
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Pronunciation Learning Based on Visual Articulator

Movement

Author(s) Mushaffa Rasyid, Ridha

Citation

Issue Date 2024-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/19362

Rights

Description
Supervisor: 長谷川 忍, 先端科学技術研究科, 修士(情報

科学）



Master’s Thesis

Pronunciation Learning Based on
Visual Articulator Movement

Mushaffa Rasyid Ridha

Supervisor: Professor HASEGAWA Shinobu

School of Information Science
Japan Advanced Institute of Science and Technology

(Master’s Degree)

September, 2024



Abstract

In today’s globalized world, multilingualism is essential, increasing the
demand for second language (L2) learning. Learners must master vocab-
ulary, grammar, and pronunciation for effective communication. Pronun-
ciation is very important, as mispronunciations can easily lead to message
misinterpretation. To increase the proficiency of language learners there are
human-assisted pronunciation training and computer-assisted pronunciation
training.

Human-assisted pronunciation training is pronunciation training that in-
volves a professional linguist in correcting and analyzing pronunciation prob-
lems, but this approach is costly and time-consuming, also the requirement
of an expert is one disadvantage of this approach. To solve this problem,
Computer-Assisted Pronunciation Training (CAPT) was developed to pro-
vide a more affordable and accessible alternative for self-directed language
learning.

There are several approaches used by researchers to adapt pronuncia-
tion training concepts using technology/computer: app-based system, visual
simulation-based system, AI-based system, comparative phonetic-based sys-
tem, and game-based system. Most of the CAPT models have the feedback in
the form of technical knowledge of speech production in phonetic knowledge
or only give feedback in the form of a score or text, without any correction.
This kind of feedback does not show the exact reason for the error in the
pronunciation of L2 learners. Several CAPTs are also able to detect phone-
level errors and show the error of pronunciation according to their phonetic
label, however, detecting phone-level errors alone does not necessarily re-
sult in effective feedback for learners. While learners are informed of which
phonemes and words contain mistakes, they do not receive clear guidance on
which articulatory movements caused these errors. To solve this issue there
is a need for a CAPT system that could analyze the pronunciation using an
articulator-based system.

Pronunciation is linked to how articulators move to produce sound. By
understanding the human articulator movement the pronunciation could be
analyzed and features could be detected. In the research about speech pro-
duction mechanisms, several methods were used to scan the actual movement
of the articulator. RtMRI is particularly notable for being non-invasive, free
from radiation, and providing high-resolution images of vocal tract configu-
rations. This research proposed a method by getting the articulation contour
data from rtMRI and then training a model based on the paired speech data,



which will result in a model that could generate the articulator movement
with input sound.

For this task, the accuracy of the paired data is critical. However, the
available dataset contains inaccuracies that need to be refined before they
can be utilized for training. This research also introduces a comprehensive
refinement method for the rtMRI dataset, addressing contour labeling inaccu-
racies through a three-step process: outlier removal, FCN-based smoothing,
and point-to-curve projection. These steps significantly enhance the quality
of the data, as evidenced by improved contour labels that have been evaluated
through subjective assessment methods.

After the pair data of sound and label is produced, the next step is to
train an articulator movement generation model. This model will need to
be able to output the outline of the articulator movement with only speech
input. To facilitate the model training, speech features were extracted from
audio. In this research, there are 3 speech features that were investigated.

Using different audio features extraction methods, phoneme human-annotated
labeling, MFCC feature, and wav2v2ec 2.0 feature for articulator movement
generation model training, the resulting model is capable of generating the
articulator movement from wav2vec 2.0 feature extraction method but failed
using the phoneme and MFCC feature extraction methods. Using wav2vec
2.0 features, the more complex model with 12x more parameters was trained
and produced a more accurate model. This results in a model that is capable
of generating the movement of the articulator with only speech data, using
wav2vec 2.0 feature extraction.

The model’s capability to detect pronunciation could be used for pronun-
ciation training, as it is capable of generating the general trend of articulator
movement. This visualization feedback then can be used to enhance the
learning ability of pronunciation of L2 learner, to detect errors in their pro-
nunciation, or to compare themselves with the right pronunciation.

Keywords: Speech-to-articulatory, articulator movement generation, real-
time magnetic resonance imaging (rtMRI), automatic speech recognition
(ASR), Wav2vec 2.0 pertaining, language learning, automatic pronunciation
assessment.
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Chapter 1

Introduction

1.1 Pronunciation Training
The prevalence of human interaction among people from different nationali-
ties, cultures, and linguistic backgrounds has increased. One significant chal-
lenge to effective international communication is the language barrier. Since
language serves as the fundamental and crucial means of connecting with one
another, acquiring proficiency in the spoken aspect of a new language creates
opportunities to surmount barriers in cross-cultural communication.

In today’s globalized world, multilingualism is essential, increasing the
demand for second language (L2) learning. Learners must master vocab-
ulary, grammar, and pronunciation for effective communication. Pronun-
ciation is very important, as mispronunciations can easily lead to message
misinterpretation. To increase the proficiency of language learners there are
human-assisted pronunciation training and computer-assisted pronunciation
training.

1.1.1 Human Assisted Pronunciation Training

Human-assisted pronunciation training is pronunciation training that in-
volves a professional linguist in correcting and analyzing pronunciation prob-
lems. The knowledge of the movement of the articulator is very crucial in
detecting pronunciation errors and correcting the pronunciation. Learning a
language with native experts often entails the correction of articulatory move-
ments to improve pronunciation accuracy. However, professional human-
assisted training is often costly and time-consuming. Then researchers start
integrating the advancement in technology including automatic error detec-
tion or social networking services to reduce the cost and increase the efficiency
of the learning. [14]

1



1.1.2 Computer Assisted Pronunciation Training

The integration of technology in many human-assisted tasks also produces de-
velopment in the form of Computer-assisted Pronunciation Training (CAPT).
Many CAPT [14, 15, 16] applications have been developed to aid L2 learn-
ers, providing a more affordable and accessible alternative for self-directed
language learning. Generally, CAPT model is divided into two tasks: auto-
matic pronunciation assessment (APA) and mispronunciation detection and
diagnosis (MDD). APA primarily evaluates speech to assign pronunciation
proficiency scores that closely match those given by human evaluators, ad-
dressing aspects like accentedness, fluency, and comprehensibility across dif-
ferent granularities such as phones, words, and sentences [17, 18, 19, 20, 4, 11].
MDD focuses on identifying pronunciation errors and providing instant feed-
back to help L2 learners improve their speaking skills [21, 22, 23, 24, 19].
Studies have analyzed the most frequent phonetic errors and explored dis-
tinctive features and classifiers. Additionally, some systems incorporate au-
tomatic speech recognition (ASR) technology, integrating possible errors into
the lexicon to provide information about pronunciation mistakes [19, 4].

1.2 Speech and Articulatory Movement
Speech production mechanisms are defined at a peripheral level by the acous-
tic outputs they generate and the dynamic movements of the vocal tract over
time. As a result, substantial research has focused on gathering both acous-
tic and articulatory data to better understand and analyze the sounds of
the world’s languages [25]. This data has supported the development of ar-
ticulatory models of speech production by researchers [26, 27, 28, 29, 30]
with the aim to infer articulatory speech motor control schemes, while meth-
ods for modeling relationships between gestures and sounds using statistical
approaches have also been explored [31, 32]. Additional research has in-
vestigated the overall geometry of the vocal tract and its relation to vocal
tract acoustics [33, 34]. Further, focused studies on individual articulators
have contributed to developing biomechanical articulatory models [35, 36]
and examining speech temporal coordination, as seen in studies by [37, 38].

To explore directly the articulator movement various visualization tech-
niques have been employed, including X-ray imaging [39, 40] Electromagnetic
Articulography (EMA) [41, 1, 11] and real-time Magnetic Resonance Imaging
(rtMRI). EMA is a method to measure the position of parts of an articulator
using several placed coils in the tongue and other parts of the mouth, this
method allows observation of movement in several areas of the mouth. Using
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Figure 1.1: Left: EMA sensor’s position, Right: Setup of EMA recording.
[1]

the EMA method gives 6 xy-points data, that could observe areas between
the tongue and palate and two lips. MRI data shows the image scan of
including glottal, uvular, soft, and hard palate, tongue, and lips.

