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ABSTRACT 

 

The accurate forecasting of electricity demand is crucial for global energy 

security, cost reduction, and grid stability. Disrupted situations such as the COVID-19 

pandemic lead to unpredictable shifts in demand, posing challenges for short-term 

forecasting. Understanding demand patterns during such crises is essential for 

managing current circumstances and preparing for future disruptions.  

This research aims to develop a precise model for predicting electricity demand, 

with the primary goal of effectively managing potential future disruptions. The 

proposed hybrid forecasting model is intended to address scenarios both with and 

without government intervention during disrupted situations, utilizing Thailand’s 

electricity demand during the COVID-19 pandemic as a case study. The proposed 

forecasting model integrates various techniques, including stepwise regression, similar 

day selection-based day type criteria, variational mode decomposition, empirical mode 

decomposition, fast Fourier transform, neural networks, long short-term memory, and 

grid search optimization. To enhance the model's flexibility and adaptability, this study 

introduces new criteria for dataset segmentation and the selection of similar days, 

facilitating one-day-ahead forecasting with the utilization of rolling datasets. 

The study assessed the practicality and effectiveness of the proposed forecasting 

model through real-world implementation. Comparative analysis against existing 

models demonstrated the superiority of the proposed model in enhancing flexibility and 

accuracy, particularly in dynamic and uncertain environments. The model exhibited 

improved performance with efficient computational processes and independence from 

input variables dependent on prior forecasts. Furthermore, the study examined the 

impact of disruptions on the model's accuracy, revealing its robustness and adaptability. 

Overall, the findings provide valuable insights for decision-making across diverse 

scenarios. 

  

Keywords: : hybrid approach; daily peak load forecasting; disrupted situation; VMD; 

EDM; FFT; similar day selection method; stepwise regression; artificial 

neural network; long short-term memory; COVID-19 
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CHAPTER 1 

Introduction  

 

 

  
Accurate and practical forecasting stands as a fundamental aspect of strategic 

planning across industries. Within the electric utility industry, forecasting demand is 

essential to predict future electricity needs and ensure sufficient resources are available. 

[1]. The growing fluctuations in electricity demand have garnered worldwide attention 

within the industry [2], [3]. Recognizing the potential impact of emergencies on the 

power industry and effectively managing energy distribution highlights the importance 

of focusing on this sector [4]. Accurate forecasting serves as a critical tool in assisting 

the utility industry in making informed decisions regarding load scheduling, allocation 

of power storage reserves, and optimization of facility layout, thereby fostering overall 

enhancements within these operational domains [5], [6].  

In recent years, there has been a growing global trend among nations to 

prioritize environmental sustainability, recognizing it as a critical global concern [7]. 

Accurate forecasting of electricity demand stands as a key in the quest to increase 

sustainability. By providing precise insights into future energy demand, it enables the 

development of optimized generation strategies. Moreover, accurate forecasting 

facilitates efficient resource allocation, improving electricity generation. It also 

maintains a stable balance between supply and demand, mitigating the risk of electricity 

network or overloading. Furthermore, accurate forecasting allows both customers and 

industries to embrace energy-efficient behaviors, leading to improved resource 

utilization and contributing to improved sustainable energy production. These efforts 

are essential in promoting long-term sustainability. 

The rest of this chapter is organized as follows: statement of problems, research 

objectives, and chapter organization. 
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1.1 Statement of Problems 

Accurate electricity forecasting is crucial for maintaining a stable and 

responsive energy infrastructure. However, the disrupted situation has led to 

unprecedented shifts in consumption behavior, driven by factors such as remote work, 

varying restrictions, and economic fluctuations, resulting in significant changes in both 

the magnitude and daily consumption patterns [8]. The dramatic and sudden shifts in 

electricity demand patterns impact electricity forecasting in short-term. Traditional 

forecasting models, which rely on historical data and predictable trends, struggle to 

adapt to the rapid and unpredictable changes in electricity demand caused by natural 

disasters, remote work arrangements, varying degrees of restrictions, and economic 

uncertainties. These unforeseen variations make it incredibly challenging for utilities 

and forecasting systems to accurately predict demand patterns, causing potential 

mismatches between supply and demand. Furthermore, the lack of historical precedent 

for such sudden changes further complicates the creation of reliable models, rendering 

traditional forecasting methods less effective in anticipating and adapting to the 

dynamic nature of electricity usage during this unprecedented time [9]. Understanding 

the electricity demand pattern during a pandemic can support the electric utility industry 

in responding to disruptions, thereby facilitating informed decision-making in 

rebuilding and fortifying energy systems during unprecedented challenges. Thus, 

during disrupted situations, an accurate electricity forecasting model is essential for 

navigating uncertainties, fostering resilience, and facilitating a sustainable and reliable 

energy landscape. 

During the COVID-19 pandemic, the electricity consumption data can illustrate 

disrupted scenarios, as the pandemic rapidly and adversely influenced various sectors 

worldwide within a short period [10]–[12]. Notably, the energy sector emerged as one 

of the hardest hit among these affected industries [12]. Given the substantial impact of 

disruptive situations on the global energy sector, this research aims to develop a precise 

model for predicting electricity demand, with the primary goal of effectively managing 

potential future disruptions. According to the World Bank's records in 2022, Thailand 

became the 2nd largest economy in Southeast Asia and the 9th largest economy in Asia  

[13]. The large economic sector relates to the large scale of electricity used. Considering 
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the large economic sector of Thailand and the worldwide impacts of COVID-19 

pandemic, this research decides to use Thailand’s electricity supply chain during the 

pandemic situation as a representative case study to evaluate the forecasting model 

efficiency. 

Based on the literature reviews, two gaps are identified. The first gap exists in 

creating models for hybrid scenarios that combine aspects of both restricted and 

unrestricted conditions. Existing models perform well in forecasting demand during 

either normal conditions or strict restrictions. However, there's a need for frameworks 

that can adjust to transitional periods, in which restrictions vary or slowly relax. 

Another gap involves the selection of input variables, particularly the process of 

choosing similar days for hybrid scenarios. Not considering this procedure could bring 

in irrelevant or redundant variables, causing overfitting problems that decrease the 

forecasting model efficiency. It also increases complexity, consuming more 

computational workloads and time. In addition, several techniques are employed to 

enhance and strengthen model performance, including data decomposition, 

hyperparameter optimization, and the use of rolling datasets. Without employing data 

decomposition, the forecasting model loses seasonal and trend information, making it 

challenging to manage seasonal patterns. This leads to inaccurate forecasting results, 

particularly in long-term predictions, as the model fails to recognize fundamental 

patterns. Similarly, without utilizing hyperparameter optimization, the overfitting and 

underfitting problem may be the result of incorrect hyperparameter setting, affecting 

forecasting performance. Manually selecting hyperparameters can also be biased. 

Furthermore, in dynamic situations such as the ongoing pandemic, adjacent data 

becomes crucial because it reflects the present state. However, adaptability and the 

forecasting model's robustness can be impacted by fixed training datasets, resulting in 

inaccurate forecasting results. 

The contribution of this research is filling these two gaps which are constructing 

a specific model designed for hybrid scenarios, together with the data decomposition, 

input variable selection, hyperparameter optimization, and a rolling dataset. With these 

methods all together, it becomes possible to address challenges such as adapting to 

transitional phases, capturing inherent seasonal patterns, avoiding overfitting, and 
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managing model complexity effectively. Moreover, the most recent data can be utilized 

by rolling datasets and reducing performance bias in terms of hyperparameters.  

To sum up, the research's contribution to knowledge lies in its dedicated effort 

to address the challenges posed by disruptive events, specifically exemplified by the 

COVID-19 impact on global energy industry. By developing precise model for 

predicting electricity demand, the study aims to offer valuable insights and tools for 

effectively managing and mitigating the potential disruptions that may arise in the 

future. This contribution enhances the understanding of the complexities involved in 

energy demand forecasting, fostering resilience and adaptability in the face of 

unforeseen events. Moreover, the practical applicability of the research extends to 

empowering policymakers, energy planners, and relevant stakeholders with actionable 

information, enabling them to make informed decisions and implement strategies that 

enhance the resilience of energy systems in the face of disruptive circumstances. 

 

 

1.2 Research Objectives 

• To develop a hybrid forecasting model for hybrid scenarios during disrupted 

situations, using Thailand’s electricity demand during the COVID-19 pandemic 

as a case study 

• To implement the proposed model in a real-world setting to assess its practical 

applicability 

• To conduct a comparative analysis against existing forecasting models 

• To analyze how disruptions affect the forecasting model’s accuracy as an 

external variable 

• To provide an understanding of the model’s performance in different scenarios, 

offering valuable guidance for decision-making in diverse situations 

 

 



5 

 

 

 

 

1.3 Chapter Organization 

• Chapter 1 explains the abstract in more detail and introduces the research story, 

motivation, and importance of the research. It clarifies the research aims and the 

impact of the research, as well as highlights interesting points and reasons why 

this research should be conducted. Additionally, it provides the statement of 

problems, research objectives, and the organization of chapters in this thesis. 

• Chapter 2 presents the literature review, which includes previous works and 

research related to the research field, encompassing journals, books, and 

research articles from which information is collected. This section serves to 

identify gaps, differentiations, and contributions to the research, while also 

providing background on the methodologies used in this thesis. 

• Chapter 3 explains how the research was conducted including experimental 

steps and procedure of the proposed model for hybrid scenarios during disrupted 

situations. It shows methods used in the research composed of theory, 

mathematical formulas, tools used, and error measurements used in the 

research. 

• Chapter 4 offers a case study examining the peak electricity consumption in 

Thailand during the COVID-19 pandemic, structured into several key sections. 

It begins by detailing the process of data collection and description, outlining 

the sources and types of data utilized to analyze peak demand patterns during 

the pandemic period. Subsequently, the chapter discusses the methodology 

employed for time segmentation and the identification of sensitivity factors. 

Two distinct cases are then presented: Case 1 explores scenarios where 

government policies directly interfere with electricity demand patterns, while 

Case 2 examines situations without government policy interference. Finally, the 

chapter presents the experimental results derived from the case studies and 

engages in a comprehensive discussion, offering recommendations for model 

selection during diverse situations. 

• Chapter 5 serves as the conclusion of the dissertation, summarizing the 

findings to address the research questions. It highlights the contribution to 
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current literature and offers recommendations and suggestions for future 

research. 

• Chapter 6 presents a novel contribution of this research to the knowledge 

science field, encompassing both practical and theoretical implications. This 

contribution seeks to enhance the current understanding of electricity demand 

forecasting during disrupted situations and provide valuable insights that could 

significantly impact the utility industry. 
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CHAPTER 2 

Literature Reviews  

and Research Background 

 

 

 
2.1 Literature Review of the Relevant Research 

This section explores the impact of recent disrupted situations on the energy 

sector, with a specific focus on electricity demand forecasting during such scenarios. 

The recent COVID-19 pandemic has highlighted the necessity of accurate forecasting 

models that can adapt to rapidly changing circumstances. This literature review delves 

into the methodologies and techniques used to forecast electricity demand during 

disrupted situations. The broader impact of recent disruptions on the energy sector is 

described in Subsection 2.1.1, while the specific challenges and methodologies of 

electricity demand forecasting during such pandemic times are focused on Subsection 

2.1.2. Through an analysis of existing research, this section aims to identify research 

gaps and illustrate the strategies and approaches that have been employed to address 

the unique challenges posed by disrupted situations and identified research gaps. 

 

2.1.1 Impact of Recent Disrupted Situation on the Energy Sector 

In this context, due to its global impacts, the recent disruption caused by the 

COVID-19 pandemic serves as an illustrative example of disrupted events. The 

COVID-19 pandemic rapidly and negatively influenced various sectors worldwide over 

a short period [10]–[12]. Among these sectors, the energy industry is significantly 

impacted [12]. Energy consumption varies across regions, with greater consumption 

occurring in commercial, industrial, and residential sectors [14]. Residential energy 

usage tends to increase during periods of restrictions when people stay at home. 
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Changes in lifestyle and work habits lead to significant fluctuations in electricity 

demand during different timeframes [15]. Fluctuations in electricity demand can also 

impact power system control and operation, potentially affecting utility grid equipment 

like distribution transformers, protection devices, and substations. Failing to effectively 

manage these fluctuations could pose substantial risks to the stability and functionality 

of the national power grid [16]. 

Several researchers have examined the effects of the pandemic on various 

sectors including the economy, environment, and the power and energy industries. 

Aktar et al. [17] conducted a comprehensive review to determine how the COVID-19 

pandemic has influenced energy demand, CO2 emissions, and economic indicators. Jia 

et al. [18] explored the effects and responses of the pandemic and oil price fluctuations 

on energy, economy, and environment. Jiang et al. [19] provided an overview of the 

COVID-19 impacts on energy demand and consumption, highlighting associated 

challenges and new opportunities. Ruan et al. [20] focused on the COVID-19 impact 

on electricity grid and market activities, while Geraldi et al. [21] analyzed electricity 

demand during lockdown in buildings. Tsao et al. [22] delved into the resilience of 

renewable energy supply networks in response to the demand, supply, and payment 

risks arising from COVID-19. Additionally, Klemeš et al. [23] and Pradhan and Ghosh 

[24] assessed the COVID-19 pandemic from the perspectives of energy, environment, 

sustainability, and climate change.  

