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Abstract

This thesis explores the challenges and proposes novel solutions in the field of
multimodal sentiment analysis, with a particular focus on enhancing the accuracy of
self-sentiment (SS) estimation in human-agent dialogue systems. The research
addresses two critical issues in current sentiment analysis: the discrepancy between
self-reported sentiments and third-party annotated sentiments, and the subjective nature
of sentiment annotation leading to disagreements among annotators.
The study utilizes two shared multimodal dialogue datasets, Hazumi1902 and

Hazumi1911, which contain rich multimodal data including linguistic, audio, and visual
features. These datasets are unique in that they provide both self-reported sentiment
labels (SS) and third-party annotated sentiment labels (TS), allowing for a
comprehensive analysis of the differences between these two types of sentiment
annotations.
A key contribution of this research is the development of a novel soft labeling

approach for sentiment classification. This method addresses the inherent subjectivity in
sentiment annotation by representing the sentiment as a probability distribution over
possible classes, rather than as a single hard label. The soft labels are generated by
considering the annotations from multiple third-party annotators, capturing the nuances
and disagreements in their judgments.
The thesis presents a series of experiments that demonstrate the effectiveness of the

proposed approach. Initially, a baseline model is established using a simple deep neural
network (DNN) architecture that integrates audio, video, and text features. This baseline
model is then compared with human-level performance, revealing a significant gap in
accuracy.
To bridge this gap, the research explores several innovative strategies. First, it

investigates the impact of using TS labels for samples where TS and SS labels are
inconsistent. This approach shows a marked improvement over the baseline,
highlighting the importance of addressing label inconsistencies. Building on this, the
study introduces the soft label method, which proves to be even more effective. The soft
label approach not only improves overall accuracy but also captures valuable
information from minority annotators who may detect subtle emotional states that the
majority miss. Furthermore, the research proposes a weighted loss function that assigns
different importance to samples based on the consistency between their TS and SS
labels. This technique further enhances the model's performance, bringing it closer to
human-level accuracy.

This research explores approaches to address the challenge of estimating
self-sentiment in dialogue systems, proposes methods for handling annotator
disagreements, and investigates the potential of soft labels in representing the complex
nature of human emotions. The findings of this study may have implications for the
development of sentiment analysis systems, particularly in human-agent interaction
contexts. By attempting to better capture the nuances of human emotion, these
approaches could potentially contribute to improvements in human-computer
interactions.
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Chapter 1
Introduction

1.1 Background
In recent years, many spoken-dialogue robots and applications have been released.

Most of these systems respond solely based on the text obtained through speech
recognition. In contrast, humans interpret not only the content of words but also vocal
tone, facial expressions, and body posture to understand the interlocutor's state. A
dialogue system with these capabilities is called a multimodal dialogue system.
Research on sensing users' mental states and obtaining valuable information is gaining
attention under the name Social Signal Processing (SSP). SSP involves technologies for
sensing information that manifests as users' internal states. Using machine learning with
various sensor inputs, SSP can predict information such as "the user is currently
showing interest in the topic of conversation."
Sentiment represents an emotional inclination, reflecting a tendency towards specific
types of emotional experiences, such as positive or negative feelings [1]. Unlike
emotions that are usually displayed externally, sentiment does not always manifest
overtly [2]. The way emotions or sentiments are expressed is governed by emotional
intelligence [3], influenced by personality traits [4], and dependent on contextual factors
[5]. Thus, accurately determining the true sentiment within an individual poses a
complex challenge that integrates aspects of psychology and social sciences.
Historically, sentiment analysis has predominantly utilized textual lexicon-based

methods. However, with the advent of social media platforms incorporating not just text
but also images and videos, the effectiveness of multimodal analysis has been
extensively explored in recent years [2], [6]. This approach, known as multimodal
sentiment analysis, combines both verbal and nonverbal information to assess sentiment
[7], [8]. Textual, visual, and auditory features each offer unique attributes and
complement each other in the process of sentiment analysis [7].
Assessing a user’s sentiment during a conversation is crucial for adaptive dialog

systems. This assessment allows the system to dynamically adjust its conversation
strategies to keep the dialogue engaging (i.e., real-time sentiment estimation). For
example, if a user shows interest in a topic, the system should continue with that topic;
if the user appears disinterested, the system should switch topics. This seemingly
straightforward task has been addressed by numerous researchers through various
methods [9]. Despite this, several challenges remain in sentiment analysis for adaptive
dialog systems. Ideally, sentiment analysis would use self-sentiment (SS) labels
provided directly by users. However, many studies rely on third-party sentiment (TS)
labels, which do not always accurately reflect a user’s true feelings. Research by Truong
et al. highlights discrepancies between SS and TS labels (observed emotion ratings) [10],
[11], [12], [13].
Additionally, users may hide or alter their true emotions during conversations,

complicating the estimation of their emotional states. While textual, audio, and visual
data are valuable for estimating TS [8], models based on these observable signals may
be less effective for SS estimation. Recent evidence suggests that physiological signals
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can be useful for emotion recognition, indicating that they may help detect subtle
negative sentiments that are not easily captured through acoustic or visual means.