1.3 Limitation and Challenge
This section will explain the limitations and challenges of the existing meth-
ods in relation to CAPT with articulator movement.

1.3.1 Feedback Technique

Several approaches was used for pronunciation feedback training: app-based
system, visual simulation-based system, AI-based system, comparative phonetic-
based system, and game-based system [14]. The app-based system was the
most used system based on the literature study by Chen [14], this tool uses
using available mobile app or Social Networking Sites (SNSs) to give instruc-
tion and and pronunciation training [12]. The visual simulation-based system
using the spectrogram image including the pitch change intonation change
[17, 3]. For AI-based systems, different research tried using different kinds
of models to produce a model that could detect the error in pronunciation
[4, 20]. The comparative phonetic-based approach is a system that compares
the phonetic features [5], usually used by an expert who is fluent in their na-
tive languages. In this method, the phonemes of a learner’s native language
are compared to those in English through stochastic (probabilistic) analy-
sis. The Computer-Assisted Pronunciation Training (CAPT) system records
the learners’ speech, identifies mispronunciations, and provides improvement
suggestions based on their native languages. Game-based approaches em-
ploy interactive, goal-oriented tasks in both formal and informal settings to
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teach pronunciation. Such a system can simulate real-world conversations
and train learners to speak appropriately in various contexts [6].

As explained before in the section 1.1.2, there are 2 types of CAPT,
the ones that focus on automatic pronunciation assessment (APA) and the
ones that focus on mispronunciation detection and diagnosis (MDD). From
different tools for pronunciation feedback, visual feedback was found to be
effective in the L2 classroom for the teaching of segmental features of pro-
nunciation. Using visual feedback of the difference between spectrograms of
speech, L2 learners achieve significant improvement, more native-like, pro-
ductions of the pronunciation [42]. To achieve a system that could give both
APA and MDD objectives at the same time, there is a need for system devel-
opment that could assess pronunciation but also be used for diagnosis tasks.
A CAPT system that utilizes an articulator-based approach with articulatory
movement would provide clear assessment and precise feedback diagnosis by
visually demonstrating the physical interactions of the articulators during
speech production.

1.3.2 Articulator Movement Extraction

To be able to train the model that could represent the movement of the ar-
ticulator to analyze the pronunciation, the dataset that has the pair data for
articulator movement and its corresponding speech sound is crucial. Among
the 3 physical feature extraction from the actual movement of the articu-
lator, rtMRI is particularly notable for being non-invasive, free from radia-
tion, and providing high-resolution images of vocal tract configurations. This
makes rtMRI an excellent tool for examining the dynamic movements of the
tongue, lips, and palate during speech, including the unseen areas such as
tongue radical to pharyngeal, the uvular to pharyngeal, epiglottis and glot-
tis movement, enhancing our understanding of the mechanisms underlying
speech production, compared to previous research in speech-to-articulatory
movement based on the EMA dataset [43] that only cover several part of the
tongue. Inversely, using the MRI data it is able to generate more comprehen-
sive speech data from articulator [9] showing the inverse task more probable.
However, the available dataset for the pair data of MRI video and speech
data for CAPT was found to still contain occasional errors.

1.3.3 CAPT by articulatory features

A significant step towards articulator-based pronunciation correction is the
DNN articulatory model system by Duan et. all [19]. Instead of providing
typical error feedback such as “You pronounced the ’th’ sound incorrectly”
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Figure 1.2: Places of articulation (passive & active). [2]

when a user pronounces the word “think” as “sink,” it aims to provide more
detailed guidance like “Place your tongue between your teeth and blow air
softly.” This system uses large corpora from Japanese and Chinese languages
to model inter-language phonemes using IPA categorization, requiring a pre-
defined phoneme set specific to Chinese and Japanese. Unfortunately, this
research did not include visualization, making it difficult for learners to un-
derstand the exact position of their articulators. Therefore, a more in-depth
analysis of dynamic movements, such as those of the tongue, lips, and palate
during speech production, is essential for understanding the articulatory-
sound relationship and providing more effective feedback.

1.4 Objective and Originality of this Thesis
To address the gap that is presented in section 1.3, our research aim is to
develop an articulatory movement generation model that could be used in the
CAPT system that offers valuable feedback on detailed visual articulatory
movements.

1.4.1 Objective

Motivated by the principles underlying human sound production and its po-
tential to aid pronunciation training, this research aims to develop an ar-
ticulator movement generation that could be used for a Computer-Assisted
Pronunciation Training system. The objectives of this research are:

• To detect articulatory movements corresponding to the recorded speech
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sound, including choosing the feature extraction methods, and dataset
refinement.

• To assess the effectiveness of the articulator movement generator for
the pronunciation detection task.

1.4.2 Originality

Throughout our study, we introduce our novelty and contribution in the field,
which are as follows:

• We proposed a necessary data refinement method to develop a refined
dataset pairing speech sounds with MRI-derived articulatory contours,
enabling the detection of articulatory movements.

• We propose a method to generate articulator movement generation,
which can represent the movement of the articulator based on the input
sound, in response to audio input.

• We evaluate the articulator movement generator’s effectiveness in de-
tecting the pronunciation.

1.5 Organization of Thesis
This thesis is structured with five chapters. The following is a quick summary
of the contents of each chapter:

• Chapter 1 gives the introduction and background of this thesis. Sec-
tion 1.1 gives the definition and introduction of pronunciation training
including briefly current technologies of the CAPT system. Section 1.2
briefly explains the existing method for speech and articulatory rela-
tion. Section 1.3 shows the limitations and challenges of the current
research. Section 1.4 demonstrates the objectives as well as the original-
ities of this thesis. Finally, the last section 1.5 details the organization
of this thesis.

• Chapter 2 introduces CAPT systems and their approach. Section 2.1
tells briefly the focus of the chapter. Section 2.2 shows examples of app-
based approaches used by the CAPT system. Section 2.3 shows exam-
ples of visual simulation-based approaches used by the CAPT system.
Section 2.4 shows examples of AI-based approaches used by the CAPT
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system. Section 2.5 shows examples of comparative phonetic-based ap-
proaches used by the CAPT system. Section 2.6 shows examples of
game-based approaches used by the CAPT system.

• Chapter 3 details the proposed refinement method used in this research.
Section 3.1 gives a brief overview of the proposed model for data refine-
ment. Section 3.2 gives a detailed explanation of the existing articula-
tor movement dataset. Section 3.3 explains the existing work related
to USC-TIMIT and its refinement. Section 3.4 explains the proposed
approach used to refine the dataset. Section 3.5 explain the experimen-
tal setup used inthis study fo data refinement step. Section 3.6 shows
the result of result of the experiment. Section 3.7 gives a summary of
the chapter 3.

• Chapter 4 details the proposed articulator generator method used in
this study. Section 4.1 gives a brief overview of the proposed method for
articulator movement generator method. Section 4.2 explains the re-
lated works related to speech and movement of articulator with rtMRI
dataset. Section 4.3 explains the proposed system for articulator move-
ment generator. Section 4.4 explains the setup used in the experiment.
Section 4.5 explains the result of the experiment. 4.6 gives a summary
of the chapter 4.

• Chapter 5 explain the conclusion of the research and the future direc-
tion of the research. Section 5.1 explains the conclusion of this study.
5.2 explains the future direction of this study.
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Chapter 2

Literature Review

2.1 Overview
This chapter introduces CAPT systems and their approach to pronunciation
training. There are five example approaches used by the CAPT system that
will be explained in this chapter: App-based system, visual simulation-based
system, AI-based system, comparative phonetic-based system, and game-
based system.

2.2 App-based system

2.2.1 Overview

Fouz-Gonzales [12] proposed Twitter-based pronunciation instruction, send-
ing the participants a daily tweet related to pronunciation instruction. On
weekdays learners will get one tweet per day for the training phase in 22
days. There 2 groups, the experimental group that were sent tweets for the
target pronunciation and the another group that were sent not pronunciation
tips but different English tips (grammar tips, or contents related to them).