Turning focus to the effect of COVID-19 on electricity demand forecasting, 

Cheshmehzangi [25] investigated the short-term and long-term effects of COVID-19 

on household energy usage. Similarly, Abulibdeh et al. [26] examined how the 

pandemic affected electricity demand and the accuracy of electricity demand 

forecasting. Following the demonstration of these impacts on electricity demand 

forecasting, achieving precise forecasting performance becomes a common objective 

pursued by many researchers. 
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2.1.2 Electricity Demand Forecasting during Disrupted Situation 

Statistical and machine learning techniques are the primary methods commonly 

used in electricity demand forecasting, both in regular situations and during disrupted 

situations such as the COVID-19 pandemic. Under regular circumstances, the statistical 

linear regression model [27], [28] is widely favored for its simplicity and ease of 

interpretation. Moreover, more advanced prediction methods, including Holt Winter's 

exponential smoothing model [29], autoregressive integrated moving average model 

(ARIMA) [30], ARIMA with exogenous variables (ARIMAX) [31], ARIMA model 

that contains a seasonal component with and without exogenous variables (SARIMAX 

[32] and SARIMA [33]), and the grey model [34], are also commonly applied. 

During the COVID-19 pandemic, there was considerable focus on adjusting to 

shifts in demand patterns. Advanced methods were also utilized during this period. In 

order to mitigate the pandemic’s impact on forecasting models, Alasali et al. [35] 

implemented the ARIMAX model with a focus on long-term electricity demand trends. 

To enhance predictive capabilities, Huang et al. [16] introduced the integration of 

rolling mechanisms into the grey model to make use of the most recently collected data. 

However, an advanced model is inadequate to address specific circumstances, inspiring 

the focus on hybrid models. In a scenario lagging the availability of external variables, 

the implementation of a hybrid model combining generalized additive models (GAM) 

and Kalman filtering successfully enhanced the adaptability of the forecasting model 

[36]. Similarly, in the condition of inadequate data during the pandemic situation, a 

hybrid model of fractional grey forecasting models with genetic algorithm (GA) 

optimization was also utilized to handle monthly forecasting with electricity production 

data [37]. Nevertheless, the limitations of statistical techniques include dealing with the 

non-linear patterns evident in the recent trends in electricity demand [38]. Therefore, to 

handle electricity demand problem, machine learning techniques are used. The 

capabilities include continuous learning, and real-time updates on demand and changes 

during the disruption, making machine learning algorithms suitable for forecasting 

under rapidly changing scenarios [39]. 

Machine learning has gained wide application in electricity demand forecasting 

due to its several advantages. The application of machine learning models, such as 
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support vector machines (SVM) [40], the artificial neural network (ANN) [41], and 

long short-term memory (LSTM) networks [42], is commonly used in this field. To 

manage demand uncertainty during forecasting, combining techniques such as machine 

learning and statistical methods can address the uncertainty concern. Bayesian 

regularization, utilizing the Gaussian process [43], can be used to combine the 

uncertainty with forecasting process, which is valuable for handling complex and 

limited data availability scenarios. Machine learning models can be used to predict 

electricity usage during both normal and disrupted situations. 

During the early stage of the COVID-19 pandemic, LSTM was used to forecast 

daily electricity usage [44]. Additionally, during the pandemic, ANN was employed to 

forecast electricity usage, as it has a non-complex structure enabling it to be used in 

practical systems [9]. However, training ANN with the common input variables may 

not yield acceptable results due to the complex and unpredictable nature of 

consumption patterns caused by unprecedented events such as the COVID-19 

pandemic. Chen, Yang, and Zhang [9] promoted the accuracy of ANN forecasts by 

integrating economic activity-based mobility data. In the absence of sensitivity factors 

representing the pandemic situation, the implementation of improvement techniques 

using a hybrid model is necessary to enhance basic machine learning models’  accuracy. 

A hybrid LSTM model is employed, utilizing a simplex optimizer [45] and 

incorporating grid search and manual search [46], to enhance accuracy using 

hyperparameter tuning. A hybrid model using the data decomposition technique known 

as improved complete ensemble empirical mode decomposition with adaptive noise 

(ICEEMDAN), along with the multi-objective grey wolf optimizer (MOGWO), is 

utilized to enhance SVM performance [47]. Furthermore, integrating a transfer learning 

framework with neural networks improves the understanding of the effects of external 

variables on electricity usage during a pandemic [48]. Table 1 shows the summarization 

technique utilized in prior studies during the COVID-19 pandemic, providing a 

comprehensive overview of the methods and findings. 
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Table 1 Overview of methods used in prior research during the COVID-19 pandemic. 

Paper 
Forecasting  

Model 

Data 

Decomposition 

Select Input 

Variable 

Hyper Parameter 

Optimization 

Sensitivity 

Factor 

Rolling 

Dataset 
Study Location 

Forecasting 

Period 

[35] ARIMAX No No No No No Jordan 
30 min, Daily, 

Monthly 

[16] Rolling IMSGM No No No No Yes China Monthly 

[36] 
Kalman filtering 

with GAM 
No No No No No France 30 min 

[37] 
Fractional grey 

model 
No No GA No No 

European 

countries 
Monthly 

[44] LSTM No No No No No Turkey 
Daily, 

Monthly 

[9] ANN No No No Yes No 

European 

countries,  

US cities 

Daily 

[45] LSTM No No Simplex optimizer Yes No China Daily 

[46] Bi-LSTM No No 
Grid search,  

Manual search 
Yes No UK Daily 

[47] SVM ICEEMDAN No MOGWO Yes No US Daily 

[48] 
Transfer learning 

with CNN 
No No No No No China Monthly 

Proposed 

Model 
ANN/LSTM 

VMD-EMD-

FFT 

Stepwise 

regression, SD 
Grid search Yes Yes Thailand Daily 
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Following the literature, two gaps have been found during the COVID-19 

pandemic, see Table 1. The first identified gap involves integrating and developing 

models designed specifically for hybrid scenarios that combine aspects of both 

lockdown and non-lockdown situations. Despite existing models performing well in 

predicting usage under normal situations or during lockdowns, the comprehensive 

framework that can be used during the transitional phases when restrictions fluctuate or 

gradually loosen is still lacking.  

Another gap concerns improvement techniques presented in the literature 

during the COVID-19 pandemic, aimed at constructing the hybrid model. The first 

improvement technique is data decomposition. Failure to apply this technique causes 

the forecasting model to lose seasonal and trend information, leading to increased 

difficulty in managing seasonal patterns. As a result, inaccurate forecasting results are 

generated, particularly in long-term forecasting, as the model cannot capture underlying 

patterns effectively. The second technique involves the selection of input variables. 

Failure to carry out this process may introduce irrelevant or redundant variables into 

the model, causing the overfitting problem and the curse of dimensionality. As a result, 

there is an exponential increase in the computational efforts required for processing, as 

well as a reduction in forecasting performance. The third technique lies in the 

hyperparameter optimization technique. Failing to utilize this method can result in the 

creation of overfitting and underfitting problems due to improper hyperparameter 

settings, leading to a reduction in the efficiency of the forecasting model. Additionally, 

manually selecting hyperparameters may increase the risk of bias. The fourth technique 

is the rolling dataset. In the context of the pandemic, where the situation changes daily, 

the availability of adjacent data becomes crucial as it reflects the current situation of 

the pandemic. The dynamic nature of the pandemic necessitates the use of up-to-date 

information to make informed decisions. Adjacent data, which encompasses the most 

recent information, is invaluable for understanding and responding to the evolving 

situation effectively. In contrast, fixed training datasets fail to incorporate the most 

recent information, which is essential for understanding and responding to the evolving 

situation effectively, resulting in poor forecasting outcomes. By integrating these four 

improvement techniques into a hybrid model, the proposed model can mitigate 
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identified limitations and improve the accuracy, adaptability, and robustness of the 

forecasting model when dealing with the complexity caused by disrupted situations. 

 

 

2.2 Research Background 

This section provides a research background on forecasting models and 

improvement techniques. Subsection 2.2.1 describes the history of prediction 

techniques and explores how forecasting has evolved from simple methods to more 

advanced ones used today. Along the way, the tools developed to enhance predictions 

are examined. One of these tools is data decomposition (Subsection 2.2.2), which helps 

break down complex data into smaller parts for better understanding. Another important 

technique is input variable selection (Subsection 2.2.3), which identifies the most 

crucial factors for accurate predictions. This section offers a better understanding of the 

research background by reflecting on how forecasting has changed over time and the 

techniques that have contributed to its improvement. 

 

2.2.1 Forecasting Models 

In the areas of electricity demand forecasting, the utilization of time series 

models, whether employed singularly or in combination, proves to be a reliable method 

for achieving accuracy. Utilizing trend analysis enables the extrapolation of future 

electricity demand requirements with precision [49].  A time series refers to a sequential 

arrangement of values recorded at consistent intervals. Analyzing time series involves 

two main stages: initially obtaining the structure and underlying patterns within the 

observed data, followed by fitting a model to facilitate future predictions. A common 

method in time series analysis involves decomposing the series into three distinct 

components which are trend, seasonality, and residual [50]. The trend represents the 

overall direction or movement exhibited by the variable over the observation period, 

neglecting seasonal fluctuations and irregularities. Seasonality refers to the repeated 

pattern of fluctuation in the variable under examination, characterized by stable effects 

in terms of timing, magnitude, and direction. Finally, residuals represent the residual or 
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unexplained portion of the time series data. Despite efforts to capture trends and 

seasonality, residuals often remain, sometimes with sufficient magnitude to obscure the 

underlying trend and seasonal patterns [51]. Extensive research literature addresses 

predictive modeling, revealing two overarching methodological categories: statistical 

techniques and machine learning algorithms. 

Focusing on statistical forecasting techniques, linear regression emerges as one 

of the most commonly used methods due to its simplicity and ease of implementation. 

The accuracy of this method depends on how well historical data represent potential 

future scenarios. Nevertheless, it is feasible to develop a metric to identify unreliable 

forecasts. This method requires minimal parameters, which can be calculated from 

historical data using cross-validation techniques [27], [28]. Continuing with multiple 

regression, it is widely recognized as the most popular method used for forecasting 

loads affected by various factors such as meteorological effects, electricity prices, and 

economic growth. Multiple regression analysis in electricity demand forecasting 

utilizes the technique of least-square estimation. Varadan and Makram [52] applied the 

least squares approach to determine and quantify different types of loads at power lines 

and substations. A weather-load model based on regression analysis of historical 

demand and weather data to predict load demand for Irish electricity was developed by 

Hyde and Hodnett [53]. Additionally, Broadwater [54] introduced a novel regression-

based technique, the nonlinear load research estimator (NLRE). In addition to multiple 

regression, exponential smoothing is one of the methods used in electricity demand 

forecasting. In this technique, the load is initially modeled using historical data, 

followed by the utilization of this model to forecast future load. Winter’s method 

represents one of the existing exponential smoothing techniques capable of directly 

analyzing seasonal time series. This method relies on stationary, trend, and seasonality, 

as smoothing constants [55].  

In response to evolving environmental conditions, adjustments have been made 

to traditional forecasting techniques to automatically adapt the parameters of 

forecasting models. Initially, the auto-regressive (AR) model is utilized to represent the 

load profile, assuming it is a linear combination of previous loads [56]. To enhance the 

traditional AR model, Mbamalu and El-Hawary [57] employ least mean square (LMS) 

algorithms to dynamically update the unknown coefficients in real-time. Moreover, 
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Huang [58] introduces an autoregressive model with an optimal threshold stratification 

algorithm for hourly load forecasting. To further enhance the adaptability of the AR 

model, an autoregressive moving average (ARMA) model is developed. This model 

forecasts the current linear time series value based on previous periods (autoregressive 

component) and by incorporating previous error values (moving average component). 

This approach enables the model to capture both short-term dependencies between 

observations and the impacts of random errors [52], [59], [60]. Lastly, Contreras et al. 

[61] introduced the auto-regressive integrated moving average (ARIMA) model. This 

model, widely employed in time series forecasting, integrates autoregression (AR), 

differencing (I), and moving averages (MA) concepts. With its capacity to capture 

diverse temporal dynamics and patterns inherent in time series data, ARIMA models 

are highly versatile and effective for forecasting purposes. They are often preferred over 

simple ARMA models due to their superior handling of non-stationary time series data 

through the inclusion of the differencing component (I), which expands their 

applicability across various time series datasets. Additionally, ARIMA models 

demonstrate flexibility in capturing both short-term and long-term dependencies within 

the data, further enhancing their utility for forecasting tasks [55], [62], [63]. 

However, statistical models have limitations that may not capture complex 

relationships or causal factors driving the data, especially in situations where variables 

are interrelated in nonlinear ways [38]. This limitation can result in oversimplified or 

overly deterministic forecasts that fail to account for nuanced dynamics within the data. 

Furthermore, statistical forecasting models may require a substantial amount of data to 

produce reliable forecasts, which can be challenging to obtain in certain contexts. While 

statistical forecasting models offer valuable insights and are widely used in practice, 

they are not without limitations and may not always provide accurate predictions in 

every scenario. To address these limitations, the introduction of machine learning into 

this field has been proposed. 

Machine learning techniques offer continuous learning capabilities, enabling 

algorithms to offer real-time adjustments as consumption patterns evolve. This 

adaptability makes them highly suitable for dynamic and fluctuating forecasting 

scenarios. Furthermore, machine learning techniques facilitate rapid adaptation to new 

electricity demand patterns by utilizing data representations instead of explicit data 
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features [39]. Through the utilization of algorithms capable of adaptation and learning 

from data, machine learning systems exhibit a resemblance to the human mind's 

capacity for reasoning and learning within environments characterized by uncertainty. 

Within this framework, these systems prioritize adaptability over strict precision, 

enabling them to make approximate decisions when faced with incomplete or noisy 

information. 