1.2 Research Objective
The two issues previously mentioned are also connected to how ground-truth labels

are determined. Typically, these labels are established by aggregating annotations from
coders, often through methods like majority voting or simple averaging. However,
annotating social signals, such as sentiment, is inherently subjective and ambiguous,
leading to frequent disagreements among annotators and resulting in unreliable
outcomes. Consequently, training samples with such unreliable labels can negatively
impact the performance of supervised learning models. Multiple participants often
provide inconsistent labels, meaning some annotators may have accurately detected the
user's true emotions and thus assigned labels consistent with SS. However, if labels are
obtained through aggregation, this important information may not be captured.
Therefore, this paper aims to develop a novel approach that effectively learns from

the rich and diverse information provided by all annotators, rather than relying on
simplistic aggregation methods. Specifically, this approach seeks to:

1. Capture and utilize the full spectrum of annotator perspectives, including minority
opinions that may contain valuable insights.

2. Improve the accuracy of sentiment prediction models, particularly in estimating
self-reported sentiments (SS) in human-agent dialogue contexts.

3. Address the challenge of unreliable labels by developing robust learning methods
that can handle inconsistencies and disagreements among annotators.

4. Investigate methods to weight or prioritize different annotations based on their
consistency with self-reported sentiments or other relevant factors.

By achieving these objectives, this research aims to significantly advance the field of
sentiment analysis in human-agent interactions. The proposed methods could lead to
more accurate and nuanced understanding of user emotions, potentially improving the
responsiveness and empathy of dialogue systems. Furthermore, this research could have
broader implications for machine learning approaches to other subjective and
ambiguous tasks beyond sentiment analysis.

1.3 Thesis Outline
In Chapter 2, the existing work related to Multimodal Social Signal Processing and
various methods for handling subjective labels are explored. Additionally, relevant
work on soft labels associated with the proposed method is introduced.

Chapter 3 presents the datasets used in the research. The data preprocessing and feature
extraction processes are explained, and the basic multimodal model is introduced.
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In Chapter 4, based on the basic multimodal model from Chapter 3, an SS classification
method based on soft labels is proposed. The soft label generation method is described.

Chapter 5 is dedicated to a comprehensive exploration of the methodology. The
performance of the model is evaluated, and a detailed discussion of the results is
provided. The implications of the findings are interpreted and explored.

The final chapter, Chapter 6, provides a conclusion of the research conducted, the
outcomes achieved, and their broader significance.
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Chapter 2
Related Works

2.1 Multimodal Social Signal Processing
Integrating multimedia or multimodal data, which includes audio, visual, and

linguistic features, has proven to be a promising method for recognizing social signals
such as emotions and engagement. This approach has been widely explored in
human-robot and agent interactions, utilizing multimodal machine learning techniques
[14]. Research in this field has frequently focused on analyzing multimodal behaviors to
identify engagement levels [15, 16]. Recent innovations have led to the development of
agent systems equipped with social signal sensing capabilities [17, 18], aimed at
improving interpersonal communication skills. Additionally, methods for detecting user
interests have been investigated [19, 20]. For example, Weber et al. [21] proposed a
dynamic user modeling approach based on reinforcement learning to analyze reactions
to a robot's jokes, while Nasihati et al. [22] designed dialogue management routines for
multiparty interactions involving agents and infants.
Modeling social signals within multimedia contexts is a significant area of research.

Biel et al. [23] introduced a multimodal analysis technique to predict personality
impressions from YouTube videos, and Brilman et al. [24] developed a model to
identify successful debaters using multimodal information. Recent studies have
demonstrated the effectiveness of deep neural network (DNN) techniques in accurate
multimodal modeling [25], particularly for social signal processing (SSP). Advanced
methods such as temporally selective attention models [26], multi-attention recurrent
networks [27], memory fusion networks [28], and tensor fusion networks [29] have
been proposed for multimodal sentiment analysis. Furthermore, group detection during
natural social interactions based on standing conversations has been studied using
ubiquitous and multimodal sensing technologies [30].
While traditional research has focused on single annotation labels, such as

engagement, communication skills, personality, or humor, employing multiple labels
for the same dataset can enhance model accuracy. Hirano et al. [31] introduced a
multimodal modeling approach with multitask learning to identify various labels,
including interest levels, sentiment levels, and next-action decisions, facilitating
adaptive strategies in multimodal dialogue systems. Despite attempts to aggregate
results from multiple coders or self-reported annotations to establish ground truth labels,
coder disagreement continues to impact SSP accuracy. To address this issue, Hirano et
al. [32] proposed a weakly supervised learning (WSL) algorithm, which allows for the
development of robust SSP models even when dealing with inaccurate labels from
human-system dialogue interactions. This approach highlights the potential of WSL to
overcome the limitations of traditional annotation methods and improve the reliability
of social signal recognition.