This study conducted a test before and after training and a post-test after
a month to measure whether the participant retained the ability over time.
With the result of improvement rate between 22%-30%. The result after a
month, half of the participant still retain the improvement. Participants’
responses after the experiment are shown in Table 2.1.
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Table 2.1: The response of participant, with the standard variation denoted
inside the parentheses [12]

2.2.2 Limitation

This research shows that multiple corrections or feedback using technology
as a bridge without direct contact is possible and the pronunciation ability
is still retained even after a period of time passed. However, there is no
feedback mechanism for detecting and correcting the error.

2.3 Visual simulation-based system

2.3.1 Overview

Liu et al. [3] research the effect of CAPT system under combined 4 condi-
tions, between scripted text and unscripted text, and between active engage-
ment and passive engagement. Using the native English speaker recorded
sound as comparison on in the training. The visual cues used here are the
waveform and spectrograms. The target of the training is the suprasegmental
phonology (intonation).

The results indicate that intonational gain was better using scripted than
unscripted speech. This shows that there is an increase in difficulty for
improvement in suprasegmental phonology (intonation) in unscripted (un-
planned) speech compared to scripted (planned) speech. The findings suggest
that increase in engagement and following the scripted procedure is needed
to address the suprasegmental phonology in unscripted speech.
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Figure 2.1: Comparison between native and learner intonational production.
[3]

2.3.2 Limitation

This research shows that the CAPT system with visual feedback helps in
segmenting the error and correcting the intonation from the scripted speech,
but this research only addresses the suprasegmental phonology in their visual
feedback and does not yet address the visual cues in the segmental phonology.

2.4 AI-based system

2.4.1 Overview

Kim et al. [4] proposed a method utilizing the SSL model (wav2vec 2.0 and
HuBERT) for learning pronunciation-relevant latent representations, illus-
trated in Figure 2.2. There are 3 steps:

• Fine-tuning the pre-trained models with the chosen datasets.

• Extracting the contextual output of the models.

• decoding the pronunciation score from contextual information, using
another layer of neural network.

Table 2.2 shows the result of pre-trained models and fine-tuned models
of wav2vec 2.0, and HuBERT [44]. First, both models pre-trained models
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Figure 2.2: Automatic pronunciation assessment proposed by Kim’s [4] based
on SSL models.

shows improvements compared to baseline model, as shown in Table 2.2. The
results of higher performance with wav2vec2 robust pre-trained model [45]
and Large model shows that the model that was trained using real-world
scenarios or larger model improve the performance compared to pre-trained
counterparts.

2.4.2 Limitation

This research shows that the ASR models can detect fluency, holistic, and
prosodic measures of speech using scores but not detect the exact error in
pronunciation.

2.5 Comparative phonetic-based system

2.5.1 Overview

Qian et al. [5] proposed a sophisticated two-pass framework for mispronun-
ciation detection and diagnosis (MD&D) in pronunciation detection. This
method was proposed to address the typical comparative mispronunciation
detection systems that rely on predefined models that predict how errors are
likely to occur based on known error patterns. The system does not assume
any specific types of errors beforehand (i.e., it does not use a predefined
list of possible mistakes learners might make). This approach is intended to
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Table 2.2: The result of assessment of models using KESL and Spee-
chocesn762 dataset. [4]

cover a wider range of possible errors. By not restricting the model to known
error patterns, the system theoretically can identify any type of pronunci-
ation error, thereby providing comprehensive error detection. The problem
with this approach is without predefined error patterns, the system must
consider a vast number of potential errors, leading to a very large set of
possibilities (search space) that the system needs to evaluate. This results,
the search space is so large that it becomes computationally difficult (in-
tractable) to manage effectively. The research seeks to minimize the search
space by pairing each canonical phone1 (derived from the text prompt) with
an anti-phone, which encompasses the complementary acoustic space. The
anti-phone is a concept which represents sounds that are the acoustically
opposite or complementary for each canonical phone. anti-phone was intro-
duced in this research in the form of Gaussian Mixture Model (GMM)-Hidden
Markov Model (HMMs) model to detect phone substitution.

In the initial pass of recognition within this network, phonetic substitu-
tions are detected. Integrating the filler mode2 adds the capability of the

1A canonical phone is a typical or most common realization of a phoneme in a given
linguistic context. It is a specific phonetic instance of a phoneme that serves as a standard
or reference point within a particular discussion or analysis.

2Filler model was introduced in this research with the name universal phone model
(UPM) which covers all the non-silence phones.
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(a)

(b)

Figure 2.3: (a) The example architecture of the first pass for the word "THE".
Anti-phone has the prefix ’_’. ‘eps’ means a non-emitting skip. UPM means
Universal phone model or filler model. (b) The example architecture of the
second pass, when the first phone [th] was not detected. It does not appear
between state 0 and 1.[5]

network to detect insertions, and deletions which allows phone skips. Next,
free-phone recognition was conducted on the insertions and substitution seg-
ments to find the actual phones. Discriminative training on the two-pass
framework with reduces the PER from 27.7% to 16.5%.

2.5.2 Limitation

The approach of this research is on error detection, but this method does
not have visual feedback of the error that happened, and only addresses
the phone notation, which would require additional knowledge of phonetic
notation to understand the system feedback.

2.6 Game-based system

2.6.1 Overview

Satria et al. [6] used the game-based system CAPT to train kid on age
between 8-13 years old with the proposed game called “Hello Animal”.

All operations in the game use speech commands. From the start screen,
user needs to navigate through the game with the command shown on the
screen, either to start the game or another menu. When the game is started,
the animal data will be loaded. If the user want to pause the game, they
could do so at any time by saying "pause.". The user can exit the program
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at any time, with a prompt asking for confirmation.

Figure 2.4: Screenshot of the game ’Hello Animal’ [6]

The results of the test, based on the survey, the evaluation score of the
participants was high with average 4.38 in the scale 0-5, based on user inter-
action score, feedback and pedagogy effect of the game.

2.6.2 Limitation

This research focused on increasing the engagement and proactive action
from the participants, as seen in the subjective feedback Table ??. However,
this approach does not address much of the correct feedback for correcting
the wrongness in pronunciation.
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Chapter 3

Proposed rtMRI Articulatory
Movement Dataset Refinement

3.1 Overview

Figure 3.1: Data Refinement Section of Proposed Method

RtMRI is a method to capture the unseen area of inside the human
body that is radiation-free, compared to X-ray, a non-invasive as it uses
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magnetic field, and high-resolution that could be used for the visualiza-
tion of vocal tract. This method provides information that could be cov-
ered by EMA (head, jaw, labial and lingual motion) and also not cov-
ered by EMA (velum, pharynx, and larynx)[13]. USC-TIMIT database [13]
is a collection of resource data that is available publicly, on the website
http://sail.usc.edu/span/usc-timit. This dataset provides the pair data of
speech and its rtMRI data. But this dataset contains the occasional error for
the contour data. A refinement method was proposed to refine the contour
data, as seen in the data refinement section in the proposed method, Figure
3.1. This section will give a comprehensive explanation of the USC-TIMIT
database, including the proposed refinement method.

3.2 Existing Articulatory Movement Dataset

Table 3.1: Participants detail of USC-TIMIT database. [13]

USC-TIMIT is an rtMRI dataset acquired by Narayanan et al. [13] It
results of video with the resolution 68 × 68 pixels (2.9 × 2.9 mm) of sag-
ital plane with the frame rate of 23.18 frames/s and 20kHz frequency for
simultaneously recorded audio. The speech is the utterance of 460-sentence
phonetically balanced dataset referenced in the MOCHA-TIMIT corpus [46]
with 10 native speakers (5 male, 5 female) of American English with the
detailed information provided in Table 3.1. Given the field of view (FOV)
of 200 × 200 mm and an image resolution of 68 × 68 pixels, each pixel
corresponds to approximately 2.9 mm.