Starting with traditional machine learning methods, fuzzy logic stands as a 

computational model adept at processing reasoning based on approximate or imprecise 

data rather than strict binary (true/false) values. This model allows for the 

representation of subjective concepts, enabling systems to make decisions in scenarios 

where traditional binary logic may prove insufficient. Notably, fuzzy logic exhibits the 

capability to identify and approximate any unknown dynamic system, such as 

electricity demand, with arbitrary precision within a compact set. Extensive research, 

as exemplified by Liu et al. [56], highlighted the substantial capacity of fuzzy logic 

systems to discern similarities from extensive datasets. Various techniques have been 

devised to model loads using fuzzy conditional statements. For instance, Hsu and Ho 

[64] introduced an expert system employing fuzzy set theory for electricity demand 

forecasting in the short term, incorporating an updating function. Evaluation of short-

term forecasts was conducted within the Taiwan power system. Subsequently, Liang 

and Hsu [65] devised a fuzzy linear programming model for electric generation 

scheduling, employing fuzzy set notation to address uncertainties in forecast and input 

data. Dash et al. [66] further enhanced the hybrid fuzzy-neural approach for load 

forecasting, yielding accurate predictions across weekdays, public holidays, and 

adjacent periods. However, one drawback of fuzzy logic is its complexity in designing 

and tuning fuzzy systems. Creating effective fuzzy logic systems often requires 

expertise in both the domain being modeled and the intricacies of fuzzy logic itself. 

Designing appropriate membership functions, defining fuzzy rules, and optimizing 

system parameters can be challenging and time-consuming tasks. Additionally, fuzzy 

logic systems may struggle to handle highly nonlinear or dynamic systems effectively. 

While they excel at modeling and reasoning with imprecise or uncertain information, 

they may not always accurately capture the complexity of certain real-world 

phenomena. 
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Unlike fuzzy logic, which requires expertise for the manual definition of fuzzy 

sets, rules, and inference mechanisms, genetic algorithms (GA) do not rely on explicit 

rules. Instead, it evolves solutions based on their fitness in solving the problem, making 

it more adaptable to a wider range of optimization problems without the need for 

domain-specific knowledge. GA belongs to the category of evolutionary algorithms, 

which are inspired by the principles of natural selection and genetics. It operates by 

iteratively evolving a population of candidate solutions through selection, reproduction, 

mutation, and crossover processes. Its capability to efficiently search large solution 

spaces enables it to handle complex optimization and search problems by determining 

optimal or near-optimal solutions [67]. The application of GA to the load forecasting 

problem was first introduced by Yang et al. [68]. Subsequent enhancements to the GA 

algorithm were proposed by Yang and Huang [67], who introduced a fuzzy 

autoregressive moving average with an external variable (FARMAX) model for 

electricity demand forecasts. The model is developed as a combinatorial optimization 

problem and solved using a blend of heuristics and evolutionary programming. Ma et 

al. [69] employed a genetic algorithm featuring a recently devised mutation-like 

operator termed the forced mutation. Lee et al. [70] utilized genetic algorithms for 

electricity demand forecasting in the long term, experimenting with various functional 

forms and benchmarking outcomes with regression analysis. However, GA has 

disadvantages in terms of the interpretability of its solutions. GA often produces 

solutions in the form of parameter sets or configurations, posing challenges for 

interpretation, particularly in complex scenarios or when the solution space is high-

dimensional. 

While genetic algorithms are known for their efficacy in optimization and 

search tasks, neural networks (NN) or artificial neural networks (ANN) offer numerous 

advantages. These include enhanced interpretability, automatic feature extraction, 

adaptability to changes in data, and the ability to manage complex relationships, which 

can help overcome certain limitations associated with genetic algorithms. To mitigate 

the requirement for a specific functional form in forecasting models, neural networks 

can be used [71]. Multilayer perceptron networks and self-organizing networks are 

examples of neural networks. The network comprises multiple hidden layers, each 

containing numerous neurons. Within these layers, inputs are multiplied by weights and 
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then added to a threshold, resulting in the formation of an inner product number referred 

to as the net function [72]. One notable advantage of this approach is its ability to 

perform forecasting without necessitating a load model, as observed in many existing 

literature methods. However, it is important to acknowledge that the training process 

typically demands considerable time investment. In this context, the fully connected 

feed-forward neural networks are employed by Liu et al. [56]. The input and hidden 

units are connected to the output units using linear functions of the weights to obtain 

outcome of the network. Throughout the iterative training process, commonly referred 

to as epochs, the optimization of output weights is achieved through conventional 

backpropagation to refine hidden unit weights, and the conjugate gradient approach is 

utilized to optimize linear equations for output weights. 

Various studies have demonstrated the efficacy of artificial neural networks 

(ANN) in load forecasting. ANN is employed for the energy control center, focusing 

on accurately modeling special situations, for example, holidays, heat waves, and cold 

snaps that disrupt the normal demand trend [73]. The three-layered feedforward 

adaptive neural networks are developed to multilayer configurations by Ho et al. [72], 

while Dillon et al.  [74] presented a multilayer feedforward neural networks with a 

learning algorithm for adaptive training. An ANN based on backpropagation for 

forecasting, demonstrating its capability over traditional methods, is utilized by 

Srinivasan and Lee [75]. A set of ANNs is integrated into a supervisory expert system 

to create expert networks, evaluating their effectiveness in short-term load forecasting 

using actual load data and backpropagation by Asar and McDonald [76]. Additionally, 

Dash et al. [66] combined fuzzy logic with neural networks for load forecasting. Chen 

et al. [77] utilized a supervisory functional ANN technique to forecast electricity 

demand for substations in Taiwan, correlating load with temperature and customer type. 

Al-Fuhaid et al. [78] included temperature and humidity impacts in an ANN model for 

short-term load forecasting in Kuwait. Recurrent neural networks to model short-term 

load forecasting for the South African utility, utilizing the nonlinear dynamic nature of 

neural networks to represent load influenced by weather, time, and environmental 

variables, is proposed by Vermaak and Botha [79]. Furthermore, Sheikh and Unde [80] 

conducted short-term electricity demand forecasting for their campus in Ahmadnagar 

using ANN, providing hourly predictions to anticipate future demand. 
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Temporal dependencies are common in time series data, leading to the 

development of recurrent neural networks (RNN) to address such dependencies through 

feedback connections, enabling the recall of prior time step values [81]. RNN is a type 

of artificial neural network designed to handle sequential or time-series data by 

incorporating memory mechanisms. Unlike feed-forward neural networks, which 

process data linearly from input to output, RNN features connections with directed 

cycles, enabling them to exhibit temporal dynamic behavior [82]. RNN is alternatively 

referred to as dynamic artificial neural networks due to their interconnected networks, 

leading to multidirectional signal flow and information exchange [83]. The key feature 

of RNN is its ability to maintain a memory of previous inputs and use this information 

to influence the processing of subsequent inputs in the sequence. This memory is 

achieved through recurrent connections, where the output of a neuron at a particular 

time step is fed back as input to the same neuron at the next time step. The introduction 

of RNN to energy prediction has been shown to improve time series forecast accuracy, 

as demonstrated by Rahman et al. [84]. Furthermore, Ruiz et al. [85] have enhanced 

RNN forecasting performance by optimizing its weights using GN. Additionally, 

Egrioglu et al. [86] have presented a novel RNN model based on a multiplicative neuron 

model, which yielded superior accuracy compared to alternative prediction techniques. 

Although traditional RNN is effective, it faces challenges in capturing long-term 

dependencies and encountering issues like vanishing or exploding gradients during 

training [87]. The standard RNN fails to adequately address long-term dependencies. 

Therefore, one potential solution to the vanishing gradient problem is the use of RNN 

with long short-term memory (LSTM). 

The LSTM framework includes a memory array with hidden units [88], 

enhancing its ability to effectively model long-term dependencies. The model optimizes 

parameter usage by sharing memory among similar gates. It keeps values at gates when 

activated (set to 1) and clears them when deactivated (set to 0), following gate 

arbitration. This mechanism allows the network to capitalize on long-range temporal 

patterns [89]. To address vanishing gradient issues during both the forward and 

backward stages, steps are taken to mitigate the vanishing gradient, allowing the 

network to preserve its memory across successive time steps. Qing and Niu [90] 

employed an LSTM-based network algorithm to forecast electricity consumption and 
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conducted a comparative evaluation with the backpropagation neural networks and 

multilayer feed-forward neural networks. Their analysis revealed that the LSTM 

algorithm exhibited superior prediction accuracy compared to the competitive 

approaches. In efforts to enhance the traditional LSTM approach, Rahman et al. [84] 

and Mawson and Hughes [91] developed two deep recurrent neural networks by 

stacking LSTM layers on top of the model using an encoder-decoder framework for 

load prediction. Recently, Bashir et al. [92] devised a hybrid LSTM model for short-

term electricity load forecasting, demonstrating its efficacy in reducing errors with 

minimal computation time. 

In summary, the effectiveness of LSTM-based algorithms in predicting 

electricity load emphasizes their wider applicability in various fields. Their superior 

performance, surpassing traditional methods and advanced neural network 

architectures, underscores the importance of LSTM networks in addressing complex 

predictive tasks. As research in this field progresses, the integration of improvement 

techniques such as data decomposition and input variable selection are positioned to 

further enhance the predictive capabilities of the forecast model. These improvement 

techniques are crucial as they refine the model's capacity to discern meaningful patterns 

from data while mitigating the impact of noise, thereby yielding more precise 

predictions. 

 

2.2.2 Data Decomposition Techniques 

When exploring strategies for improvement, data decomposition stands out as a 

valuable technique for enhancing the accuracy of electricity demand forecasting. This 

method involves the application of decomposing time series data to separate linear and 

non-linear elements from the original dataset [93]. Traditional techniques for 

decomposing data, such as discrete wavelet transform (DWT) and empirical mode 

decomposition (EMD), are widely utilized across various academic fields. DWT 

functions by separating original data into low-pass components and high-pass 

components through dilation, achieved through a series of operations including dilation, 

scaling, and translation, to effectively cover the wavelet filter. However, DWT's 

effectiveness is constrained by drawbacks concerning discrimination efficacy, with its 
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performance relying upon expert decisions related to wavelet filter selection and 

decomposition levels [94].  

In response to DWT's constraints, EMD emerged as an alternative, offering the 

advantage of automatic data decomposition based on inherent data characteristics, 

thereby eliminating the need for expert intervention [95]. EMD decomposes original 

data into a set of intrinsic mode functions (IMFs) and a residue. EMD operates through 

a sifting process, wherein it identifies local extrema (maxima and minima) in the signal 

and constructs a local mean by interpolating between these extrema. Subsequently, the 

mean is subtracted from the signal, yielding an IMF. This process is iterated until 

certain convergence criteria are met, resulting in a series of IMFs that capture the 

signal's varying frequency components at different scales. After extracting all the IMFs, 

the residual term is obtained by subtracting the sum of these IMFs from the original 

signal. This residual term represents any remaining trend or behavior in the signal that 

is not captured by the IMFs [96]. Despite these advancements, EMD encounters 

challenges when the number of extrema is abnormal, leading to mode mixing. This 

problem occurs when a mode cannot be separated into a distinct IMF and instead 

becomes mixed with another IMF [97]. Researchers have developed various methods 

to mitigate mode mixing in EMD. One of the effective techniques is ensemble empirical 

mode decomposition (EEMD), involving introducing white noise to the original data to 

enhance the separation between frequency components. However, this additional white 

noise leads to an endpoint effect, causing distortion. Moreover, it amplifies noise levels 

and complicates the original data, thereby posing a new challenge of creating variability 

in the number of IMFs during each iteration of the decomposition, further complicating 

the analysis [98]. 

Variational mode decomposition (VMD) stands as an advancement over EEMD 

by effectively addressing issues such as mode mixing, endpoint effect, and variable 

numbers of IMFs [99]. Through its capabilities, VMD demonstrates both mathematical 

robustness and flexibility. Jiang et al. [100] employed fast Fourier transform (FFT) to 

adjust seasonal patterns, enhancing VMD capabilities. During specific periods, these 

patterns show predictable fluctuations in electricity consumption. Integration of such 

patterns into forecasting models enhances their capacity to capture underlying trends, 

thus facilitating more accurate predictions. Nonetheless, the determination of the 
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optimal decomposition level for VMD remains an ongoing research challenge. 

Determining an appropriate decomposition level for VMD becomes increasingly 

complex when confronted with intricate non-linear and non-stationary elements within 

the original dataset. With too low decomposition level, the coexistence of multiple time 

series data components within a single mode may present. Conversely, an excessively 

high decomposition level risks the presence of a single time series data component 

across multiple modes, thereby introducing potential mixing and ambiguity into the 

decomposition outcomes [101]. 

Several optimization techniques, including the grasshopper optimization 

algorithm (GOA) [102], genetic mutation particle swarm optimization (GMPSO) [103], 

and hybrid grey wolf optimizer (HGWO) [104], have been employed to enhance VMD 

and determine the most suitable decomposition level. However, these optimization 

techniques possess inherent drawbacks, encompassing the challenge of achieving 

global solutions and the intricate implementation of complex optimizers [105]. Dealing 

with complex problems requires numerous iterations to seek the optimum solution, 

leading to substantial processing time and resource consumption. To address these 

challenges, Aswanuwath et al. [106] propose a novel approach that utilizes the 

appropriate decomposition level acquired from EMD to direct the determination of the 

suitable decomposition level in VMD. By integrating VMD-based EMD, costs and time 

requirements for computing the model associated with finding optimized solutions are 

mitigated, while simultaneously ensuring a more efficient and precise decomposition 

process. 

 

2.2.3 Input Variable Selection Techniques 

 Input variables play a crucial role in forecasting model accuracy. Identifying the 

most valuable inputs is a critical decision in model development, especially when 

dealing with a large number of available input variables. In such cases, conducting an 

exhaustive search through all possible variable combinations becomes computationally 

impractical [107]. Nevertheless, the set of candidate input variables typically 

encompasses those that may either lack relevance or exhibit redundancy. Irrelevant 

inputs fail to contribute informative value, instead introducing extraneous noise and 
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unnecessary complexity into the model. Conversely, without providing supplementary 

predictive advantages, redundant inputs expand the model's dimensionality. Ignoring 

relevant input variables leads to inaccuracies within the predictive model. Therefore, 

relevant and non-redundant inputs need to be appropriately selected as they can 

significantly impact the model's reliability and simplicity, allowing it to generalize 

effectively to the underlying process. In contrast, a model lacking this selection may 

yield nonsensical outputs, perform slower, and prove more challenging to interpret 

[108]. 