2.2 Machine Learning with Subjective Annotations
Social signal perception is inherently subjective, often leading to disagreements

among annotators, which can complicate efforts to improve model accuracy.
Addressing this challenge involves two primary approaches. The first approach focuses
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on defining reliable labels from subjectively annotated data, while the second approach
integrates discrepancies among labels provided by multiple coders [33, 34, 35].
Previous research has explored various methods to manage coder disagreement,

frequently employing techniques such as majority voting to merge labels from multiple
coders [36]. For instance, Ozkan et al. [35] developed a two-step conditional random
field (CRF) model specifically for predicting backchannels, addressing inconsistencies
in coder annotations. Inoue et al. [33] introduced a hierarchical Bayesian model
designed to evaluate user engagement in human-robot interactions, estimating both
engagement levels and coder characteristics as latent variables. Kumano et al. [34]
proposed a probabilistic model to integrate labels of perceived empathy, focusing on the
co-occurrence of gazes and facial expressions between participants. Lotfian and Busso
[37] recommended a machine learning curriculum for emotion recognition in speech,
aimed at improving deep neural network (DNN) training efficiency by accounting for
disagreements in crowdsourced labels. Additionally, Hirano et al. [32] put forward a
weakly supervised learning (WSL) strategy to reduce the impact of unreliable annotated
labels on training datasets.
Each of these approaches provides a distinct strategy for addressing the challenges

associated with subjective annotation. By defining reliable labels or incorporating
differences among coders, these methods enhance model robustness. Integrating these
strategies into the training process can significantly improve the performance of models
in social signal processing.

2.3 Machine Learning with Softlabel
Current research typically addresses annotator disagreement in two main ways:

capturing the diversity of annotators' beliefs or assuming the existence of a single
ground truth label despite the disagreement [38]. Aggregating annotator disagreement
usually involves two approaches: converting labels into a one-hot hard label [40] or
modeling disagreement as a probability distribution with soft labels [41].
Wu et al., building on Collins et al. [42], examine how soft labels can be generated

from a small group of annotators by incorporating additional information, such as their
self-reported confidence. This approach offers advantages over traditional hard or soft
label aggregation methods, which often require extensive annotator resources and may
depend on potentially unreliable crowd-sourced inputs [43]. Wu et al.'s focus is on
contexts where the latter approach—assuming a single ground truth—is more
appropriate. Consequently, they emphasize traditional evaluation metrics like the
F1-score, which depend on a gold-standard label, despite the rise of alternative
evaluation methods that do not rely on aggregated labels [39]. Their methodology is
feasible due to their use of high-agreement test sets, where the 'true' label is relatively
well-defined.

2.4 Characteristic of this Study
A key innovation is the development of a novel soft labeling method in this study,

which represents sentiment as a probability distribution. This approach effectively
addresses the inherent subjectivity in sentiment annotation, allowing for a more nuanced
representation of emotional states. Another significant contribution is the introduction
of a weighted loss function strategy. This strategy assigns varying importance to
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samples based on the consistency between their TS and SS labels, enhancing the
model's ability to learn from challenging cases and improving overall performance. The
study employs specialized datasets, specifically the Hazumi1902 and Hazumi1911
datasets, which are designed to analyze adaptive dialogue strategies aimed at increasing
user engagement. These datasets enable a focused evaluation of sentiment analysis
techniques in the context of human-agent interactions. Rigorous performance
benchmarking against human-level accuracy is a cornerstone of this research. The
proposed methods are evaluated to provide a clear benchmark for their effectiveness,
ensuring that the developed techniques meet high standards of performance. By
integrating multiple annotation perspectives, the study captures a more comprehensive
view of sentiment. Considering annotations from various third-party annotators allows
for the inclusion of minority opinions and detection of subtle emotional states that
might otherwise be overlooked. The research is particularly oriented towards improving
sentiment analysis in human-agent interactions, with implications for developing more
empathetic and responsive dialogue systems.
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Chapter 3
Method

Figure1: Overview of the Estimation of Self-sentiment and Third-party Sentiment at the
Exchange Level [32]

3.1 Data
The utilized framework is depicted in Figure 1. This framework is frequently

employed in multimodal sentiment analysis [32]. Two shared multimodal dialogue
datasets, Hazumi1902 and Hazumi1911, were used, both of which are part of the corpus
described in [44].

