
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Towards x86 Instruction Set Emulation in Java via

Project-based Text-to-Code Generation using

Reinforcement Learning

Author(s) Tran, Thu Thi Anh

Citation

Issue Date 2024-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/19361

Rights

Description
Supervisor: 小川 瑞史, 先端科学技術研究科, 修士(情報

科学）



Towards x86 Instruction Set Emulation in Java via Project-based
Text-to-Code Generation using Reinforcement Learning

2210422 TRAN, Thu Thi Anh

Malware analysis by formal methods using Control Flow Graphs (CFGs)
has been proved to be more effective than conventional signature-based strate-
gies. To reconstruct a CFG of a given program, Dynamic Symbolic Execution
(DSE) techniques are often used. The implementation of a DSE tool must
strictly comply with the specifications of its designated architecture - the In-
struction Set Architecture (ISA) manual. As there is a number of computer
processor families with each has several variations and editions, fully man-
ual DSE tools construction certainly demands extensive engineering work.
To help reduce human effort, tasks such as environment emulation and in-
struction set emulation can be semi/fully automated with the help of natural
language processing techniques.

The semi-automated approach of such tasks includes two steps: extracting
semantics from natural language text of the ISA manual and mapping them
into a prepared code template tailored to the platform that constructs the
DSE tool. Two notable DSE tools which are BEPUM (Binary Emulation for
PUshdown Model) for x86 architecture and CORANA for ARM architecture
employs semi-automatic instruction set emulation. It is reported that BE-
PUM successfully generates Java code implementation for 56.41% of 530
selected x86 instructions and CORANA scores at 63.72% of 1039 ARM -
Cortex M instructions in 5 variations. While achieving promising emulation
results, this approach still requires manual preparation of both interpretation
rules for semantic extraction and project-based code templates. Although
the current progress of BE-PUM and CORANA shows that the amount of
human effort spent on the manual preparation is minimal compared to the
traditional workload, it is evidence that to yield higher results than those
does demand greater human labor.

The fully automated approach eliminates the need for rule preparation,
concentrating instead on end-to-end text-to-code generation. In this study,
we explore the feasibility of this approach by developing CoDeb system which
aims at applying reinforcement learning to large language models for fully-
automatic emulation of x86 instruction set based on its description in natural
language, utilizing feedback from compiler and the existing Java codebase of
BE-PUM project. As a result, the performance of this method would not
be bounded by human effort. However, the quality of the automatically
generated codes must meet standard requirements, including syntactical and
semantic correctness.

1



The scope of our study focuses on ensuring project-level syntactical cor-
rectness via successful compilation. This requires that the generated code is
valid within the project-level context of BE-PUM, meaning it must correctly
utilize the existing code base, including function calls, variable names, and
data types. In our work, we adopt two generative models, one acts as a code
writer (Coder) and the other as a code debugger (Debugger), hence the name
CoDeb. Additionally, the code base knowledge of BE-PUM project is built
into separate vector database which serves as syntax references for the gen-
erative models. To eliminate the need for manual work spent on preparing
labelled dataset or coding examples, we approach via almost-zero-shot gener-
ation by preparing a small code template and employing a set of rule-based
feedback and compiler feedback to help iteratively improve the generation
through reinforcement learning with Proximal Policy Optimization. Out of
200 selected x86 instructions, CoDeb’s best attempt successfully generates
project-level compilable code for 20 instructions, achieving a 10% success
rate. Due to time and computing resource constraints, only this attempt
(among other experimental trials) completed a total of 1,147 instructions,
achieving a 14.39% success rate with 165 successfully compiled instructions.
Compared to the baseline of semi-automatic approaches, our work, though
with modest results, shows promising potential for application and adapt-
ability.

2