 Within the area of machine learning, a variety of techniques are employed for 

the selection of input variables. These encompass search strategies such as input 

variable selection (IVS) algorithms [109], exhaustive searches based on predetermined 

optimality criteria [110], heuristic searches [111], [112], and stepwise selection [113]. 

Notably, stepwise regression stands out due to its systematic approach and its ability to 

verify and explain relationships between response and predictor variables. In recent 

times, the Similar Days Selection (SD) method has been utilized for load forecasting. 

This method aims to enhance model training by incorporating historical inputs that 

share the same characteristics as those of the target forecast date [114], [115]. SD 

achieves this by identifying similar days through an analysis of evaluating the 

resemblance between the target forecast date and historical days [116]. In cases where 

external factors including weather conditions are either absent or unavailable on the 

forecast date, the SD method is still effective by utilizing historical data from days with 

accessible information to perform accurate predictions. Moreover, the method 

simplifies data complexity by focusing only on related historical data inputs, thereby 

resulting in an enhanced forecasting process. 

 Many methods can be used to enhance the effectiveness of SD. These methods 

encompass the incorporation of timing information and external factors as input 

variables, along with the utilization of enhancement techniques such as index-mapping 

databases [117], a combination of extreme gradient boosting and k-means clustering 

[118], and reinforcement learning algorithms [119]. Nevertheless, prior studies 

implementing SD have overlooked the importance of special days and omitted them 

from the forecasting model. Additionally, numerous studies utilize weather-related 

variables, including wind speed and precipitation, for identifying similar days. Given 
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that the specific weather conditions are not predetermined, the prediction of these 

variables becomes necessary. An increased error in the forecasting model due to the use 

of forecasted data as input variables was presented in Senjyu et al.’s work [120]. The 

existing work highlighted the research gaps relating to the criteria for input variable 

selection and the practical application of selecting input variables in disrupted 

situations. 
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CHAPTER 3 

Methodology of the Proposed Models 

 

 

 
3.1 Overall Procedure of the Proposed Models 

During periods of disruption, the electricity demand pattern experiences 

fluctuations and significant alterations, primarily due to various external factors such 

as governmental policies and regulatory adjustments. These policies can substantially 

influence people's daily routines, resulting in changes in energy usage trends and access 

to critical services. Consequently, the forecasting model needs to possess adaptability 

and flexibility to promptly adjust the sudden shifts in consumption induced by 

disruptive occurrences and policy modifications. To ensure the model's adaptability in 

managing these fluctuations, it must be trained using diverse datasets that encompass 

various time frames. The short-term dataset includes the latest data, allowing the model 

to accurately reflect the ongoing disruptions. Meanwhile, the medium-term dataset, 

which includes data spanning an intermediate period, offers insights into transitional 

patterns between disrupted and normal phases. Furthermore, the long-term input dataset 

comprises historical data, enabling the model to learn patterns during normal phases.  

The proposed framework is primarily designed with a focus on the impact of 

government intervention policy, see Figure 1. As the changes in consumption behavior 

resulting from government intervention policy present an unusual pattern 

unprecedented in the past, it is imperative to approach this period distinctively from a 

disrupted situation lacking government intervention. To ensure the forecasting model 

can adapt to these changes, a short-term input dataset containing data close to the target 

forecasting date is used to train LSTM, known for its ability to effectively capture and 

learn from sequential relationships. However, in cases where the target period remains 

unaffected by governmental policies, electricity demand reflects a blend of disrupted 
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and normal patterns. To handle these blended patterns, the ANN is trained using input 

from medium-term and long-term datasets. In order to identify the hidden seasonality 

and trends present in disrupted situations over the intermediate period, VMD-EMD-

FFT is utilized to decompose the data and identify these patterns. Furthermore, an SD 

with a day type criterion is utilized to identify dates within the normal phase that closely 

resemble the target forecasting date during the disrupted phase. This method identifies 

a date within the long-term period that closely matches the target forecasting date, 

prioritizing similarities in day types. To minimize computational effort required for 

forecasting, stepwise regression and SD techniques are used to select significant input 

variables from the medium-term and long-term datasets. 

To improve the forecasting model's adaptability to disruptions, the approach 

incorporates one-day-ahead forecasting. This strategy ensures the model is regularly 

updated with recent data, enhancing its ability to adjust to changing conditions and 

improve accuracy during disruptive situations. The short-term input set and processed 

dataset, after filtering input variables and preprocessing data, are divided into training, 

validation, and testing sets, incorporating overlapping data points known as a rolling 

dataset. This method strengthens the model's ability to handle dynamic scenarios 

effectively. Grid search optimization is employed using the training and validation sets 

to fine-tune hyperparameters for both ANN and LSTM. Subsequently, the best-

performing model identified through hyperparameter optimization is used on the testing 

set to evaluate its performance and assess the final effectiveness of the forecast model. 

Detailed explanations of the proposed methodologies are provided in Section 3.2. 
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Figure 1 Overall procedure of the proposed models. 
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3.2 Input Variable Filtering 

Input variables need to be properly selected to address practical challenges when 

using neural networks [121]. The choices made in input selection are imperative for 

effective forecasting model development. Within the set of candidate variables, there 

exists the possibility of including irrelevant or redundant elements. Irrelevant inputs 

introduce extraneous noise and complexity into the model. However, redundant 

elements inflate the model size and do not improve predictive accuracy. Conversely, 

overlooking relevant inputs can result in inaccuracies in forecasting outcomes [108]. 

Filtering input variables provides a better understanding of the generation of underlying 

data, improves model performance, and decreases processing time [122]. 

This section outlines two methods of input variable filtering: stepwise 

regression and SD. Starting from SD, it is utilized to identify similar dates using the 

day type criterion. Conversely, the stepwise regression method is applied to select 

importance input variables from candidate variables associated with date and electricity 

consumption. 

 

3.2.1 Input Variable Definition 

For stepwise regression methodology, the input variables are based on 

categories, including date-related and electricity demand-related variables. These input 

variables are generated to use as candidates for selection during the stepwise regression 

process. Date-related inputs contain binary index variables indicating each day of the 

week (Monday - Sunday) as well as binary index variables indicating special holidays. 

On the other hand, historical electricity demand-related inputs consist of variables 

reflecting lagged values ranging from one day y
t-1

to seven days yt−7, lagged daily 

electricity demand to moving average weekly and monthly index variables (LMAt(N)), 

and moving average index variables with lagged periods P (MA(P)) spanning from 

MA(2) to MA(7). LMAt(N) is utilized for the identification and quantification of 

repeated patterns occurring at fixed intervals within a time series, while MA(P) is used 

to describe underlying trends and mitigate the short-term fluctuations effects or noise 
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presented in the dataset. The mathematical equations to compute LMAt(N) and MA(P) 

are provided below:  

 

LMAt(N) =  
y

t

( ∑ y
t

N
t=1 )

N
⁄

 
(1) 

MA(P)  =  
∑ y

t-p
P
p=1

P
 (2) 

 

In the given equation, LMAt(N) denotes lagged daily electricity demand to moving 

average index, with y
t
 representing the daily electricity demand at period t. The 

parameter N indicates the length of the day used for computing LMAt, while p presents 

the number of lagged periods, and P denotes the duration in days used to compute 

MA(P). The values of LMA are calculated both weekly and monthly. To calculate 

these, L is assigned to 7 days for weekly calculations and 30 days for monthly 

calculations. For the calculation of MA(2) through MA(7), P is set from 2 days to 7 

days. 

3.2.2 Stepwise Regression 

Regression analysis serves as a technique used to investigate the relationships 

between variables, often applied to examine the causal impact between them [123]. 

Widespread among statistical techniques, multiple regression analysis stands out as the 

commonly utilized technique to investigate the relationship between a single dependent 

variable and multiple independent variables [124]. Its primary goal is to understand 

how changes in the independent variables are associated with changes in the dependent 

variable. A high correlation score signifies a robust linear relationship between the 

explanatory variables and the response variable, while a poor correlation suggests a 

weak relationship. Mathematically, it is represented as: 

 

y = β
0
+β

1
x1+β

2
x2+…+β

p
xp+ε, (3) 
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In the given equation, y stands for the response variable of the dependent variable, 

xi (i =  1,2, … , p) denotes the independent variables, β
0
 denotes the intercept or the 

value of  y when there is no influence from the independent variables, β
i
 (i = 1,2,…, p) 

denotes the estimated regression coefficients that represent the relationship between 

each independent variable and the dependent variable, ε denotes the error term between 

the observed and predicted values, and P denotes the total number of independent 

variables. 

 Stepwise regression is a method commonly employed to enhance the precision 

and effectiveness of regression models [125]. Its primary goal lies in the selection of 

significant independent variables from a large pool of potential variables, focusing 

solely on the variables with an independent influence on the dependent variable [126]. 

Stepwise regression encompasses three distinct approaches for model selection, 

including forward, backward, and bidirectional selections [127]. Forward selection 

systematically adds variables to an empty model until further additions yield no 

substantial improvements. Conversely, backward selection initially has all candidate 

input variables in a full model and then gradually eliminates the lowest potential 

variables to enhance the model, until no further removals significantly improve its 

performance. Bidirectional elimination combines elements of the previous two 

selections. It is commonly applied to models with existing correlations among 

variables. 

 This study used the bidirectional elimination approach with α-to-enter and α-to-

remove criteria, both having value of 0.1. Furthermore, to ensure an adequate amount 

of input data, a 24-month period preceding the target forecasting date is utilized to 

ensure a sufficient number of data points for fitting the regression model. 

 

3.2.3 Similar Day Selection for the Disrupted Situation 

Similar day selection (SD) is a method used in data analysis and forecasting to 

identify historical dates that closely resemble a target forecasting date based on certain 

criteria. This technique involves searching through historical data to find past dates with 

similar characteristics or patterns to the target forecasting date. In this process, the 

historical data is identified whether it is similar to the target forecasting date using a 
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selection criterion [119]. However, during the disrupted situation, electricity demand 

experienced notable fluctuations and shifts in patterns. This situation affects the 

traditional similar day selection method, which depends on historical data, making the 

method incapable of identifying similar dates. Consequently, the day type is much more 

significant than the historical demand pattern. To enhance the effectiveness of the 

traditional similar day selection method and identification of the similar day across 

long-term periods, this study utilizes binary index variables representing day types 

(such as day of the week and special holidays) as the defining criterion for a similar day 

selection. 

The varying electricity demand patterns observed on normal weekdays, 

weekends, and special holidays present a challenge in forecasting, particularly with 

special holidays. Electricity demand can be influenced by each special holiday [128].  

Due to its extreme demand patterns, it poses a significant challenge, often leading to 

substantial forecasting errors. Additionally, the use of two distinct calendar systems 

introduces another complexity in electricity forecasting. Special holidays, in the solar 

calendar, are fixed dates, and the length of the solar year remains relatively stable. 

Conversely, the lunar calendar, being based on the phases of the moon, results in 

variable special holiday dates. To address this issue, this research proposed a procedure 

for SD, see Table 2. 

The proposed SD starts from verifying types of the target forecasting date such 

as a normal day or a special holiday. In the event that the target forecasting date falls 

on a normal day (referred to as case 1 and case 2), the closest date in the preceding year, 

having a similar day of the week (Monday - Sunday) as the target forecasting date, will 

be selected as a similar day. If not, move forward to the next step. 

The second step of the process examines special holidays, categorized into two 

groups: public holidays and bridge holidays. A bridge holiday refers to a weekday 

designated as a holiday due to two reasons. The first reason is to be a replacement day 

for a public holiday that happens to be on the weekend. The second reason is to connect 

between the special holiday and the weekend. If the special holiday in the previous year 

shares the same day type as the target forecasting date (weekday or weekend), referred 

to as either case 3 or 4, the same special holiday in the preceding year will be chosen 

as a similar day. Alternatively, proceed to the third step. 
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The third step addresses the situations where the target forecasting date is a 

special holiday. However, it has a dissimilar day type (weekday or weekend) compared 

to a similar special holiday in the preceding year. In case the target forecasting date is 

a special holiday occurring on the weekend, a similar day will be selected from a similar 

special holiday in the previous year if the special holiday in the preceding year falls on 

a weekday (referred to as case 5). Conversely, in case the target forecasting date is a 

special holiday occurring on a weekday, a similar day will be selected from the 

substitute holiday if the special holiday in the preceding year falls on the weekend 

(referred to as case 6). 

 

Table 2 Procedure for similar day selection during disrupted situations. 

Case 

Target Forecasting Date 

Type of the Same 

Special Holiday in the 

Previous Year Similar Day Selection 

Normal 

Day 

Special 

Holiday 
Weekday Weekend Weekday Weekend 

1 x  x  

N/A N/A 

Pick a similar day from the 

closest date in the previous year 

that has the same day of the week 

(Monday–Sunday) as the target 

forecasting date 

2 x   x 

3  x x  x  Pick a similar day from the same 

special holiday in the previous 

year 

4  x  x  x 

5  x  x x  

6  x x   x 

Pick a similar day from the 

substitute holiday of the special 

holiday in the previous year 
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3.2.4 Example of the Procedure for Similar Day Selection in 

Disrupted Situation 

The dates in the year 2020 are used as the target forecasting dates in this 

example, while the potential candidate dates include all days from the preceding year, 

2019. Two examples are used to demonstrate the proposed SD in disrupted situation, 

aligned with the cases outlined in Table 2. 