3.1.1.Datasets Description
A virtual agent, MMD-agent, was used as the interface, as shown on the lower

right-hand side of Figure 1. Participants interacted with the agent via a display. Their
behaviors were recorded using a video camera and a Microsoft Kinect V2 sensor. The
virtual agent was manipulated using the WoZ method, where the operator pretended to
be a dialogue system. There was no specific task; instead, chat dialogues were used. The
Hazumi1902 and Hazumi1911 datasets were collected to analyze an adaptive dialogue
strategy aimed at enhancing user engagement. The operator selected utterances and
appropriately changed topics. For instance, if participants showed disinterest in a topic,
the operator switched topics. Conversely, if participants seemed to enjoy the
conversation, the operator acted as an attentive listener. Due to issues encountered
during data collection, the final number of participant data available for the experiment
was: 28 participants (8 males and 20 females) for Hazumi1902, and 26 participants (12
males and 14 females) for Hazumi1911. Their ages ranged from 20 to 70 years. The
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recording settings for Hazumi1902 were the same as those for Hazumi1911.

3.1.2.Labels Definitions and Statistics
In this experiment, the following two labels will be used: (1) self-sentiment levels felt

by participants (SS), and (2) sentiment levels annotated by third-party coders (TS). Both
SS and TS assist the system in recognizing whether the user is enjoying the dialogue
and adapting its utterances accordingly.
Averaged annotated scores (Aas) were computed for each sample and subsequently

transformed into ternary labels (high, neutral, and low). For the (1) SS and (2) TS,
which were annotated using 7-point scales, exchanges with Aas values above 4.5 were
categorized as high, and those below 3.5 were categorized as low. All other exchanges
were classified as neutral. The distribution of these labels is presented in Table 1.

Hazumi1902 Hazumi1901
Class (1)SS (2)TS (Aas) (1)SS (2)TS (Aas)
High 49.1 49.8 45.3 56.6
Neutral 30.5 42.7 34.8 36.1
Low 20.4 7.5 19.9 7.3

Total 2,337 samples 2,439 samples

3.2 Multimodal Features
The multimodal feature set was extracted in the same manner as in [32].

3.2.1.Linguistic Feature
Linguistic feature sets for constructing multimodal models were derived from

sentence representations using BERT [45], a language representation model renowned
for its state-of-the-art performance across various NLP tasks. Effective pretraining of
language models is crucial for achieving high performance [45][46]. Recently, a
pretrained Japanese BERT model was developed at Tohoku University, demonstrating
superior results compared to traditional bag-of-words models in tweet emotion
recognition [47]. This study employed the pretrained Tohoku BERT model. Within the
BERT framework, utterances from participants and systems in each exchange were
separated by a special token ([SEP]). The sequences were tokenized using MeCab and
segmented into subwords through the WordPiece algorithm. Activations from the
second-to-last hidden layer of the BERT model were then averaged, producing a single
vector of length 768 [45]. This vector was used as the input feature vector for each
model, simplifying the process of feature extraction and facilitating the integration of
additional modalities.

Table 1: Label Distribution (%)
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3.2.2.Audio and Visual Feature
Audio features were extracted from the participants' speech using openSMILE*12,

employing the INTERSPEECH 2009 Emotion Challenge feature set (IS09) [48],
resulting in a total of 384 dimensions. From webcam images, two types of facial
expression features were extracted using OpenFace [49]: landmark features and action
unit features, totaling 66 dimensions. The extraction process for the 48-dimensional
landmark features involved obtaining two-dimensional coordinates of 12 facial
landmarks around the eyes, mouth, and eyebrows. For each of these points, four
statistical measures were calculated: the maximum value of absolute velocity, mean
value, standard deviation, and maximum value of absolute acceleration. The
18-dimensional action unit features were derived from a pre-trained model in OpenFace,
which detects the presence of 18 types of action units in each frame. The proportion of
frames in which each action unit was detected during the conversation was used as
features. Additionally, motion data from the hands, shoulders, and head were recorded
using a Microsoft Kinect sensor [50], with calculated speed and acceleration serving as
motion features. In total, 86 visual features were derived from facial expressions and
motion activities. The data was standardized using Z-score normalization.

