to minimize execution
time. By determining specific information, such as OS detection, the nmap
scan function retrieves only the necessary details instead of all information.
This helps reduce unnecessary information collection time. Moreover, addi-
tional attributes in the nmap function are used to optimize the scan mecha-
nisms, such as the timing template.

Exploit and Privilege Escalation Actions Most of the execution time
in pentesting comes from these actions due to their complexity. Disabling
the AutoCheck attribute and applying stopping conditions are utilized to op-
timize the Metasploit module execution. Stopping conditions are determined
to finish the Metasploit job earlier for these actions. A job terminates once all
shell information is obtained. However, some information is not required for
subsequent actions. Stopping the job early can reduce execution time while
preserving the functionality of the shell object. Moreover, the Metasploit
sessions are cleaned up after an attack sequence ends.

Optimization Results We conducted several tests to exhibit the advan-
tages and efficiency of each optimization technique regarding action execu-
tion time. For host-based scanning and exploitation actions, a single host
is configured with all services and processes to measure the execution time
of these actions. For the subnet scan, which requires more connected hosts
and subnets, the test is performed on Host (2,1) in the medium-multi-site sce-
nario (Figure 6.3 in Chapter 6), which has the most connections to subnets
among all available networks in PenGym. In the subnet scan, the number of
connected subnets can affect the execution time. Therefore, it is essential to
consider the condition of connection complexity, as it can clearly show the
effectiveness of the optimization.

According to Table 4.3, the time needed to execute most actions was re-
duced. The highlighted results show significant enhancements in execution
time after applying various optimization techniques. For instance, the execu-
tion time for the pe_tomcat action has been reduced from nearly 220 s to 13
s, representing an impressive 17x improvement. In complex scenarios where
this action is executed on multiple hosts, this reduction substantially impacts
the overall execution time, leading to much more efficient operations. Note
that optimization techniques were not applied for process_scan and e_ssh
due to the simple command-line execution nature of these actions.

28

4.3.2 Training Time Optimization

Regarding optimizing the total time in the training stage, we utilized a host
map dictionary and a boolean flag to minimize the execution time of re-
dundant actions. Figure 4.2 and Algorithm 7 illustrate the flowchart and
pseudocode of this optimization technique, respectively.

Is action NO Execute actual
duplicated? p action

Update host_map

Is
re-execution
state?

Get results from NO YES

host_map

Update
re-execution state

Actual
Results

Figure 4.2: Flowchart of the training time optimization mechanism.

The host map dictionary stores the actual observation and related in-
formation after the first successful execution of an action, which can then
be reused for subsequent executions instead of executing the action again.
This dictionary is used only for a single pentesting execution period in test-
ing. This period ends when the target hosts are compromised or the step
limit is exceeded. Similarly, it is used for a single training time in training,
which ends when all the training epochs are finished. The dictionary is reset
to an empty state at the beginning of each testing period or training time.
This ensures that the optimization strategy does not affect the realism of the
overall training process or the evaluation of trained agents during testing. It
helps minimize time by avoiding redundant actions that have already been
successful in the same period.

The boolean flag is used in conjunction with the host map dictionary to
mark the state of each host. The flag assists in determining if the re-execution

29

Algorithm 7 Training Time Optimization

Require: action, host_map, boolean flag
: actual_action < False
: duplicate < check duplicate_action(action)

: if duplicate True then
re_execute < check re_execute_state(action,boolean flag)

1

2

3

4

5: if re_execute True then
6: actual_action < True
7

8

9

else
actual _results < get_results(action,host map)
end if
10: else
11: actual_action < True
12: end if
13: if actual_action True then
14: actual _results < execute_actual_action(action)

15: update_host_map (host_map)
16: update_host_map(boolean flag)
17: end if

18: Return actual results

of a specific action is necessary during the training phase, preventing an
actual action from being executed multiple times unnecessarily.

In practice, the success or failure of service scans, OS scans, and exploit
actions depend on the traffic rules between each subnet. A service scan
between two hosts may fail due to a lack of permitted services, and the host
map dictionary will reuse this result for any future service scans between
them. However, if this service scan is initiated from a different host, the
actual service scan must be re-executed. Consequently, the boolean flag is
used to manage the state for the service scan, OS scan, and exploit actions.

Optimization Results We conducted tests to measure the efficiency of
optimization techniques in the training process. we calculated the average
training time per episode based on training conducted over 20 episodes in
the medium-multi-site scenario for two ql_replay agents that were trained
before and after applying the optimization techniques. According to our
results, the average training time per episode was approximately 2.15 hours
before optimization, compared to 0.05 hours after optimization, representing
a reduction of about 43 times.

30

During the initial phase of training, the agent cannot achieve the optimal
path, so around 2000 steps are conducted. Without using the host-map dic-
tionary and boolean flag to control redundant actions, the actual actions are
executed multiple times, wasting time during training. In contrast, by using
the optimization technique, most of the time comes from the first successful
execution of each action, and the results are reused for subsequent actions.

By avoiding redundant actions that were already successful, these op-
timization methods help minimize time. Moreover, they reflect real-world
situations when a pentester does not repeat successful actions. Therefore,
using the host-map dictionary and boolean flag in PenGym optimizes execu-
tion time while maintaining the realism of the training and testing stages.

4.4 Cyber Range Creation

Creating a Cyber Range is a process of preparing a realistic training en-
vironment. However, manual creation may struggle with complex network
environments. Therefore, this research has implemented a module to trans-
form the NASim scenario file into a CyRIS description file, automating the
Cyber Range creation process. The main purpose of this module is to cre-
ate a fully configured network both with regard to network connections and
host content, in which all services, processes, and available vulnerabilities are
installed automatically, thereby preparing the environment for penetration
testing purposes.

CyRIS [18] is designed to facilitate cybersecurity training by automating
the creation and management of the required training environment. It uses
a text-based representation in YAML format to describe the characteristics
of this cyber range, including both environment setup and security content
generation. KVM virtualization technology [56] is employed to construct a
customized cyber range, including virtual machines with predefined services,
processes, and vulnerabilities, all connected following the description file.
This aids in preparing and installing the corresponding cyber range instance
on a computer and network infrastructure.

4.4.1 Cyber Range Composition

The design of the cyber range environment is defined in a scenario file, which
contains network characteristics such as the connection of subnets, the con-
figuration of hosts (e.g., operating system, processes, services, etc.), and fire-
wall rules between subnets. Table 4.4 provides a description of each required
parameter for designing a cyber range structure in the scenario.

31

Table 4.4: Description of the parameters used to specify the composition of
a cyber range in PenGym.

Parameter Description

subnets The number and size of each subnet

topology The connection of each subnet

sensitive hosts The addresses of target hosts and the corresponding rewards
os The available operating system running on any given host
services The available services running on any given host

processes The available processes running on any given host
exploits The available exploit actions in current scenario
priviledge_escalation | The available privilege escalation actions in current scenario
host_configuration The configuration and firewall rules of each host

firewall The firewall rules of subnet communication

The topology defines how subnets are connected and controls which sub-
nets can communicate directly with each other and the external network. The
firewall function allows certain services to be accessed from machines within
a subnet with the correct permissions while blocking access from unwanted
entry points. Each firewall is defined by a set of rules that dictate which
service traffic is permitted in each direction along a connection between any
two subnets or from the external network. Note that although all machines
within a subnet can communicate fully, communication between machines on
different subnets follows the firewall rules between their subnets.

4.4.2 Cyber Range Description Generation

In this research, we implemented a PenGym module that transforms the
NASim training scenario file into a CyRIS cyber range description file, thereby
automating the cyber range creation process. The purpose is to create a fully
configured network at both network and system levels, thereby preparing the
training environment for pentesting. Figure 4.3 indicates the processing flow
of this module, as follows:

e Information extraction: In this step, configuration information is
first extracted from the NASim scenario file, including details about
firewalls, services, processes, and host-based exploitation actions.

Then, as needed for the last processing step, network information is
extracted, defining the services or processes available for each host and
the subnet connections.

32

Script generation: The configuration information and the corre-
sponding service installation packages form the input for this step.
The Service Installation Package DB is an external component that
needs to be prepared ahead, containing all the service packages and
installation requirements for each service and process. For instance,
the opensmtpd-6.6.1 package is prepared in advance for smtp service
setup and includes a list of dependencies required for configuration.

Based on the existing services or processes in a scenario, the correspond-
ing packages and requirements are used to generate a list of host con-
figuration installation shell scripts. These scripts include firewall con-
figuration, service and process installation, and vulnerability settings.
The shell scripts are subsequently executed to automate the installa-
tion and configuration procedure (e.g., ./configure, make install)
within each host.

CyRIS description generation: After preparing the installation
scripts, they are combined with the network information from the first
step. This information is used to generate a CyRIS description file.
All cyber range information is output in this phase according to the
CyRIS description file structure.

NASim

scenario extraction

- firewalls ﬁ
- services 120 N 1 F =
l - processes \}:iﬂr/ | = @'> Tm N
\U) - available BASH \’Lf/ t{:ﬁ
actions
Feature Seript Host CyRIS CVRIS
conﬁgur‘o“tion deseription

d ov\ﬁguf‘a‘t‘non
information generator installation generator
seripts

olescﬁp‘tion

Service

installation y—\
- hosts

k DB
package h — subnets
|- connections
Network
information

Figure 4.3: Processing flow of the CyRIS cyber range description file gener-

ation

module.