The initial example demonstrates the process of selecting a similar date when 

the target forecasting date falls on normal weekdays or weekends (cases 1 and 2 in 

Table 2). In these cases, a similar date is chosen from the nearest date in the preceding 

year, sharing a similar day of the week (Monday - Sunday) as the target forecasting 

date, as detailed in Table 3. For example, if the target forecasting date is Wednesday, 

1st April 2020, the similar date selected from the proposed SD would be Wednesday, 

3rd April 2019, as it is the nearest date sharing the same day type (Wednesday). 

 

Table 3 Example of selecting a similar date for Cases 1 and 2: target forecasting date 

falls on either a normal weekday or weekend. 

Target Forecasting Date Selected Date 

1 April 2020 

(Wednesday) 

3 April 2019 

(Wednesday) 

2 April 2020 

(Thursday) 

4 April 2019 

(Thursday) 

3 April 2020 

(Friday) 

5 April 2019 

(Friday) 

4 April 2020 

(Saturday) 

6 April 2019 

(Saturday) 

 

In the second example, the illustration considers the case when the target 

forecasting date falls on a special holiday. Four scenarios (I–IV) aligning with cases 3 

to 6 in Table 2, are presented in Table 4. 

Scenario I, demonstrating cases 3 and 4, arises when the same day type 

(weekday or weekend) is found on both the target date and a similar special holiday in 

the preceding year. In this scenario, a similar day is chosen from a similar special 

holiday in the preceding year. For instance, if the target forecasting date is Mother’s 

Day, occurring on Wednesday, 12th August 2020, a similar day is chosen from the 
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Mother’s Day of the preceding year (Monday, 12th August 2019) as both fall on 

weekdays. In the same way, in case the target forecasting date is Bridge (Substitute) 

Asahna Bucha Day, occurring on Tuesday, 7th July 2020, a similar day is chosen from 

the previous year's Asahna Bucha Day (Tuesday, 16th July 2019), as Bridge Asahna 

Bucha Day is a special holiday designated because of Asahna Bucha Day falling on 

Sunday, 5th July 2020. 

Scenario II, representing case 5, arises when the day type (weekday or weekend) 

of the target forecasting date as a special holiday falls on weekend and a similar special 

holiday in the preceding year falls on weekday. In this scenario, a similar day is chosen 

from a similar special holiday in the preceding year. For instance, considering the target 

forecasting date being Asahna Bucha Day, occurring on Sunday, 5th July 2020, a similar 

day is directly chosen from Asahna Bucha Day in the preceding year (Tuesday, 16th 

July 2019), as both of them represent special holidays without regular business 

activities. 

Scenario III, describing case 6, arises when the day type (weekday or weekend) 

of the target forecasting date as a special holiday falls on weekday and a similar special 

holiday in the preceding year falls on weekend. In this scenario, a similar day is chosen 

from the substitute holiday of the special holiday in the preceding year. For instance, 

considering the target forecasting date is King’s Birthday, occurring on Tuesday, 28th 

July 2020, the actual King’s Birthday in the preceding year, falling on the weekend 

(Sunday, 28th July 2019), cannot be chosen as a similar day due to its weekend nature, 

which does not reflect the characteristics of the special holiday. Consequently, a similar 

day is chosen from the bridge holiday in the prior year, represented as the Bridge King’s 

Birthday (Monday, 29th July 2019). 
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Table 4 Example of selecting a similar date for Cases 3-6: target forecasting date is a 

special holiday. 

Target Forecasting Date Selected Date 

I. Target forecasting date and the same special holiday in the previous year have the same day type. 

Mother’s Day 

12 August 2020 

(Wednesday) 

Mother’s Day 

12 August 2019 

(Monday) 

Substitute Asahna Bucha Day 

7 July 2020 

(Tuesday) 

Asahna Bucha Day 

16 July 2019 

(Tuesday) 

II. Target forecasting date is a weekend, but the same special holiday in the previous year is a 

weekday. 

Asahna Bucha Day 

5 July 2020 

(Sunday) 

Asahna Bucha Day 

16 July 2019 

(Tuesday) 

III. Target forecasting date is a weekday, but the same special holiday in the previous year is a 

weekend. 

King’s Birthday 

28 July 2020 

(Tuesday) 

Substitute King’s Birthday 

29 July 2019 

(Monday) 

 

 

3.3 Data Preprocessing 

During the early stage, the raw electricity consumption is influenced by noise 

elements, thereby posing a substantial effect on forecasting accuracy due to inherent 

volatility and randomness [100]. In disrupted situations, the unprecedented and 

unpredictable impacts of the pandemic have introduced additional noise into electricity 

demand data, consequently increasing the presence of uncontrolled noise components. 

This occurrence complicates the identification of seasonality and trends, thereby posing 

challenges in identifying underlying patterns within the data and reducing forecast 

accuracy. To effectively separate the underlying patterns, actual demand changes, 

noise, and random fluctuations, methods like data decomposition and seasonality 

identification are used on the medium-term input dataset during the disrupted stage to 

improve the forecasting model's capacity. The first step involves the use of a data 

decomposition technique. Specifically, the application of the variational mode 
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decomposition (VMD) technique effectively smooths the time series data by separating 

non-linear and non-stationary components. However, a limitation of VMD is its lack of 

an automated capability to adjust the decomposition level. By benefiting from the 

automatic adjustment capability, empirical mode decomposition (EMD) is employed to 

adjust  VMD's decomposition level, thereby overcoming this drawback. In the second 

step, after eliminating noise using VMD, the fast Fourier transform (FFT) is utilized to 

detect and capture the remaining inherent seasonality and trends in the data. 

Subsequently, the seasonality and trend results are achieved, as illustrated in Figure 2. 

 

 

Figure 2 Flowchart of data decomposition and seasonality identification process. 

 

3.3.1 Data Decomposition 

Variational Mode Decomposition (VMD) is a signal processing technique that 

effectively separates non-linear and non-stationary components from the original data, 

making it useful for analyzing complex time series data. VMD helps the forecasting 

model to more easily identify underlying patterns and trends by breaking down time 

series data into a set of intrinsic mode functions (IMFs) and a residual. Each IMF 

represents a distinct component of the time series characterized by a specific frequency 

and magnitude, often referred to as a trend in the data. The residual, on the other hand, 

represents the remaining portion of the signal after extracting the IMFs. By 
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decomposing the time series into IMFs, the model can better understand the various 

factors influencing the data and improve the accuracy of forecasting models. Recently, 

VMD has been presented as an alternative to Empirical Mode Decomposition (EMD), 

particularly for separating components with similar frequencies in cases where EMD 

struggles [129]. In contrast to the EMD technique, VMD offers a significant advantage 

by addressing the mode mixing issue more effectively. Through the implementation of 

the alternating direction method of multipliers, VMD enhances the separation of 

oscillatory modes, ensuring a clearer distinction between different components in time 

series data [130]. 

Determining the suitable decomposition for VMD poses a considerable 

challenge in the research field. Finding the right balance is crucial, as using too many 

decomposition levels can result in mode aliasing problems and introduce unnecessary 

noise into the analysis. Conversely, utilizing too few IMFs may lead to an incomplete 

representation of the underlying complexity of the original data [131]. Mode aliasing 

occurs when the decomposition process fails to accurately separate distinct components 

of the data, resulting in overlapping or misidentified modes. This can introduce 

distortions into the decomposed data, reducing the effectiveness of subsequent analysis. 

On the other hand, if there are too few IMFs generated during decomposition, important 

features or components of the signal may be overlooked or poorly represented. This can 

lead to a loss of information and accuracy in the analysis or interpretation of the data. 

To circumvent the trial-and-error process and minimize the time consumed in 

optimization, automation becomes imperative. Considering EMD's capability of 

automatically adjusting decomposition levels, it can play a guiding role in determining 

the suitable decomposition level for VMD [106]. 

 

3.3.2 Seasonality and Trend Identification 

The fast Fourier transform (FFT) plays a crucial role in time series forecasting 

by transforming time-domain data into the frequency domain. This conversion enables 

the identification of specific individual frequencies and prominent frequency 

components within the data [132]. This transformation allows analysts to identify 

periodic patterns and dominant frequencies within the data, which are essential for 
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understanding underlying trends and seasonal components. FFT aids in extracting 

meaningful information for forecasting future trends and patterns. Additionally, it 

simplifies the identification of hidden seasonality in time series data, enhancing the 

accuracy of forecasting models by capturing and incorporating these underlying 

seasonal patterns. This proves its effectiveness in dealing with hidden seasonal patterns 

exhibited in time series data [106]. 

During the disrupted situation, electricity demand patterns undergo substantial 

changes influenced by shifts in societal behaviors, economic activities, and government 

interventions. To enhance forecasting performance in this situation, it proves 

advantageous to incorporate insights gleaned from FFT analysis into the forecasting 

model. Instead of applying the original data, training the model with the transformed 

data that highlights seasonality and trends enables it to better capture underlying 

patterns. 

The hidden seasonal patterns and trends of electricity consumption during 

periods of disruption in this study are identified using FFT. The decomposition results 

are then applied to train the forecasting model, offering supplementary data that reflect 

the pattern of medium-term demand. 

 

 

3.4 Data Separation 

In the traditional approach, a dataset used in machine learning is typically split 

into three parts: training, validation, and testing sets [133], [134]. During the training 

phase, it is common for errors to decrease on both the training and validation sets, 

demonstrating that the performance of the model is improving. However, cautious 

consideration must be given to overfitting, where the model becomes overly specialized 

to the training set, potentially limiting its ability to generalize to new data. An increase 

in validation set error typically indicates overfitting even as the training set error 

decreases, highlighting the importance of the validation set in detecting this issue. To 

enhance performance, training parameters such as weights and biases are fine-tuned 

through different hyperparameter configurations until achieving the lowest validation 

set error. This iterative process ensures that the model not only fits the training data 
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well but also prepares it to generalize effectively to unforeseen data represented in the 

validation set, thereby validating its robustness. 

The testing set is used to assess the trained and validated model. Importantly, 

its error is not included in the training process, ensuring an unbiased assessment of how 

well the model performs on unforeseen data. The test set error is crucial for comparing 

the performance of different models, enabling researchers to decide which model 

performs best on the task at hand [135]. 

The limited availability of data during disrupted situations significantly impacts 

the performance of electricity demand forecasting models, as traditional forecasting 

methods heavily rely on historical data to identify patterns and trends, enabling models 

to make accurate predictions. In this situation, an overly large proportion of training 

and validation data can make the model unsuitable for practical applications. 

This study addresses this issue by utilizing a training set containing variables 

derived from daily electricity consumption records spanning the 31-day period prior to 

the target forecasting date. During disrupted phases, given the dynamic shifts in 

electricity demand patterns due to emergency measures and government intervention 

policies, the training set enables the forecasting model to adapt by capturing the patterns 

of current demand observed in existing data. A separated dataset from the 7 days prior 

to the target forecasting date is used as a validation dataset to examine the efficacy of 

the forecasting model. The forecasting performance can be affected by the historical 

days having a similar day type as the target forecasting date. Therefore, this validation 

dataset allows the assessment of the model’s generalizability. Thus, the accuracy and 

reliability of the model can be improved. 
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3.5 Prediction and Optimization 

3.5.1 One-Day-Ahead Forecasting with Rolling Dataset 

Disrupted situations, such as crises or unforeseen events, introduce 

unpredictability into electricity consumption patterns, driven by shifts in consumer 

behavior and supply chain disruptions. These dynamics lead to continuous changes in 

demand, requiring adaptive responses from the forecasting model. To accommodate 

these changes, each target forecasting date utilizes a one-day-ahead forecasting 

technique [47], see Figure 3. The forecasted target dates for t, t+1, and t+2 are 

respectively denoted by blue, green, and yellow boxes. The historical data range used 

for training for each forecasted date, encompassing data up to the current or most recent 

dataset available, is demonstrated in each dotted box. 

During periods of disruption where data is limited, conventional techniques for 

splitting datasets may decrease the amount of data available for training. To address 

this challenge, the utilization of walk-forward testing [134] is employed to maximize 

the efficient use of data. This technique continuously updates and evaluates models as 

new data becomes available. It includes dividing the dataset into training, validation, 

and testing sets that overlap, moving them sequentially along the time series, as shown 

in Figure 4. This technique provides more accurate performance assessment and early 

detection of model degradation, while effectively adapting to shifting patterns and 

trends, ensuring adept adaptation. 

 

 

Figure 3 One-day-ahead forecasting technique. 
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Figure 4 Walk-forward testing technique for the rolling dataset. 

 

3.5.2 Artificial Neural Network 

The artificial neural network (ANN) represents a widely recognized 

computational model that mimics the complex structure and functioning of the human 

brain [136]. ANN consists of interconnected nodes, known as neurons, which are 

organized into layers. Through a network of weighted connections, ANN interprets data 

by learning from input data and subsequently making predictions.   

One of the primary strengths of ANN is its capacity to autonomously learn 

complex patterns and uncover relationships from data without the need for explicit 

programming. Through a process known as training, ANN adjusts the weights of 

connections between neurons based on examples provided in a training dataset, 

gradually improving their performance over time. Moreover, ANN can identify the 

variables that hold considerable influence on the output, enabling them to prioritize the 

most relevant information while disregarding less influential data [137]. 

 Multi-layer feedforward neural network (MLFN) is one of the most popular 

structures in ANN. This network model comprises multiple layers, including an input 

layer that receives input variables (represented as xi), one or more hidden layers where 

weighted inputs (Wij) undergo transformation through non-linear transfer functions (fj
h
) 

and addition of bias (b), and an output layer that generates the final predictions. Each 

layer in the MLFN processes and refines information sequentially, with outputs from 
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one layer serving as inputs to the subsequent layer. A mathematical expression of the 

MLFN with a single hidden layer is presented in Equation (4). 