3.3 DNN Late Fusion

Figure 2: Feed-forward Fully Connected Neural Network

A simple neural network in Figure 2. also known as a single-layer neural network,
consists of an input layer, one hidden layer, and an output layer. The input layer
receives and formats external data for processing. The hidden layer contains neurons
that learn and extract features from the input data, with the output computed using an
activation function. The output layer generates the final prediction, with the number of
neurons typically matching the number of categories in the task-one for binary
classification and one per class for multi-class problems. Training is achieved through
the backpropagation algorithm shown on Figure 3, which adjusts the network's
parameters to minimize the difference between predicted and true results by iteratively
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computing and reducing the loss function until an acceptable level is reached or the
training iterations are complete.

Figure 3: Backpropagation

In the context of more complex scenarios, such as multimodal learning, a different
approach called late fusion comes into play Figure 4. Late fusion is a technique where
different modalities are processed separately through their dedicated models, each
extracting features or generating predictions independently. The outputs from these
models are then combined at a later stage, just before making the final decision. This
fusion can involve concatenating features, averaging predictions, or employing more
sophisticated methods like multimodal neural networks. By allowing each modality to
be processed in the most suitable way before integration, late fusion facilitates more
nuanced and effective decision-making.
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Figure 4: DNN Late Fusion

In this experiment, a multimodal neural network classifier was used, designed to
integrate audio, video, and text features for classification tasks. The architecture
consists of separate fully connected layers for each modality: audio, video, and text.
Each of these layers projects the respective input features into a common hidden
dimension space. Specifically, the model has three input layers corresponding to the
three modalities: audio with an input dimension of 384, video with an input dimension
of 86, and text with an input dimension of 768. These inputs are each passed through a
fully connected layer with a hidden dimension of 32, followed by a ReLU activation
function. To prevent overfitting, a dropout layer with a dropout probability of 0.5 is
applied after the concatenation of the modality-specific outputs. The concatenated
feature vector is then fed into a final fully connected layer that maps it to the output
layer, which has three units corresponding to the number of classes. The model was
trained using a batch size of 256 and a learning rate of 0.002 over 10 epochs. The
architecture and training procedure effectively leveraged the multimodal inputs to
enhance the classification performance.
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Chapter 4
Proposed Model
The model and feature processing parts of this method are consistent with previous

research, but a new perspective is proposed in the learning process. As previously noted,
discrepancies among annotators often occur when labeling emotions. This method
accommodates these differences by treating all third-party labels as soft labels,
represented as a probability distribution. Additionally, third-party labels are used to
estimate the self-reported labels. The data is divided into two groups based on whether
the third-party labels agree with the self-reported labels, and different weights are
applied to the loss calculation accordingly.

4.1 Process of Generating Softlabel
To account for discrepancies among annotators when labeling sentiment, the

following method is used to generate soft labels from the annotations. This method
accommodates an arbitrary number of annotators and label categories. The steps are as
follows:

1. Collect Annotations:
For each sample, collect annotations from multiple annotators. Each annotator labels

the sample with one of the possible emotion categories.

2. Count Frequencies:
For each sample, count the frequency of each label. Let� be the total number of

annotators, and let fi be the frequency of the i-th label.

3. Calculate Probability Distribution:
Convert the frequencies into probabilities by dividing each frequency by the total

number of annotations. For a sample with C possible labels, the probability Pi for the
i-th label is calculated as:

�� =
��
�

4. Generate Soft Label:
Use these probabilities to create a soft label vector. The soft label for a sample will be

a C-dimensional vector where each element represents the probability of the
corresponding label.

For example, consider a scenario with three possible emotion categories (low, middle,
high) and five annotators. Suppose the annotations for a sample are low, low, middle,
high, and low. The steps are as follows on Figure 5.
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Figure 5: Example of Generate Softlabel

4.2 Train with Softlabel
For soft label learning, Softmax Cross Entropy is used, defined as follows:

� = −
�=1

�
�� log���

where q is the true probability distribution of the labels, p is the predicted probability
distribution, and C is the number of classes. The Softmax function is used to convert the
model's raw outputs into a probability distribution, and the cross-entropy loss measures
the divergence between this predicted distribution and the true distribution.
In the context of soft label learning, the data is categorized into two groups based on

the agreement between third-party labels and self-reported labels. The loss calculation is
then weighted according to this categorization. The weighting scheme is defined as
follows:
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Loss forConsistent Labels (��):

This loss is calculated for samples where the third-party labels and the self-reported
labels are consistent (i.e., they agree). The loss for these samples is computed using the
Softmax Cross Entropy function and can be assigned a specific weight to reflect the
reliability of these labels.
Loss for Inconsistent Labels (����):
This loss is calculated for samples where the third-party labels and the self-reported

labels are inconsistent (i.e., they disagree). This loss may be weighted differently or
reduced to account for the uncertainty associated with these labels.