This dataset also includes vocal tract contour labels using through spatial
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Table 3.2: Distribution of different format points data.

frequency domain-based segmentation [47]. This vocal tract contour data is
only available for 3 participants, F1, F5, and M3, with 3 different formats
of points that make up the contours. There are 178-points, 180-points and
181-points. There are 95,223 video frames that has the vocal tract data with
the distribution of data can be seen in the table Table 3.2

3.3 Related Works on Data Refinement.

Figure 3.2: Occasional error included in the USC-TIMIT dataset

Getting the articulation movement information could be achieved by get-
ting the dynamic movement of articulator contour, including tongue, palate,
and lips. Those feature could be seen in rtMRI data and need to be captured,
but the number of videos and the length of the video frame make it impos-
sible to manually labelling the contour data by expert frame by frame, as it
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is very time consuming and high cost. There are 2 automatic approach to
estimate the vocal tract contour: landmark-based and segmentation-based.

Landmark-based approach utilizes methods like the active control model
(ACM) [48], active shape model (ASM) [7], and articulatory-specific multiple
linear regression (MLR) [49] to locate anatomical landmarks and distinguish
tissue from the airway. On the other hand, segmentation-based approach is
using segmentation on pixel-level or to assign tissue, then use the required
segmentation the get the vocal tract contour. The labeled articulation con-
tour for this dataset, publicly available, was produced from the work of Bresch
and Narayanan [47] using unsupervised region segmentation. However, be-
cause it used unsupervised segmentation, this dataset occasionally contains
errors, as demonstrated in Figure 3.2.

Figure 3.3: Many steps of vocal tract image segmentation in flowchart for
OASMs. [7]

3.3.1 Landmark Based Approach

Raeesy et al. [7] proposed OASM method in extracting the landmark infor-
mation from rtMRI data. It combines two approaches, active shape models
(ASMs) [50] and live wire [51]. There are 2 steps for OASMs:

1. training and shape model construction.

2. segmentation based on the defined shape model.

Figure 3.3 shows step to contruct OASMs. Figure 3.4 shows the result
of OASMs. The boundary of vocal track was tracked generally with slight
error. However, the output landmark has a very high precision error as seen
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in the figure and could output the error if the data was not included in the
training set.

Figure 3.4: OASM result (red) with user-defined segmentation (green). With
(a)-(e) were trained on other training set, and speaker (f) was not. [7]

As seen in the result image that the model not able to accurately captured
the vocal track and the inaccuracy happened in many places. This method
cannot be used to extract the contour data for tracking articulator movement
related to pronunciation.

19



Figure 3.5: Ruthven Network architecture. Conv: convolution, ReLU: recti-
fied linear unit, BN: batch normalisation. [8]

Figure 3.6: Video frame showing the segmentations, with ground truth on
the left, and predicted model on the center and right. Right image is after
post-processing. [8]

3.3.2 Segmentation-based Approach

Ruthven et al. [8] proposed a of Fully convolutional network inspired with
U-Net model [52] to be trained with the human-annotated label. Each MRI
image was labeled Physicists. Six classes was segmented by physicists: top-
half of the head (hard palate and the upper lip), lower-half of the head (jaw
and lower lip), tongue and epiglottis, soft palate, vocal tract and tooth space
(lower incisor).

The result of the trained model can be seen in the Figure 3.6. The model
is able to identify and segment the contour based on the video frame input.

3.4 Proposed Approach
Several researchers tried to assign the label for the dataset such as [7] and [8].
For method used in [8] cannot be applied to the USC-TIMIT data because
the data they used is in higher precision but not available publicly, the same
problem also happened using the method by Silva (2015) [53] as they also
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Figure 3.7: Nine areas of articulator

used an independent dataset.
The objective of the dataset refinement for this research is to be able to

provide the movement of the articulator pair with the speech signal, includ-
ing the publicity of the refined dataset. Having the pair data of speech signal
and articulator movement is the necessary step in producing the articulator
movement detection model. To produce a more high-quality dataset com-
pared to the original dataset we propose a refinement method that would be
able to produce a better pair of data of speech data and articulator move-
ment, by tracking the contour movement of the articulator. The contour
will be divided into nine areas as seen in Figure 3.7: yellow (upper lip),
purple (bottom lip), pink (hard palate), red (edge tongue), green (middle
tongue), orange (back tongue), blue (epiglottis), grey (uvular), brown (pha-
ryngeal wall). To produce a more high-quality dataset compared to the orig-
inal dataset. There are 3 steps for this data preparation: Outlier removal,
smoothing, and point-to-curve projection.

3.4.1 Outlier Removal

For outlier removal, we are using threshold values in determining the outliers,
3.8c,d. There are several features that we use, including the size area of the
articulator for the articulators that do not change the area most of the time,
like the uvular and both lips. We begin by calculating the average size of
each area. Next, for each dataset, we compare the size of each area to this
average. Data is removed when the area size deviates significantly from the
average, based on a fixed threshold value. For the articulator that is moving
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(a) (b)

(c) (d)

Figure 3.8: Examples of: (a) Outlier detected with articulator area size for
uvular. (b) Outlier detected with the distance between contour points and
their neighbor. (c,d) Area threshold for detecting the outlier

such as the tongue, the outlier will be detected using the temporal movement
of the contour points and its relative distance to its neighbor points, 3.8b. For
example, for uvular area in F1, we exclude data where the size is <400 square
pixels and for F5 is <300 square pixels. Outlier in F1 was less compared to
F5 because the image area of uvular in F5 are more blurry and smaller.
Respectively, we found 248 and 2,757 outlier from each subject.

This step was conducted as when the FCN model training without the
outlier removal, the model regenerates the incorrect contour as seen in 3.8a.

3.4.2 Neural Network-based Smoothing

Using neural networks to generalize the data is a common practice. Using
the neural network model can generalize the tolerable error in the dataset
and then as a result it removes the error from the neural network output.
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Figure 3.9: FCN Architecture

The more complex the model the more the model can find connections from
different kinds of features extracted in the hidden layer, including the outlier
and noise so to produce a model that is more robust to outlier and input
noise, the simpler model was used.

FCN architecture as seen in Figure 3.9 is the proposed neural network
model that is used to generate the error-free contour data. This model will
produce an articulator contour that is made from 180 format-point contour.
We chose this format because this format comprises more than 50% of avail-
able contour data as detailed in Table 3.2. The input of the FCN is the video
frame of MRI data that has been processed into higher resolution using an
Enhanced Deep Residual Network (EDRN) [54] to get a more accurate edge
of the articulator as can be seen in Figure 3.10.
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Figure 3.10: Different between super-resolution (left) and original frame
(right)

Convolutional Layer

The convolutional layer works by iterating several filters of equal sizes across
the image to look for special patterns in the image, the filter will create
a new grid to highlight the patterns that are found by the kernel. The
training process will highlight the pattern that contributes to the accuracy
of output and decrease the pattern that is not important. Then the layer
will go through the activation layer ReLU which helps the network learn
non-linear relationships between image features, enhancing its robustness in
identifying diverse patterns. Additionally, it aids in mitigating vanishing
gradient problems, ensuring more effective training of the network.

Pooling Layer

Pooling layer was added to filter the feature form convoluted matrix. It also
reduce the dimension of convolutional layer. Max pooling is used to get the
maximum value of the feature map.

Fully Connected Layer

The output of pooling layer then flattened into 1D. ReLU activations func-
tions are applied. Then, to generate probability values for each of the possible
output labels a softmax layer was added. The predicted label is the output
with highest probability score.
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Figure 3.11: Yellow dots are the output of FCN, process left to right; (left)
White lines as edges from edge detection; (middle) Only retain the necessary
edge lines; and (right) Projecting the yellow dots onto the line, represented
as red dots.

3.4.3 Point-to-curve Projection

The output of the FCN model is the generalized output. As it is generalized,
the model often ignores the rough edge in the dataset and produces smoother
contours that are away from the actual edge of the articulator contour, as
seen in the example Figure 3.11 (left). So to keep the contour on the edge of
the articulator, contours are projected into the articulator’s edge. Articulator
edge is generated using the adaptive threshold Gaussian method [55]. After
only retaining the articulator contour area edge, Figure 3.11 (middle), the
contour points are then projected into the contour edge, Figure 3.11 (right).

3.5 Experimental Setup

3.5.1 Model Parameter

PyTorch 2.0.1 [56] was used to implement the model, and training was con-
ducted on an NVIDIA GeForce RTX 3090 graphics card. MRI image was
upsampled into super-resolution of 272×272 pixels using Single-scale SR Net-
work (EDSR) [57], this was done to increase the clarity of edge. While the
output comprised the 360 sequence data that represent x and y coordinates of
180 landmarks. The Adam optimizer [58] was utilized with hyperparameters
β1 = 0.9, β2 = 0.999, and ϵ = 1e− 4 and 100 epochs.