 

ŷ=  f
o (∑ Wjfj

h (∑ Wijxi

d

i=1

)

h

j=1

) + b, (4) 

 

In the given equation,  ŷ denotes the output from the output node, while f
o
 and fj

h
 

represent the transfer functions of the output node and hidden node j respectively. The 

variable h indicates the number of hidden nodes, and d signifies the number of input 

nodes. Each xi represents the input data of input node i, where b denotes the bias 

assigned to neurons.  Wij and Wj denote the adjusted weights sent from input node i to 

hidden node j, and from hidden node j to the output node respectively. 

 

3.5.3 Long Short-Term Memory 

Long short-term memory (LSTM) represents an advancement in the realm of 

recurrent neural network (RNN), particularly in the domain of time series forecasting. 

Developed by Hochreiter and Schmidhuber [87], LSTM addresses the drawbacks of 

RNN in capturing and maintaining long-term dependencies within sequential data. 

Building upon the RNN architecture, LSTM integrates essential components including 

input gates, output gates, and forgetting gates within its neuronal structure [138]. The 

memory cell stands as a core component of the model, functioning as a repository of 

network state information. The forget gate (ft) critically decides what information to 

discard from the cell state. The sigmoid function of the forget gate is represented in a 

mathematical equation as follows: 

 

ft = σ (Wf [ht-1,xt] + bf), (5) 

 

The input gate (it) serves the purpose of regulating and controlling the flow of 

information that enters the memory cell. It determines which new information from the 

current input and the output of the previous timestep should be stored in the cell state. 
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This is achieved through a sigmoid activation function. Following  this decision 

process, the cell state (ct) undergoes an update using a new candidate value vector (c̃t). 

This update involves two key steps: first, the old cell state (ct−1) is multiplied by the 

forget gate output (ft), which controls the amount of old information retained or 

discarded. This step effectively filters out irrelevant or outdated information from the 

previous cell state. Second, the input gate output (it) is multiplied by the candidate value 

(c̃t) produced by the tanh activation function. This multiplication determines how much 

of the new candidate values should be added to the cell state. The mathematical 

expressions for the input gate and the cell state are provided below: 

  

it = σ (Wi [ht-1,xt] + bi), (6) 

c̃t = tanh (Wc [ht−1,xt] + bc), (7) 

ct = ftct-1 + itc̃t, (8) 

 

The output gate determines its output by evaluating the cell state. It filters the 

cell state using a sigmoid layer to extract relevant information. This process involves 

multiplying the cell state by the output value (ot). The output gate's function is to 

regulate how much of the cell state should be exposed to the next layer or used as the 

final output of the LSTM network. The mathematical expressions for these output 

processes are outlined below: 

  

ot = σ (Wo [ht−1,xt] + bo), (9) 

ht = ot tanh(ct), (10) 

 

In the given equation, xt represents the input at time t, while ht signifies the model's 

output. The weight matrices, Wt, Wf, Wc, Wo are formally defined, along with bias 

parameters bt, bf, bc, bo  expressed as vectors representing biases. 

In disrupted situations where accurate forecasting of electricity demand 

becomes critical for maintaining the stability and resilience of power systems, LSTM 

is highly beneficial in this context due to its robustness, adaptability, and ability to 
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capture long-term dependencies. LSTM excels in handling irregular demand patterns 

that often arise during disruptions, ensuring accurate forecasts despite fluctuating 

conditions. Moreover, LSTM's adaptability allows it to quickly adjust to abrupt changes 

in conditions, providing timely and responsive forecasts. Additionally, LSTM's 

capability to handle missing data enhances reliability in situations where data may be 

limited. Furthermore, by integrating LSTM into ensemble forecasting frameworks, 

which combine multiple models for improved accuracy, utilities and policymakers can 

better anticipate and mitigate the impacts of disruptions on power systems. 

 

3.5.4 Grid Search Optimization 

Grid search optimization (GS) technique is applied in machine learning for 

systematically searching through a predefined set of hyperparameters for a given 

model. Hyperparameters are parameters that are not learned directly from the data but 

instead are set prior to the learning process and influence the behavior of the learning 

algorithm.  The combination of hyperparameters that yields the best performance on 

the validation set is selected as the optimal set. 

GS systematically tests all candidate hyperparameter combinations within 

defined grids to identify the set that yields the best validation performance. This 

method involves an exhaustive search over the specified hyperparameter space, 

evaluating each possible combination to determine which configuration offers the 

highest performance. When an improvement is observed, GS refines its search by 

conducting finer grid searches within the promising region, ensuring a more precise 

optimization. By thoroughly exploring different combinations, GS determines the 

most effective hyperparameter settings for a given task, thereby enhancing the model's 

performance and robustness [139]. 

Given its clear and direct approach, this study adopts GS as the preferred 

hyperparameter optimization technique for fine-tuning the parameters of both ANN 

and LSTM models. 
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3.6 Performance Measurement 

Mean absolute error (MAE), Mean absolute percentage error (MAPE), and Root 

mean square error (RMSE) are widely utilized performance metrics in the assessment 

of predictive models, particularly in the field of machine learning and forecasting. In 

this study, these three measurements are utilized to estimate and compare the 

effectiveness of the proposed models.  

MAE is a straightforward measure used extensively in evaluating predictive 

models, calculating the average absolute difference between predicted and observed 

values. It focuses solely on error magnitude, which is useful in scenarios where all 

errors, whether overpredictions or underpredictions, are equally important. The 

mathematical expression is presented as: 

 

MAE = 
1

n
∑ |y

i
-ŷ

i
|n

i=1 , (11) 

 

MAPE, on the other hand, expresses a percentage measure of the absolute errors 

between predicted and observed values, making it valuable for assessing prediction 

accuracy across different scales of data. Unlike MAE, which measures errors in the 

same units as the original data, MAPE normalizes these errors by the scale of the 

observed values, allowing for direct comparison across datasets with varying 

magnitudes. MAPE is expressed mathematically as: 

 

MAPE = 
1

n
∑

|yi-ŷi
|

yi

n
i=1 ×100, (12) 

 

RMSE is a measure that assesses prediction accuracy by calculating the square 

root of the mean of squared differences between predicted and observed values. Unlike 

MAE and MAPE, RMSE assigns greater weight to larger errors, making it particularly 

sensitive to outliers in the dataset. RMSE is expressed mathematically as: 
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RMSE =√
1

n
∑ (y

i
-ŷ

i
)

2n
i=1 , (13) 

 

In the given equation, y
i
 denotes the actual value of electricity peak consumption 

observed during period i, while ŷ
i
 is the forecasted electricity peak consumption in 

period i. The parameter n denotes the total number of forecasting periods under 

consideration. 

  



47 

 

 

 

 

CHAPTER 4 

Case Study: Electricity Peak Demand in 

Thailand during COVID-19 Pandemic 

 

 

 
4.1 Data Collection and Explanation 

This study examines daily electricity peak consumption during the COVID-19 

crisis in Thailand. It serves as a case study to evaluate the effectiveness of the proposed 

models in managing situations of disruption. Raw input data of daily electricity peak 

consumption in megawatts (MW), covering  January 2018 to December 2020, including 

a one-year pre-pandemic period, is analyzed to assess the impact. Figure 5 displays the 

characteristics of daily electricity peak demand, illustrating fluctuations during the 

pandemic year (2020) that differ from pre-pandemic patterns (2018 and 2019). For 

instance, April 2020 experienced a decline in peak consumption compared to the prior 

pandemic year. Furthermore, typically, the highest demand for electricity consumption 

is at the end of April, attributed to the resumption of tasks after the Songkran holiday. 

Nevertheless, the electricity usage at the end of April of the pandemic year did not 

exhibit a significant increase. These changes stem from various pandemic-related 

factors such as policies to control COVID-19 cases.  

Figure 6 highlights correlations within the peak consumption data. Classical 

forecasting techniques, which rely on linear correlations, encounter limitations when 

confronted with complex, nonlinear relationships inherent in disrupted situations. 

Linear correlation assumes a constant rate of change over time, which may not 

accurately reflect the dynamic situations influenced by multifaceted factors, such as 

those encountered during the COVID-19 pandemic. In disrupted situations, where 

abrupt shifts and irregular patterns are common, linear models struggle to capture the 



48 

 

 

 

 

nonlinear relationships present in time series data. Consequently, the adoption of an 

advanced model becomes essential for effectively capturing these nonlinear 

relationships. 

To understand the COVID-19 pandemic impact, the information related to 

COVID-19 factors and the level of lockdown are utilized as part of the analysis. The 

level of lockdown is based on the policy to control the pandemic from the Thailand 

government and is categorized on a scale announced by this government, ranging from 

0 (without lockdown) to 6 (declaration of a state/national emergency). Table 5 provides 

an explanation and each lockdown stage timeline in Thailand. Data on six COVID-19 

factors, which are daily cases, deaths, recoveries, as well as the number of cumulative 

cures, vaccinations, and full vaccinations, are sourced from the Thai Ministry of Public 

Health. These factors and the level of lockdown were recorded on a daily basis from 

January to December 2020, as illustrated in Figure 7. Additionally, Table 6 provides a 

statistical summary of daily electricity peak demand alongside the six factors. 

 

 

Figure 5 Raw input data of daily electricity peak demand spanning from January 

2018 to December 2020. 
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Figure 6 Analysis of autocorrelation in electricity peak demand amid the COVID-19 

pandemic. 

 

Table 5 Explanation and comprehensive timeline of COVID-19 lockdown measures. 

Date Lockdown Stage Event 

18 March 2020 5 Declaration of lockdown 

3 April 2020 6 
Declaration of state/national emergency 

and announcement of a nationwide curfew 

3 May 2020 4 
Announcement of the loosened COVID-19 restrictions Phase 1 

(re-open market, convenient store, restaurant, and outdoor sport) 

17 May 2020 3 
Announcement of the loosened COVID-19 restrictions Phase 2 

(re-open shopping mall, gym, and reduce curfew period) 

1 June 2020 2 
Announcement of the loosened COVID-19 restrictions Phase 3 

(re-open more public spaces, and reduce curfew period) 

15 June 2020 1 

Announcement of the loosened COVID-19 restrictions Phase 4 

and Repeal of a nationwide curfew 

(re-open school, hotel, theater, and allow transportation across 

province) 

1 September 2020 0 End of lockdown 
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Figure 7 Aggregated dataset comprising six COVID-19 factors and lockdown 

severity levels. 

 

Table 6 Statistical summary of daily peak electricity demand and COVID-19 Factors. 

 

  

Dataset No. of Observation Max Min Average SD 

Electricity Peak Demand 366 28,636.70 17,451.90 25,481.35 1632.73 

Daily Infections 366 576 0 5 52.36 

Daily Deaths 366 5 0 0 0.62 

Daily Recoveries 366 244 0 3 26.93 

Current COVID-19 In-Patients 366 2583 0 108 421.00 

Cumulative Vaccinations 366 0 0 0 0 

Cumulative Full Vaccinations 366 0 0 0 0 
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4.2 Time Segmentation and Sensitivity Factors 

Identification 

The peak daily electricity demand for the years 2018 – 2020 is categorized, i.e.,  

short-term, medium-term, and long-term set. The short-term dataset comprises the 

latest data, 1-day prior to the target forecast date. For instance, if the target forecast date 

is 1st April 2020, the short-term set covers the 1-day period from 31st March 2020 to 1st 

April 2020, as shown in Figure 8. 

Meanwhile, the medium-term dataset encompasses data including 1-week and 

1-month data preceding the target forecast date. For instance, if the target forecast date 

is 1st April 2020, the medium-term set covers the 7-day period leading up from 25th 

March 2020 to 1st April 2020, and the preceding 31-day period from 1st March 2020 to 

1st April 2020, as shown in Figure 9. 

Conversely, the long-term dataset contains 1-year data and the 1-month data of 

the month before the target forecast date of the previous year. This 1-month buffer 

before the target forecast date in the prior year is implemented to cover the special 

holidays of the lunar calendar, which are determined by the phases of the moon. For 

example, in case the target forecast date is 1st April 2020, the long-term set spans a 365-

day period plus a 31-day period, starting from 1st April 2020 and extending back to 1st 

April 2019, in addition to 1st March 2019, as shown in Figure 10. 

In situations characterized by disruption, sensitivity factors are crucial for 

comprehensively understanding the dynamics of pandemics, particularly in relation to 

daily electricity demand patterns. These factors offer insight into the pandemic's impact 

on demand patterns, facilitating adaptation to changes in demand trends. In this study, 

sensitivity factors are determined according to their sensitivity levels. To train the 

forecasting model, only the sensitivity factors identified by governmental sources as 

impacting sensitivity levels are chosen. The sensitivity factors used in this study include 

the level of lockdown as well as six factors of COVID-19-related. 
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Figure 8 Time segmentation of the short-term set. 

 

 

Figure 9 Time segmentation of the medium-term set. 

 

 

Figure 10 Time segmentation of the long-term set. 
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4.3 Case 1: Interference with Government Policy 

Case 1 occurs when governmental intervention policies impact the targeted 

period. In this situation, the data separation theory outlined in Section 3.4 is used to 

divide the short-term input dataset into three sets: training, validation, and testing sets. 

Firstly, the training and validation sets are used to develop and enhance the LSTM 

model, sequentially. The model is developed using the training set to establish its 

foundational structure. Subsequently, the validation set is employed to fine-tune the 

model's hyperparameters systematically. This fine-tuning process involves the 

adjustment of parameters through grid search (GS) methodology, enabling the 

identification of an optimal hyperparameter set for enhancing the LSTM's predictive 

accuracy and performance.  