4.4.3 Bridge Functionality

Network bridges are used to improve the realism of subnet communication
and the effectiveness of the cyber range preparation. They control the net-

33

work connection and enable interaction between the main server that is run-
ning PenGym and the cyber range. PenGym is installed on that server, and
the cyber range is also created on it by using CyRIS. All actions executed
on the virtual machine originate from the main server. Instead of setting up
necessary tools like Metasploit or Nmap on each virtual host, these actions
can be executed from the main server using bridge functionality.

Bridges have two main states: on and off. Initially, most bridges are
turned off, except for the bridge connecting the cyber range subnets to the
virtual Internet cloud. If any host in the cyber range is compromised, the
corresponding bridge is turned on. This allows the interaction between the
main server and the affected host, as well as connections between its subnet
and other subnets. The bridge functionality maintains the simple nature of
the cyber range by not installing any external pentesting framework while
also reflecting the realism of network communication. The pseudocode of
this functionality is shown in Algorithm 8.

Algorithm 8 Bridge Functionality

Require: bridge map

1: turn off_all bridges()

2: reset_bridge map(bridge map)

3: subnets ¢ get_internet_connected subnets()

4: for subnet in subnets do

5: bridge < get_bridge(subnet)

6: turn_on_bridge(bridge)

7: update_bridge map(bridge) > use to control the state of bridges
8: end for

9: /* Executing actions */

10: if is_new host_compromised() True then

11: host ¢ get_new host_compromised()

12: subnet < get_subnet (host)

13: bridge < get_bridge (subnet)

14: state < get_bridge_state(bridge, bridge_map)
15: if state OFF then

16: turn_on _bridge(bridge)

17: update_bridge map(bridge)

18: end if
19: end if

34

Chapter 5

Functionality Validation

This chapter discusses the functionality validation of PenGym via detailed re-
sults and observations from actions performed in both NASim and PenGym.
It also includes validating cyber range creation regarding execution time and
environment configuration.

5.1 Action Implementation Validation

Although we conducted validation experiments for the action space across
all available scenarios, we selected the medium-multi-site scenario (see Fig-
ure 6.3) for explanation purposes. This is because it is a complex scenario in
which each host contains multiple services and processes, reflecting the com-
plexity of real-world conditions to demonstrate detailed comparison results.
Table 5.1 summarizes validation results between NASim and PenGym. Ac-
cording to this table, the observations of each action in PenGym and NASim
environments are equivalent. We also show the action execution times for
comparison. Note that the time in PenGym is only for the first execution of
an action since we cache the output data to speed up subsequent executions,
as explained in detail in Section 4.3.

5.1.1 Service Scan

The target host address must be provided for the service scan action, while
the port value is optional. However, by providing all available ports in this
scenario, the execution time is minimized by avoiding scanning unusual ports.
In NASim, the list of services corresponding to the current scenario is re-
turned, with 1 and O representing True and False, respectively. Table 5.1
shows Host (2,1) results, in which only the smtp service receives a 1 value

35

Table 5.1: Action validations between NASim and PenGym

) Observation Execution Time [s]
Actions
NASim ‘ PenGym NASim ‘ PenGym
‘ssh’: 0, ‘http’: O,
service_scan | ‘ftp’: O, ‘smtp’: 1, | [‘smtp’] 0.000002 0.517642
‘samba’: O
os_scan ‘linux’: 1 [‘linux’] 0.000015 | 4.433648
‘tomcat’: O,
process_scan | ‘proftpd’: O, [“cron’] 0.000006 1.026706
Scan
¢ o1
Actions cron
(1, 0): True, [‘44.1.5.27,
(1, 1): True... ‘44.1.5.3. ..
subnet_scan 0.000067 | 15.060795
(6, 0): True, €44.1.10.4°,
(6, 1): True “44.1.10.5°]
e_ssh 0.000024 1.365891
access=USER
. e http 0.000035 6.973643
Exploit
. e ftp 0.000045 | 10.561138
Actions
e_samba access=RO0T 0.000043 | 9.935159
e_smtp 0.000027 | 6.661961
Privilege | pe_tomcat 0.000029 17.72336
Escalation | pe_proftpd access=R0O0T 0.00004 | 18.250733
Actions | pe_cron 0.00004 68.051982

since it is the only service running on the target host. An equivalent result
is produced in PenGym, which returns a list of available services.

Regarding execution time, PenGym takes more time to run an action
than NASim. As mentioned in Table 4.1, the action in NASim is executed
by several checking conditions, in contrast to executing an actual action by
using nmap to connect to the host and receive the real result. Due to the
package transmission in nmap mechanisms, these actions require more time
to establish a connection and communicate.

5.1.2 OS Scan

The process of OS scanning in nmap, which detects OS information, is similar
to the service scan action. The parameters used in an OS scan action are the
target host and all available ports to optimize execution time. In NASim,
the list of OSes corresponding to the current scenario is returned, with 1 and
0 representing True and False, respectively. In this research, only Linux

36

OS is supported, so no 0 value is received. Table 5.1 shows the results for
Host (2,1), where the linux receives a 1. An equivalent result is produced
in PenGym, which returns the detected OS.

Regarding execution time, due to the complicated nmap connection estab-
lishment process, PenGym takes more time to run an action than NASim.

5.1.3 Subnet Scan

PenGym returns the list of IP addresses for all hosts within each intercon-
nected subnet of the target host. In NASim, all hosts are returned with a
value of True for those discovered and False for those not yet discovered.
We can validate the equivalence between NASim and PenGym observations
by mapping these hosts with their associated addresses. For example, a sub-
net scan on Host (2,1) leads to discovering all the hosts in the network, as
that host is connected to all subnets in the scenario.

Similar to the above scan actions, executing a subnet scan in PenGym
takes more time than in NASim due to the actual process in the nmap func-
tion. The time required is much greater than previous scans because a subnet
scan scans a range of connected subnets to obtain all available hosts. This
requires scanning all hosts to determine the active ones. Although it takes
more time than the simulation approach, the realism of the action is pre-
served, and the time is acceptable.

5.1.4 Exploit

In exploit actions, an access level, either USER or HOST, is obtained upon
successfully gaining unauthorized access to the target host. In NASim, the
predefined access level associated with the specific action is returned. Mean-
while, PenGym obtains a shell object by executing the actual action using
the metasploit. This shell can be used for subsequent actions, such as pro-
cess scanning and privilege escalation, to investigate other critical potential
vulnerabilities. The access value is then identified by executing the whoami
command directly through this shell. Table 5.1 shows the equivalence be-
tween the NASim and PenGym observations of exploit actions.

5.1.5 Process Scan

The process scan action is performed using the ps command executed via
the shell previously obtained on the targeted host through an exploit action.
The observations in NASim and PenGym environments are equivalent, func-
tioning similarly to service scan and OS scan actions. In PenGym, the list of

37

running processes is returned, and a dictionary indicating existing processes
with a value of 1 is obtained in NASim.

5.1.6 Privilege Escalation

The mechanisms of privilege escalation actions work similarly to exploit ac-
tions in both NASim and PenGym environments. The access levels for both
environments are equivalent, which are the ROOT access. Additionally, the
shell object with administrator permission is retrieved in PenGym.

Regarding the execution time of host-based exploitation actions contain-
ing exploit and privilege escalation actions, it varies based on the specific
services or processes and their corresponding metasploit modules. The time
complexity arises from the complexity of the exploit module and the kind of
payload. As a result, compared to the simulation approach, an actual shell
is obtained, which can interact and assess the access level of the target. In
practice, the success of exploitation actions depends on various factors such
as firewalls, vulnerabilities, the architecture of the payload, etc. Although
there is a time trade-off between PenGym and NASim, it reflects the realism
and difficulty lacking in the simulation.

5.2 Cyber Range Creation Validation

Automated cyber range creation is an important new aspect of this research.
It uses a predefined scenario to create the corresponding cyber range auto-
matically. The duration for creating all scenarios was measured in Table 5.2
to demonstrate the efficiency of integrating this component into PenGym.

5.2.1 Configuration Validation

The cyber range configurations are verified on each host by running a shell
command to check the currently active services or processes. The firewall
rules on each host are validated using the iptables command line. For
instance, the services and processes on Host (5, 0) are validated for the
medium-multi-site scenario by executing the command “ps -aux | grep -e
ftp -e proftpd -e cron.” The output showed the actual running services
and processes on this host, such as the ftp service, along with the proftpd
and cron processes. The other services and processes are also checked as
part of the validation procedure to confirm no undesired services are running
on a host. The different services and processes are also checked as part of
the validation procedure to ensure no undesired services run on a host. In

38

the context of medium-multi-site scenario, the similar command is executed
with ssh, smtp, samba, http services and tomcat process to make sure the
correctness installation in Host (5, 0).

The same procedure was conducted for all cyber ranges, achieving com-
patible results between the actual environment and the scenario. The valida-
tion process assessed the correct creation of the cyber range concerning the
predefined scenario, with wholly automated host and network configuration.

5.2.2 Creation Time

According to the results, the creation time for each cyber range increases as
the complexity of the scenario increases. It takes a few minutes to create a
simple scenario, but it can take a few hours for a more complex one.

