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Dissertation Abstract 

Manual assembly training traditionally relies on experienced operators to guide trainees through task 

demonstrations, trials, evaluations, and discussions. This method, while effective, is limited by the availability of experts. 

Current virtual training systems (VTS) focus on delivering rich multimedia content for task demonstrations, reducing 

dependence on experts. However, these systems often lack automated, comprehensive, augmented feedback for trainees. 

This research introduces EXAMINER (EXpert Independent Manual AsseMbly VIrtual TraiNER), a system that 

objectively evaluates and provides feedback on trainees’ motor and cognitive skills in manual assembly tasks. By 

automating feedback, EXAMINER enhances training accessibility and reduces reliance on experts. This study explores 

the digitization of human skills, objective measurement techniques, and the integration of these elements into an effective 

training system. The proposed system is evaluated for its ability to deliver appropriate feedback based on trainee 

performance, aiming to improve training outcomes and adoption rates. 

The resulting framework consists of the following components: skill digitization, skill comparison, feedback 

provider, and multimedia training material. The implementation focuses on the first three components, ensuring their 

seamless integration. The framework implementation utilized methodologies for skill digitization using a video camera, 

employing standard and contemporary techniques such as deep learning in computer vision for human pose estimation, 

recurrent neural networks for activity recognition, and computer vision for contextual sensing. Each underlying 

subcomponent shows promising performance. 

The digitization process is critical because it is the foundation for subsequent skill analysis and comparison 

between trainees and experts. In analyzing these operations, the study takes a novel approach, employing algorithms such 

as edit distance and dynamic time warping to identify and quantify skill differences. This methodology enables a more 

in-depth understanding of manual assembly cognitive and motor skill differences. 

Another contribution of this research is the introduction of the I-MA task data model. This model enhances the 

framework's adaptability across diverse training scenarios and revolutionizes how information is systematically organized 

and utilized within I-VTS. The modular design of the framework, emphasizing interconnected yet distinct components, 

significantly enhances system flexibility and scalability, catering to a wide range of training needs and environments. 

In summary, this research offers a comprehensive, flexible, and efficient I-VTS framework, representing a 

significant leap forward in virtual training systems. The framework utilizes advanced digitization techniques, detailed 

skill analysis, and user-friendly augmented feedback to address current gaps in I-MA training and establish a new standard 

for future developments in the field. 

Keywords: Deep learning, Computer vision, Manual assembly, Virtual training, Industry 4.0 
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Chapter 1

Introduction

Training human operators to perform manual assembly(MA) with desired
assembly skill, judgment, and dexterity is crucial in Industrial 4.0 [108]. MA
is an action of composing previously manufactured parts into a complete
product using a human operator [30]. It exists in an assembly unit that
requires the flexibility of a human operator to produce a product with a
small lot size and highly customizable variations. A trainee requires face-
to-face training offered by the expert as they can directly judge and guide
them to reach a desirable MA skill level. It introduces various limitations,
including

1. Scheduling Conflicts: The activity must occur when both parties
are available, making it difficult to coordinate schedules.

2. Limited Training Scale: One expert can only handle a few trainees
at a time, requiring careful observation and evaluation, thus limiting
the scalability of training.

3. Productivity Disruption: Allocating experts to conduct training
can lead to reduced productivity in their regular roles.

4. Uncertainty and Regulations: Disruptions from events like pan-
demics can necessitate reduced close-contact activities, impacting train-
ing schedules and methods.

5. Consistency and Quality: Variability in training quality due to dif-
ferences in expert instructors can potentially lead to inconsistent train-
ing outcomes.

6. Resource Intensive: High resource consumption, including time, per-
sonnel, and physical materials, can be costly.
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7. Trainee Learning Pace: Difficulties in accommodating different learn-
ing paces of trainees, as face-to-face training might not allow for per-
sonalized, self-paced learning.

A virtual training system (VTS) is a paradigm where the simulation of con-
ventional training is used to solve any previously introduced limitation. It
aims to reduce face-to-face physical training. Before this chapter directly
states the problem, motivation, and objective of this dissertation, it first
introduces related concepts, including

• Manual assembly under Industry 4.0,

• Industrial skill training,

• Virtual training system.

1.1 Manual Assembly Under Industry 4.0

The term ”Industry 4.0” was introduced in 2011 as it refers to the next
industrial revolution that is about to take place. The first industrial rev-
olution in the 18th century was the introduction of steam power and me-
chanical production facilities. The second industrial revolution in the 1870s
was the introduction of electricity, mass production, and an assembly line.
The third revolution around the 1970s was an introduction to a computer
and automation known as ”the digital revolution.” The communication be-
tween people, machines, and resources is a fundamental aspect of Industry
4.0. This paradigm shift transitions from centrally controlled to decentral-
ized production processes, incorporating critical components to form a smart
factory [64]. Key elements include:

• Internet of things : Enables sensors and actuators to interact and co-
operate with corresponding components, enhancing connectivity and
data exchange.

• Cyber-physical system: Integrate computational and physical processes,
merging the virtual and physical worlds for improved efficiency and
real-time monitoring.,

• Smart factory : Resulting from the integration of IoT and CPS, a
smart factory is context-aware, assisting people and machines in exe-
cuting tasks and providing optimized decisions through interconnected
computer systems operating in the background.
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These components collectively enhance the flexibility, efficiency, and intelli-
gence of manufacturing processes, driving the evolution of modern industry.

Every industrial revolution impacts all related parties significantly. The
third industrial revolution dramatically transformed product supply by low-
ering costs and offering a wider range of mass-produced products [80]. Con-
sequently, manufacturing firms face lower margins due to increased com-
petition, as competitors can also mass-produce similar products. To stay
competitive, firms may adopt product personalization as an answer to di-
verse needs. For instance, a specific automotive part can fit various models
with slight component changes. Adapting the assembly process to meet flex-
ible demands is neither economical nor simple to automate, thus requiring
the flexibility of manual labor. Laborers must adapt quickly to changing
product demands. The Industry 4.0 smart factory aids operators by pro-
viding necessary information in various formats to assist the manufacturing
process. For example, information can be digitized as an interactive step-by-
step electronic manual, automatically served to the operator when needed
[111].

In summary, Industry 4.0 marks a significant advancement in manufac-
turing, enabling personalized production while maintaining efficiency and
competitiveness. The integration of IoT, CPS, and smart factories enhances
adaptability and responsiveness to market demands, supporting the rapid
evolution of industrial practices. This revolution benefits manufacturing
firms by improving margins and productivity and empowers workers with
advanced tools and information for enhanced performance.

1.2 Manual Assembly Industrial Skill Train-

ing

Training an inexperienced operator in a particular MA task typically requires
face-to-face instruction from an experienced expert to achieve desirable dex-
terity. Dexterity comprises both cognitive and motor skills [6]. Cognitive
skills for manual assembly involve an individual’s ability to recall the assem-
bly process and recognize the state of the assembly, including the sequence
of steps, materials, and tools used [122]. Motor skills are crucial for manual
assembly tasks, necessitating precise movements and coordination to assem-
ble components accurately and efficiently. The basic MA skill training is
typically conducted in the following steps:

1. The expert demonstrates the assembly task while the trainee observes
and memorizes the operation sequences.
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2. The trainee performs the task under the expert’s instruction, obser-
vation, and guidance. The expert evaluates the trainee’s performance
and progressively reduces guidance to encourage independent learning.

3. The trainee must pass a dexterity assessment, meeting the desired cog-
nitive and motor skills as evaluated by the expert.

4. The training is repeated if the trainee fails to meet the expected cog-
nitive and motor skills or dexterity.

In summary, effective MA skill training requires a structured approach.
This method ensures that trainees develop both cognitive and motor skills
through observation, guided practice, and evaluation. This method also en-
sures that trainees can achieve the necessary dexterity to perform assembly
tasks accurately and efficiently, thereby maintaining high standards in the
manufacturing process.

1.3 Virtual Training System

Virtual Training Systems (VTS) offer innovative solutions for training in
various fields by leveraging technology to create immersive and interactive
learning environments. These systems are particularly valuable in situa-
tions where physical interaction between the trainer and trainee is limited or
impractical. This section explores the properties and applications of VTS,
highlighting their effectiveness and current limitations in motor performance
training. VTS is a training paradigm that includes the following properties:

• The trainer and trainee can be physically or temporally separated [7].

• The training takes place within a simulated or augmented environment
[52].

VTS is effective for training that does not require physical interaction.
Standardized tests or quizzes are typically used to measure learning out-
comes, resulting in summative assessments or terminal feedback. However,
VTS is not suitable for all types of learning [89]. Motor performance train-
ing requires formative assessments, such as manual assembly (MA) tasks,
sports, entertainment, and medical procedures. Experts must provide con-
current and terminal feedback to improve the trainee’s performance. Cur-
rently, VTS allows experts in different geographical areas to receive video
recordings of a trainee’s performance. The expert can then evaluate and
provide feedback, either concurrently or later, improving training outcomes.
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Moreover, VTS in MA research and commercialization heavily uses im-
mersive multimedia training materials for introductory training. Immersive
materials, such as virtual reality (VR) [73], [95], [113], [118] and augmented
reality (AR) head-mounted displays [31], [39], [40], visualize complex as-
sembly processes and structures. Using these technologies as introductory
training mitigates dependency on experts during the demonstration phase
and allows for scalable training.

In summary, VTS offers a flexible and scalable solution for training in
various environments, particularly when physical interaction is not essential.
It leverages immersive technologies to provide rich, interactive content, thus
reducing the reliance on experts and enabling trainees to learn and improve
their skills more efficiently.

1.4 Problem Statement

In industrial manual assembly, training inexperienced operators typically re-
quires extensive face-to-face interaction with experienced experts. This con-
ventional training approach presents several limitations that hinder efficiency
and scalability. While Virtual Training Systems (VTS) offer potential solu-
tions, they also come with their own challenges, particularly in maintaining
training effectiveness and accessibility.

Despite VTS reducing dependency on human experts, particularly during
the introductory phase, experts are still required for subsequent conventional
training. This introduces several limitations:

1. Training must occur when both parties are available.

2. The training scale is limited; one expert can only manage one trainee
at a time, requiring careful observation and evaluation.

3. Allocating experts for training disrupts overall productivity.

4. Training can be disrupted by unforeseen events and regulations, such
as during a pandemic when close contact activities are restricted.

Due to limited expert availability, training offers and durations are con-
strained, leading to unproductive waiting times for trainees who cannot per-
form MA tasks without proper training. VTS currently addresses these issues
by:

• Enabling geographical separation of experts and trainees through the
bi-directional transmission of necessary information and training ma-
terials.
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• Scaling introductory training using immersive and multimedia training
mediums.