3.5.2 Subjects Evaluation

Subjective evaluation was conducted with 20 participants, to compensate
the lack of gold-level ground truth of the contour data. The method of
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the subjective is an A/B preference test, in which the participant needs to
choose between 2 displayed contours on which contour better represents the
vocal tract contour. There are 3 pairs of comparison group, original contour
dataset (original), output data of the FCN model (FCN), and the output of
the point-to-edge projection (FCN+Edge). Those groups are compared to
each other which results in 3 comparison groups: Original vs FCN, Original
vs FCN+Edge, and FCN vs FCN+Edge with each group has 20 questions
each.

The participant did not have the knowledge of 3 kinds of labels, to avoid
bias and complexity. Randomly selected label pairs were set to be shown
to the participants to be compared (A and B). On the image, articulator
contours are grouped into nine areas, as seen in Figure 3.7. Participants are
then asked to compare each area from two given images, in which contour
gave the less error or more accurate contour representation. This experiment
was conducted using google form1.

3.6 Experimental Result

3.6.1 Subjective Evaluation Result

Figure 3.12: Comparison of preference between 3 pairs of groups, evaluating
nine areas as well as the overall contour.

The result of AB preference tests between two contours is detailed in
Figure 3.12, with the alphabet character a-j representing the contour of the
upper lip, bottom lip, hard palate, edge of the tongue, middle tongue, back
of the tongue, epiglottis, uvular, pharyngeal wall, and the overall landmark-
based vocal tract. Figure 3.12 shows that the labels from only the smoothing

1A survey administration software included as part of the free, web-based Google Docs
Editors suite offered by Google.
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step for overall contour data are chosen 80% of the time, with the improve-
ment of almost all contour areas compared to the original data, except on
the edge of the tongue area, which is on this area, original data was cho-
sen 55% of the time. For the preference test between FCN-only labels and
FCN+Edge labels, also FCN-only labels are preferred in all contour areas.
As for FCN+Edge labels, it only gives an improvement in the hard palate
and uvular areas as it was chosen 65% and 70% respectively. For other ar-
eas, especially on the tongue areas original dataset was preferred compared
to FCN+Edge.

3.6.2 Discussion

The result of the subjective evaluation showed that the best labels out of the
step proposed in refining the original dataset are the labels from FCN-only
labels. The subjective evaluation also showed that the proposed refinement
method gave very high improvement (>60%) in 7 areas: upper lip (yellow),
lower lip (purple), hard palate (pink), back of tongue (orange), epiglottis
(blue), uvular (grey), pharyngeal wall (brown), but it only gave slight im-
provement for edge and middle of tongue. This is the expected result as
the smoothing process using FCN eliminates the occasional errors and gen-
eralizes the contours. The effect of generalization made the output in the
most moving part (edge and middle of the tongue) to be less precise than
the actual edge of the contour. The label resulting from the edge projection
step did not give any improvement compared to the original, this happened
because the method that was used to generate the original dataset and the
edge projection step relied on the edge detection from the image frames, and
in many cases, the MRI videos have blurry images, which resulted in both
methods to produce labeling error.

The common errors and inaccuracies that are found on the group labels
can be seen in Figure 3.13. For the original dataset, the errors happened
on the uvular area (grey) and the epiglottis area (blue), and also commonly
labeling errors happened when 2 contour areas were close to each other or
even touching, as it resulted in the edge detection method confused in de-
termining the edge, this error example can be seen in (a) left circle between
tongue (red and green) and hard palate (pink). For the FCN-only labels,
the inaccuracies happened because of the smoothing process, for the most
moving contour edge and middle tongue (red and green), the contours have
inaccuracies and have less precision to the actual edge of contour. For the
FCN+Edge labels, because it reproduces a similar error from the original
dataset both of them relied on the edge detection method.
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Figure 3.13: Errors and inaccuracies of the landmark contour labels identified
from each group.

3.7 Summary
The proposed method refines landmark-based vocal tract contour labels through
a series of steps, including outlier removal, FCN-based smoothing, and land-
mark point-to-edge curve projection. The quality of the proposed approach
was compared to original dataset by subjective evaluation although no es-
tablished ground truth labels exist, the quality of the newly refined labels
was assessed subjectively by comparing various contour areas to the origi-
nal data labels. The results indicate that the FCN-only labels significantly
outperform both the original labels and the FCN+Edge labels. The uvular
region, which was particularly prone to errors in the original dataset, showed
notable improvements. Overall, the refined labels, incorporating outlier re-
moval and FCN-based smoothing, greatly improve accuracy and reliability,
providing enhanced vocal tract label data that is publicly available2. These
FCN-smoothed labels will be used for training articulator movement models.

2The refined rtMRI landmark-based vocal tract contour label data proposed in this
study is available at https://github.com/ha3ci-lab/USC-TIMIT_rtMRI_Landmarks and
can serve as auxiliary information for the existing USC-TIMIT dataset.
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Chapter 4

Proposed Articulator Movement
Generator

4.1 Overview

Figure 4.1: Articulation Movement Generator Section of Proposed Method

This study proposes a model that will generate the articulator movement
animation from speech input, and then the output will be used in pronunci-
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ation training. The proposed method for an articulator movement generator
consists of 2 steps: features encoding and movement generator model train-
ing. The overall model structure is shown in Figure 4.1, and the 3 proposed
feature extraction methods are shown individually in Figure 4.2.

(a) (b) (c)

Figure 4.2: 3 Model with different Feature Extraction Methods

Feature encoding step is to extract features from the speech signal. The
second step is the articulator movement generator model training. To gen-
erate the feature of speech, 3 different feature extractors will be evaluated.
The first baseline feature is the human-annotated phoneme label. Phoneme
definition is "any set of similar phones (speech sounds) that is perceptually
regarded by the speakers of a language as a single distinct unit, a single ba-
sic sound, which helps distinguish one word from another" [59]. The second
baseline feature is MFCC feature, a widely used speech feature that repre-
sents frequency bands that are equally spaced in the mel scale which is closer
to the human auditory response. The third is the the proposed feature ex-
traction method using one of the state-of-the-art ASR models, wav2vec 2.0
[60], that is capable of producing its context representation of speech sound.
For the wa2vec2 feature extraction method additional fine-tuning stage will
be conducted.

The second step after feature extraction is the contour movement gener-
ation using the recurrent neural network that could learn the temporal in-
formation in the data. The movement of the articulator’s contour is affected
by the previous position of the contour, which makes the recurrent network
model necessary to retain the temporal information of the movement of the
articulator’s contours.
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4.2 Related Works

4.2.1 Articulatory to Speech Conversion

(a) (b)

Figure 4.3: (a) Extracted MRI features. From EMA features the labeled
points are estimated. (b) The extracted contour with a standard deviation
denoted as the circle size of each point. [9]

Wu et al. [9] proposed an articulatory-to-speech model using the deep
neural network (DNN). The data that was utilized is rtMRI data of na-
tive American English speaker woman, with the length of speech 17 min-
utes. Articulation contour was detected using a semiautomatic method [47]
to track the contours of vocal tract air tissue boundaries from each frame
(Figure 4.3(b)) and segmented the contours into anatomical components, as
shown in Figure 4.3(a). Data comprised of xy-coordinate that when flattened
for training become 230 dimensional-vector. The unnecessary contour were
pruned.

Model

The baseline method was CNN-BiLSTM (CBL) [61]. The input of video
frame passed into CNN and max-pooling layers, extracting the feature as
BiLSTM input to produce mel-spectrogram output. Using waveform signal
was generated using neural vocoder, HiFi-CAR [62], derivative of the HiFi-
GAN convolutional network [63].
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Denoising

The available dataset has significant reverberation and noise, by using off-
the-shelf Adobe Podcast toolkit31 the quality of the speech recordings was
enhanced.