Table 5.2: Cyber range creation time for all scenarios

) . Cyber Range
Network Size Scenario

Creation Time [s]
tiny 577.81
Tiny tiny-hard 871.34
tiny-small 1432.21
small-honeypot 2396.06

Small
small-linear 2145.32
medium 4666.14
Medium medium-single-site 4830.39
medium-multi-site 5390.20

Specifically, the creation for medium-multi-site, which is the largest and
most complex network scenario in our experiments, took approximately 5390 s.
Although this may seem long, note that a cyber range is created only once
during experimentation, and around 50% of creation time comes from the
package installation process. Compared to the manual creation approach, it
is considered as a reasonable time. Due to the complexity of package instal-
lation, creating and configuring manually for the entire cyber range could
take more time and is more prone to mistakes because of the large number
of hosts and steps involved.

39

Chapter 6

Experiment Results

We conducted a series of experiments to demonstrate the feasibility and
effectiveness of the PenGym in terms of time performance, stability, and
adaptability of trained agents when dealing with various complex pentesting
scenarios. We selected NASim for comparison to highlight the key differ-
ences between PenGym as an emulation approach and NASim as a simu-
lation approach. In addition, we used two versions of the NASim. The
first one, NASim, is the original NASim environment, and the second one,
NASim(rev.), is the revised version of NASim for which we corrected some
logical errors in the original version, as explained in Chapter 7. Thus, the RL
agents were trained and tested using NASim, NASim(rev.), and PenGym.

6.1 Experiment Scenarios

We covered all eight scenarios available in NASim that are categorized based
on the network size as tiny, small, and medium. Table 6.1 summarized the
attributes of all scenarios, including the number of subnets, number of hosts,
action space size, and optimal step count to reach the pentesting goal.

In this section, tiny, small-linear, and medium-multi-site scenarios are se-
lected for visualization and detailed experiments. These scenarios represent
each kind of network size with varying levels and complexities. The reasons
for these choices are discussed in the next section. All the experiments were
conducted on a dual 12-core 2.2 GHz Intel(R) Xeon(R) Silver 4214 CPU
server with 64 GB RAM.

40

Table 6.1: Overview of all the experiment scenarios in PenGym.

Network . Number | Number Action Optimal
Scenario
Size of subnets | of hosts | space size | step count
tiny” 3 3 18 6
Tiny tiny-hard 3 3 27 5
tiny-small 4 5 45 7
small-
4 8 72 7
honeypot
Small small-
. 6 8 72 12
linear
medium 5 16 192 7
medium-
. 1 16 192 4
Medium || single-site
medium-
. 6 16 192 7
multi-site

* . . .
These scenarios were selected for detailed experiments.

6.1.1 Tiny Scenario

We selected tiny, the smallest scenario for the tiny network size, as illus-
trated in Figure 6.1. This scenario consists of 3 hosts divided into 3 subnets,
with hosts (2,0) and (3,0) being the pentesting goals. Subnet(1) is directly
connected to the Internet, while the other subnets are internally connected.
Each host has the same basic configuration, with a Linux OS, ssh service,
and tomcat process. Firewall rules are enforced for secure subnet communi-
cation, allowing only ssh communication. Specifically, Subnet(1) is accessi-
ble from the Internet via ssh but cannot connect externally. Additionally,
there is a firewall rule blocking ssh service from host (3,0) to host (1,0), even
though communication is allowed between Subnet(1) and Subnet(3). These
restrictions were implemented using the iptables Linux firewall configura-
tion utility. This scenario contains 18 available actions that can be executed,
which are the lowest values compared to others.

6.1.2 Small Scenario

Figure 6.2 shows the design of the small-linear scenario, which belongs to a
small network size. It includes 8 hosts, categorized into 6 subnets. Each
subnet contains up to 2 hosts. Hosts (3,0) and (4,0) are the pentesting

41

ssh

‘ Bﬁdge1
Tnteret % ; -
- Subnet (1)

Host Firewalls
 Host Deny
(1,0) (3,0 : ssh
(2,0) (1,0) : ssh
(3,0 -

ssh

None tomcat

ssh ssh

bridge 2 % @ bridge >

S

None

L]

Subnet (2)

ssh

) % Subnet (3)

Figure 6.1: Cyber range constructed in PenGym based on the tiny scenario
in NASim.

tomcat

goals in this scenario. This scenario highlights the complexity from a subnet
perspective by increasing the number of subnets while keeping the number of
hosts in each subnet simple. Multiple services are used for some hosts, while
some hosts do not run any processes. This scenario contains 72 actions, but
the optimal path is 12, the largest. It indicates the complexity of exploring
the path to achieve the goal. Similar to the previous scenario, iptables is
used to set up the firewall rules.

6.1.3 Medium Scenario

For the medium scenario, medium-multi-site is selected as the representation,
which is the largest scenario. Figure 6.3 visualizes the cyber range archi-
tecture in this scenario. It comprises 16 hosts divided into 6 subnets, with
hosts (2,1) and (3,4) being the pentesting goals. Each host contains one or
multiple services and processes. Some hosts may lack either element, increas-
ing the complexity of the network. All actions are available in this scenario.
Network traffic restrictions between each subnet were implemented using the
iptables Linux firewall configuration utility. In this scenario, there are no
specific firewall rules between any hosts. From the statistical value in Ta-
ble 6.1, the total actions in this scenario are 192 compared to 18 in the
smallest scenario. This emphasizes the high complexity of this scenario.

42

N,
one None Host
(6,0)
Q linux
htt
Subnet (1) Subnet (6) Z
tomcat
L] L
Host None > Host Ptp > Host
(3,0) bn‘olge_ 5 (4,0) Lrio(ge 6| [(5,0)
linux linux Linux
h
< ftp < http < ::p
tomcat sshy Ptp None proftpd Ptp, Wttp
Subnet (2) Q Subnet (4) Q
Host Host
(3,1) (5,1)
linux linux
ssh ftp
proftpd
Subnet (3) Subnet (5)
L Lz

Figure 6.2: Cyber range constructed in PenGym based on the small-linear
scenario in NASim.

6.2 Preliminary Experiments

We conducted a set of preliminary experiments in all scenarios to demon-
strate the overall capability of agents trained in the PenGym, NASim, and
NASim(rev.) environments. The results will aid in deciding the representa-
tive scenario for each network level to conduct the detailed experiments.

Experiment Conditions To decide the algorithm agents used for this
experiment, in the medium-multi-site network scenario, we used the tabu-
lar, epsilon-greedy Q-learning with experience replay (ql_replay) [57], Q-
learning (ql) [58], and DQN [59] algorithms agents, available in NASim,
for training. These agents were trained once in the PenGym environment.
Our initial results showed that the ql_replay agent took about 6 hours to
converge within 300 episodes, while the ql agent achieved stability within

43

Host Host

bridge 6 ‘ (1,0
@ 3 “ — D
’ inux

L-J Subnet (1)@ bibins
—] =

ssh

ssh

Subnet (3)

tomcat [ftomcat
Host Host Host
[Go] . P bridge 1
2 2\ beidge 5 o
- = - i
el E None <n
‘

| None None.
Host wttp Host Host
—

@3,5)

Limux % bridge 7 (2,0) 0000 Q,1)
linux | 0 @ Linux

- Subnet (2) \-1

L* - ==

Host Host
G,3)

[G.3)]

==

|

smtp

—g—8

[olE
|

Host Host Host Host Host Host.

co] —— [o] ——— [Go wo] —— [@D
1i o P S | 1d i)) i 1i i
a2t ‘\.J Subnet (6) ‘-‘ 6220 L _J Subnet (5) ﬁ/‘ My 2 %

ssh ssh ftp % ? ftp ftp
samba proftpd http

o proftpd|
bridge 4 %ﬂaﬁdﬁe 3
“\ [ﬂw /rj‘ﬁ’if
Internet ™S

Ve
@ -

ftp

tomcat

proftpd|

Figure 6.3: Cyber range constructed in PenGym based on the medium-multi-
site scenario in NASim.

4000 episodes in approximately 2 hours. Despite requiring more episodes,
the training time of the q1l agent was reasonably efficient compared to the
ql_replay agent. Moreover, the DQN agent could not stabilize due to its
simple architecture. We selected the ql agent for the preliminary training
experiments across all scenarios based on these results.

We independently trained 5 q1 agents with 4000 episodes and tested them
across all scenarios in PenGym and NASim (rev.) environments. Moreover,
we selected medium-multi-site, small-linear, and tiny scenarios for conducting
the same experiments with the NASim environment.

Experiment Results Table 6.2 summarizes the results of the prelimi-
nary experiments. The training time in all scenarios was measured, and
the average ratio between the PenGym and NASim(rev.) environments was
calculated based on the network type. The results indicated that the train-
ing time ratio decreases as network complexity increases. It reduced from
approximately 6.0 to 1.7 as the network grew. The training time in both
environments tends to be comparable when dealing with complex scenarios.
This leads to a reasonable time, given the complexity of real-life networks.

44

Table 6.2: Results of preliminary experiments conducted for all the available
scenarios (NASim" refers to either NASim or NASim(rev.), according to the
simulator variant used for training).

Training Results Testing Steps
Network Scenario . Training . NASim"* PenGym Step
Environment Ratiof

Time [s] environment | environment | difference
NASim 33.72 6.6 7 0.4
tiny NASim(rev.) 34.53 74 7 0.4
PenGym 159.93 7.6 7 0.6
Tiny . NASim(rev.) 34.53 | 5.9 6.6 7.8 1.2

tiny-hard
PenGym 246.85 5.4 5.4 0
. NASim(rev.) 77.67 12 8.8 3.2

tiny-small
PenGym 473.37 8.8 9.5 0.7
NASim(rev.) 151.10 8.8 8.8 0

small-honeypot

PenGym 1019.35 10.4 11.8 14
Small NASim 223.23 | 4.5 21.2 213.8 192.6
small-linear NASim(rev.) 373.26 15.2 14.8 0.4
PenGym 877.15 14.8 15.8 1
. NASim(rev.) 3668.87 12.8 16.6 3.8

medium
PenGym 6438.76 14.2 14 0.2
i i . NASim(rev.) 2630.69 6.6 6.4 0.2

. medium-single-site

Medium PenGym 415842 | 1.7 6.6 6.2 0.4
NASim 4890.49 24.6 2000 1975.4
medium-multi-site | NASim(rev.) 4348.47 26 24.2 1.8
PenGym 7518.84 24.6 24 0.6

+ Average ratio of training time values in PenGym versus NASim(rev.) for a given
network type.