Although VTS can significantly reduce expert dependency during the intro-
ductory phases, it still relies on experts to provide performance observation,
evaluation, and feedback remotely or at a different time. Additionally, the
high cost and complexity of current VTS setups can limit accessibility, par-
ticularly for small and medium-sized enterprises.

In summary, while VTS addresses several limitations of traditional train-
ing methods, it still faces challenges related to expert availability, training
scalability, and cost.

1.5 Motivation

Based on the problem statement, this dissertation aims to address the issue of
limited expert availability for face-to-face training by reducing the necessity
for expert supervision and evaluation during manual assembly tasks. The
final system will enable trainees to perform manual assembly using the VTS
without relying on an expert, mitigating the pain points highlighted in the
problem statement that hinder VTS adoption in the manufacturing industry.

Additionally, this dissertation will document the process of creating a
framework for realizing a VTS for manual assembly tasks. The resulting
framework will assist interested parties in designing and implementing VTS
tailored to their specific use cases. As VTS consists of various components
requiring integration, some components are readily available for implemen-
tation, while others may require modifications or need to be developed from
scratch.

An important aspect of this dissertation is to make VTS economically
accessible. By using cost-effective, off-the-shelf components, such as video
cameras and personal computers, the system reduces the total cost of own-
ership, making it accessible for small and medium-sized enterprises. This
approach ensures that VTS can be widely adopted, offering significant eco-
nomic benefits by reducing the need for expensive, proprietary hardware and
extensive expert involvement.

This dissertation will explore the available components, incorporate and
modify them as needed, and implement new components to meet the specific
requirements of our use case. This process will involve extensive testing,
modification, and implementation to ensure the system’s effectiveness and
suitability.
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1.6 Objective

This dissertation aims to develop and propose a comprehensive framework for
an expert-independent Virtual Training System (VTS) for Manual Assem-
bly (MA), named EXAMINER (EXpert Independent Manual AsseMbly
VIrtual TraiNER). The objectives are:

1. Integration and Innovation: To integrate various concepts such
as assembly state context sensing, performance comparison between
subjects, augmented feedback for cognitive and motor skill learning,
and multimedia training material into a cohesive framework.

2. Evaluation: To evaluate the effectiveness of EXAMINER’s compo-
nents through a case study of industrial-like robot parts assembly, fo-
cusing on their ability to capture and assess trainee performance.

3. Economic Accessibility: To ensure the system is cost-effective and
accessible, making it suitable for small and medium-sized enterprises
by utilizing off-the-shelf components.

4. Reduction in Expert Dependency: To reduce the need for expert
supervision and evaluation, thereby addressing the limitations of tradi-
tional face-to-face training and improving the scalability and efficiency
of MA training.

The goal is to establish EXAMINER as a viable solution for effective and
autonomous MA training, enhancing training methodologies and accessibility
across various industrial contexts.

The introduction chapter outlines the significance of training human op-
erators for manual assembly (MA) in Industry 4.0. MA involves assembling
manufactured parts into a product, necessitating flexibility due to small lot
sizes and customizable variations. Traditional face-to-face training with ex-
perts is essential but presents several limitations, such as scheduling conflicts,
limited scalability, productivity disruption, and high resource consumption.
Virtual Training Systems (VTS) offer potential solutions by reducing reliance
on expert presence, though challenges remain in maintaining training effec-
tiveness and accessibility.

The chapter introduces key concepts, including:

1. Manual Assembly Under Industry 4.0: This section discusses the
Industrial Revolution’s historical context and evolution, emphasizing
the role of IoT, cyber-physical systems, and smart factories in enhanc-
ing manufacturing flexibility, efficiency, and intelligence.
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2. Manual Assembly Industrial Skill Training: This section high-
lights the structured approach to training MA skills, focusing on the
development of cognitive and motor skills through expert-led demon-
strations, guided practice, and assessments.

3. Virtual Training System: This section explores VTS as a solution
for training in various fields, emphasizing its properties and applica-
tions and the use of immersive multimedia training materials to scale
introductory training phases.

The Problem Statement section identifies the limitations of traditional
training and the partial solutions offered by VTS. Despite its benefits, VTS
still depends on experts for performance observation, evaluation, and feed-
back, with additional challenges in cost and complexity limiting accessibility.

The Motivation section outlines the goal to mitigate expert availability
issues by creating an expert-independent VTS, documenting the framework
process, and ensuring economic accessibility using off-the-shelf components.

The Objective section aims to propose a comprehensive framework for
an expert-independent VTS, named EXAMINER, integrating various con-
cepts, evaluating its components through a case study, ensuring economic
accessibility, and reducing expert dependency.

The chapter establishes the foundation for developing an expert-independent
VTS for MA, addressing traditional training limitations, and proposing a
framework to enhance training methodologies and accessibility in the manu-
facturing industry.

1.7 Outline

After the introduction chapter, the dissertation is structured as follows

• Chapter 2 - Related work,

• Chapter 3 - Requirement Engineering,

• Chapter 4 - System Analysis and Design,

• Chapter 5 - Digitization of Operator Skills,

• Chapter 6 - Comparison of Digitized Skill,

• Chapter 7 - Automatically Generated Augmented Feedback for Report-
ing a Training Outcomes, and
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• Lastly, chapter 8 - Conclusion, Discussion, Limitation, and Future
Work
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Chapter 2

Related Work

This chapter summarized related work on Industrial VTS(I-VTS), highlight-
ing the distinctive features and the fundamental concepts required to imple-
ment it. Topics are as follows,

1. Industrial virtual training system,

2. Virtual training environment,

3. Augmented feedback for skill learning,

4. Skill comparison between the expert and trainee,

5. Information acquisition from the industrial space,

6. Multi-media training material, and

7. Industrial virtual training system framework

2.1 Industrial Virtual Training System

The primary motivation for creating an Industrial Virtual Training System
(I-VTS) is to replace traditional face-to-face training methods and eventually
reduce dependency on human experts, especially during the introductory
phase of training [67]. Early systems promoted the idea that they could offer
more repetition and enhance understanding by utilizing multiple presentation
mediums, ultimately leading to improved training outcomes in terms of the
learning curve and reduced errors [31], [40], [102].

I-VTS permits the delivery of training through different immersive and
non-immersive presentation mediums, providing greater access to training
and resulting in more satisfying outcomes for trainees. Most closely related
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systems can be categorized as Manual Assembly (MA) assistant systems.
These systems assist operators by providing context-sensitive assembly guid-
ance through interactive assembly manuals [66], [77]. While MA assistant
systems are installed on the production assembly line to assist operators
during tasks, I-VTS is exclusively dedicated to training, enabling trainees
to practice and learn independently without disrupting ongoing production
[66].

Training an operator for MA requires mastering dexterity. Dexterity is
comprised of a manual assembly of cognitive and motor skills, shortened as
cognitive and motor skills. Cognitive skills involve the mental capacity
to perceive and execute appropriate MA operations, including recognizing
assembly sequences, parts, tools, locations, and corresponding motions [21].
The I-VTS for cognitive skills operates as follows:

1. Captures experts’ knowledge using multimodal sensing capabilities.

2. Transfers the expert’s knowledge to the trainee through multimedia
electronic training material.

3. Conducts a summative evaluation of the trainee’s performance by record-
ing and comparing it to a predefined evaluation template or the expert’s
recorded performance [38], [70].

Motor skills involve the ability to perform precise movement trajectories
of limbs and joints within a consistently desirable operation time and with
appropriate force [18]. Training such skills requires additional capabilities,
including:

1. Measuring and comparing the trajectory, force, and rotational velocity
of joints objectively [31], [50], [82].

2. Providing extrinsic or augmented feedback to guide the trainee in im-
proving motor performance [94].

3. Using tangible task-related objects, either genuine parts or replicas, to
simulate the touch and feel of real assembly tasks [115].

I-VTS can circumvent limited training repetitions by replacing the ex-
pert with technology. Research communities and businesses have utilized
conventional training mediums, summative assessments, immersive displays,
and context-sensing systems to enable trainees to practice dexterity skills
without waiting for an expert’s demonstration, instruction, or evaluation.
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Combining these technologies allows trainees to receive continuous and im-
mediate feedback, enhancing their learning and performance.

It is essential to distinguish between systems designed for assistance and
those intended solely for skill learning. Assistance systems provide instruc-
tion while the operator performs tasks, whereas skill learning systems are
used exclusively during the learning phases. An assistance-based system can
be adapted for learning by gradually reducing the information provided to
prevent trainees from becoming overly dependent on augmented reality (AR)
features.

In summary, I-VTS represents a significant advancement in training method-
ologies for manual assembly tasks. By leveraging immersive technologies and
providing continuous, objective feedback, I-VTS offers a scalable and effec-
tive solution for developing trainees’ necessary cognitive and motor skills,
enhancing overall training efficiency and outcomes.

2.2 Virtual training environments

VTS utilizes various technological advancements to develop customized train-
ing environments that tackle specific challenges. These environments span
from fully virtual to entirely non-virtual settings, each specifically designed to
enhance the learning experience based on different limitations and demands.
This subsection examines the unique characteristics and advantages of fully
virtual, semi-virtual, and non-virtual training environments.

Firstly, the fully virtual environment requires trainees to participate solely
in a simulated digital setting [18], [39], [52], [73], [86], [95], [113]. This con-
figuration is most advantageous when there are restrictions on accessing real
parts or actual production environments. It heavily depends on immersive
technologies to accurately recreate actual interactions, making it appropriate
for situations where safety, cost, or accessibility are concerns.

Second, the semi-virtual environment is an intermediary between com-
pletely virtual and non-virtual environments, combining aspects from both.
The system combines physical and digital elements, such as 3D-printed repli-
cas or digital simulations of actual objects, with the physically simulated or
actual working environment [40], [70], [94], [102], [118]. This hybrid approach
facilitates a flexible training experience, allowing for accurate simulations of
crucial tasks while incorporating some physical interaction with realistic el-
ements.

Finally, the non-virtual environment involves training in a genuine setting,
either in a specifically designated area that mimics a real work environment
or in an existing workplace utilized for training purposes. Trainees engage
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with genuine components and equipment, which may be designated for train-
ing purposes [31], [38], [39]. This environment is most beneficial for tasks
demanding hands-on experience with materials and conditions.