Synthesis Quality

This research evaluates the synthesis quality and speech intelligibility using
mel-cepstral distortions (MCD) [64] between ground truths and synthesized
samples and character error rate (CER). Using Whisper [65], texts were
generated from the synthesized speech for all test set utterances. The result
was that the model outperformed both baselines. This shows that the task of
generating sound from the articulator movement with mel ceptral distortion
(MCD) 6.64±0.64, and character error rate (CER) 69.2%±28.1% made the
inverse task seems probable.

4.2.2 Phoneme-to-rtMRI Video Generation

Figure 4.4: Model to generate rtMRI frames from phoneme sequence input.
[10]

Udupa and Ghosh [10] proposed rtMRI video generation with the input
of phonemes sequence and output of video frame representing rtMRI data.
Using transformer architecture to encode the input phoneme sequence, con-
volutional neural networks (CNN) decoder to output rtMRI video frames.
Upsampling output from the tranformers encoder using the CNN decoder
maintaining the temporal context learned from the transformer encoder.

This research results in a model that is capable of producing the rtmRI
videos with ABX test preference in range between 40-60% and mean opin-

1https://podcast.adobe.com/enhance
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ion score between 3.4 - 4.16. This result shows that with the input of
the phoneme, the encoder-decoder model is capable of generating rtMRI
frames, and with more dimensional data that contain more information such
as speech, it will improve the model with a similar structure.

4.2.3 Real-time Articulatory Visual Feedback with EMA

Suemitsu et al. [11] proposed a real-time articulatory movement feedback for
pronunciation learning. The system was using EMA instrument as real-time
input of the articulator movement as seen in the 4.5a. Sensors were placed
in several places using EMA setup 4.5b, then visual output was displayed
4.5c. Sensors were placed on the tongue tip (TT), blade (TB), dorsum (TD),
lower incisors (LI), upper lip (UL), and lower lip (LL). To compensate for
head movement there are reference sensors on the upper incisors, nasion, and
mastoid processes.

Figure 4.5: (a) System flow. (b) EMA setup. (c) Real-time visual feedback
with visual display. [11]

1. V condition: visual feedback of tongue position with no acoustic cue

2. A condition: acoustic cue with no visual feedback

3. VA condition: visual feedback presented with acoustic cue
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Table 4.1: Comparing the Japanese pronunciation with American English
speakers for the pronunciation of vowel /æ/ in 3 conditions

Condition Visual feedback Acoutic cue

V ✓ ×
A × ✓

VA ✓ ✓

The result of the experiment shows that learners in V and VA conditions
produce /æ/ pronunciation that is closer to the native center position of
/æ/, and this does not happen on A condition. This result shows that using
the real-time visualization cue or feedback as a short-time learning session
improves the pronunciation of learners.

Even though this study shows the improvement in pronunciation training
using real-time visual cues, this study only investigates a specific phoneme
and is limited to an EMA sensor that could only cover several areas of mouth
articulation, the wider range of phoneme coverage and more information in
articulator movement could improve the pronunciation training system.

4.3 Proposed Speech to Articulator Movement
Generator

4.3.1 Overview of Self-Supervised Learning

Getting high accuracy in neural network models, large quantities of data
has a very significant impact. But in many cases, the unlabeled data is
easier to find and more in quantity compared to labeled data. Training high-
accuracy model speech recognition systems normally requires a lot (thou-
sands of hours) of labeled speech to reach acceptable performance. But, this
approach is different than how humans learn languages, as an example of
an infant that learns from its surroundings. This process will lead the in-
fant to learn a good representation of speech by himself, or self-supervised.
Self-supervised learning become a paradigm for model training that does not
rely on labeled data but learns general data representations from unlabeled
examples and then the model is fine-tuned on labeled data.
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4.3.2 MFCC versus Wav2vec 2.0 Feature

Mel Frequency Cepstral Coefficients (MFCCs) and Wav2Vec are both tech-
niques used in the processing and analysis of audio signals, particularly in the
fields of speech recognition and audio analysis. However, they operate based
on different principles and are suited to different tasks within the domain of
audio processing. Comparison of the two methods:

MFCC

MFCC is the coefficient from a collective meal-frequency cepstrum. Cep-
strum is the result of the inverse Fourier transform of the logarithm of the
estimated signal spectrum. This tool is to investigate the periodic structure
of in-frequency spectra.

Origin and Usage: Developed in the 1980s, MFCCs are one of the most
popular feature extraction techniques used in automatic speech and speaker
recognition. They effectively represent the vowel sounds which are important
for understanding human speech. MFCC frequency bands are equally spaced
in the mel scale which is closer to human auditory response than the linear-
spaced frequency band spectrum.

There are 3 steps for MFCC feature extraction:

1. Speech signal is framed and windowed into 20-40 ms per frame, then
Fourier Transform is applied to get the spectrum of the signal. The
spectrum is squared to get the power spectrum.

2. Then we apply a triangular filter on a Mel-scale to the power spectrum
to extract frequency bands. The logarithm of the mel spectrogram is
taken to convert the spectrum into a log scale, which better approxi-
mates human hearing.

3. To convert the mel-spectrogram into a cepstral domain, Discrete Cosine
Transform (DCT) it converts the sequence of data points into a sum of
cosine functions oscillating at different frequencies.

Characteristics: MFCCs capture timbral/textural aspects of the sound,
making them powerful for speaker identification and reducing the signal to
a form that is less sensitive to the exact shape of the vocal tract.

Wav2vec 2.0

One of the state-of-art self-supervised learning framework for raw audio data
is Wav2vec 2.0. This model was trained by masking the latent speech repre-
sentation from multi-layer convolutional neural network. This representation
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then passed into a transformer network to output contextualized represen-
tations. Wav2vec 2.0 was trained via a contrastive task between those 2
representation.

Origin and Usage: The initial model, Wav2Vec [66], was introduced in
2019. Wav2Vec 2.0 [60] is the modified model with a bigger parameters.
This framework is used for speech recognition tasks, showing state-of-the-
art performance by learning robust representations of speech from unlabeled
data.

There are 2 steps in using this framework.

• Unsupervised Learning: The model learns directly from the raw audio
waveform in an unsupervised manner initially. It uses a contrastive
loss to align the latent speech representations with their contextualized
representations.

• Fine-Tuning: After pre-training, the model is fine-tuned on a smaller
amount of labeled data for specific tasks like speech recognition.

Characteristics: Wav2Vec2 models has the ability to effectively learn com-
plex patterns in speech data without requiring manual feature engineering
like MFCC. They leverage recent advances in neural networks to directly
model the raw audio waveform, learning features automatically that are rel-
evant for the task.

Comparison

• Performance: Wav2Vec generally offers superior performance for speech
recognition tasks compared to traditional methods using MFCCs, es-
pecially in noisy environments or where the audio has characteristics
not well covered by the training data for MFCC-based systems.

• Complexity and Resource Requirements: Wav2Vec models are signif-
icantly more complex and require considerably more computational
resources both for training and inference.

• Flexibility and Adaptability: While MFCCs provide a fixed type of
feature, Wav2Vec models are adaptable and can potentially learn any
feature that is relevant to the task during the unsupervised training
phase.

In summary, while MFCC remains a robust choice for many traditional
audio processing tasks due to its simplicity and effectiveness, Wav2Vec repre-
sents a modern approach leveraging the latest in deep learning technology to
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provide powerful, adaptable models especially suited to more complex speech
recognition challenges.

4.3.3 Articulator Movement Generator utilizing Wav2vec
2.0

The proposed system uses using wav2vec2 system as the speech feature ex-
tractor, utilizing the self-supervised learning (SSL) capability of the wav2vec2
model to pre-train on large volumes of unlabeled audio data, resulting in the
feature extraction method that outputs comprehensive speech representa-
tions. In this study, the capability of wav2vec2 in extracting the comprehen-
sive speech representation is used to extract the speech feature. The model
diagram can be seen in the Figure 4.1

The proposed Articulator Movement Generator model consisted of a Re-
current Neural Network that could learn the temporal information of se-
quence data. In this study, 2 stages will be used. For the first stage, the
LSTM model will be used to compare 3 speech feature extraction methods.
The 3 features will be used as input for LSTM model, with the output is
a contour label that was extracted in chapter 3. Then, the model articula-
tion movement generation capability will be evaluated. The second stage,
using more complex model, Bi-LSTM to increase the accuracy of the model,
proposed wav2vec2 features will be used to improve the accuracy of the ar-
ticulator movement generator model.