Regarding adaptability, the agents trained in NASim performed well in
the simulation environment (NASim). However, they were inapplicable in
the realistic environment (PenGym). For the smallest scenario tiny, they
achieved good results when tested in a simulation environment. However, in
more complex scenarios, such as small-linear, an increase in the number of
steps indicated a significant gap in reaching the goal between both environ-
ments. Although these agents reached the pentesting goal, it required more
steps, approximately 10 times compared to the simulation environment. Par-
ticularly in the medium-multi-site, which is the largest scenario, the agents
completely failed in PenGym environment by reaching the imposed step limit
of 2000 without achieving the goal.

Moreover, the NASim(rev.) and PenGym produced comparable results,
with a small gap in the testing steps across all scenarios. However, the
step differences pointed out that agents trained in PenGym had more stable
performance than those trained in the NASim(rev.). The step difference for

45

PenGym-trained agents ranges from 0.4 to 1, whereas it ranges from 0 to 3.8
for agents trained in NASim(rev.) environment.

6.3 Detailed Experiments

We then carried out a series of detailed experiments to showcase the effec-
tiveness of PenGym. The preliminary results in Section 6.2 showed that the
complexity of the scenario impacted the training performance and conver-
gence of RL agents. In these experiments, we chose three scenarios, tiny,
small-linear, medium-multi-site, representing three different complexity levels
for detail training and testing purposes. As before, we trained and tested the
RL agents using NASim, NASim(rev.), and PenGym environments.

6.3.1 Agent Training

First, we will discuss the agent training procedure, starting with the experi-
mental conditions and then the results we obtained.

Experiment Conditions For each scenario, we trained 10 agents inde-
pendently for the NASim, NASim(rev.), and PenGym environments. Specif-
ically, we trained 5 agents using the ql _replay and 5 agents using the ql
algorithms that are mentioned in Section 6.2. These algorithms were used
due to their ability to converge and maintain stability during the training
phase, as shown in our initial experiments. The DQN algorithm was excluded
due to the inability to converge the learning strategy of the agent. For the
ql_replay algorithm, we trained each agent with 300 episodes, and for the
ql algorithm, we used 4,000 episodes to achieve the convergence for each
agent. The episode gap between the two algorithms arises from their com-
plexity. While the ql_replay agent employs experience replay to accelerate
convergence, the ql agent uses a simple Q-learning algorithm.

The modifications and revisions were made to all scenarios to ensure
compatibility across all environments, as detailed in Chapter 7. Thus, the
probability attribute of the exploit actions was set to 0.999999. This adjust-
ment creates a scenario that more closely resembles our cyber range, where
the exploit does not fail (note that we chose this value because 1.0 could
not be assigned due to a quirk in NASim implementation). The success or
failure of actions depends on the actual action being executed by the real ma-
chine. Hence, we adjusted the probability attribute to enhance compatibility
between the NASim and PenGym environments.

46

Experiment Results Figure 6.4 shows the average rewards obtained dur-
ing the training of 5 ql agents and 5 ql_replay agents across three sce-
narios for the NASim, NASim(rev.) and PenGym environments. Accord-
ing to the results, the PenGym framework has demonstrated comparable
performance in training agents regarding rewards compared to NASim and
NASim(rev.), using both types of agents. However, in a complex scenario
such as medium-multi-site, the training results still oscillated more in both
NASim and NASim(rev.) environments. Although the training results from
the NASim environment perform better than others in the medium-multi-site
scenarios, this could be due to an incorrect logical model that enables the
agent to reach the goal in fewer steps, ignoring some permission rules.

Regarding the training time, the difference decreased as the network and
RL algorithms became more complex. Notably, in the most complicated
scenario, medium-multi-site, PenGym averaged nearly 17,000 s compared to
14,000 s for NASim(rev.), making the training time comparable between two
environments.

Training Time Composition Analysis Based on experiments of train-
ing a QLearning Replay agent for 300 episodes when using the largest scenario
in both NASim(rev.) and PenGym environments, we calculated the propor-
tion of the time needed to reset the environment, update the agent policy, and
execute actions in the environment compared to the total training time. Our
results showed that for the NASim(rev.) environment, 98% of the training
time came from agent policy updating, while the rest of the time was used
for environment resetting and action execution. Consequently, the action
execution time in the simulation environment is minimal, with each action
taking only a few milliseconds due to simple condition checks, and most of
the training time is consumed to update the agent learning strategies.

On the other hand, in the PenGym environment, agent policy updat-
ing accounted for only 58% of the training time, whereas action execution
time was 40%, and environment resetting took 2% of the time. Even though
the proportion of agent policy updating time compared to total training
time differs between the two environments, the ratio between PenGym and
NASim(rev.) was comparable, around 1.1. This is because the policy update
time depends on the number of attack steps. When the training perfor-
mance of the agents is equivalent between the two environments, the time
for updating their policies is also similar.

We conclude that even though the training time in PenGym is slightly
longer than in NASim(rev.), it remains within a reasonable limit and is com-
parable in complex scenarios. The difference in total training time between

47

the PenGym and NASim(rev.) environments can be attributed to the longer
action execution times in PenGym. This is caused by the fact that the ac-
tions are executed in an actual environment, and it leads to a different ratio
of policy update time to total training time, as more time is spent exploring
the environment in PenGym compared to NASim(rev.)

6.3.2 Agent Testing

Next, we evaluated the performance of all agents in the NASim, NASim(rev.),
and PenGym environments.

Experiment Conditions We conducted 10 testing experiments in each
scenario within either the NASim or NASim(rev.) and PenGym environ-
ments. To show the advantages of using the RL approach in pentesting, the
available brute force agent in NASim was included. It represents the “try
all possible actions to reach the goal” approach [60] and was executed in 10
trials as well. While both random and brute force agents are available for
conducting experiments, we only chose to use the brute force agent since it
outperforms the random agent in our trial tests.

Result Overview Figure 6.5 shows the average attack steps of both ql
and ql_replay agents, trained on NASim, NASim(rev.), and PenGym then
tested in these environments. Figures 6.5(a), 6.5(b), and 6.5(c) visualize
the testing results using the tiny, small-linear, and medium-multi-site scenar-
ios, respectively. The results of the 10 trials were averaged to derive the
final performance values for the agents in each environment. The error bars
were also added to visualize the standard deviation values for assessing the
performance consistency and stability of the agents across different trials.
The results demonstrate that both q1 and ql_replay agents, trained in
PenGym, successfully achieved the pentesting goals across three scenarios.
They showed stable performance with minor variation in both simulations
(NASim and NASim(rev.)) and emulation (PenGym) environments.
However, agents trained in the NASim environment performed poorly
when tested in the PenGym environment. They only achieved the goals in
simple scenarios, like tiny, and became inapplicable when faced with more
complex scenarios, such as small-linear and medium-multi-site. Although these
agents achieved the pentesting goal in some trials, they required more steps
than the optimal listed in Table 6.1, demonstrating a significant disparity
in the number of required steps. Notably, the agents mostly failed in the
largest scenario, exceeding the 2000 step limit. Moreover, the error bars in

48

Reward

Training Time: NASim(rev.) = 373.26 s ; PenGym = 877.15 s

Reward

Training Time: NASim(rev.) = 4348.47 s ; PenGym = 7518.84 s

Reward

Training Time: NASim(rev.) = 36.29 s ; PenGym = 159.93 s

190

180

170

160

150

140

130

120

110

Average Rewards for QL Agents

-+ NASIm
—=— NASim(rev.)

—— PenGym

0 500 1000 1500 2000

Episode

2500 3000 3500 4000

Reward

Average Rewards for QL Replay Agents

Training Time: NASim(rev.) = 90.26 s ; PenGym = 217.48 s

190

180

170

160

150

140

130

120

110

-+ NASIm
— = NASim(rev.)
—— PenGym

150

Episode

200 250 300

(a) Experiment results for the tiny scenario.

Average Rewards for QL Agents

200

100

-100

—-200

-300

-400

-+ NASIm
—~ Nasim(rev.)
—— PenGym

-500

-1000

-1500

0 500

1000 1500 2000

Episode

2500 3000 3500 4000

Average Rewards for QL Replay Agents

Training Time: NASim(rev.) = 519.79 s ; PenGym = 1096.01 s

200

100

-300

-400

-500

-+ NASIm
~~ NASim(rev.)
—— PenGym

150 250 300

Episode

(b) Experiment results for the small-linear scenario.

Average Rewards for QL Agents

-2000

== NASim
~ =~ NASim(rev.)
—— PenGym

0 500

1000 1500 2000 2500 3000 3500 4000

Episode

Average Rewards for QL Replay Agents

Training Time: NASim(rev.) = 13824.22 s ; PenGym = 16489.11 s

Reward

-500

-1000

-1500

-2000

~2500

-3000

++ NASIm

v ~ = NAsim(rev.)
—— PenGym

100

Episode

150 250 300

(c) Experiment results for the medium-multi-site scenario.