The total loss � is a weighted sum of the losses for consistent and inconsistent
samples:

푙표�� = �� + �����

where α is the weight applied to the losses for consistent and inconsistent samples,
respectively.This approach allows the model to prioritize samples with more reliable
labels (consistent labels) and mitigate the impact of potentially noisy labels
(inconsistent labels), leading to more robust training and better overall performance.
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Chapter 5
Experiments

5.1 Evaluation Procedure
To evaluate the models, a cross-validation method (leave-one-person-out

cross-validation, LOPOCV) was applied. In LOPOCV, the samples corresponding to
each exchange between one participant and the dialog system were used as the test data,
and the remaining samples were used as the training data. This procedure ensured that
the test data from one participant were completely excluded from the training dataset,
thereby avoiding overestimation. The accuracy and macro F1-score (F1) were
calculated for each evaluation. F1 is particularly useful for imbalanced datasets. The F1
score is the harmonic mean of precision and recall. Here are the steps to explain the F1
score using a confusion matrix shown on Figure 6. Which includes four key quantities:

True Positives (TP): The number of instances correctly predicted as positive.
False Positives (FP): The number of instances incorrectly predicted as positive.
True Negatives (TN): The number of instances correctly predicted as negative.
False Negatives (FN): The number of instances incorrectly predicted as negative.

Figure 6: Confusion Matrices

Precision measures the proportion of correctly predicted positive instances out of all
instances predicted as positive. It is calculated as:

�푟푒���표� = 푇�
푇�+퐹�
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Recall measures the proportion of actual positive instances that were correctly
predicted. It is calculated as:

푅푒��푙푙 = 푇�
푇�+퐹�

The F1 score is the harmonic mean of precision and recall. It provides a single metric
that balances both precision and recall. The formula is:

퐹1 = 2 ∗ �푟푒����표� ∗ 푅푒��푙푙
�푟푒����표� + 푅푒��푙푙

The average accurcators for the binary classification tasks. All experiments were
performed three times with random initialization, and the evaluation values were
calculated as averages across the three repetitions. These evaluation values were then
compared among the models based on each modality or combination of modalities.

5.2 Baseline and Accuracy of Human Level
First, the goal is to establish a baseline for the model by directly classifying SS using

the aforementioned model, with the results serving as the baseline. Additionally, to
compare with human-level estimates, SS is evaluated against the human-annotated
labels, TS (Aas), to obtain a 'human-level' reference. The results are summarized in
Table 2. It can be observed that the accuracy of the model baseline is considerably
lower than the human-level performance. The reasons for this disparity will now be
analyzed.

Hazumi1902 Hazumi1901
baseline human baseline human

acc 0.4688 0.5383 0.4399 0.5433
f1 0.3372 0.4191 0.3298 0.4119

5.3 Experiments with TS Hardlabel
In a dialogue, participants may exhibit emotional states that do not match their true

feelings, leading to discrepancies between self-reported and third-party observed labels.
For example, a person may appear outwardly happy but actually feel sad internally.
During the learning process of an SS classification model, samples that appear
"outwardly happy" should have relatively similar features. However, if these samples
simultaneously have opposing labels, such as "happy" (High) and "unhappy" (Low),
this could lead to unstable or ambiguous decision boundaries, affecting classification
performance. Next, the verification will be conducted to determine whether the low
accuracy in SS classification is attributable to samples with inconsistent TS/SS labels.

Table 2: SS Estimation Baseline and Human Performance
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First, the number of samples with consistent and inconsistent TS/SS labels will be
visualized. It will be observed that nearly half of the total samples in both the
Hazumi1902 and Hazumi1911 datasets have inconsistent TS/SS labels on Table 3.

Table 3: Consistent/Inconsistent Label distribution (%)

Hazumi1902 Hazumi1911
consistent 1,261 1,294
inconsistent 1,076 1,145

Total 2,337 2,439

The data is divided into two groups based on the consistency between third-party
labels (TS) and self-reported labels (SS): consistent data (Data(c)) and inconsistent data
(Data(inc)). The SS classification model is then trained separately on these two groups.
The results, as shown in the table, align with expectations. Specifically, the accuracy of
Data(inc) is very low, demonstrating that samples with inconsistent TS/SS labels
negatively impact the model's performance. To address this issue, the SS labels for
Data(inc) are directly replaced with the TS(Aas) labels to ensure label consistency. This
modified dataset is then combined with Data(c) for training the SS classification model.
This adjustment results in a significant improvement in overall accuracy compared to
the baseline. The results are shown in Table 4.