4.4 Experimental Setup
The wav2vec2 fine-tuning and LSTM model training was implemented using
PyTorch 2.0.1 [56], with the same machine as dataset refinement. The input
is one of the 3 audio features (phoneme, MFCC, and wav2vec2), with the
output in the same format as dataset refinement. Optimizer hyperparame-
ter’s different was only in the ϵ with 5e − 5. The network was trained for
500 epochs for every features and the best model that does not overfit will
be chosen.

4.4.1 Dataset

2 kinds of data are used, speech data and articulation contour data. Speech
data that was recorded simultaneously when articulator movement was scanned
contained the noise that was the result of the data acquisition setup. The
denoising method was applied to the dataset but it resulted in the removal
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Table 4.2: Phoneme ground truth data resampled into the contour frame
rate.

of several phoneme data including /hh/, /ah/, /ih/, /eh/, and /uh/ data.
Because of this instead of denoising the speech data the feature extractor
will be fine-tuned to adapt to the noise in the speech data.

Speech data are categorized into 2 groups, voice detected group and the
silent group, the model then will be trained only using the voice-detected
group and ignoring the silent group. This process is to make sure the model
does not learn the silent stage when contour movement is unpredictable and
does not have any pattern. The process of dividing the data into 2 groups was
achieved using the labeled phoneme data ground truth that was annotated
by humans. As shown in Figure 4.7, human-annotated phonemes contain the
start and the end timeline of the phonemes, including the silent state.

The articulation contour data was derived from the refinement method
explained in Chapter 3. The label from the output of the FCN-only model
becomes the pair data with the speech data for the articulator movement
generator training phase.

Speech data was down-sampled into 16kHz from the original 20kHz to
match the waveform specification of the wav2vec 2.0. This setting will be
applied globally for MFCC and wav2vec2 feature extraction.

The contour label was in the format of 180-point data with xy-coordinates,
to train the model, the contour label data was flattened, resulting in the se-
quence of 1D data with a length of 360.
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Figure 4.6: Contour label flattening

4.4.2 Baseline with Phoneme Sequence Feature

Phoneme sequences are the phoneme representation of audio input, which
maps the section of the speech into a phoneme symbol. Each phoneme sym-
bol is a single distinct unit, that represents a single basic sound, that distin-
guishes one word from another. The sounds that are perceived as phonemes
differ between languages. An example case is in the phoneme sound of [n]
in sin and [ŋ] sing are different phonemes in English but they constitute a
single phoneme in Spanish, in which [pan] and [paŋ] are considered the same
phoneme.

Figure 4.7: Phoneme feature example sequence

The phoneme used in the training steps was the human-annotated phoneme
sequence. In this study a set of phonemes with the size of an N token is
used as the input token for the phoneme sequence feature, additionally, the
silent (sil) token is also added as a state when there is no speech data input.
Padding token (PAD) and unknown (UNK) token are also used to normalize
the size of the phoneme sequence for different lengths of sound and to handle
the token that is not yet to be determined. The phoneme sequence is then
used as the pair data with corresponding contour data.

The phoneme sequence with the shape of n occupies a certain timeline
in the data point (p0, ....., pn), with the sample rate following the speech
sample rate. To be able to use the phoneme sequence for contour movement
training, the phoneme sequence is then resampled into the same frame rate
of the contour data, as shown in Figure 4.8. It will result in the repeated
phoneme across its timeline (p00, ..., p

0
t , p

1
t+1, .. ., p

n
N ), to provide the sequence

of pair data for the phoneme and its corresponding contour movement of the
size of (f0, ..., ft, ..., fN). The recurrent neural network is then trained with
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Figure 4.8: Resampling of phoneme sequence to match the size of contour
data

the paired data, Figure 4.2 (a).
There are 41 defined phonemes as shown in Table 4.2, with additional

silent (sil), padding (PAD), and unknown (UNK) tokens resulting in 44 to-
kens for training. 44 tokens then be converted into one-hot encoding for
training. The contour data representing each phoneme can also be seen in
Table 4.2.

4.4.3 Baseline with MFCC Feature

Figure 4.9: Feature extraction for MFCC

MFCC features are extracted from the speech data with a frame of 23ms,
with frame-step automatically adjusted to produce the same feature sequence
length output as wav2vec2, with the equation 4.1. The resulting feature will
have the size of 80× K. Because the frame rate of contour data is lower than
the MFCC framing step. The result is the size of the MFCC feature will be
longer than the length of contour data, t. To make the pairing data between
MFCC feature and contour data, contour data will be resampled into the size
of MFCC feature K. Then the features will be used for articulator movement
generator model training, Figure 4.2 (b).

K =
7∑

i=0

f(i), f(i) =

⌊
x− k

s

⌋
+ 1 (4.1)

40



Figure 4.10: Convolution Layers Shape of Wav2vec 2.0

where f(i) depends on x as follows:

x =

{
input length if i = 0
f(i− 1) otherwise

where,

• k is the kernel size

• s is the stride

• K is the feature length

4.4.4 Proposed System

Fine-tuning Strategy

Figure 4.11: Checking the capability of wav2vec2 in generating phonemes
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There are several steps for wav2vec2 model fine-tuning before the model
is used to extract the speech feature for the articulator movement generator.
rtMRI speech dataset was recorded simultaneously when the rtMRI data was
scanned, resulting in the audio data that contained noises, so there is a need
to check the capability of the model first before the model is used to extract
the speech feature.

In the fine-tuning phase, the phoneme token output of wav2vec2 was
decoded using a greedy search, equation 4.2, to find the token with the
highest probability from the vocabulary, greedyCTC also be implemented to
get the CTC phoneme sequence output.

ŷt = argmax
yt

P (yt|x, ŷ1:t−1) (4.2)

where,

• x is input sequence

• yt be the output token at time step t

• P (yt|x, y1:t−1) be the probability of yt given the input sequence x and
the previously generated tokens y1:t−1.

Figure 4.12: Fine-tuning wav2vec 2.0 with dataset data.

To check the capability of the wav2vec2 model in extracting the speech
feature, the model output is evaluated in inference mode, Figure,4.11, using
phoneme error rate (PER) metric to evaluate the performance of speech
recognition systems at the phoneme level. The output phoneme of the model
was compared with the phoneme ground truth. Then wac2vec2 model was
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fine-tuned to adapt to the rtMRI phoneme datasets, Figure 4.12. Then, the
model will be evaluated using PER to check the improvement. After that, the
fine-tuned wav2vec2 model is used to generate audio features for articulator
movement generator model training.

PER =
S + D + I

N
=

S + D + I

S + D + C
(4.3)

where,

• S is the substitutions number

• D is the deletions number

• I is the insertions number

• C is the correct words number

• N is the phonemes in the ground-truth (N=S+D+C).

Training Strategy

Wav2vec2 features are extracted from the speech data. The resulting feature
will have the size of 1024 × K. The result is the size of the wav2vec2
features will be longer than the length of contour data, t. To make the
pairing data between the wav2vec2 feature and contour data, contour data
will be resampled into the size of the wav2vec2 feature K. Then the features
will be used for articulator movement generator model training, Figure 4.2
(c).

For the articulator movement generator training phase, 3 different fea-
tures were trained using the same LSTM parameter to evaluate the perfor-
mance of each feature in generating the articulation contour movement. The
LSTM model will have 512 hidden states, with 1 LSTM layer. The input of
LSTM will follow the feature size of each feature, 44 for phoneme features, 80
for MFCC features, and 1024 for wav2vec 2.0 features. The model is trained
with Adam optimizer [58], and learning rate 5e-5. The model was trained
with mean square error (MSE) loss to get the maximum likelihood estimation
of the model. The contour label was in the format of 180-point data with
xy-coordinates, to train the model, the contour label data was flattened, re-
sulting in the sequence of 1D data with a length of 360. The contour data is
normalized by dividing the coordinate by 25, as all the articulator contours
are in the range of -25 until +25 in both of x and y coordinates.