Figure 6.4: Average training reward versus episode number for the QLearn-
ing and QLearning Replay agents trained in the NASim, NASim(rev.), and
PenGym environments for the three representative experiment scenarios.

49

9 800

s - - 700

7 I I I I 600
0 8 500
€61 €
3 o 400
v 5 (%]
2 & 300~ >
a b T P
' ¥ 30
v v
]]
£ 31 -
< 20 4 == =

24 = ==

1] 10

| o4
NASim® Testing PenGym Testing NASim" Testing ~ PenGym Testing NASim’ Testing ~ PenGym Testing ~ NASim" Testing PenGym Testing
QLearning Agents QLearning Replay Agents QLearning Agents QLearning Replay Agents
B NASim Training NASim(rev.) Training I PenGym Training B NASim Training NASim(rev.) Training I PenGym Training

(a) Experiment results for the tiny sce- (b) Experiment results for the small-linear
nario. scenario.

2050

2025

2000

1975
1950
1925
T

1900+~

I ”
-
50 I
I =
20 A
104
o

NASIim* Testing PenGym Testing ~ NASim" Testing PenGym Testing

=

Attack Step Counts
A\
\

QLearning Agents QLearning Replay Agents

I NASim Training NASim(rev.) Training I PenGym Training

(c) Experiment results for the medium-multi-site
scenario.

Figure 6.5: Average number of attack steps for the trained QLearning and
QLearning Replay agents when tested in the NASim" and PenGym environ-
ments for the three representative experiment scenarios (NASim" refers to
either NASim or NASim(rev.), depending on the simulator variant used for
training).

50

Figures 6.5(b) and 6.5(c) indicate the instability of NASim-trained agents,
as suggested by the higher standard deviation. Because the agents trained
in NASim mostly failed and had a low success rate in reaching the goal.

On the other hand, since NASim(rev.) corrects the logical modeling
issues in NASim, the performance of agents trained in PenGym and the
NASim(rev.) is similar in the tiny and small-linear scenarios, with only a
minor difference in their averages. This suggests that agents trained in a
correctly logical simulation environment can achieve results comparable to
those in a realistic environment.

Table 6.3: Detailed experiment results for the QLearning and QLearning
Replay agents trained and tested in the NASim, NASim(rev.) and PenGym
environments using the medium-multi-site scenario.

Avg.
. . L. . Success Avg. & Std.
Scenario Algorithm Training Testing Exec.
Rate Steps . Dev.
Time [s]
. NASim 10/10 23.16 0.023 | 0.810
NASim
PenGym 0.2/10 | 1982.60 173.735 | 55.024
NASi . 10/10 27.52 0.033 | 5.104
QLearning | NASim(rev.) im(rev.) / 2 2
PenGym 10/10 25.92 470.216 | 2.142
NASim(rev.) | 10/10 24.06 0.025 | 0.582
PenGym
PenGym 10/10 24.52 416.788 | 0.944
medium-multi-site NAS NASim 10/10 27.26 0.026 | 0.919
im
(Medium Network) PenGym 0/10 | 2000.00 | 141.467 | 0.000
QLearning . NASim(rev.) | 10/10 25.36 0.026 | 0.810
NASim(rev.)
Replay PenGym 10/10 30.90 356.510 | 3.169
NASim(rev.) | 10/10 22.58 0.023 | 0.503
PenGym
PenGym 10/10 22.86 | 356.684 | 0.699
NASim(rev. 10/10 681.00 0.0517 | 0.000
Brute force N/A m(rev.) /
PenGym 10/10 681.00 | 2545.606 | 0.000

Detailed Results Table 6.3 details the testing results in medium-multi-
site. This table shows that most agents trained in NASim cannot be ap-
plied successfully in PenGym, as evidenced by the low success rates of ql
and ql_replay agents, at 0.2/10 and 0/10 respectively. Despite the agents
trained in NASim(rev.) achieving performance comparable to those trained
in PenGym, the latter slightly outperformed the former. This is proved when
testing ql_replay agents trained in NASim(rev.) and PenGym using a real-
istic environment; the average step gap is around 8 (22.86 steps compared to
30.9 steps). This discrepancy could be due to yet-undiscovered niche issues
in the NASim(rev.) that affect the performance of agents. Thus, while sim-

o1

ulation environments for training pentesting agents have shown promising
results in recent years, these results may not be reliable enough for deploy-
ment in real-world infrastructure.

Additionally, the results showed that using brute force, a traditional
method in pentesting, was less effective than using RL-based agents. From
the experiments, the number of steps required significantly increased as the
scenario became more complicated. Specifically, it took 681 steps to reach
the goal in the medium-multi-site scenario.

The main advantage of PenGym lies in its ability to facilitate training
with actual actions in a real environment, eliminating the need for model-
ing actions using execution assumptions and success probabilities. Action
execution without probabilistic factors enables agents trained in PenGym to
improve their algorithm based on realistic results. In NASim, the success of
an exploit action is determined by a random value that may fail at unex-
pected times, which does not accurately reflect realistic actions and leads to
non-deterministic effects on agent learning. As the system grows, the action
space becomes larger, and these probabilistic factors may affect the learning
process of the agents in unknown ways. Therefore, our approach ensures a
more realistic representation of the security dynamics in the network.

One conceivable drawback of PenGym is its longer execution time com-
pared to the simulation environment, as actions are physically executed in
the network. However, the training time tends to be comparable in complex
scenarios. So, we consider the gap in a single pentesting time as a reasonable
trade-off for the reliability of agents trained in a realistic environment. More-
over, the entire automation ensures that the execution time is lower than the
human-based pentesting process, which takes weeks or even months [24].

92

Chapter 7

Discussion

This chapter discusses the differences between NASim as a simulation envi-
ronment and PenGym as an emulation environment regarding host configura-
tion, actions, observation, and functionality issues, summarized in Table 7.1.
Several changes were made to make both environments comparable, and the
locations of these changes are also included.

7.1 Comparative Analysis of Simulation and
Emulation Approaches

In PenGym, a cyber range is created, composed of several virtual machines
(VM) that run actual operating systems and services. Compared to NASim,
PenGym currently supports only Linux OSs and not Windows OS. So, we
changed the host setup, action definition, and action space to adapt to Linux
while preserving the comparable characteristics of both environments.

7.1.1 Host Configuration

From the host configuration perspective, the OS and process values are mod-
ified. As mentioned, only Linux is available in PenGym, compared to both
Windows and Linux in NASim. This leads to differences in processes. NASim
includes the daclsvc and schtask processes, which are available only for
Windows. In PenGym, due to the incompatibility of the daclsvc process in
Linux, we chose proftpd as a replacement. Moreover, cron is used to replace
schtask since cron is used for task scheduling in Linux.

For cyber range creation, proftpd and cron are installed directly on the
VM hosts. In the NASim scenario, we changed the Windows values to Linux
and replaced daclsvc and schtask with proftpd and cron, respectively, to

33

1m

Summary of the differences between the PenGym and NASi

ts.

Table 7.1

environien

SUOT}oR 9oL

1501] J031R)

0pod WIGYN J[OSHT 9507 U0
SUIMD0XD UAM SSOIPPR $J1 U0 POIMILXD 9 Ted
TSl) PAINDOXD 9 Ued UOIIOR AJOWT A,
901M0S AT} JO A[OJOWAI }OAT)) (1toydxy) wonoy ajowey oy,
DS 9IIATDS
sanss|
(opow WIGYN) | S1oUqNS UOIJRUNSHP PUR 9DINOS UT $30UqNS UOIYRUIISIP PUR 9DINOS | JUNOIDR OJUT [[RMDIT e} J0U Op
Ayreuorjounyg
ap0d WANUSJ | Weamjaq uorssIad o1y 1031] U09M)O(POIDRIOP 9(D [[BMAIY 9Y) | DG G() PUR UEIG 9IIAIAG O], T
£q pamo[[e 10U S9G() 10 SIOTAIAG
S)OUQNS PAIIAUTOD | SJOUANS PAISUTUOD UIYIIM SISO 0} JOUIIU] | JOUNS PAIBUUOD A} 0 JOUIDII]
9pod WFYN .
. PUR 1OUIDI] o1} UGOMIA(| T} WO} PAINDIAXS a(URD [[RMAIY oY} Aq oY} woj uoryor ordxs o)
RUISLL
[0 $e01AI0S TOISSTILIRd 913 Yoot PAMO[[® 10U $IDIAISS U0 paseq sHO[dXF 100JjR J0U S0P [[eMA A,
TOIYRAISS(O AT} U suorjoe weds Jotid oy
9pod WADU] popn{oul ST UOIYRULIOJUI §() TOIYRAIOSCO [} U PAPNIOUL ST suoroe yo[dxy | UOIyRAISSq(Q)
pue $01AT9S poto[dxa oy ATu() UOTJRULIOJUI G() PUR SIOIAIOS],
uorpor noxo-ad Aq soejdoy UOI}0R Paseq NS QYIS d)R[NUIG yseqyosad
ap0d WAD U] -
uorjoe pdyyoad-ad Aq sordey UOI}OR PAseq DASTORD 9)e[NuIg oasToepad
‘0LTRUAOS WAD)UD]
uorjoe sexeyd-ed Aq ooejdey TOI}OR Pase(1edmoq A)R[NUIS 1eomoq-ad oy
LOOY A9 88900y HASN [PA9T 88000y dyms—e
(suonow y10dx0) 6666660 PoxY J0N Ayprqeqoag
OLIRUADS WAD)UD] b b) ¥seqyos
$80001] | UOIRINSYUO))
pdazoxd JASTO®RD
\ IS0
Xnury XTI ‘SMOPUIA S0
7 uoIyed0 s3uey)) wWAHUdJ WISYN BLIDILL) K1080718)

o4

become the PenGym scenario. These changes ensure consistency between
both environments, as both were created using the same scenario.