VTS provides a wide range of training environments to meet the require-
ments and constraints imposed by their physical or economic environments.
The fully virtual environment is ideal for scenarios with limited physical ac-
cess, as it uses immersive technologies to simulate real-world interactions
accurately. The semi-virtual environment bridges physical and digital ele-
ments, providing a balanced and adaptable training experience. Meanwhile,
the non-virtual environment provides the most direct engagement with real-
world materials and settings, making it ideal for tasks requiring extensive
hands-on practice. Together, these environments enable a comprehensive
training approach, ensuring learners can effectively acquire the necessary
skills.

2.3 Augmented Feedback for Skill Learning

The concept of augmented feedback in motor training has been extensively
reviewed, demonstrating its ability to significantly improve motor skill acqui-
sition in various domains, including sports and dancing [29], [35]. Augmented
feedback comprises two main aspects: technique and strategy. Techniques
refer to the ways feedback is presented, such as visual, auditory, and haptic,
while strategies pertain to the timing and frequency of feedback delivery,
such as concurrent, terminal, or hybrid feedback.

Techniques of Augmented Feedback:

• Haptic Feedback: This involves feedback that stimulates the sense
of touch and can restrain movement by applying opposing forces. For
example, vibration is used in VTS to simulate the sensation of touching
a machine [31].

• Auditory Feedback: Audio signals capture the operator’s attention,
often in the form of alarms. In VR-based human-robot collaboration
training, auditory alarms emphasize safety and continuous operation
in hazardous areas [73].

• Semantic Feedback: This includes descriptive text or speech feed-
back. For instance, positive feedback for step completion and error
descriptions for incorrect part orientation are used in PCB assembly
training [47].
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• Visual Feedback: Visual cues, such as color codes and guided visual
indicators, show the current training status and operation conditions.
These cues can indicate correct/incorrect actions, minor/major mis-
takes, and warnings [73], [86], [87], [95].

Strategies of Augmented Feedback:

• Concurrent Feedback: Provided during task performance, this type
of feedback can instruct the trainee in real time. However, excessive
reliance on guidance can lead to dependency, so it is important to
reduce guidance gradually based on training outcomes [31].

• Terminal Feedback: This feedback is given after task performance,
summarizing the trainee’s performance. It is a straightforward form
of feedback that reports either knowledge of performance or outcomes
[14], [28].

• Hybrid Feedback: A combination of concurrent and terminal feed-
back, this approach provides real-time guidance and post-performance
summaries, enhancing the overall training process [11].

Augmented feedback is crucial for I-VTS and MA assistant systems. For
example, haptic feedback can guide movements with adjusted assistance lev-
els based on trainee experience, reducing errors in machining operations [31].
In PCB I-MA training, concurrent semantic feedback provides positive rein-
forcement for correct steps and descriptive error feedback for mistakes [47].
In VR-based human-robot collaboration training, auditory warnings and vi-
sual alarms emphasize safety and promote continuous operation [73].

MA assistant systems can also function as VTS by offering modes that
solely evaluate the operator’s performance without providing assistance. Typ-
ically, these systems provide concurrent feedback with guided visual cues.
However, in evaluation mode, the system assesses training outcomes without
guidance, focusing on the operational context [86], [87], [95].

Implementing an augmented feedback training system requires careful
planning to prevent trainee dependency on the system. Feedback frequency
and detail should be gradually reduced to ensure trainees develop the neces-
sary skills independently. This strategic approach confirms the critical role
of augmented feedback in enhancing training effectiveness across different
settings.
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2.4 Skill Comparison Between Recorded Ex-

pert and Trainee

Ensuring an objective evaluation of a trainee’s cognitive and motor skills in
manual assembly (MA) is essential. The standard for this evaluation can
either be semantically programmed [34], [49], [59], [61] or digitized from
an expert’s recorded performance [75], [76]. Digitizing these skills typically
requires different techniques due to their unique challenges. The section ad-
dresses the comparison of cognitive and motor skills separately. In addition,
the section also address industrial vs. non-industrial skill comparison.

2.4.1 Cognitive Skills Comparison

Cognitive skills involve comparing the assembly step, parts used, and their
location or orientation captured by various sensors. These skills can be dig-
itized by capturing the differences in the physical context of MA task. For
example, systems can automatically digitize human skeletal coordinates and
the state of an assembly workpiece, allowing for comparisons across different
subjects [37], [75]. Most virtual training environments implement sequential
virtual assembly simulators, where the assembly sequence is strictly prede-
fined. Any errors must be corrected before proceeding, ensuring trainees
adhere to the correct sequence and method.

2.4.2 Motor Skills Comparison

Motor skills are more challenging to program and transfer semantically. In-
stead, these skills can be captured as time-trajectory data and compared
across subjects. This approach is prevalent in sports and dance, where per-
formance outcomes are directly proportional to knowledge performance [15],
[16]. For instance, a baseball swing virtual trainer uses wearable sensors
to record the swing’s three-dimensional acceleration. The virtual trainer
then provides terminal feedback by visualizing the time-trajectory compar-
ison graph between the trainee and a professional batter [39]. Similarly, a
virtual dance trainer compares kinematic features such as joint angles and
rotations, reporting differences from a target movement as a score [15]. In
industrial settings, tasks like composite material layup require strict adher-
ence to location and motion within a set time frame. These tasks can benefit
from motor skill comparisons using motion trackers to capture and digitize
operation time and transitions between areas [76].
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2.4.3 Industrial vs. Non-Industrial Skill Comparison

Evaluating the trainee’s cognitive and motor skills objectively is essential
for effective skill development in both industrial and non-industrial contexts.
However, the methods and requirements for skill comparison in these two
domains can vary significantly. In industrial settings, the focus is on tasks
like manual assembly, where precision and adherence to specific protocols are
critical. In contrast, non-industrial contexts such as sports, entertainment,
and rehabilitation often emphasize different aspects of skill performance, like
coordination and force application. This section explores the distinct ap-
proaches to skill comparison in these two areas.

• Industrial Skill Comparison: This involves comparing digitized cog-
nitive and motor skills specific to industrial tasks. For example, in a
composite material layup, the operator must perform the task precisely
at a specific location and time, which requires digitizing and comparing
motor skills [76].

• Non-Industrial Skill Comparison: The comparison is widely used
in sports, entertainment, and rehabilitation. In these areas, the focus
is often on the performer’s motor skills and ability to follow a desired
movement pattern. For example, in sports, knowledge performance is
closely linked to the outcome of actions, like a baseball swing, which
requires precise coordination of limbs and joints. External feedback
from experts is crucial for correct performance interpretation, espe-
cially when external factors like wind can affect outcomes [22], [33]. In
entertainment, dancers must synchronize their movements with music,
and virtual training systems can help them match their motions to a
lead dancer’s template, assessed externally [15], [35]. Rehabilitation
involves patients performing exercises accurately, often at home, with
virtual training systems providing objective performance feedback to
guide their recovery [72], [120].

In summary, skill comparison is vital for both industrial and non-industrial
training environments. Cognitive skills are evaluated by comparing physical
contexts, while motor skills are assessed through time-trajectory compar-
isons. This approach reduces the need for expert intervention, as performance
can be objectively measured and feedback provided. The direct comparison
method, although beneficial, often requires expert interpretation of the re-
sults for the trainee’s benefit.

16



2.5 Information Acquisition for Virtual Train-

ing System

There are various ways to acquire information for a Virtual Training System
(VTS), including vision-based and non-vision-based methods. Vision systems
use computer vision techniques to extract and detect relevant features from
image sensors. A VTS requires the ability to sense the physical context and
use it to compare an operator’s performance against each other or specified
templates. For fine motor skills focusing on hand movements, video capture,
and hand articulation techniques are beneficial [72], [110]. Some assistance
or training systems also employ depth or range imaging technology to obtain
body pose or assembly station context, such as the depth profile of each
assembly stage and the ability to track objects present [61], [66], [77].

In contrast, non-vision systems use data from various body contact sen-
sors and sensors attached to the assembly station to acquire information
[23]. While non-vision techniques are faster and less computationally ex-
pensive, they are intrusive to the operator. The emergence of commodity
VR headsets and AR head-mounted display systems (HMD) has accelerated
the implementation of hybrid systems that fuse vision and non-vision inputs.
Generally, AR-HMDs contain various vision and non-vision sensors to sense
context, such as image, range, acceleration, angular velocity, and magnetic
field intensity. These systems can articulate hand location and movement
using additional sensors [39], [61], [73], [77], [95], [113], [118].

This section reviews enabling technologies that can acquire the training’s
human and physical contextual information, including human pose estima-
tion, activity recognition, and context recognition.

2.5.1 Human Pose Estimation

This section further introduces vision-based human-related information ac-
quisition commonly adopted in the VTS. Vision-based operator performance
acquisition is digitizing the operator into the machine’s comprehensible form
of information. It is possible to estimate the location of the target human’s
body joints, parts, and limbs in multi-dimensional Cartesian coordinates.
Depending on the use cases and the enabling technology, it is performed in
3-D or 2-D. This section will introduce enabling technologies, including the
state-of-the-art motion capture system, the commodity system being phased
out, and deep learning on monovision color cameras, a current research trend.

• Motion-Capture System - Motion-capture system (MOCAP) is an optical-
based system targeting professional usage [104]. It is primarily used in
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the entertainment and professional industry, including gaming, movies,
virtual reality, and professional sports, to capture precise motion and
facial expressions. The system usually requires a studio-like environ-
ment with dozens of high-speed infrared (IR) cameras around the scene
toward the target. The camera captures IR reflection or emittance
from IR markers placed on the target’s joints, limbs, and face land-
marks. The location of each IR reflector then fused, forming a human
skeleton.

• Commodity System - The commodity system is the system that is com-
mercially available to the mainstream user, including Microsoft Kinect
and Intel Realsense. These systems mainly consist of a color camera
and a depth-sensing mechanism. Either projected IR patterns [32] or
time-of-flight (TOF) [9] concepts can sense depth. The first concept
is to project the triangular IR pattern onto the scene and then use
another IR camera to capture the deviation of the pattern. The devi-
ation of the triangle properties is used to calculate depth. The latter
concept employs the TOF mechanism by measuring the time emitted
IR dots travel from the emitter to the target and back to the IR cam-
era. After obtaining the depth information, it is used to subtract the
background, resulting in a human silhouette. The silhouette is then
fused with the color camera’s information and passed to the estimation
model, resulting in a human pose. The system was sufficient for gen-
eral use, requiring less precision. They are popular amongst academics
but lack general adoption and are currently discontinued for the main-
stream user. Today, both manufacturers have stopped releasing new
products for the mainstream market.