Then, the best model the will be trained using more complex LSTM
(bidirectional LSTM, with 2048 hidden state, and 3 layers) to enhance the
capability of model in generating the articulator movement.
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4.4.5 Objective Evaluation Setup

To objectively evaluate the capability of the model in producing the move-
ment, we employ Spearman’s rank correlation coefficient [67], to measure the
correlation between 2 variables in monotonic function.

The formula for Spearman’s rank correlation coefficient:

ρ = 1− 6
∑

d2i
n(n2 − 1)

(4.4)

where:

• di is the difference between the ranks of corresponding values xi and
yi.

• n is the number of observations.

4.5 Experimental Result

4.5.1 Wav2vec 2.0 Fine-tuning Task

Before the fine-tuning stage of wav2vec feature extraction, using the pre-
trained model, the model was evaluated to have a PER of more than 60%
using resampled phoneme sequence into contour length. On the training
data, the PER of the model was 62.82% with CTC 24.41 and for the test
data, the PER was 63.94% with CTC 24.87. This results in the inability of
the model to extract the feature of the rtMRI speech data as more than 50%
of the predicted output was wrong.

After the wav2vec 2.0 model’s capability was evaluated, the pre-training
phase as described in section 4.4.4 was conducted to adapt the wav2vec model
to extract the audio features of rtMRI data. After fine-tuning, the PER of
the model becomes 31.96% with CTC 0.11 for train data and 37.21% with
CTC 0.43 for test data.

4.5.2 Feature Extractor Comparison

In this research to compare the different accuracies of model output we com-
pare 23 features, from 4 categories, Lip Protrusion, Aperture, and position
detail can be seen in Figure 4.13. For Lip Protrusion (LP), there are pro-
trusions of the upper lip (Up) and protrusion of the lower lip (Down). For
Aperture, there are aperture between 2 lips (L), aperture of tongue tip with
the hard palate (TT), aperture of antero-dorsal with the palate (TAD), aper-
ture of dorsal with the palate (TD), aperture of postero-dorsal with the soft
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Figure 4.13: Extracted articulator features

palate (TPD), aperture of the tongue with the uvular (TU), aperture of uvu-
lar with the pharyngeal (UP), aperture of radical with the pharyngeal (TP),
aperture of epiglottis (E), and aperture of the glottis (G).

Training the LSTM model using 3 different features input results in the
model that can generate a movement with the spearman’s correlation defined
in the Table 4.3, the correlation between the generated contour movement
and ground truth data. With the highest correlation from training using
wa2vec2 features, except for glottal (G) aperture. From the 3 speech audio
features that were used to train the LSTM model, the best output was the
proposed model, wav2vec2 feature extraction. The model that was trained
using this feature was capable of generating Then this feature was used to
train the Bi-LSTM.

4.5.3 Result Analysis and Discussion

Figure 4.14: Example of lips aperture (LA) correlation in a sentence, The
blue line is the ground truth of LA movement, and the orange is the predicted
LA movement.

The result in the Table 4.3 shows the capability of the LSTM model in
generating articulator movement with 3 different kind of speech features.

45



Table 4.3: Spearman’s correlation between the generated movement and
ground truth

Features Wav2vec MFCC Phoneme

Lip Protrusion
Up 77.02% 72.54% 6.85%
Down 64.91% 43.22% 47.72%

Aperture

L 67.75% 46.71% 43.89%
TT 65.92% 43.72% 48.27%
TAD 68.75% 44.48% 47.22%
TD 61.81% 41.78% 47.01%
TPD 64.05% 54.13% 55.09%
TU 70.43% 48.92% 54.45%
UP 84.61% 66.25% 57.89%
TP 68.46% 56.46% 63.72%
E 40.06% 35.04% 37.57%
G 35.23% 50.53% 50.08%

Using wav2vec feature the model was able to produce the average correla-
tion 64.08% compared to MFCC feature with 50.32% and phoneme feature
46.65%. This shows that for MFCC and phoneme features the model inca-
pable to generate any movement as most of the time it just produces the
average of the movement data resulting in near 50% correlation result.

The movement statistics over time for wav2vec2, as depicted in Figure
4.14, demonstrates that the LSTM model is capable of following the gen-
eral trend of tongue movement. Employing a more complex LSTM model
with 12× more parameters has improved the model’s performance, achiev-
ing an average correlation of 67.76%. The most significant improvement was
observed in the glottal (G) feature, with a substantial increase of 15.43%,
reaching a 50% correlation. This correlation percentage indicates that the
model can effectively generate movements for lip protrusion, lip aperture (L),
tongue tip (TT), anterodorsal (TAD), dorsal (TD), posterodorsal (TPD),
radical to uvular (TU), uvular to pharyngeal (UP), and radical to pharyn-
geal (TP). However, it still struggles to simulate movements for the epiglottis
and glottis, with results from both LSTM and Bi-LSTM models falling below
or near 50%—the average correlation level. This limitation may be due to
the blurriness of these areas in MRI images, leading to potential errors in
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Table 4.4: Spearman’s correlation between the generated movement and
ground truth

Features LSTM Bi-LSTM

Lip Protrusion
Up 77.02% 74.45%
Down 64.91% 65.43%

Aperture

L 67.75% 68.97%
TT 65.92% 73.44%
TAD 68.75% 71.71%
TD 61.81% 69.16%
TPD 64.05% 70.54%
TU 70.43% 74.53%
UP 84.61% 82.33%
TP 68.46% 70.00%
E 40.06% 41.93%
G 35.23% 50.66%

contour labeling.

4.6 Summary
The proposed model with wav2vec2 speech feature extraction needs 2 steps,
The first is a fine-tuning stage, to adapt the feature extractor model (wav2vec2)
into the rtMRI speech dataset, because the speech data contains noises re-
sulting not fine-tuned model having very high PER. The second step is artic-
ulator movement generator training using the extracted feature. Compared
to the 2 baseline methods, which failed to learn to generate the articulator
movement, the proposed model is capable of generating a general trend of
tongue movement, and using a model with a bigger parameter increases the
accuracy of the model.
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Chapter 5

Conclusion and Future Direction

5.1 Conclusion
This research was motivated by the universal principles underlying human
sound production and its potential to aid pronunciation training. With the
research aims to develop an articulator movement generation that could be
used for a Computer-Assisted Pronunciation Training system. This research
addresses several issues in current emotion speech conversion task technology:

• To detect articulatory movements corresponding to the recorded speech
sound, including choosing the feature extraction methods, and dataset
refinement.

• To assess the effectiveness of the articulator movement generator for
the pronunciation detection task.

In this study, we built the articulator generation model for pronunciation
detection to generate articulator movement with only speech input. This re-
search produces a refinement method that was used to produce the necessary
dataset for the pair data of speech sound and articulatory movements using
rtMRI data.

From the 3 features that were used for model training, the feature that was
capable of being used as training data for the articulator movement generator
was the wav2vec2 feature after fine-tuning it with the speech dataset. While
model training using the phoneme and MFCC features failed to even produce
the mean of articulator movement. The model is also capable of following
the general trait of the articulator movement, with a more complex model
increasing the accuracy of the model.

The model’s capability to detect pronunciation could be used for pronun-
ciation training, as it is capable of generating the general trend of articulator
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movement. This visualization feedback then can be used to enhance the
learning ability of pronunciation of L2 learner, to detect errors in their pro-
nunciation, or to compare themselves with the right pronunciation.

5.2 Future Direction
The future direction of this study will be:

• This study was conducted using only the English speaker dataset and
using the English phoneme feature, this makes the produced model only
capable of visualizing the model of English speech. By increasing the
language that the model was trained it would be able to increase the
capability of the model to understand multiple languages and achieve
language agnostic model.

• The model was also trained using a simple LSTM model and its deriva-
tive, the Bi-LSTM model, which is still not state-of-the-art in sequence
data learning. By adopting a more complex model and state-of-the-art
model, the model’s performance will also increase.

• Model has also only been trained using the rtMRI experimental setup
audio that is very different than real-life situations. A new kind of
dataset that is closer to real-world situations would help the model to
adapt to real-world situations.

• The output resolution and frame rate of the model follows the rtMRI
resolution and frame rate. For the purpose of language learning the
there is a need of improvement for the resolution and frame rate that
are effective in delivering information for language learning feedback.
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