In this study, the GS optimization for LSTM is conducted using MATLAB 

R2022b software. The study considers hidden nodes, training cycles, and learning rates 

as an array of values. GS involves the adjustment of these hyperparameters. Within the 

defined range, the GS process trains the LSTM model with every possible combination 

of hyperparameter values, thereby forming a grid. Initially, the range for grid search 

optimization is set based on prior experience. If the best configuration of 

hyperparameters is found at either the minimum or maximum boundary of this range 

during the optimization process, adjustments are made by narrowing the minimum 

range or expanding the maximum range. If all the best hyperparameter values fall 

within their designated boundaries, it indicates that the range was appropriate. The 

defined range of LSTM hyperparameters used in this study is shown in Table 7. 

To effectively conduct one-day-ahead forecasting using a rolling dataset, it is 

essential to ensure that the predictive model adapts to the dynamic nature of the target 

forecasting date. The input data undergoes updates to capture the latest information 

relevant to the forecasting task when the target forecasting date transitions to a new 

value. This process ensures that the model incorporates the most recent data, enhancing 

its predictive accuracy. Additionally, a new round of GS optimization is conducted to 

fine-tune the model parameters considering the updated dataset. Consequently, the 

hyperparameter is optimized on a daily basis. Following a comprehensive exploration 

of all hyperparameter combinations, the optimal LSTM model is selected based on its 
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ability to generate accurate forecasts. Subsequently, the performance of the optimal 

model is evaluated using the test set, providing insights into its predictive capabilities. 

 

Table 7 Range of LSTM hyperparameters used in grid search optimization. 

Hyperparameter Definition GS Range 

Hidden node 
The number of hidden nodes on a single hidden 

layer 
1, 5, 10 

Learning rate 
The magnitude of adjustments to weights and 

biases during training 
0.1, 0.01, 0.001 

Training cycle 
The number of iterations used to update 

weights and biases 
500, 1000, 1500 

 

 

4.4 Case 2: Noninterference with Government Policy 

In situations where the targeted period is not affected by governmental 

intervention policies, medium-term and long-term input sets are utilized to represent a 

state where electricity consumption reflects a blend of disrupted and normal patterns. 

Input variable filtering techniques, such as stepwise regression and SD, are employed 

to screen the input variables of medium-term and long-term input sets. Data 

decomposition techniques, such as VMD-EMV and FFT, are utilized to decompose and 

identify seasonality and trends hidden within the medium-term period. Subsequently, 

the data separation theory is applied to divide the processed dataset into training, 

validation, and testing sets, and perform one-day-ahead forecasting with a rolling 

dataset using ANN-based GS optimization. The details of the following processes are 

outlined in Sections 4.4.1- 4.4.3. 

 

4.4.1 Input Variable Filtering in the Context of COVID-19 Pandemic 

 The selection of significant input variables for the forecasting model is achieved 

through the utilization of the stepwise regression methodology, executed by Minitab 

R2022b software. The dataset utilized for conducting the stepwise regression analysis 

encompasses a span of 24 months of preceding raw data leading up to the target month. 

For instance, in case the target forecasting date is 1st January 2020, the data range covers 
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1st January 2018 to 31st December 2019, capturing trends preceding the forecasted 

period. As the target month changes, the dataset updates accordingly, and a new 

stepwise regression analysis is conducted. Each iteration of the regression analysis 

considers 24 candidate input variables, see Table 8. In spite of the stepwise regression 

process having an iterative nature, the significant input variables change monthly. This 

methodology is specifically used for the medium-term input dataset to select significant 

input variables, subsequently using them as the input for the forecasting model. 

 

Table 8 The set of potential input variables utilized in stepwise regression. 

Variable Type Candidate Input Variable 

Day of the week index 
Monday, Tuesday, …, Sunday  

(7 binary variables) 

Special holiday index 
0, 1  

(1 binary variable) 

Historical electricity peak demand 
T − 1, T − 2, …, T − 7  

(7 numerical variables) 

LMA 
Weekly LMA, Monthly LMA 

(2 numerical variables) 

MA(P) 
MA(2), MA(3), …, MA(7)  

(6 numerical variables) 

 

Based on the day type criterion, a date within the long-term input dataset is 

selected using the SD method to identify a similar day. Section 3.2.4 describes an 

illustrative example detailing the steps involved in performing SD under a disrupted 

situation. The outcome of this method is the selection of the date demonstrating the 

highest similarity to the target forecasting date. Following this selection, variables 

corresponding to a similar day, encompassing electricity peak demand, day of the week 

index, special holiday index, historical electricity peak demand, LMA, and MA(P), are 

filtered through stepwise regression. These screened variables are then designated for 

later utilization as long-term input variables. 
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4.4.2 Data Decomposition and Seasonality and Trend Identification 

 In reference to Figure 5, from 2018–2020, 1096 observations of daily electricity 

peak consumption exhibit a complex pattern characterized by non-linear and non-

stationary components, particularly noticeable during the pandemic. To address this 

complexity, the medium-term input dataset, using 2020 data, is decomposed using 

VMD. It breaks down the raw time series into k IMFs, with the decomposition level. 

For this case study, EMD suggests a decomposition level (k) of five, aligning with the 

dataset's pattern. The MATLAB software is utilized with default values for other 

parameters: 500 for the maximum number of optimization iterations, 1000 for the 

penalty level, and the central frequencies initialized using peak. 

 In Figure 11, the decomposition components are presented, ranging from the 

highest frequency to the lowest frequency, beginning with IMF1 and extending through 

IMF5. In contrast, Figure 12 presents the residual component, indicating the portion of 

variation in the original signal not explained by the IMFs. 

 

 

Figure 11 Decomposition results of VMD, breaking down the electricity peak demand 

from 2018 to 2020 into IMFs (IMF1 to IMF5). 
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Figure 12 Decomposition results of VMD, breaking down the electricity peak 

demand from 2018 to 2020 into residual components. 
 

Following the utilization of VMD, across all IMFs and residuals, FFT is 

employed to identify and capture the concealed seasonality and trend of the pandemic 

that remain inherent in the medium-term input dataset. Enhanced identification of the 

seasonality and trend components is achieved through FFT, providing valuable insights 

into the evolving patterns of the pandemic over time. The analytical results in Figure 

13 offer a comprehensive illustration of the identified temporal patterns, supporting the 

interpretation and understanding of the underlying dynamics driving the COVID-19 

pandemic. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 13 Identification of seasonality and trends using FFT analysis for all IMFs and 

residuals: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) Residual. 
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4.4.3 Data Separation and ANN-Based GS Optimization 

The processed dataset, comprising outputs generated by VMD-EMD-FFT, 

stepwise regression, and SD, is divided into training, validation, and test sets according 

to the data separation theory outlined in Section 3.4.  The ANN is constructed and fine-

tuned using training and validation sets, respectively. Particularly, the hyperparameter 

of ANN is optimized using GS. In this study, the optimization of the ANN through GS 

is performed using RapidMiner Studio 9.1 software. GS iteratively adjusts 

hyperparameters (see Table 9): the number of hidden nodes, training cycles, and 

learning rates, each of which is systematically varied within predefined ranges, 

represented as arrays. In the specified ranges, all possible combinations of 

hyperparameter values, represented as a grid structure, are used for the GS to fine-tune 

ANN. 

Section 4.3 presents the process of one-day-ahead forecasting using a rolling 

dataset and GS. This process involves iteratively updating the dataset to accommodate 

new observations while maintaining a fixed prediction horizon of one day. After 

conducting an exhaustive search of all hyperparameter combinations through the GS 

methodology, the ANN model that demonstrates superior predictive performance is 

selected as the optimal choice. Subsequently, the chosen model is evaluated using the 

test set to assess its accuracy. 

 

Table 9 Range of ANN hyperparameters used in grid search optimization. 

Hyperparameter Definition GS Range 

Hidden node 
The number of hidden nodes on a single hidden 

layer 
1, 5, 10 

Learning rate 
The magnitude of adjustments to weights and 

biases during training  
0.1, 0.01, 0.001 

Training cycle 
The number of iterations used to update weights 

and biases 
500, 1000, 1500 
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4.5 Experimental Results and Discussion of the Case Study 

An experiment spanning one year, starting from January 2020 to December 

2020, is performed to evaluate the models’ efficacy in managing disruptive situations. 

The proposed model's assumption is validated through comparative analyses against 

three proposed models, utilizing a dataset covering the entire year. The first proposed 

model applies an ANN-based GS optimization on preprocessed data derived from 

stepwise regression, alongside SD utilizing the Euclidean distance criterion, and a 

decomposition and seasonality-capturing method proposed by Aswanuwath et al. [106]. 

The second proposed model integrated an ANN-based GS optimization approach, 

incorporating an important long-term input dataset identified through SD with 

consideration of day type criterion, along with the selected significant medium-term 

input dataset based on the result of stepwise regression, and processed data from VMD-

EMD-FFT. LSTM-based GS optimization is employed in the third model with a short-

term input dataset. A comparative analysis of the testing performance of these three 

proposed models over the course of one year is presented in Table 10. 

Based on the findings presented in Table 10, the performance of proposed 

model 1 is less than the performance of models 2 and 3. The difference in performance 

can be explained by the use of SD based on the Euclidean distance criterion in model 

1. Within this framework, the SD primarily focuses on identifying the candidate date in 

the year prior to the pandemic that has the most similar characteristics, based on demand 

as one of the factors. Consequently, the model encounters challenges in effectively 

managing demand during pandemic situations, because the model mainly depends on 

data from the period prior to the pandemic. 

Conversely, proposed model 2 employs SD with the day type criterion, which 

enables the model’s training with diverse datasets containing mid and long-term 

characteristics. This approach yields satisfactory performance if the target period 

remains unaffected by government intervention policies (lockdown level = 0). The 

target period shares similarities in terms of demand with the period prior to the 

pandemic, as the target period has an increase in business and tourism activities. This 

provides an explanation for the satisfactory performance. However, the effectiveness 

of proposed model 2 can be affected by government policy interventions that lead to 
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rapid changes in demand and uncommon demand patterns, as the model relies on mid 

and long-term data. 

On the other hand, the LSTM model demonstrates superior performance in 

handling rapid changes in demand due to government policies (lockdown level = 1–6). 

This can be attributed to its proficiency in handling short-term data, enabling rapid 

adjustment to sudden changes.  LSTM is suitable to identify patterns and dependencies 

from short-term datasets, enabling the model to accurately recognize sudden changes. 

This capability empowers LSTM to effectively respond to changing situations, 

rendering it proficient in forecasting remarkable demand fluctuations resulting from 

government interventions. 

These findings offer valuable understanding regarding the performance of each 

model during different situations. During normal conditions, proposed model 1 is 

considered appropriate for forecasting electricity demand. However, in situations 

without government intervention, where external factors disrupt consumption, 

proposed model 2 proves high accuracy in forecasting electricity demand. Conversely, 

in scenarios with interventions, proposed model 3 emerges as the preferred option to 

precisely forecast electricity demand. When applied to the demand data from the 

pandemic year, the proposed procedure, which combines proposed model 2 and 

proposed model 3 depending on the period of government intervention, outperforms 

each individual model. This combination highlights its superior performance and 

comprehensive approach to forecasting, as evidenced by the results presented in Table 

10. 
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Table 10 Monthly results of testing performance over one year (2020). 

Month 
Proposed 

Model 
Stepwise 

SD 

Criterion 

VMD-

EMD-

FFT 

Forecasting 

Technique 

Test 
Degree of 

Lockdown MAPE RMSE MAE 

January 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
3.04% 971 754 

0 2 Yes Day type Yes 
ANN- 

based GS 
2.34% 810 595 

3 No No No 
LSTM- 

based GS 
3.89% 1303 966 

February 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
3.35% 956 860 

0 2 Yes Day type Yes 
ANN- 

based GS 
2.64% 925 680 

3 No No No 
LSTM- 

based GS 
2.93% 975 751 

March 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
3.24% 1076 866 

0, 5 2 Yes Day type Yes 
ANN- 

based GS 
3.10% 1130 819 

3 No No No 
LSTM- 

based GS 
2.65% 851 714 

April 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
6.95% 2368 1710 

6 2 Yes Day type Yes 
ANN- 

based GS 
5.57% 2053 1343 

3 No No No 
LSTM- 

based GS 
3.46% 1174 830 

May 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
4.85% 1543 1252 

6, 4, 3 2 Yes Day type Yes 
ANN- 

based GS 
4.31% 1290 1108 

3 No No No 
LSTM- 

based GS 
3.23% 1037 841 

June 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
5.95% 1785 1496 

2, 1 2 Yes Day type Yes 
ANN- 

based GS 
3.27% 1163 812 

3 No No No 
LSTM- 

based GS 
2.52% 766 627 

July 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
4.22% 1337 1053 

1 

2 Yes Day type Yes 
ANN- 

based GS 
3.54% 1170 890 
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3 No No No 
LSTM- 

based GS 
2.80% 833 701 

August 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
4.67% 1486 1166 

1 2 Yes Day type Yes 
ANN- 

based GS 
4.21% 1298 1056 

3 No No No 
LSTM- 

based GS 
2.43% 702 605 

September 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
4.64% 1413 1189 

0 2 Yes Day type Yes 
ANN- 

based GS 
2.64% 845 676 

3 No No No 
LSTM- 

based GS 
2.73% 949 687 

October 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
5.56% 1728 1313 

0 2 Yes Day type Yes 
ANN- 

based GS 
4.00% 1200 949 

3 No No No 
LSTM- 

based GS 
4.48% 1312 1046 

November 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
4.51% 1425 1122 

0 2 Yes Day type Yes 
ANN- 

based GS 
3.69% 1255 918 

3 No No No 
LSTM- 

based GS 
3.95% 1140 977 

December 

1 Yes 
Euclidean 

distance 
Yes 

ANN- 

based GS 
4.62% 1300 1066 

0 2 Yes Day type Yes 
ANN- 

based GS 
4.46% 1341 1015 

3 No No No 
LSTM- 

based GS 
4.73% 1397 1070 

Average 

12 

Months 

Proposed model 1 4.63% 1501 1153 

- 
Proposed model 2 3.65% 1244 905 

Proposed model 3 3.36% 1073 824 

Proposed procedure 3.07% 999 762 

 

Throughout the pandemic year, the accuracy of electricity demand forecasting 

can be impacted by government interventions and the rapidly evolving nature of the 

pandemic. The pandemic caused significant disruptions to various aspects of society 

and the economy. Factors such as fluctuating infection rates, shifts in consumer 

behavior, and economic uncertainty all contributed to the complexity of forecasting 

electricity demand. Amidst these complexities, the most challenging conditions arose 
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during periods unaffected by government intervention policies (lockdown level = 0). 