• Deep Learning on Monovision Color Camera - This section will intro-
duce current trends in the research community that aim to substitute
the commodity system being phased out. Nowadays, the related re-
search under HPE employs the concept of deep learning in computer
visions with the data from a color camera represented in the form of
an image frame or a sequence of image frames [91]. The model works
by first recognizing the human on the scene, then identifying each hu-
man’s joints’ location, and lastly, constructing a skeletal structure for
each recognized human [65]. For instance, it first recognizes all possible
body joints and forms interconnected joints as limbs. Lastly, the whole
human skeleton [63]. The selection of the mentioned model is highly
based on the nature of the problem. However, some models work op-
positely. The scene with a single human will work best with the first
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model. In contrast, the latter model will perform faster in settings with
more humans. This study chooses to employ this technique to get the
pose information for the activity recognition model

2.5.2 Human Activity Recognition

Human activity recognition(HAR) is a challenging and highly active research
topic; hence, it has a significant practical implication in the cyber-physical
system. There are various ways to perform it, and it can be categorized in
multiple ways. However, there is no general agreement on the categorizing
methodology. This report considers widely discussed categories, including the
type of input and related recognition model for each input type, including
wearable sensor-based and vision-based input.

• Wearable sensor-based input - The wearable sensor-based input or contact-
based input is usually located on the recognizing target. For instance,
an accelerometer is a sensor that provides the acceleration data m/s2 in
three-dimensional space. The sensor has been primarily used on smart-
phones and fitness trackers for a decade. It can successfully recognize
basic or general human activity, such as sitting, walking, lying, etc.,
using only a single accelerometer with a proper recognition model. In
addition, the transitional activity, including sit-to-stand, stand-to-lie,
or else, can also be recognized [57]. In addition, placing an additional
accelerometer on the target at the different locations to increase recog-
nition space is possible. For the last decades, there are several com-
mon classifiers in HAR including k-nearest neighbors [25], Discriminant
Analysis [19], Näıve Bayes [20], Support Vector Machine [74], Hidden
Markov Models [24], and combination of classifiers as Joint Boosting
[97]. However, these methods require feature engineering. The data
requires a domain expert to preprocess and fit it into the model. At
current, there are various successful attempts using multilayer percep-
tron (MLP) or ANN, including CNN [83], recurrent neural network
(RNN) [78], and hybrid models such as the combination of CNN and
RNN [105]. In contrast to common classifiers, the main benefit of an
ANN classifier is its generality, which is the ability to automatically
realize the features directly from the data and later infer them.

• Vision-based Input - The vision-based input or the remote method is
the vision sensor usually located further away, facing the recognizing
target. One of the main benefits of the input is the elimination of wear-
able tracking devices that can be cumbersome for some tasks. However,
this type of input usually requires additional computer vision tasks to
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extract features before performing the recognition task. For instance,
the HAR model can consider the shape of the changes in human bound-
ing silhouette [46]. However, obtaining a silhouette itself is challeng-
ing. One emerging method is to transform the vision-based input into
a skeletal pose using the previously popular commodity HPE system
and deep learning-based HPE. The estimated pose is then proceeding
to the machine learning (ML)-based HAR model [84]. This section will
further investigate and introduce the related model based on deep MLP
or deep learning.

• Deep Learning for Human activity recognition - Currently, various deep-
learning architectures are suitable for HAR based on Multi-dimensional
Skeletal-based HPE. For instance, CNN, RNN, and hybrid models com-
bine CNN and RNN. In addition, autoencoder [60], and self-attention
[99] architecture also being under focuses amongst academic.

2.5.3 Acquisition of Station Context

MA assistance systems and VTS must automatically detect the physical con-
text and use it as input for further processing. This input is crucial for
comparing an operator’s performance against other operators or predefined
templates and delivering context-based instruction.

• Vision-Based Information Acquisition: Vision-based sensors use com-
puter vision techniques to extract relevant features from images. They
are essential in semi-virtual and non-virtual environments for captur-
ing visual data accurately. Microsoft Kinect and Nintendo WiiMote
have been popular choices, with Kinect used for pose estimation and
depth-based context sensing, and WiiMote for gesture-based interac-
tion [61], [66], [77]. Despite their discontinuation, alternatives like Intel
RealSense and other motion-sensing devices are available.

• Non-Vision Information Acquisition: Uses body contact sensors and
sensors attached to the assembly station. These sensors are faster
and less computationally expensive but can be intrusive. Wearable
devices with head-mounted cameras provide a hybrid approach, mea-
suring kinematic characteristics and providing a viewpoint for analysis
[38].

The ”Information Acquisition for Virtual Training System” section de-
tails various methods for capturing data essential for VTS operations, focus-
ing on vision-based and non-vision-based techniques. Vision-based systems
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employ computer vision to extract features from images, which are useful for
fine motor skills and assembly context. Non-vision systems use body con-
tact sensors and sensors attached to assembly stations, offering faster and
less computationally intensive data acquisition but at the cost of being more
intrusive. Hybrid systems, leveraging advancements in VR and AR, com-
bine these methods for comprehensive data capture. Key enabling technolo-
gies include human pose estimation, human activity recognition, and context
recognition. These technologies are vital for digitizing and comparing oper-
ator performance, ultimately enhancing training efficiency and effectiveness
in VTS.

2.6 Multimedia Training Material

A multimedia training medium is essential for transferring knowledge of man-
ual assembly tasks. It can serve as introductory training for new trainees
and as a guide for experts assembling new products, allowing for scaling
out training without relying solely on expert demonstrations. Virtual Train-
ing Systems (VTS) for manual assembly focus on utilizing immersive train-
ing materials, such as Augmented Reality (AR) and Virtual Reality (VR),
to demonstrate complex assembly processes. These technologies reduce the
need for expert demonstrations and help trainees understand hidden struc-
tures within enclosures. Conventional materials, including paper-based man-
uals, process illustrations, video recordings, and 3-D animations, are typically
used for simpler assembly tasks. This section addresses types of immersive
multimedia training materials, including:

• Augmented Reality (AR): Augmented Reality (AR) enhances the
real-world environment by overlaying digital information, such as vi-
sual cues, 3-D models, and text descriptions, onto physical objects and
surroundings. AR can be delivered through various devices, including
handheld tablets, optical see-through head-mounted displays (HMDs),
and in-situ projection systems. These technologies provide interactive
and context-sensitive guidance, making it easier for trainees to un-
derstand and perform complex assembly tasks. By visualizing hidden
structures and offering real-time feedback, AR significantly improves
the efficiency and effectiveness of manual assembly training. Each of
the delivering techniques can be further elaborated as follows:

– Handheld Tablets: AR on tablets uses the camera to capture
images and augment training information, such as visual cues, 3-D
models, and short text descriptions, onto the display image. The
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information adapts based on the assembly’s location, orientation,
and perceived state [31]. This technology allows trainees to visual-
ize and understand the assembly process interactively, improving
their comprehension and retention of the information.

– Optical See-Through Head-Mounted Displays (HMD): These
devices provide the same augmented information without the need
for users to hold the device [77]. This hands-free approach en-
hances the training experience by allowing trainees to focus on the
assembly task while receiving real-time guidance and feedback.

– In-Situ Projection: In-situ projection involves projecting visual
aids directly onto the work environment or assembly parts, creat-
ing an interactive and intuitive training experience. This method
allows trainees to receive guidance without wearing any device, as
the information is projected onto their workspace. This approach
can highlight specific assembly steps, parts, and tools, providing
immediate visual context [66].

• Virtual Reality (VR): Virtual Reality (VR) creates a fully immer-
sive digital environment, allowing users to experience and interact with
a simulated world. Using VR headsets, trainees are transported into a
virtual space replicating real-world scenarios and assembly tasks. VR
is particularly effective for training in hazardous environments, where
operators can practice without exposure to actual risks. It enhances
spatial awareness and muscle memory, ensuring correct part selection
and placement during assembly. The immersive nature of VR helps
trainees build muscle memory and spatial awareness, leading to more
efficient and accurate performance during actual assembly tasks. VR’s
immersive environment is beneficial for introductory training in haz-
ardous settings, where operators must be aware of heavy tool motions
and potential risks [73]. By immersing trainees in a controlled virtual
environment, VR training can safely replicate dangerous situations, en-
abling operators to practice and develop their skills without exposure
to actual hazards. VR is also useful for training in assembly sequences,
ensuring correct part selection and placement [68], [95], [113].

In summary, multimedia training materials are critical for effectively con-
veying manual assembly knowledge from experts to trainees. By incorpo-
rating visual aids such as video recordings and animations, these materials
enhance trainees’ understanding. Research communities continue to intro-
duce and refine immersive display technologies for industrial training. These
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technologies reduce the cognitive load associated with separate assembly in-
structions and enable the simulation of hazardous work environments and the
visualization of hidden structures within a workpiece’s enclosure. As a result,
multimedia training materials play a vital role in improving the efficiency,
safety, and effectiveness of manual assembly training in modern industrial
settings.

2.7 Industrial virtual training system frame-

work

To enhance understanding among researchers and practitioners, the devel-
opment of a structured framework is essential. Such frameworks provide
a systematic approach to realizing Industrial Virtual Training Systems (I-
VTS), enhancing consistency, efficiency, and effectiveness in implementation.
They also facilitate a deeper comprehension of the operational mechanics of
these systems. In the context of I-VTS, these frameworks, often presented as
diagrams and detailed specifications, can be categorized into three primary
types based on their focus: hardware-software mapping and information flow,
data communication governance, and skill development.

First, numerous studies provide hardware-software mapping and informa-
tion flow diagrams [18], [23], [38], [59], [61], [70], [76], [77], [94], [95], [113],
[119]. These visualizations crucially describe the interaction between hard-
ware and software components within I-VTS, illustrating the system’s archi-
tecture and the pathways of information flow. They enable stakeholders to
clearly understand the proposed systems’ essential techniques, components,
and key features.

Second, several papers focus on data communication governance within
I-VTS, outlining the structure of the data exchanges [23], [34], [38], [47], [61].
This includes frameworks that use knowledge-level models, such as ontolo-
gies, which provide flexibility in system implementation and future scalabil-
ity. Others employ predefined data standards to support common industrial
maintenance and assembly tasks, ensuring interoperability and consistency
across implementations.

Third, a few studies address frameworks related to skill development,
particularly the cognitive skills necessary for effective industrial maintenance
and assembly performance [70], [76]. These frameworks are vital for design-
ing training systems that focus on cognitive abilities required for managing
complex industrial tasks.