7.1.2 Actions

The action space has two main modifications: the probability factor and
action implementation mechanisms.

Probability In the simulation approach, probability is a factor in deter-
mining the success of actions. The probability values vary based on each
exploit action, such as 0.9 for e_ssh and 0.6 for e_ftp. In contrast, all ac-
tions in PenGym are executed without relying on the probability attribute.
Therefore, we changed this value to 0.999999, which is close to 1, for all
exploit actions in the PenGym scenario. Due to the NASim implementation
quirk to change this value to 1, as a temporary solution, we chose this value
to reduce the impact of the probability factor.

Linux-Based Actions We obtained different access levels for smtp-based
exploit action. PenGym gained ROOT level, while NASims achieved USER
level by attacking a vulnerability in the smtp service. This can be explained
by the dissimilar vulnerability issues between smtp in Linux and Windows.
The access level of e_smtp was changed to ROOT in the PenGym scenario.

Regarding tomcat-based privilege escalation action, to the best of our
knowledge, it is impossible to gain root access directly by attacking vulnera-
bilities in the tomcat process, at least in recent OSes. Instead, it can be used
as an intermediate step to obtain a Meterpreter shell, and then ROOT access
can be gained by exploiting local operating system vulnerabilities through
this shell. Such an implementation would eliminate the need to exploit the
host first to get access to it so that it would change the built-in sequence
of actions in NASim. To address this issue, in PenGym, we used a new
method for privilege escalation instead, which uses a vulnerability in the
pkexec package to gain ROOT access to the target hosts. This modification
enables PenGym to follow a realistic attack scenario that still follows NASIM
assumptions, which was essential to make their comparison possible.

Furthermore, since the daclsvc and schtask processes were changed
to proftpd and cron, their corresponding privilege escalation actions were
replaced with compatible actions. In PenGym, pe_proftpd and pe_cron
are implemented using proftpd and cron processes vulnerabilities, replacing
pe_daclsvc and pe_schtask in NASim.

95

We changed the names of privilege escalation actions in the PenGym sce-
nario and the implementation in the PenGym source code. All these changes
do not affect the functionality of NASim since the results of actions are ob-
tained from predefined values. These changes help make both environments
comparable for a fair comparison.

7.1.3 Observations

The observation of exploit actions between NASim and PenGym are differ-
ent. In NASim, if the exploit action is successful, the observation returns
the current state of the network, including all services and OS information,
even without prior scan actions. This creates inconsistency from a realistic
perspective. The exploit action does not send packages to scan the services
or OSes, so this information cannot be obtained without scan actions. To
make the observation consistent between the two environments, in PenGym,
we assumed that when the exploit action is successful and returns a shell
object, the services and OS information are scanned using this shell.

7.2 Simulation Modeling Issues

Regarding modeling functionality issues in the simulation environment, we
discovered some unexpected logical errors in NASim. We corrected them
to be NASim(rev.), ensuring the behavior is comparable to the PenGym
environment. They came from uncovered situations when modeling the ac-
tion, mainly when dealing with complex scenarios that require complicated
conditional logic. This complexity of scenarios increased the chances of en-
countering conditions we could not manually cover. We also opened all issues
in the NASim repository [61] for author notification.

7.2.1 Firewall Functionality Issue

The first issue relates to the firewall function, which does not prevent blocked
service-based exploit actions from the Internet to the connected subnet.
Specifically, in the NASim environment, an exploit action from the Inter-
net to a connected host will succeed even if no traffic is allowed between
them. However, this action cannot occur in real life if the firewall blocks all
transactions. For example, the e_ftp() exploit action from the Internet to
Host (4,1) in the medium-multi-site scenario would succeed in the NASim en-
vironment, as simplified in Figure 7.1. However, it would fail in the PenGym
environment because the exploit module cannot connect to the ftp port due

56

to the blocking rule of the firewall. In PenGym, we devised the solution by
checking the permission services between the Internet and connected subnets
before executing the action. It was implemented by overriding the NASim
function. We opened this issue on the NASim repository via [62].

Host
(«,0)

linuse

Subnet

profted

Figure 7.1: Visualization of the firewall functionality issue.

This problem can impact the effectiveness of trained agents due to in-
correct logical conditions. These conditions lead the agents to explore the
incorrect pentesting path, which is inapplicable in a realistic environment.

7.2.2 Scan Action Issue

The second issue is that the service and OS scans do not consider the fire-
wall. These actions succeed in the NASim environment, even when the ser-
vice is blocked by a firewall. Figure 7.2 visualize an example of executing
service_scan() on Host (5, 1), which allows only http service communica-
tion from the Internet. However, as a result, both ftp and http services are
obtained without restriction from the firewall.

g g S R

SUCCESS
Results: ftp, http

1
service_scan()

Host Host ﬁ

' (5,0) [CR))

é linusx ﬁ [inusx % 1 V\'t e_me_‘t
A = o

b [erefted i None

: cron

|

Figure 7.2: Visualization of the scan action issue.

This creates an unrealistic outcome since the Nmap scan function will

57

send the TCP packets to the system and determine the running services based
on the returned packets. Therefore, if a service is blocked, there should be
no packet transmission. Hence, the results from the simulation environment
conflict with the real-world conditions, making the trained agents ineffective
when deployed in real-world infrastructure. PenGym implemented a solution
that filters allowed services and checks communication permissions between
source and destination subnets during scan actions. These changes were
applied to the PenGym source code in simulation mode. The issue was
posted on the NASim repository via [63].

Although scan actions are not included in the optimal path, the policy
of agents may be affected when deployed in a real network. Agents may
encounter difficulties when they face different observations after executing a
scan action, especially if the host blocks all transactions and they receive a
failure result in a realistic environment that was not previously learned.

7.2.3 Remote Action Issue

Another issue concerns the execution of a remote action on its target host.
Theoretically, a remote action, such as an exploit, is typically executed from a
different host to the target host. However, in NASim, this property appears
to be ignored, which does not make sense in this context. As shown in
Figure 7.3, the e_ftp action can be executed on Host (5, 1) itself.

SUCCESS /\ e_ftp(Q)

NASim environment

1 |
e 7) i
E Host Host E
i [inusx K H
; Subnet (5) 95 g
e Prp E
i proftped Wtte !
H cron E
N pouwrrrvosssssssidl, E
i i

Figure 7.3: Visualization of the remote action issue.

We implemented the solution to ensure consistency between both envi-
ronments by overriding the NASim function in PenGym. When executing
remote actions, such as exploit actions, the identical host conditions between
the source host and the target host are checked. This issue was presented in
the NASim repository via [64].

28

Chapter 8

Conclusion

This chapter summarizes our research, highlighting the key findings and con-
tributions made throughout this thesis. Moreover, it presents the final con-
clusions drawn from our study, emphasizing the significance and implications
of the results. Additionally, we will discuss potential future work related to
this research, which further direction could enhance the current works.

8.1 Summary

This research aims to bridge the reality gap in the simulation approach for
training pentesting RL agents. We focus on demonstrating the effectiveness
of RL techniques and an emulation environment approach compared to tra-
ditional and simulation methods. PenGym is proposed as our solution for
creating realistic environments to support training RL pentesting agents and
accommodating diverse complexity network scenarios. By enabling the exe-
cution of actual actions with real observations, PenGym eliminates the need
for the probabilistic modeling of actions, resulting in a more accurate repre-
sentation of security dynamics compared to simulation-based environments.
Regarding the realism and reliability of our approach, PenGym can cre-
ate successful cyber ranges that reflect the pentesting scenario, with actual
hosts connecting to form a real network. Moreover, actual actions can be exe-
cuted on these hosts to get information about running services and processes
or to exploit existing vulnerabilities to compromise the hosts. The experi-
mental results also indicated that agents trained in PenGym performed well,
reaching pentesting goals across all scenarios when tested in a realistic envi-
ronment. Therefore, this approach provides a realistic and reliable training
environment to enhance the applicability of the trained agents when deployed
in real-world infrastructure, while maintaining a reasonable training time.

29

We presented a set of experiments to emphasize the effectiveness of our
approach. For the smallest scenario, agents trained in NASim, NASim(rev.),
and PenGym environments achieved equivalent results when testing in both
simulation and emulation environments. For the mid-size scenario, simulation-
related issues occurred. Although the agents trained in the NASim environ-
ment performed well in the simulation environment, they were ineffective
when testing in the emulation environment, showing a high variation and
large attack step counts. In contrast, with a more accurate logical model, the
NASim(rev.) environment yielded testing results comparable to PenGym in
both the simulation and emulation environments. For the largest scenario,
agents trained in NASim mostly failed when testing in PenGym environ-
ments, with very low success rates of the ql and ql_replay agents. The
effectiveness of PenGym was clearly shown in these experiments. Although
agents trained in NASim(rev.) reached the pentesting goal with reason-
able attack steps across all test trials, their performance was inconsistent
compared to PenGym, which had higher stability. The results also indi-
cate that agents trained in PenGym slightly outperformed those trained in
NASim(rev.) for all test trials in both simulation and emulation environ-
ments, with average step differences ranging from 1.4 to 8 steps. Thus, using
PenGym for a realistic training environment enhances the applicability of
the trained agents when deployed in a real-world infrastructure.