Table 4: Experiments with TS Hardlabel

5.4 Experiments with TS Softlabel

In the previous subsection, it was observed that using TS(Aas) labels for samples
with inconsistent TS(Aas) and SS labels enhanced the accuracy of SS label prediction.
While TS(Aas) represents the average level of third-party labels, discrepancies may
arise due to the subjective nature of annotator judgments. The next step is to analyze the
relationship between third-party labels provided by different annotators and SS labels.
Discrepancies frequently occur among third-party labels from different annotators.

Nevertheless, among these labels, one or a few may align with the SS. Therefore,
samples where SS equals "Low" and "High" were extracted, and the consistency rate
(rate1) of TS(Aas) with SS was compared for cases where SS = Low and SS = High.
Additionally, samples were defined as consistent with SS if at least one third-party label

Hazumi1902 Hazumi1901
Data(c) Data(inc) all with

TS(Aas)
Data(c) Data(inc) all with

TS(Aas)
acc 0.5342 0.2342 0.5250 0.5144 0.2505 0.5239
f1 0.3825 0.1890 0.3855 0.3918 0.2095 0.3852
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matched SS, and the consistency rate (rate2) was calculated. As shown in the table 5,
rate2 is higher than rate1, particularly when SS = Low, where rate2 is significantly
higher. This suggests that while most annotators may fail to accurately identify a
participant's low emotion when the participant's emotion is genuinely low, a few
annotators can still detect the participant's suppressed low emotion. However, this
valuable information is not utilized when using TS(Aas) for prediction. To address this,
the soft label method will be employed to learn from the labels provided by each
annotator.

Table 5: Comparison of Consistency Rates between
TS Hardlabel and TS Softlabel with SS(%)

Hazumi1902 Hazumi1901
SS Low High Low High

TS(Aas) 26 73 17 66
TS(soft) 52 89 44 85

In Chapter 3, the method for generating soft labels was explained. To ensure that the
label with the highest probability in the soft label is consistent with TS(Aas) when
comparing with the TS(Aas) model, an initial probability value of at least 0.5 is set at
the position corresponding to the TS(Aas) label during the generation of the soft label.
The specific implementation is illustrated in the Figure 7.

Figure 7: Example of Generate Softlabel with Initial Probability
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The initial probabilities were set to [0.5, 0.6, 0.7, 0.8, 0.9] respectively, and the
results were compared with the TS(As) model. The accuracy for all these initial
probabilities was found to be higher than that of the TS(As) model, demonstrating the
effectiveness of the soft label method. The results are presented in Table 6. Additionally,
when the initial probability was set to 0, meaning the soft labels were generated purely
based on the probability distribution without any initial probability setting, the
performance, considering both accuracy and F1 score, was the highest.

Table 6: Experiments with TS Softlabel

Hazumi1902 Hazumi1901
acc f1 acc f1

all with
TS(Aas)

0.5250 0.3855 0.5239 0.3852

soft 0.5 0.5380 0.3945 0.5243 0.4031
soft 0.6 0.5379 0.3956 0.5247 0.4023
soft 0.7 0.5346 0.3935 0.5222 0.4027
soft 0.8 0.5329 0.3903 0.5265 0.4015
soft 0.9 0.5327 0.3964 0.5254 0.4049
soft 0 0.5423 0.3962 0.5253 0.4068

5.5 Experiments for Weighted Loss Dependency

Currently, it is evident that using TS soft labels to predict SS labels yields the best
performance, surpassing the baseline. Previously, data was divided into two groups,
Data(c) and Data(inc), based on the consistency of TS(As) with SS. By assigning higher
loss weights to important samples, the model better learns the features of these samples,
thereby improving overall accuracy. To explore the loss weight ratio between the two
groups of samples, the loss weight of Data(c) was fixed at 1, and the loss weight of
Data(inc) was adjusted to �. By adjusting�, the weight ratio between the two groups
was varied, with � set to [0.25, 0.33, 0.5, 1, 2, 3, 4]. The experimental results are
shown in Table 6. In both Hazumi1902 and Hazumi1911 datasets, the model performs
best when� is set to 3. Additionally, there is a trend of improved model performance
as � increases. However, continuously increasing � can lead to a deterioration in
performance, as observed when �=4. The results are shown in Figure 8 and Figure 9.
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Figure 8: Experiments for Weighted Loss Dependency on Hazumi1902

Figure 9: Experiments for Weighted Loss Dependency on Hazumi1911

5.6 Discussion

To summarize the results of the above experiments, the following 5 experimental
results were selected for comparison. Additionally, a random guessing experiment was
conducted for comparison with other experiments. Descriptions of each experiment are
summarized in Table 7.
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Table 7: Descriptions of Each Experiments

exp plot_name description
Random rand  Randomly label the test samples and compare

with the ground truth SS

Baseline base  This experiment uses all the data without any
modifications or special treatments.