Overall, these frameworks play a crucial role in articulating the complex
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structure of I-VTS, ensuring that the systems are functional and adaptable
to future advancements and changes in industrial requirements.

2.8 Summary

The related work chapter reviews the literature on virtual training systems
(VTS), focusing on industrial use cases. It introduces related systems and
categorizes them based on their motivation and objectives. Recent research
has advanced the affordability and availability of immersive display tech-
nologies like AR and VR, reducing cognitive load by providing immersive
presentations of training material. The chapter identifies critical enabling
technologies such as information acquisition from the assembly station and
skill comparison between expert templates and trainees. It also discusses the
incorporation of augmented feedback techniques in motion-related training,
such as sports and dance. To the best of the authors’ knowledge, no existing
I-VTS for industrial manual assembly (I-MA) provides augmented feedback
based on digitized skill comparisons. The underlying techniques, including
human pose estimation, activity recognition, and sequence and motion com-
parison, will be detailed in the methodology chapters.
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Chapter 3

Requirement Engineering

The process of requirements engineering is for dealing with the problem’s
complexity. It focuses on describing the purpose of the system concerning
the user’s views on the system, which results in the specification of the system
that can be understood by the stakeholders [13]. The visionary scenarios will
be developed and proposed based on the observed as-is scenario. Then, the
use cases and requirements are identified in the following sections.

3.1 Proposed Solution

This dissertation develops a I-VTS called ”EXpert Independent Manual
AsseMbly VIrtual TraiNER” (EXAMINER). The system uses the available
technological concepts with optimized adjustment interconnected, creating a
I-VTS that can automatically provide extrinsic augmented feedback report-
ing the training outcomes. The hardware setup of the system, as visualized in
figure 3.1 shows an example of a vision-based EXAMINER that use a front-
facing camera to sense the assembly context by pointing it to the assembly
scene and the operator.

The system is capable of fulfilling the following tasks,

• The system can provide extrinsic augmented feedback of knowledge
performance by comparing the digitized performance in cognitive and
motor skill comparison.

• The digitization of performance uses context sensing capabilities, in-
cluding the color vision camera or else that is not intrusive to the
digitized target.

• The application’s graphical interface allows an expert to include and
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Assembly Station with EXAMINER
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Figure 3.1: A vision-based EXAMINER.

present the additional training material, including descriptive text, still
images or graphics, and recording video or animation for the trainee.

The proposed solution can benefit a trainee or an expert in industrial
assembly in the following ways.

• A trainee can repeatedly study and train using the system. The system
can eliminate the need for in-person, face-to-face training and assis-
tance, which requires both parties to be available.

• Knowledge performance of an expert can be digitized and stored

• The Manufacturing industry can reduce productivity loss by allocating
an expert to offer face-to-face training.

• The training can be scaled out and geographically distributed without
relying on the number of experts available.

3.2 Scenario

A scenario is a concrete, focused, informal description of a feature of the
system from the viewpoint of an actor [13]. In this section, the as-is scenarios
describe a currently observed situation. Later, the visionary scenarios were
developed and proposed to the stakeholders as a future system.
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3.2.1 As-is Scenario

A manufacturing firm recently recruited new employees to help fulfill the
customers’ demands. The firm is about to release a new variation of the
company’s popular product, which was designed by the product design team.
The team consists of multi-disciplinary experts from various sections of the
firm. Together, they help develop the product prototype and translate it
into a version that can be mass-produced. The knowledge co-created in the
design phase has to be explicitly transferred to the production team at the
factory. Here, the transfer of knowledge is done through one-on-one training
with the expert. As of current, everything related to the assembly of a new
product is readily available, including the material, assembly station, instruc-
tion manual, and video guidance. If the company has an expert operator to
spare, they can directly assemble the product for the market. However, all
experts are currently trying to fulfill the demands of the current generation of
the product even though the company has already hinted to their customers
that the new variation will launch soon. It only helps a slight decrease in
demand. Only a few experts are available to offer one-on-one training to the
new employees. As the firm does not want the new product release to suffer
from the general availability, they decided to allocate more experts from the
ongoing production lines to offer training by sacrificing the output of the
current product. As a result, the current product starts to sell out, causing a
supply-demand gap resulting in the loss of income. The firm hopes that there
is some methodology to intelligently provide the training for the newcomers
without relying too much on experts.

3.2.2 Visionary Scenario

The firm decided to equip the assembly station with the vision-based EXAM-
INER, consisting of a camera and a touch input display screen. As the firm
has already started shifting to Industrial 4.0, all of this required equipment
for EXAMINER was equipped and interconnected to the computation facility
for other purposes. The firm only has to implement and tweak the EXAM-
INER to fit their needs based on the guidelines provided by the EXAMINER
framework and then install them on the computational facility. The firm uses
EXAMINER to capture the expert’s manual assembly knowledge and encode
it in cognitive and motor manual assembly skills (shortened as cognitive and
motor skills). In addition to the encoded knowledge, EXAMINER attached
the multimedia training material curated by the expert. The whole package
of knowledge and material is then shipped and installed to the designated
training destination. At the destination, the training manager makes sure
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that the system is ready to be used by the newcomers or the trainees. Once it
is ready and meets the requirements, including ergonomics, safety, and space
setup, the manager allows the trainee to train with the system. The sys-
tem provides training material and instruction to the trainee. The trainee
carefully navigates around the material and performs trail assembly along
with the instruction at their own pace. Once the trainee is ready, the system
turns from presentation to evaluation mode. Here, the trainee’s performance
is recorded and concurrently evaluated. At the end of the training iteration,
the trainee received the automatically generated feedback on the knowledge
performance and their intrinsic feedback, which is shown as the outcomes of
the assembly. The firm can continue production without sacrificing the num-
ber of experts to offer one-on-one training. The training also scales out to
all available assembly cells transformed to offer training. Training, however,
is still being supervised by the training manager. However, a manager can
handle multiple trainees at a time.

3.3 Use Case

A use case specifies all possible scenarios for a given piece of functionality;
it helps clarify the system’s requirements. The identified use cases are sum-
marized in the Unified Modeling Language(UML) use case diagram shown in
figure 3.2, which gives an overview of all identified use cases and the relation-
ships among actors and use cases. The system consists of two actors. First,
the expert who creates the assembly knowledge and related training materials
by recording the assembly task and editing them by attaching training mate-
rial. Second, the trainee, who consumes the training package, performs MA
training and uses feedback provided by the system to improve the knowledge
performance.

3.3.1 Use case 1: Record assembly task

The first use case has both experts and trainees as primary actors. They
use the system to record their assembly skill. Once the recording is finished,
the system automatically transcribes by digitizing the recorded performance
into a step-by-step manual assembly process. The system requires digitiz-
ing cognitive and motor skills. Activity and context recognition enable the
digitization of cognitive performance. At the same time, the latter requires
an automatic recording of operation time and motion trajectory. Figure 3.3
provides an additional use case to the original figure 3.2 focusing on the
expert.
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Figure 3.2: The overall use case for both expert and trainee.

Use case name Record assembly task

Participating actor Expert and trainee

Entry condition The actor ready to record their MA knowledge
performance for a particular task. The assembly
cell was set up using the layout as instructed and
consisting required material and tools for the task.

Flow of events 1. The actor start the system’s recording tool.

2. The actor perform the MA of the task.

3. The actor stop the recording once the assembly
is completed.

Exit condition The raw performance were digitally saved in the
persistent storage and digitized as cognitive and
motor performance.
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Figure 3.3: Extension of use case from figure 3.2, focusing on expert’s use
cases.

3.3.2 Use case 2: Edit assembly task

The expert later edits the recorded assembly task by associating additional
information to each step or context, including the related training material
and information the system cannot capture, including the name of the task
and step. It serves as the information to be later visualized for both parties.
As suggested by the diagram figure 3.3, the extension relationship indicates
that the attachment of the task description and instruction manual is op-
tional.

3.3.3 Use case 3: Study task material

The third use case has the trainee as a primary actor. Here, the trainee uses
a training package for a particular MA task curated by the expert. Here,
the trainee may navigate through each assembly step in the material while
performing a trail assembly at their own pace. The judgment of knowledge
outcomes is solely intrinsic in this phase.

3.3.4 Use case 4: Consume performance feedback

Once the trainee feels confident with the knowledge outcomes, they use the
system to record their assembly performance as in the first use case. Once the
digitization is complete, the performance will be compared with the expert’s
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Use case name Edit assembly task

Participating actor Expert

Entry condition The performance recorded were successfully digi-
tized by the underlying system.

Flow of events 1. The actor reviews each digitized step.

2. The actor includes each of missing context that
is not digitized by the system including task
name, and step name.

3. Optionally, the actor may include additional
material including text description, images,
and video or animation that is externally cre-
ated.

Exit condition The application added the context to digitized
MA task and the electronic training material to
each step if available, lastly saved in a persistent
storage for later distribution.

Use case name Study task material

Participating actor Trainee

Entry condition The training package was installed on the training
system located at assembly station and the station
is setup for the actor.

Flow of events 1. The actor study thorough the training mate-
rial.

2. The actor perform trail on each assembly step.

Exit condition Thec actor feel confident with the MA task intrin-
sicly judging by the knowledge outcomes.
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Use case name Consume performance feedback

Participating actor Trainee

Entry condition The actor feel confident to be evaluate by the sys-
tem, and the assembly cell is return to the original
state ready to be using for the recording of actor’s
performance.

Flow of events 1. The actor start the system’s recording tool and
perform the MA task.

2. Once the material is exhausted or reaching a
target quantity, the actor stop the recording.
In concurrently, the system digitized the actor
skills.

3. The actor select the expert’s MA performance
to be evaluate.

4. The system evaluates and provide extrinsic
augmented feedback to the actor.

Exit condition The actor received the extrinsic augmented feed-
back from the system reporting the knowledge
performance.

template. The system compares both cognitive and motor skills. In the end,
the comparison result is reported using the extrinsic augmented feedback
template that is easily interpretable. Trainees consume the feedback and
incorporate it with their intrinsic feedback from the knowledge outcomes of
the MA task. The trainee uses extrinsic and intrinsic feedback to improve
their knowledge performance. Figure 3.4 provides an additional use case as
discussed in the original figure 3.2 focusing on the trainee.

3.4 Functional Requirement

Functional requirements (FR) or functional specifications define a function
consisting of a system’s input, behavior, and output or its underlying compo-
nents. The requirement can be documented as precisely as each calculation
occurs or up to a high level that defines what should be accomplished. It
serves as communication between the system designer and the implementer.
Failing a functional requirement renders the system incomplete. This section
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Figure 3.4: Extension of use case from figure 3.2, focusing on trainee’s use
cases.

introduces the high-level functional requirement of EXAMINER.