Due to its cyber range execution, PenGym requires more training time
than NASim(rev.). However, it maintains a reasonable training duration,
especially in more complex scenarios. For the largest scenario and most
intricate RL algorithm, PenGym training takes around 17,000 s compared
to 14,000 s in NASim, with a ratio of roughly 1.2.

We envision that PenGym could be integrated into current cybersecu-
rity practices since RL agents trained via PenGym can realistically mimic
attacker strategies and actions. This integration would make possible the
automation of pentesting in the future, as RL agents trained via PenGym
could assist pentesters in their work, further improving the effectiveness of
cybersecurity assessment. The PenGym framework was released on GitHub
(https://github.com/cyb3rlab/PenGym) as open source with full support
for all the available scenarios, even the more complex ones.

8.2 Future Work

This research is a preliminary study into using a realistic environment for
training automated RL pentesting agents and aiding in their application
to real infrastructure. More scalable and efficient RL algorithms need to

60

be researched. These algorithms should be able to face the large scale of
networks while handling thousands of possible actions.

Furthermore, we aim to propose a realistic automatic scenario generator
for future research. Currently, the scenarios used in this study are manu-
ally created based on user purposes obtained from NASim work. Therefore,
a method that can automatically generate scenarios resembling real-world
systems is necessary to enhance the adaptability of pentesting RL agents.

61

Publications

1. H. P. T. Nguyen., K. Hasegawa., K. Fukushima., and R. Beuran.,
“PenGym: Realistic training environment for reinforcement learning pen-
testing agents,” Computers & Security, 2024. (Under Reviewed).

2. H. P. T. Nguyen., Z. Chen., K. Hasegawa., K. Fukushima., and R. Beu-
ran., “PenGym: Pentesting training framework for reinforcement learning
agents,” in Proceedings of the 10th International Conference on Informa-
tion Systems Security and Privacy - ICISSP, (Rome, Italia), pp. 498-509,
INSTICC, SciTePress, 2024.

3. H. P. T. Nguyen and S. Sakti, “Multilingual self-supervised visually
grounded speech models,” in Proceedings of the 3rd Annual Meeting of the
Special Interest Group on Under-resourced Languages @ LREC-COLING
2024 (M. Melero, S. Sakti, and C. Soria, eds.), (Torino, Italia), pp. 237
243, ELRA and ICCL, May 2024.

4. T. D. Le, H. P. T. Nguyen, K.-T. Huynh, and R. Beuran, “Smart
grid cyber-attack analysis and countermeasures,” in 2022 RIVF In-

ternational Conference on Computing and Communication Technologies
(RIVF), pp. 590-595, 2022.

62

References

1]

ESECY

[6]

O. S. Thomas J. Holt and Y. T. Chua, “Exploring and estimating the
revenues and profits of participants in stolen data markets,” Deviant
Behauvior, vol. 37, no. 4, pp. 353-367, 2016.

K. Chandrasekar, G. Cleary, O. Cox, H. Lau, B. Nahorney, B. O. Gor-
man, D. O’Brien, S. Wallace, P. Wood, and C. Wueest, “Internet security
threat report,” Symantec Corp, vol. 22, p. 38, 2017.

A. C. S. Center, “ACSC threat report,” Australian Government, 2017.

R. Von Solms and J. Van Niekerk, “From information security to cyber
security,” Computers € Security, vol. 38, pp. 97-102, 2013. Cybercrime
in the Digital Economy.

F. M. Zennaro and L. Erdédi, “Modelling penetration testing with rein-
forcement learning using capture-the-flag challenges: Trade-offs between
model-free learning and a priori knowledge,” IET Information Security,
vol. 17, no. 3, pp. 441-457, 2023.

Q. Li, M. Hu, H. Hao, M. Zhang, and Y. Li, “INNES: An intelligent net-
work penetration testing model based on deep reinforcement learning,”
Applied Intelligence, vol. 53, no. 22, pp. 27110-27127, 2023.

Y. Stefinko, A. Piskozub, and R. Banakh, “Manual and automated pen-
etration testing. benefits and drawbacks. modern tendency,” in 2016
13th international conference on modern problems of radio engineering,
telecommunications and computer science (TCSET), pp. 488-491, IEEE,
2016.

B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,”
IEEFE Security € Privacy, vol. 3, no. 1, pp. 84-87, 2005.

I. Arce and G. McGraw, “Guest editors’ introduction: Why attacking
systems is a good idea,” IEEE Security € Privacy, vol. 2, pp. 17-19,
July 2004.

63

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

D. Maynor, Metasploit toolkit for penetration testing, exploit develop-
ment, and vulnerability research. Syngess Publishing, Elsevier, 2011.

C. Sarraute, “Automated attack planning,” arXiw preprint
arXiv:1307.7808, 2013.

C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 workshop on New
security paradigms, pp. 71-79, 1998.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354-359, 2017.

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

S. Zhou, J. Liu, D. Hou, X. Zhong, and Y. Zhang, “Autonomous Pene-
tration Testing Based on Improved Deep Q-Network,” Applied Sciences,
vol. 11, no. 19, 2021.

Microsoft Defender Research Team, “CyberBattleSim.” https://
github.com/microsoft/cyberbattlesim, 2021. Created by Christian
Seifert, Michael Betser, William Blum, James Bono, Kate Farris, Emily
Goren, Justin Grana, Kristian Holsheimer, Brandon Marken, Joshua
Neil, Nicole Nichols, Jugal Parikh, Haoran Wei.

R. Beuran, D. Tang, C. Pham, K. Chinen, Y. Tan, and Y. Shinoda,
“Integrated framework for hands-on cybersecurity training: CyTrONE,”
Computers € Security, vol. 78C, pp. 43-59, 2018.

J. Schwartz and H. Kurniawati, “Autonomous penetration testing using
reinforcement learning,” arXiv:1905.05965, 2019.

M. C. Ghanem and T. M. Chen, “Reinforcement learning for efficient
network penetration testing,” Information, vol. 11, no. 1, p. 6, 2019.

C. Sarraute, O. Buffet, and J. Hoffmann, “POMDPs make better hack-
ers: Accounting for uncertainty in penetration testing,” in Proceedings

64

https://github.com/microsoft/cyberbattlesim
https://github.com/microsoft/cyberbattlesim

22]

28]

[30]

of the AAAI Conference on Artificial Intelligence, vol. 26(1), pp. 1816
1824, 2012.

M. C. Ghanem and T. M. Chen, “Reinforcement learning for intelligent
penetration testing,” in 2018 Second World Conference on Smart Trends
in Systems, Security and Sustainability (WorldS/), pp. 185-192, IEEE,
2018.

T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber
security,” IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 34, no. 8, pp. 3779-3795, 2021.

L. Li, J.-P. S. El Rami, A. Taylor, J. H. Rao, and T. Kunz, “Enabling A
Network AT Gym for Autonomous Cyber Agents,” in 2022 International

Conference on Computational Science and Computational Intelligence
(CSCI), pp. 172-177, IEEE, 2022.

A. Furfaro, A. Piccolo, A. Parise, L. Argento, and D. Sacca, “A cloud-
based platform for the emulation of complex cybersecurity scenarios,”
Future Generation Computer Systems, vol. 89, pp. 791-803, 2018.

The MITRE Corporation, “BRAWL.” https://github.com/mitre/
brawl-public-game-001, 2018.

K. Schoonover, E. Michalak, S. Harris, A. Gausmann, H. Reinbolt, D. R.
Tauritz, C. Rawlings, and A. S. Pope, “Galaxy: a network emulation
framework for cybersecurity,” in 11th USENIX Workshop on Cyber Se-
curity Experimentation and Test (CSET 18), pp. 1-8, 2018.

K. Pozdniakov, E. Alonso, V. Stankovic, K. Tam, and K. Jones, “Smart
Security Audit: Reinforcement Learning with a Deep Neural Network
Approximator,” in 2020 International Conference on Cyber Situational
Awareness, Data Analytics and Assessment (CyberSA), pp. 1-8, 2020.

M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and D. Mar-
riott, “CybORG: A gym for the development of autonomous cyber
agents,” in Proceedings of the 1st International Workshop on Adaptive
Cyber Defense, pp. 1-7, August 2021.

A. Molina-Markham, C. Miniter, B. Powell, and A. Ridley, “Network
environment design for autonomous cyberdefense,” arXiv:2103.07583,
2021.

65

https://github.com/mitre/brawl-public-game-001
https://github.com/mitre/brawl-public-game-001

[31] J. Janisch, T. Pevny, and V. Lisy, “NASimEmu: Network attack simu-
lator & emulator for training agents generalizing to novel scenarios,” in
Computer Security. ESORICS 2023 International Workshops, (Cham),
pp- 589-608, Springer Nature Switzerland, 2024.

[32] R. R. Linde, “Operating system penetration,” in Proceedings of the May
19-22, 1975, national computer conference and exposition, pp. 361-368,
1975.

[33] F.Holik, J. Horalek, O. Marik, S. Neradova, and S. Zitta, “Effective pen-
etration testing with metasploit framework and methodologies,” in 201/
IEEFE 15th International Symposium on Computational Intelligence and
Informatics (CINTI), pp. 237-242, IEEE, 2014.