 Serves as the reference point for evaluating
other methods.

Use
TS(Aas)/SS
consistent
samples only

cons  Data was divided based on whether TS(Aas) is
consistent with SS. Only the consistent data was
used.

Use TS
softlabel and
weighted loss
with a=3

softlabel  TS soft labels were used to predict SS labels.
 Data was divided into two groups, Data(c) and

Data(inc), based on TS(As) consistency with SS.
 A weighted loss approach was applied where the

loss weight for Data(c) was fixed at 1 and the
loss weight for Data(inc) was set to 3.

Human level human  Represents the performance level of human
annotators.

 Serves as an upper bound or goal for model
performance comparison.

Then plot the results using a bar chart, It can be seen that the softlabel method is the
closest to human-level performance. The results are shown in Figure 10 and Figure 11.
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Figure 10: Comparisons of All Experiments on Hazumi1902

Figure 11: Comparisons of All Experiments on Hazumi1911
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It can be observed that removing samples with inconsistent TS and SS labels
significantly improves the model's performance. This suggests that when sample
annotations conflict, the same input data may receive different labels, which can
negatively impact the model's learning and accuracy. This inconsistency makes it
difficult for the model to determine the correct classification boundary, causing
confusion during the training process and reducing classification accuracy. In sentiment
analysis tasks, inconsistent labels mean that different annotators have different
interpretations and judgments of the sentiment for the same data point. This makes it
challenging for the model to capture a consistent pattern of sentiment information,
thereby affecting its classification performance.
When using TS instead of SS for training, the model essentially learns the pattern of

human judgment regarding the participant's emotions. Since TS sample labels have
higher consistency, it is understandable that the model's performance would be closer to
human-level accuracy compared to the baseline. Additionally, when using TS soft labels
for training, the accuracy on huzami1902 exceeds human levels, and the F1 score is
relatively close to human levels. On hazumi1911, the F1 score surpasses human levels,
and the accuracy is relatively close to human levels. This shows soft labels help to
capture the differences between TS and SS annotations. When annotators disagree on a
sentiment, a soft label can represent this ambiguity, reflecting the fact that the true
sentiment might lie somewhere in between the various opinions.
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Chapter 6
Conclusion

6.1 Summary
This thesis explored approaches to enhance self-sentiment (SS) estimation in

multimodal dialogue systems, addressing persistent challenges in sentiment analysis.
The focus was on employing soft labels to represent the complex and often ambiguous
nature of human emotions. Soft labels provide a probabilistic representation of
sentiment, capturing subtle variations in emotional states that hard labels might miss.
Additionally, a weighted loss function strategy was proposed to address discrepancies
between self-reported sentiments (SS) and third-party annotated sentiments (TS). By
assigning different weights to samples based on the consistency between TS and SS
labels, the approach aimed to improve the model's learning process and performance.
Experiments were conducted using the Hazumi1902 and Hazumi1911 datasets, which
provided diverse multimodal data for analysis. Results indicated that the proposed
methods might offer improvements over traditional sentiment analysis approaches,
especially in cases with significant sentiment label variation. The combination of the
soft label method and weighted loss function demonstrated promising results, enhancing
accuracy and reliability in sentiment estimation within multimodal dialogue contexts.
These findings contribute to ongoing research in multimodal sentiment analysis by
showcasing the potential of soft labels and weighted loss functions in capturing and
modeling the complexities of human emotions. Future work could focus on refining the
soft label generation process, integrating additional modalities such as physiological
signals, and exploring the cross-cultural applicability of these methods.

6.2 Future Work
To advance our understanding and capabilities in sentiment analysis, future work can

be approached from the following two perspectives:

More Effective Soft Label Generation Methods
Our research highlights the significant potential of soft label methods in capturing

subtle emotional nuances, but there is considerable room for improvement. Future work
could focus on developing algorithms that dynamically adjust soft labels based on
context. This might involve incorporating factors such as conversational history,
individual user characteristics, and environmental conditions to enhance the relevance
and accuracy of the soft labels.

Sample Weighting Methods
While our weighted loss function strategy has demonstrated promising results, further

optimization is needed. Future research could aim to create algorithms that
automatically adjust sample weights during training. This adjustment would
accommodate varying data distributions and model states, leading to more robust and
adaptable models.
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By exploring these areas, the goal is to develop more precise and reliable sentiment
analysis systems. Such advancements could enhance model performance and offer new
insights and applications in emotional intelligence within human-computer interactions.
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