1. Human motion capture - The system must be able to capture and record
the motion of an operator moving at the tracking area.

2. Manual assembly activity recognition - The system must detect the
manual assembly-related activity. This includes the activity of reach-
ing for material, tools, and area, retracting item to the assembly area,
using tool to assembly, and assembling using hands only.

3. Assembly context capture - The system must capture state changes
of MA-related context. This includes changes of availability as present
and not present of material, tools, and the final product at the assembly
station.

4. Manual assembly step recognition - The system must identify the step
given the recognized activity and the MA-related context.

5. Recording of operation time - The system must be able to record the
operation time of each assembly step automatically.

6. Attaching of multimedia training material - The system allows the user
to attach multimedia training material, including video, pictures, and
description text created with external tools.

7. Presenting of multimedia training material - The system allows the
user to consume the multimedia training material associated with each
assembly step.
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8. Comparing of cognitive skill - The system must be able to use the
recording of the performance of each subject and perform the cognitive
skill comparison. It compares the sequence and similarity of each per-
formed step without considering operation time and motion trajectory.

9. Comparing of motor skills - The system must be able to use the record-
ing of the performance of each subject and perform the motor skill
comparison. It compares the similarity of each performed step with
the considering operation time and motion trajectory.

10. Providing extrinsic feedback of knowledge outcomes - The system allows
the user to consume the extrinsic feedback of knowledge performance
from the comparison of it with the expert’s template. The feedback is in
a form that is easily interpretable, including scores, grades, pass/failed
evaluations, and descriptive recommendations.

3.5 Non-Functional Requirement

The non-functional requirement describes the aspect of the system that is not
directly related to its functional behavior. This is usually how the system
looks and feels to the user as a system’s quality. It is also known as a quality
requirement. The non-functional requirements(NFR) of EXAMINER are
described in the following subsections below.

1. Performance

• The system maintained the frame rate at 30 frames per second
in any video and graphic display of any media presented in the
graphical user interface.

• From a user perspective, there should be no noticeable delay be-
tween reality and the live video feed display.

2. Supportability

• The module must provide an interface for supporting different
sources of data streams from different sensor vendors.

• The system must be able to run on a dedicated personal computer
or an edge computing device. If required, the heavy computational
task, including human pose estimation, can be transmitted to a
dedicated system.
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3.6 Summary

The requirements engineering chapter describes the overall purpose of EX-
AMINER, as explained by the visionary scenario. The use cases are based
on four primary scenarios: record assembly tasks, edit assembly tasks, study
task material, and consume performance feedback. The scenarios are then
generalized into use cases. From these use cases, functional and non-functional
requirements are gained. The proposed system is built on the assumption
of these requirements. In the next chapter, the conceptual framework of the
proposed system is formalized in an analysis model.
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Chapter 4

Conceptual Framework of
Proposed System

From the requirements elicited in the previous section, Various tools aid the
transformation of the requirement into the system in an organized and struc-
tured way. These tools also help to communicate the structure of the system
to stakeholders. The dissertation continues to employ the concept of system
analysis and design(SAD) by documenting it using Unified Modeling Lan-
guage(UML) [8]. UML is a modeling language widely used for designing,
communicating, and documenting software system design. This dissertation
uses the conceptual data model, activity diagram, and component decompo-
sition diagram to visualize the structure of EXAMINER and to demonstrate
the process. In addition, off-the-shelf components and a selection of pro-
gramming languages are also being elaborated on. The section begins with
an introduction to the framework and its sketch.

4.0.1 Introduction to EXAMINER framework

EXAMINER simulates an MA training session conducted at an MA station.
Generally, there are two types of MA stations: single MA stations and inline
MA stations. At a single MA station, an MA operator independently com-
pletes a multi-step MA operation with varying operation lengths for each
assembly step. The assembly can be performed either standing or sitting,
depending on the required range of motor trajectory and hand motion pre-
cision. Compared to an inline MA station, the single station is used in all
enterprises, from large to small. In contrast, an inline MA station is com-
monly used in large enterprises to produce large quantities of products.

EXAMINER is designed to operate as a portable I-VTS in the form of sta-
tion add-ons. It primarily comprises a context-sensing device, a multimedia
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presentation device, and a computing resource. EXAMINER continuously
senses the MA station and deduces MA context. It provides enhanced termi-
nal extrinsic feedback to the trainee by objectively comparing their MA skills
performance to the recorded template. The feedback assists the trainee in
achieving a knowledge performance and facilitates the trainee’s incorporation
of the received feedback with personal intuition concerning the knowledge of
a result.

Introducing a comprehensive I-VTS framework offers several key benefits:

1. Component Identification: The framework helps interested parties
identify the system’s underlying components, providing a clear under-
standing of how different parts interact and contribute to the overall
functionality.

2. Standardization: It sets a standard for future work under the same
paradigm, ensuring consistency and compatibility across different im-
plementations. The standard is crucial for advancing research and de-
velopment in this area.

3. Structured Approach: By providing a structured approach, the
framework facilitates the systematic design, implementation, and eval-
uation of similar systems, promoting best practices and enhancing the
quality of outcomes.

4. Guidance for Development: The detailed description of each com-
ponent and their interconnections guides developers and researchers,
streamlining the process of creating and improving virtual training sys-
tems.

This introduction to the EXAMINER framework outlines its configuration
and operation at an MA station, designed to support both standing and sit-
ting assembly tasks. The framework’s adaptability across different enterprise
sizes highlights its utility in enhancing MA training effectiveness. By detail-
ing the setup and the technological components involved, this section sets
the stage for further details of EXAMINER’s design in subsequent sections.

4.1 Conceptual Data Model

Conceptual data models or domain models visualize a zoom out of the overall
system showing major parts [4]. It directly transforms the requirement into
a decoupling of underlying things important to fulfilling the requirement.
This thesis visualized the data model of EXAMINER in the figure 4.1. A

37



manual assembly task or training package consists of a strictly sequential
assembly step (ST) list. Each step is composed of another sequential list of
primitive steps (PR) and the step instruction manual. The step instruction
manual includes multi-media material that assists the trainee in training each
step. The primitive step is the concrete activity with the material, tools, and
workpiece, defined as context at location (LO). The activity is a limited set
of motion trajectories, and limb(s) (LI) perform the motion. The context is
defined as the transition type between the present (P) not to present (NP)
and vice-versa of the interested region. The training package is ready to be
used by filling in all the data in all parts.

EXAMINER introduces an MA data structure, enabling the persistent
storage, transfer, comparison, and utilization of digitized MA operations
across various components within EXAMINER system. This ensures that
the system is compatible and consistent across different implementations.
Furthermore, the proposed MA data structure is a crucial aspect of the
EXMINER framework describing the data object and its flow within the
system.

At its core, MAα denotes a finite set, with members ordered by a natural
number index, N and α serves as an index parameter of MAα with α ∈ N.
This set comprises a sequence of assembly steps STβ, where β ranges from
1 to n. Each STβ represents an ordered assembly step, from the first step
when β = 1 to the final step when β = n. Each STβ is a set comprising of
finite ordered primitive steps PRγ, with γ ranging from 1 to n. Formally,
MAα can be represent as

MAα = {ST (α)
1 , ST

(α)
2 , ST

(α)
3 , . . . , ST (α)

n } (4.1)

In this formulation, MAα is the set containing all of its assembly steps
from ST1 to STn, and α serves as an index to access different assembly
step sets. Each STβ represents an assembly step within the sequence. An
operator must perform MAα completely in strict STβ order with expected
quality and a consistent, desirable operation time. An expert defines the
step order through a well-established guideline, an experiment, a personal
intuition, and prior experience. The STβ set is represented as:

ST
(α)
β = {PR

(β)
1 , PR

(β)
2 , PR

(β)
3 , . . . , PR(β)

n } (4.2)

In this formulation, STβ represents an ordered set of its primitive steps
PRγ within the STβ. Here, PRγ is an object defined as:

PR(β)
γ = {LI(γ), ACT (γ), LO

(γ)
init,

LO
(γ)
dest, TOPT (γ), TRAJ (γ)}

(4.3)
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The members of the primitive step object can be categorized as follows:

• Cognitive skill data

– LI represents the limb that performs the primitive step PRγ. It
can be the left hand (LH), right hand (RH), or both hands (LRH)
in cases where the assembly activity requires the use of both hands.

– ACT represents the action associated with PRγ, including reach-
ing and retracting for picking and placing, assembly for fitting and
aligning, and tool use for screwing.

– LOinit and LOdest are location identifications associated with the
movement of the limb LI from an initial location LOinit to a des-
tination location LOdest.

• Motor skill data

– TOPT represents the measured operation time of the primitive
step PRγ.

– TRAJ represents the multi-dimensional trajectory of the limb LI
in either R2 or R3 space, expressed as a time series.

Additionally, it should be noted that although the primitive steps PRγ

within STβ appear sequential in the notation, an operator can execute PRγ

concurrently with PRγ+1 and subsequent steps, subject to the availability of
limbs. For instance, the operator may simultaneously pick an assembly part
and place another part with each available hand. EXAMINER interprets
this circumstance as distinct.

In summary, the primitive step object PRγ comprises cognitive skill data,
including information about the limb involved (LI), the action performed
(ACT ), and the initial and destination locations (LOinit, LOdest), as well as
motor skill data, including the operation time (TOPT ) and the trajectory of
the limb (TRAJ) as summarized in 4.2.

4.2 Dynamic Model

The behavior of the data model can be documented using UML activity
diagrams. An activity diagram is a UML notation representing the behavior
of a system concerning activities. The diagram is separated into two as there
are two main actors in EXAMINER. The first diagram concerns expert as
in figure 4.3, the latter concerning 4.4. Each diagram consists of two swim
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Step list

Strict sequence of step

Assembly Step

Assembly step details

Manual Assembly Task
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Primitive Step List

Strict sequence of primitive step

Step Instruction Manual

Step description, photo, video recording

Primitive Step

Details, operation time

Context

Context transition information

Transition Type Region

Manual Assembly Activity

Trajectory Limb

Figure 4.1: A conceptual data model of EXAMINER.
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LI ACT LOPR 0

LI ACT LOPR 1

…

Step(ST0)

ST 1

…

Manual Assembly Sequence(MA)

Figure 4.2: Proposed data structure of an MA task. Where activity is de-
noted as ACT and Region denoted as LO.

lanes, the actor and the EXAMINER system. It indicates the flow of activity
from start to finish. EXAMINER consists of two main activities performed
by different actors as follows,

1. Expert record and edit assembly task as in figure 4.3, the activity
diagram depicts the process of recording and editing an assembly task
performed by an expert using the EXAMINER system.