During this phase, electricity demand exhibited a mixed pattern, combining elements 

from both the year prior to the pandemic and the periods with the intervention policies. 

Inspired by the lack of government control policy, people remained cautious amid the 

existence of the pandemic, opting for remote activities. This demand pattern showed a 

combination of existing behaviors and those shaped by the pandemic, highlighting the 

multifaceted nature of forecasting electricity demand in such unprecedented situations. 

Figure 14 demonstrates the daily errors based on the proposed procedure, with 

notable peaks observed including the peak in mid-April, mid-November, and 

December. Particular events and policy adjustments can explain the peaks. During 

lockdown periods, the largest error occurs at the highest lockdown level. The error 

decreases when the level continues to be the same and increases when the level shifts, 

see Figure 15. On the other hand, uncommon additional holidays announced in late 

July can be the cause of an unusual error pattern. Differing from prior trends, in mid-

November, a significant error is found following the national emergency declaration 

extension. During the late year, with the largest number of daily cases, another error 

can be noticed. Although this period did not have any lockdown, people had reduced 

interactions because of an increase in daily cases. Consequently, this impacts the 

demand during the late year. The change in behavior leads to a demand characteristic 

distinct from the pre-pandemic year, resulting in a substantial forecasting error. 

Considering forecasting errors, there are two main types: overestimating and 

underestimating electricity demand. Overestimating electricity demand in forecasting 

can lead to inefficiencies and increased operational costs for utilities. When demand is 

overestimated, excess generation capacity is maintained, resulting in wasted resources 

and higher electricity prices for consumers. While overestimation can lead to financial 

inefficiencies and the unnecessary allocation of resources, its consequences are 

typically less immediate and severe compared to underestimation. Underestimating 

electricity demand, on the other hand, poses a significant threat to the stability and 

reliability of the power grid. When demand is underestimated, utilities may not generate 

sufficient electricity to meet actual consumption needs, leading to power shortages and 

potential blackouts. This can disrupt economic activities, affect residential comfort, and 

compromise critical infrastructure services. To mitigate these risks, it is essential to 
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incorporate a forecasting allowance within predictive models. This allowance serves as 

a buffer to account for unexpected increases in demand, ensuring that utilities are better 

prepared to handle deviations from the forecasted values. In this case study, a 

forecasting allowance has been set to at least 10% for the months of February through 

October, and 20% for the months of January, November, and December. 

Table 11 displays the comparative performance of the proposed procedure 

against previous studies. This analysis includes proposed model 1 [106], LSTM [140], 

extreme gradient boosting (XGBoost) [141], SVM [142], and ARIMA [143], all 

conforming to the structural framework outlined in the existing literature. As indicated 

in the results shown in Table 11, the proposed procedure not only exceeds the 

performance of all proposed models but also surpasses that of all other comparative 

models across all three evaluated measurements (MAPE, RMSE, and MAE). 

 

 

Figure 14 Daily forecasting errors of proposed procedure on test dataset.  
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Figure 15 Lockdown level's impact on forecasting error. 

 

Table 11 Comparative performance analysis between proposed procedure and prior 

studies. 

 

The findings reveal that the performance of the proposed procedure on the test 

dataset substantiates its efficacy in managing disruptions spanning an entire year, both 

with and without intervention from government policies. This emphasizes the model's 

adaptability and robustness in diverse scenarios. The proposed procedure, designed to 

accommodate diverse temporal contexts and specific conditions across various 

timeframes, enables it to adeptly capture unnoticeable fluctuations in electricity 

demand throughout the pandemic period. Training the model with short-term, medium-

term, and long-term datasets enhances forecasting accuracy by capturing different 

temporal patterns and trends in electricity demand. Short-term data improves 

Forecasting Model 
Average 12 Months of Test Performance 

MAPE RMSE MAE 

Proposed  procedure 3.07% 999 762 

Proposed model 1 [106] 4.63% 1501 1153 

LSTM [140] 5.15% 1632 1266 

XGBoost [141] 4.12% 1322 1015 

SVM [142] 4.13% 1305 1014 

ARIMA [143] 4.37% 1378 1080 
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forecasting accuracy by addressing recent changes and daily variations, such as weather 

conditions and policy changes. Medium-term data helps in understanding weekly and 

monthly patterns, which are influenced by workweek schedules and monthly climatic 

changes. Long-term data accounts for seasonal and yearly trends, recognizing annual 

cycles and significant recurring changes. This comprehensive multi-scale approach 

improves the model's responsiveness and overall forecasting accuracy. Notably, the 

model achieves significant improvement while concurrently reducing the number of 

input variables. This reduction strategy uses significant variables to train the model, 

particularly those closely aligned with the target forecast date. Moreover, the 

integration of the GS optimization technique enhances the model's performance by 

ensuring optimal results without relying on forecasted input variables, thereby 

upholding reliability and accuracy. In summary, the proposed procedure provides 

precise and unbiased forecasting outcomes, helping address future disruptions in the 

electricity sector.  
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CHAPTER 5 

Conclusion and Future Work 

 

 

 
The energy sectors of numerous countries have undergone significant 

transformations due to disrupted situations. The dependable operation of the electricity 

grid requires high accuracy in terms of electricity demand forecasting. This study aimed 

to address the challenges posed by disruptive events and mitigate the disruption impact 

on electricity demand forecasting in the future. The research objective was to develop 

a hybrid forecasting model designed for hybrid scenarios during disrupted situations 

(with and without government intervention), with a focus on Thailand's electricity 

demand as a case study. The main significant of this method is to recognize and apply 

forecasting models suitable for specific scenarios. Through the integration of data 

decomposition (VMD-EMD-FFT), input variable selection (stepwise regression and 

SD-based day type criterion), and hyperparameter optimization (ANN-based GS and 

LSTM-based GS), the proposed procedure aims to mitigate the identified limitations of 

the existing forecasting approach. In the context of disrupted situations, this study 

presents a new criterion for distinguishing between short-term, medium-term, and long-

term datasets. Moreover, a new criterion based on similar day selection is introduced to 

address situations where the demand for a candidate date differs significantly from the 

target forecasting date. One-day-ahead forecasting is conducted using rolling datasets 

and pandemic sensitivity factors, improving the adaptability and flexibility of the model 

in dealing with daily changes. 

The implementation of the procedure of the proposed models in a real-world 

setting allowed for the assessment of its practical applicability and effectiveness. By 

conducting a comparative analysis against existing forecasting models, the performance 

and superiority of the approach were evaluated. The findings indicate that the proposed 

procedure effectively enhanced flexibility and outperformed the comparative models, 
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demonstrating its ability to provide more accurate predictions in dynamic and uncertain 

environments. Furthermore, it reduces the number of inputs, enhances computational 

efficiency, and eliminates the necessity for input variables dependent on prior forecasts. 

Additionally, the findings reveal how disruptions impact the accuracy of the forecasting 

model as an external variable, thereby clarifying the model's robustness and 

adaptability. Therefore, the results improve the ability to forecast electricity demand in 

various scenarios using the proposed models. Proposed model 1 demonstrates 

effectiveness in normal situations, as shown in Table 10, whereas proposed model 2 is 

preferable in disrupted scenarios without government intervention. However, proposed 

model 3 is a suitable model to forecast electricity demand under a situation affected by 

government policies. 

Looking to the future, further research could explore enhancements to the 

proposed hybrid model and overcome its limitations. To improve performance, one 

potential area is to broaden the scope of model sophistication by investigating advanced 

machine learning techniques in addition to the current usage of ANN and LSTM. 

Experimenting with innovative algorithms and methodologies may offer new insights 

and potentially improve forecasting accuracy and stability. Moreover, expanding the 

scope of the study to include other regions or sectors affected by disruptions would 

contribute to a more comprehensive understanding of forecasting challenges and 

solutions. Considering the rapid growth and transformation of renewable energy on a 

global scale, it is imperative to incorporate it more comprehensively into forecasting 

frameworks. However, in this study, the main focus of the proposed forecasting 

framework is not on renewable energy. Future studies could aim to integrate renewable 

energy factors into the forecasting framework. This would involve expanding the scope 

of analysis to encompass a broader range of renewable energy sources and their impact 

on electricity demand dynamics. By doing so, the forecasting model can better capture 

the complexities of renewable energy integration and provide more robust forecasting 

models aligned with evolving energy landscapes, advancing the field of energy 

forecasting and supporting sustainable energy development. 
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CHAPTER 6 

Thesis Contribution 

 

 

 
6.1 Practical Implication 

The practical implications of this study are significant for various stakeholders 

involved in energy forecasting and decision-making processes. By developing a hybrid 

forecasting model designed for hybrid scenarios during disrupted situations, 

particularly focusing on Thailand's electricity demand during the COVID-19 pandemic, 

this research offers valuable tools and insights for policymakers, energy planners, and 

industry professionals. The ability of the proposed procedure to adapt to transitional 

phases and capture underlying seasonality patterns enhances its applicability in real-

world scenarios where disruptions are prevalent. Moreover, the integration of advanced 

machine learning techniques and innovative methodologies improves the accuracy, 

adaptability, and robustness of the forecasting approach, providing decision-makers 

with more reliable forecasts for strategic planning and resource allocation.  

Overall, the practical implications of this study extend beyond academic 

research, empowering stakeholders with actionable tools and insights to manage 

uncertain environments and support the resilience of energy systems amidst 

disruptions. 
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6.2 Theoretical Implication 

The theoretical implications of this research are multifaceted and contribute 

significantly to advancing the field of energy forecasting and predictive modeling. By 

developing a hybrid forecasting model specifically designed for hybrid scenarios during 

disrupted situations, this study enriches our theoretical understanding of how 

forecasting techniques can be designed to accommodate complex and dynamic 

environments.  

The integration of diverse methodologies, such as data decomposition (VMD-

EMD-FFT), input variable selection (stepwise regression and SD-based day type 

criterion), hyperparameter optimization (ANN-based GS and LSTM-based GS), and a 

rolling dataset, expands the theoretical framework of forecasting models by 

demonstrating the efficacy of combining multiple approaches to enhance accuracy, 

adaptability, and robustness. Additionally, exploring advanced machine learning 

techniques beyond conventional methods such as ANN and LSTM broadens the 

theoretical framework of predictive modeling, offering insights into the potential of 

innovative algorithms to improve forecasting performance. 

Furthermore, this study introduces innovative criteria for distinguishing 

between short-term, medium-term, and long-term input sets in disrupted situations, 

enhancing the model's adaptability and accuracy. These criteria, along with the novel 

criterion based on similar day selection, improve the model's ability to forecast 

electricity demand in dynamic environments. The study also emphasizes the 

importance of one-day-ahead forecasting using rolling datasets and pandemic 

sensitivity factors, highlighting the need for real-time data integration and adaptability 

in forecasting frameworks.  

Overall, the theoretical framework developed in this study provides a basis for 

future research endeavors exploring the intersection of energy forecasting and 

disruptive events integration, contributing to the theoretical advancement of forecasting 

research and resilience planning. 
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6.3 Contribution to Knowledge Science 

The contribution to the knowledge science is to advance our understanding of 

energy forecasting and predictive modeling, particularly in disrupted situations. The 

development of a hybrid forecasting model and the introduction of innovative criteria 

designed for such scenarios enrich the theoretical framework of forecasting techniques 

and contribute to the advancement of knowledge in energy forecasting research. 

Furthermore, this study offers a precise and adaptable model that addresses the 

complexities of disrupted situations, empowering policymakers, energy planners, and 

stakeholders with valuable insights and tools for effective decision-making and 

resilience enhancement of energy systems. Additionally, the introduction of novel 

hybrid models improves the existing knowledge base in time series forecasting, 

facilitating the capture of insights from complex datasets, particularly real-world time 

series data, thereby contributing to the knowledge discovery process.  

Overall, this research makes a significant contribution to knowledge science by 

offering insights, methodologies, and approaches to address challenges and mitigate the 

impact of future disruptions in energy forecasting and predictive modeling. 
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APPENDIX 

 

 
To assess the impact of the COVID-19 pandemic on electricity demand, a 

comparative analysis between the pre-pandemic and pandemic years was conducted. 

This involved calculating the difference in electricity demand between corresponding 

dates (e.g., demand on 18/03/2019 minus demand on 18/03/2020). The probability plot 

of these differences (see Figure 16) indicated that the effect of COVID-19 fluctuates 

and does not follow a normal distribution. Therefore, a nonparametric test was used to 

evaluate the null hypothesis. The results of the nonparametric test (refer to Figure 17) 

confirmed that the effect was significantly greater than zero, indicating a reduction in 

electricity consumption during the lockdown year compared to the pre-pandemic year. 

Specifically, the lockdown led to an average reduction of 957 MW in peak electricity 

consumption. This suggests that if a similar lockdown were to occur in the future, peak 

electricity demand could be expected to decrease by an average of 957 MW. 

 

 

Figure 16 Probability plot of the COVID-19 effect. 
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Figure 17 Nonparametric test for measuring the effect of COVID-19 on the electricity 

demand. 
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