[34] G. F. Lyon, Nmap network scanning: The official Nmap project guide
to network discovery and security scanning. Insecure, 2009.

[35] S. Chaudhary, A. O'Brien, and S. Xu, “Automated post-breach penetra-
tion testing through reinforcement learning,” in 2020 IEEE Conference
on Communications and Network Security (CNS), pp. 1-2, IEEE, 2020.

[36] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAl Gym,” arXiv:1606.01540, 2016.

[37] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring
system,” IEEFE Security € Privacy, vol. 4, no. 6, pp. 85-89, 2006.

[38] G. Lyon, “Nmap security scanner.” https://nmap.org/, 2014.

[39] S. Donnelly, “Soft target: The top 10 vulnerabilities used by cybercrim-
inals,” Recorded Future, 2018.

[40] A. Norman, “Python-Nmap.” https://pypi.org/project/python-nmap/,
2021.

[41] D. McInerney, “Pymetasploit3.” https://pypi.org/project /pymetasploit3/,
2020.

[42] Rapid7 Vulnerability & Exploit Database , “SSH Logic Check Scan-
ner.” https://www.rapid7.com/db/modules/auxiliary/scanner/
ssh/ssh_login/, 2018. Accessed: July 23, 2024.

[43] Rapid7 Vulnerability & Exploit Database , “VSFTPD v2.3.4 Back-
door Command Execution .” https://www.rapid7.com/db/modules/
exploit/unix/ftp/vsftpd_234_backdoor/, 2018. Accessed: July 23,
2024.

66

https://www.rapid7.com/db/modules/auxiliary/scanner/ssh/ssh_login/
https://www.rapid7.com/db/modules/auxiliary/scanner/ssh/ssh_login/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/

[44]

[45]

48]

[49]

[52]

[53]

National Vulnerability Database, “CVE-2011-2523.” https://nvd.
nist.gov/vuln/detail/CVE-2011-2523, 2021. Accessed: July 23,
2024.

Rapid7 Vulnerability & Exploit Database , “Apache 2.4.49/2.4.50
Traversal RCE.” https://www.rapid7.com/db/modules/exploit/

multi/http/apache_normalize_path_rce/, 2021. Accessed: July 23,
2024.

National Vulnerability Database, “CVE-2021-41773.” https://nvd.
nist.gov/vuln/detail/CVE-2021-41773, 2023. Accessed: July 23,
2024.

Rapid7 Vulnerability & Exploit Database | “Samba
is_known_pipename() Arbitrary Module Load.” https://www.rapid7.
com/db/modules/exploit/linux/samba/is_known_pipename/, 2018.
Accessed: July 23, 2024.

National Vulnerability Database, “CVE-2017-7494.” https://nvd.
nist.gov/vuln/detail/CVE-2017-7494, 2022. Accessed: July 23,
2024.

Rapid7 Vulnerability & Exploit Database , “OpenSMTPD MAIL FROM
Remote Code Execution.” https://www.rapid7.com/db/modules/

exploit/unix/smtp/opensmtpd_mail_from_rce/, 2020. Accessed:
July 23, 2024.

National Vulnerability Database, “CVE-2020-7247.” https://nvd.
nist.gov/vuln/detail/CVE-2020-7247, 2024. Accessed: May 2, 2023.

Rapid7 Vulnerability & Exploit Database , “Local Privilege Escalation
in polkits pkexec.” https://www.rapid7.com/db/modules/exploit/
linux/local/cve_2021_4034_pwnkit_lpe_pkexec/, 2022. Accessed:
July 23, 2024.

National Vulnerability Database, “CVE-2021-4034.” https://nvd.
nist.gov/vuln/detail/CVE-2021-4034, 2021. Accessed: May 2, 2023.

Rapid7 Vulnerability & Exploit Database , “ProFTPD-1.3.3¢ Back-
door Command Execution.” https://www.rapid7.com/db/modules/
exploit/unix/ftp/proftpd_133c_backdoor/, 2018. Accessed: July
23, 2024.

67

https://nvd.nist.gov/vuln/detail/CVE-2011-2523
https://nvd.nist.gov/vuln/detail/CVE-2011-2523
https://www.rapid7.com/db/modules/exploit/multi/http/apache_normalize_path_rce/
https://www.rapid7.com/db/modules/exploit/multi/http/apache_normalize_path_rce/
https://nvd.nist.gov/vuln/detail/CVE-2021-41773
https://nvd.nist.gov/vuln/detail/CVE-2021-41773
https://www.rapid7.com/db/modules/exploit/linux/samba/is_known_pipename/
https://www.rapid7.com/db/modules/exploit/linux/samba/is_known_pipename/
https://nvd.nist.gov/vuln/detail/CVE-2017-7494
https://nvd.nist.gov/vuln/detail/CVE-2017-7494
https://www.rapid7.com/db/modules/exploit/unix/smtp/opensmtpd_mail_from_rce/
https://www.rapid7.com/db/modules/exploit/unix/smtp/opensmtpd_mail_from_rce/
https://nvd.nist.gov/vuln/detail/CVE-2020-7247
https://nvd.nist.gov/vuln/detail/CVE-2020-7247
https://www.rapid7.com/db/modules/exploit/linux/local/cve_2021_4034_pwnkit_lpe_pkexec/
https://www.rapid7.com/db/modules/exploit/linux/local/cve_2021_4034_pwnkit_lpe_pkexec/
https://nvd.nist.gov/vuln/detail/CVE-2021-4034
https://nvd.nist.gov/vuln/detail/CVE-2021-4034
https://www.rapid7.com/db/modules/exploit/unix/ftp/proftpd_133c_backdoor/
https://www.rapid7.com/db/modules/exploit/unix/ftp/proftpd_133c_backdoor/

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

National Vulnerability Database, “CVE-2015-3306.” https://nvd.
nist.gov/vuln/detail/CVE-2015-3306, 2021. Accessed: May 2, 2023.

Rapid7 Vulnerability & Exploit Database , “Cron Persistence.”
https://www.rapid7.com/db/modules/exploit/linux/local/cron_
persistence/, 2018. Accessed: July 23, 2024.

I. Habib, “Virtualization with KVM,” Linux Journal, vol. 2008, no. 166,
p. 8, 2008.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
pp. 279-292, 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,” na-
ture, vol. 518, no. 7540, pp. 529-533, 2015.

M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

J. Schwartz and H. Kurniawatti, “NetworkAttackSimulator.” https:
//github.com/Jjschwartz/NetworkAttackSimulator/tree/master,
2023. Accessed: July 23, 2024.

H. P. T. Nguyen, “The firewall does not affect the exploit action from the
Internet to the connected subnet.” https://github.com/Jjschwartz/
NetworkAttackSimulator/issues/45, 2023. Accessed: July 23, 2024.

H. P. T. Nguyen, “Service Scan does not take firewall into account.”
https://github.com/Jjschwartz/NetworkAttackSimulator/
issues/46, 2023. Accessed: July 23, 2024.

H. P. T. Nguyen, “The Remote Action (Exploit action) can be
executed on its target host.” https://github.com/Jjschwartz/
NetworkAttackSimulator/issues/47, 2023. Accessed: July 23, 2024.

68

https://nvd.nist.gov/vuln/detail/CVE-2015-3306
https://nvd.nist.gov/vuln/detail/CVE-2015-3306
https://www.rapid7.com/db/modules/exploit/linux/local/cron_persistence/
https://www.rapid7.com/db/modules/exploit/linux/local/cron_persistence/
https://github.com/Jjschwartz/NetworkAttackSimulator/tree/master
https://github.com/Jjschwartz/NetworkAttackSimulator/tree/master
https://github.com/Jjschwartz/NetworkAttackSimulator/issues/45
https://github.com/Jjschwartz/NetworkAttackSimulator/issues/45
https://github.com/Jjschwartz/NetworkAttackSimulator/issues/46
https://github.com/Jjschwartz/NetworkAttackSimulator/issues/46
https://github.com/Jjschwartz/NetworkAttackSimulator/issues/47
https://github.com/Jjschwartz/NetworkAttackSimulator/issues/47

	Introduction
	Traditional Pentesting
	Reinforcement Learning for Pentesting
	Problem Statement
	Contributions
	Thesis Structure

	Background
	Pentesting Mechanisms and RL Overview
	Motivation

	Literature Review
	Pentesting and Related Tools
	RL Training Environments
	Simulation Environments
	Emulation Environments

	Cyber Range Creation for Pentesting

	PenGym Framework
	PenGym Overview
	Action Implementation
	Service Scan
	OS Scan
	Subnet Scan
	Exploit
	Process Scan
	Privilege Escalation

	Action Optimizations
	Single Action Optimization
	Training Time Optimization

	Cyber Range Creation
	Cyber Range Composition
	Cyber Range Description Generation
	Bridge Functionality

	Functionality Validation
	Action Implementation Validation
	Service Scan
	OS Scan
	Subnet Scan
	Exploit
	Process Scan
	Privilege Escalation

	Cyber Range Creation Validation
	Configuration Validation
	Creation Time

	Experiment Results
	Experiment Scenarios
	Tiny Scenario
	Small Scenario
	Medium Scenario

	Preliminary Experiments
	Detailed Experiments
	Agent Training
	Agent Testing

	Discussion
	Comparative Analysis of Simulation and Emulation Approaches
	Host Configuration
	Actions
	Observations

	Simulation Modeling Issues
	Firewall Functionality Issue
	Scan Action Issue
	Remote Action Issue

	Conclusion
	Summary
	Future Work