(a) Expert Actions:

• The expert begins by performing the assembly task.

• Once the expert stops performing, they edit the assembly
task.

• If editing is required, the expert edits the assembly task before
releasing the training material.

(b) EXAMINER System Actions:

• Concurrently, EXAMINER records the performance of the
expert.

• The system processes the recorded data through various mod-
ules:

– Human Pose Estimation: Identifies and tracks the hu-
man body joints and limb positions.

– Activity Recognition: Recognizes the activities per-
formed during the assembly.
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Record and edit assembly task

Expert

Perform assembly task

Stop performing

YES

NO

Edit assembly task

Release training material

EXAMINER

Record performance

Human pose estimation

Assembly context recognition

Activity recognition

Record operation time

Record motion trajectory

Figure 4.3: The activity regarding record and edit assembly task performed
by an expert.
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– Assembly Context Recognition: Identifies the con-
text of the assembly operations.

– The system then records operation time and motion tra-
jectory.

This process ensures that the expert’s performance is accurately cap-
tured and processed, allowing for the creation of comprehensive train-
ing materials. The recorded data is essential for providing detailed
feedback and training guidance.

2. Trainee undergoes training as in figure 4.4. The activity diagram shows
the training process for a trainee using the EXAMINER system.

(a) Trainee’s Activities:

• Consume Training Material: The trainee starts by studying
the provided training materials.

• Ready to Perform Evaluation?: The trainee decides whether
they are ready for evaluation.

• Perform Assembly Task: The trainee proceeds to perform the
assembly task.

• Stop Performing: Upon completion, the trainee determines if
they are done with the task.

• Consume Extrinsic Augmented Feedback: The trainee re-
ceives feedback based on their performance.

• Pass the Training?: The trainee checks if they have passed
the training.

(b) EXAMINER’s Activities:

• Present Training Material: EXAMINER presents the training
materials to the trainee.

• Record Performance: Records the trainee’s performance dur-
ing the assembly task.

• Human Pose Estimation and Activity Recognition: Analyzes
the trainee’s body movements and recognizes the activities.

• Assembly Context Recognition: Monitors the trainee’s assem-
bly task context.

• Record Operation Time and Motion Trajectory: Logs the op-
eration time and movement path.

• Load Digitized Expert’s Template: Loads the expert’s perfor-
mance template for comparison.
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Trainee undergoes training

Trainee

Perform assembly task

Stop performing

NO

Consume extrinsic  
augmented feedback

YES

Pass the training

Consume training material

Ready to perform evaluation

NO

YES

NO

EXAMINER

Record performance

Human pose estimation

Assembly context recognition

Activity recognition

Record operation time

Record motion trajectory

Present training material

Load digitized expert's template

Compare cognitive skill Compare motor skill

Generate skill feedback

YES

Figure 4.4: The activity regarding a trainee undergoing training.
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• Compare Cognitive and Motor Skills: Evaluate the trainee’s
skills against the expert’s template.

• Generate Skill Feedback: Produces feedback to guide the
trainee’s improvement.

These diagrams collectively illustrate the comprehensive training and evalu-
ation process using the EXAMINER system, highlighting both the expert’s
role in preparing training materials and the trainee’s experience during the
training process.

4.3 System design and architecture

The previously discussed analysis model is transformed into a system design
in the system design section. This model clearly describes design goals,
subsystem decomposition, and system-building strategies.

4.3.1 Design Goals

The system design is driven by the following overall design goals, including,

• Usability
It should be easy and intuitive for a user to navigate the graphical user
interface to accomplish the task.

• Non-Obtrusive
The system must be non-obstructive to the user while digitizing the
skill. This means that the user’s hand and arm can move freely in the
camera’s field of view. It requires no intermediate application controls
during the recording.

• Response Time
The system must appear responsive to user input. The computation
time process must be presented and visualized as a progress bar or, if
possible, a countdown and elapsed timer.

4.3.2 Subsystem Decomposition

In this section, the dissertation elaborates on mapping the system’s compo-
nents to different subsystems, which will later be mapped to actual hardware
devices.
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Addressing the architecture of the EXAMINER framework is crucial as
it defines the interconnection of major components. This architecture not
only addresses the functionality of each component but also ensures their
effective integration. EXAMINER system is separated into four distinctive
features that form an interconnection of major components resulting in a
system architecture as depicted in Figure 4.5, including:

• Skill digitization,

• Skill comparison,

• Feedback providing, and

• Multimedia training material

Skill digitization

Skill digitization is a component responsible for converting input from a non-
invasive commodity data acquisition sensor, such as a color video camera, into
a piece of objectively comparable information on MA cognitive and motor
skills. The skill digitization component comprises several sub-components
that work collaboratively to achieve the common goal of digitizing the oper-
ator’s MA skills.

The video obtained from a color camera is split into two data streams.
The first data stream is routed to a sub-component that performs motion
capture of human performance. The motion capture sub-component uses
the data stream to detect joint locations in multidimensional Cartesian coor-
dinates Rn where n ∈ {2, 3}. The output of the sub-component, in the form
of a time series of the joint’s location, is then used as an input for the ac-
tivity recognition sub-component. The activity recognition sub-component
recognizes MA activities, including reaching, retracting, tool use, and as-
sembly. Concurrently, the second data stream goes to a context capture
sub-component, which continuously recognizes the state of an MA object as-
sociated with the activity. The object’s state in the assembly station is either
present or not present. The output from the context capture sub-component
indicates the object’s state and the time at which the object’s state changes.
The output from the context capture sub-component is then split into two
streams. The first stream is for the step recognition sub-component. The
sub-component incorporates the previously recognized MA activities and the
state of an MA object from the activity recognition and context capture sub-
components, creating an MA step as an output. The second stream is for a
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Expert

Comparison

Motor skill

Operation time 

Trajectory similarity

Cognitive skill

Step similarity 

Feedback provider

Cognitive skill

Motor skill

Time feedback

Trajectory feedback

Step error

Training media

Media creator

Media presenter

Skill digitizer

Motor skill digitizer

Time recorder 

Trajectory recorder

Cognitive skill digitizer

Scene context sensing

Human pose tracking

Activity recognition

Assembly station with EXAMINER

Media presenter
1. Screen
2. Immersive devices
3. In-situ projections

Sensor

Non-vision sensor
1. Accelerometer
2. Gyroscope
3. Touch sensor

Vision sensor
1. Camera
2. Depth camera
3. Photo sensor

Figure 4.5: Proposed conceptual framework of EXAMINER. It consists of
four major components and a physical system as an assembly station.
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recording of the operation time sub-component where the name is suggested;
it records the operation time at each assembly step.

Finally, the output of the step recognition and recording of the operation
time sub-component is the operator’s sequences of MA step and operation
time, respectively. The output can now be used to compare the skill with the
specified template using a skill comparison component or as the comparison
template itself.

Skill comparison

The skill comparison component compares the trainee’s previously digitized
MA skills to the expert’s digitized template. The comparison seeks to high-
light operators’ differences and similarities in MA skills. MA skills comprise
MA cognitive skills and MA motor skills. EXAMINER defines MA cogni-
tive skill as an operator’s ability to perform strictly sequential step-by-step
MA operation sequence with the appropriate action on an assembly part,
including:

• Picking up or selecting the correct part,

• Incorporating parts with a correct location and orientation and

• Using a tool to assist the incorporation if required.

MA motor skills refer to the operator’s ability to complete the assembly in
a consistent, desirable time with an appropriate motion.

EXAMINER introduces sub-components for the skill comparison com-
ponent, which compares digitized skills by identifying differences and simi-
larities. A difference in operation sequence sub-components receives input
from the step recognition sub-component. The sub-component compares and
outputs MA operation sequence differences from the desired template. A dif-
ference in operation time and motion similarity are two measurements used
to compare motor skills. First, a difference in operation time sub-component
compares the difference in operation time from a specified target using an
output from the sub-component. In concurrent, a motion similarity sub-
component directly uses the output of the motion capture sub-component as
a time series of the joint’s location to measure similarity with the template.

Following the comparisons, the skill comparison component’s outputs are
passed to the feedback-providing component in the form of differences in MA
step sequence, operation time of each step, and assembly motion similarity.
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Feedback providing

The skill comparison component, as previously stated, produces three types
of outputs: differences in operation sequence, operation time, and motion
similarity. In general, these outputs can be used directly as augmented feed-
back to both the trainee and the expert, as has been done in previous stud-
ies. Most of the time, the expert interprets the system’s augmented feedback
to the trainee. On the other hand, EXAMINER introduces a feedback-
providing component. It converts outputs of the skill comparison component
into a suitable format specified by the expert for direct consumption by the
trainee.

The feedback-providing component will use a matching rule to match the
input and then provide augmented feedback. The expert must provide a
matching rule and the corresponding augmented feedback output for each
matched rule for each input, including differences in operation sequence,
operation time, and motion similarity. EXAMINER proposed two types of
augmented feedback: a grading and a semantic description of an error. First,
the grading feedback intends to report differences in operation time and
motion similarity. The grade can be given in letters, a numerical range, or a
percentage. A matching rule for grading, also known as a grading scheme, is
based on an expert’s intuition and is flexible depending on the nature of the
MA operation. For example, the operation that requires an exact match in
operation time and motion may choose a binary pass or fail grade. Second,
the semantic description of an error seeks to report differences in operation
sequence in the form of a brief text. For example, a skip or missing MA
operation step in the MA operation step sequence will be reported as a short
text indicating the type of error and at which step.

Finally, the trainee employs augmented feedback provided by the feedback-
providing component and self-realized intrinsic feedback to improve outcomes
during the next training iteration.

Multimedia training material

Multimedia training material is a component that displays MA multimedia
training material. The component enables an expert to attach additional tra-
ditional and immersive mediums and information that the system’s skill dig-
itization component cannot automatically digitize. A conventional medium
may include an image, video, animation, and text describing the MA oper-
ation sequence. On the other hand, an immersive medium can range from
semi-immersive, such as AR, to fully immersive, such as VR. Consequently,
the expert improves the comprehensiveness of the digitized MA operation
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and generates training materials.
Training materials and an expert template of the digitalized MA are then

packaged and sent to the trainee. The trainee must be capable of consuming
and navigating the content using the appropriate media display and input
technologies. For example, the conventional medium is displayed on a com-
puter monitor. The interaction may be conducted using a touch-sensing
interface or a hand-held pointing device, such as a touchscreen monitor and
computer mouse. The immersive medium may necessitate an AR-OHMD,
video see-through HMD (VST-HMD), and VR. Each device offers a distinct
method of interaction with the immersive medium. The trainee can con-
sume the training material at their discretion without relying on face-to-face
training with an expert. The trainee may attempt the MA operation by
referring to the provided materials. When the trainee is prepared, EXAM-
INER assesses their knowledge performance. After addressing the system
architecture, the off-the-shelf components are addressed.

4.3.3 Off-the-Shelf Components

The off-the-shelf component is an external component that was carefully se-
lected and used in the system as it was initially implemented. It supports
services provided by the components described in subsystem decomposition.
The digitization component uses vision-based two-dimensional human pose
estimation called AlphaPose to aid the digitization task. This section first
introduces the concept of human pose estimation. It later provides the ra-
tionale for the selection of the off-the-shelf components.

Human Pose Estimation

The input of the two-dimensional (2D) HPE model is a frame(F) of video(V).
Given τ is a temporal space, a video V is an n-tuple (F1, F2, . . . , Fτ ) where
Fτ represent an image frame F at τ . Each F is a x × y matrix with |x · y|
depends on the camera’s resolution representing R2 of image pixel px,y object
encoded by an RGB video camera. The output of 2-D HPE is the probability
of joints for each human represented in F at px,y. The estimated number of
joints solely depends on the dataset used for training. The MSCOCO 2017
dataset contains approximately 64,000 images with at least one human with
joint annotations as Jkx,y [42]. Where k is the annotation class as listed in
table 4.1. By providing F to the 2D-HPE model, the model estimates the
location of all possible Jkx,y as visualized in figure 4.6.

2D-HPE is a challenging and highly competitive research topic as it has
practical contributions in other areas. Currently, there are various ready-to-
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Head
Nose

Left Eye Right Eye
Left Ear Right Ear

Upper Body
Left Shoulder Right Shoulder
Left Elbow Right Elbow
Left Wrist Right Wrist

Lower Body
Left Hip Right Hip

Left Knee Right Knee
Left Ankle Right Ankle

Table 4.1: The table listed all Jk under MSCOCO 2017 dataset.

y

x

Figure 4.6: Visualization of HPE output under MSCOCO 2017 dataset.
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Method Head Shoulder Elbow Wrist Hip Knee Ankle µ

OpenPose 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Stacked Hourglass 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5
AlphaPose 91.3 90.5 84 76.4 80.3 79.9 72.4 82.1

Table 4.2: AlphaPose yields the best average precision (AP) on the target
joints including shoulder, elbow, and wrist.

be-use models, including OpenPose [62], [63], [81], [90], Stacked Hourglass
[54], and AlphaPose[65], [85], [88]. For simplicity, the EXAMINER employs
one of the 2D-HPE models that yield a sufficiently good result and is ready
to be used out of the box, called AlphaPose. The performance comparison is
listed on the table 4.2. The model selection is solely based on the report per-
formance on MS COCO. It works in a multi-phase manner. The significant
phases consist of estimating the human bounding box in F and estimating
each key point, resulting in joints’ probability heatmaps for each bounding
box. The bounding box estimation uses a spatial transformer network where
they can recognize the object, in this case, a human. Then, it performs
the image’s geometric transformation, resulting in the accurate boundary
for a single-person pose estimator(SPPE). After obtaining the boundary, the
model uses SPPE to estimate the Jkx,y on each boundary.

Stacked Hourglass Networks is one of the common network architectures
selected for providing the probability of an object’s location in F [54]. It is a
form of encoder and decoder artificial neural network; the encoder extracts
the input into a downsampled feature matrix. However, it lacks spatial infor-
mation, hence requiring a decoder to preserve it. A decoder upsamples the
feature matrix using the nearest neighbor technique. It performs element-
wise addition by using the information transported from early layers. The
output is a probability heatmap highlighting the joints’ location in F , which
later transforms into exact coordinates by selecting coordinates with the high-
est probabilities of each presented joint. Formally, by providing the input V
to the 2-D HPE, it provides the output as joint location presented in F as

2D-HPE(V ) = ({Jkx,y , . . .}τ0 , . . .) (4.4)

The skeletal-based two-dimensional human pose estimation employed by
EXAMINER provides a practical and efficient method for capturing human
joint positions using standard video equipment. This technology supports
the framework’s ability to analyze and digitize human motion without in-
vasive tracking devices. This approach aligns well with the framework’s ob-
jectives by focusing on simplicity, cost-effectiveness, and sufficient accuracy
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for coarse movement differentiation, setting a strong foundation for the sub-
sequent cognitive skill digitization process. These estimated joint locations
will be further utilized in the activity recognition sub-component, enhanc-
ing the framework’s capability to translate physical movements into manual
assembly activity data.

4.3.4 Programming Language

EXAMINER software was implemented using the Python3 programming lan-
guage. Python was designed to be interpretable on the modern operating sys-
tem(OS), including Microsoft’s Windows, Apple’s macOS, Linux, and Unix.
Academics and enterprises recommend Python as it allows rapid prototyp-
ing while sacrificing some performance. In addition, there is an abundantly
ready-to-use code library and documentation, reducing development efforts.
The selection of OS also requires the implementer to consider the OS compat-
ibility based on the external library as they might couple with some specific
binary that is not compiled on the target OS.

4.4 Summary

The chapter on the proposed system’s conceptual framework employs sys-
tem analysis and design to transfer the requirement into a framework that
can act as a communication medium between parties. The dissertation em-
ploys the following tools to realize the conceptual framework of EXAMINER,
including,

• Conceptual data model to represent the structure of MA,

• Dynamic model to represent the flow of activity in EXAMINER,

• Subsystem decomposition to decompose the system into smaller com-
ponents connecting with each other.

In addition, the chapter introduces the ready-to-use HPE library, the pro-
gramming languages selected for implementation, and the proposal’s evalu-
ation later. The next chapter will emphasize the solution domain, starting
with digitizing operator skills.
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Chapter 5

Digitization of operator skills

The digitization of operator skills is centered on transforming unstructured
camera sensor data into objectively assessable MA data. First, the proposed
EXAMINER MA data structure will be defined, and then the MA operation
step (MA step) and its motion time trajectory will be digitized. This chapter
is divided into three sections listed below:

1. Cognitive skill digitization is the section that provides implementa-
tion details for the cognitive skill digitization group of sub-components,
including MA step recognition and MA context recognition. The sec-
tion also introduces a non-invasive motion capture technology.

2. Motor skill digitization is the section that provides implementa-
tion details for motor skill digitization. Furthermore, it addresses the
rationale for decoupling motor skill digitization from step digitization.

3. Evaluation is the section that provides an evaluation of digitization
components.

5.1 Cognitive Skill Digitization

Digitizing the STn is recognizing PR(s) to form ST and later MA. EXAM-
INER employs the hybrid recognizer, consisting of ACT and context recog-
nition. As suggested in the related work section, there are various ways to
acquire information. EXAMINER employs one of the least intrusive user
methods, with commodity hardware, for ACT recognition. Here it applies
an off-the-shelf component to perform deep learning in computer visions on
color video from a commodity camera to estimate the location of joints in
Cartesian plane R2. EXAMINER uses it as a data transformation step be-
fore applying the ACT recognizer algorithms later. The method is commonly
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known as skeletal-based human pose estimation(HPE). The dissertation pro-
vided the theory and rationale behind selecting these components under the
subsection 4.3.3. This section continues with using the output of 2D-HPE(V )
from 4.4.

5.1.1 Activity Recognition

Previously, an input V was processed frame by frame using HPE, resulting
in the location of joints. The output of 2D-HPE is in n-tuple format forming
the time series location of the joint in R2. As such, action recognition tasks
from 2D-HPE output may apply any supervised machine learning algorithm.
EXAMINER aims to recognize MA-related ACT. The definition of an ACT
must be precisely defined to reduce possible human error during ACT label-
ing. Based on the education robot assembly case study, the ACT consists of
reach, retract, assembly, and tool use.

Other assembly activities may require additional ACT classes to extend
to previously introduced classes. The pipeline of a supervised activity recog-
nition model creation is as follows,

• Data labeling,

• Feature selection,

• Feature pre-processing,

• Feature scaling,

• Feature engineering

• Feature segmentation,

• Model selection and training, and

• Model inference

The elaboration of each pipeline step is as follows.

Data Labeling

Due to the unavailability of a publicly accessible manual assembly (MA)
dataset suitable for creating an MA activity recognition model, data labeling
must be performed manually. Data labeling involves the annotation process
to specify the precise timestamp range T , from τstart to τend, for a given PRγ,
where start < end. The labeler watches the video and associates the PRn to

55



the frame Fτ from initialization to termination. Any activity that does not
adhere to the predefined definitions is labeled as a null class, denoted as ϵ.

The number and definition of activities vary according to the manual as-
sembly operation. However, the following activities are identified as common
occurrences in manual assembly by EXAMINER:

1. Reach: The use of a limb (either left hand (LH), right hand (RH), or
both hands (LRH)) originally in the initial location (LOinit) to reach
the destination location (LOdest).

2. Retract: The pulling back of the limb from the destination location
(LOdest) to the initial location (LOinit).

3. Assembly: The action of incorporating parts using both hands (LRH).

4. Tool Use: The action of incorporating parts using both hands (LRH)
with the assistance of a hand tool.

After completing data labeling, the pipeline proceeds to feature prepro-
cessing, focusing on treating noisy data.

Feature selection

The COCO dataset provides an estimation of 17 body joints from the head
to the lower body as listed in table 4.1. Activity recognition only considers
upper body joints for the hand-only MA task at standing or sitting assembly
station. As of this, six of 17 joints are in consideration. Here, the visual-
ization in figure 5.1 shows the obstruction of the lower body part. However,
other configurations requiring the operator to walk, use feet, or operate the
floor-standing control panel will require a camera setup at different locations
to cover a larger scene area.

Feature pre-processing

A skeletal-2D Human Pose Estimation (HPE) system has the drawback of
processing each input frame F independently, which can result in jittery
outputs. Jitter occurs when the approximated joint JT at coordinates (x, y)
is not consistently precise, giving the impression that the joint’s motion is
shaking or oscillating. In the worst-case scenario, a stationary person may
appear to be shaking. Using the inferred joint positions to train the model
may introduce false-positive data points. Commonly, post-processing proce-
dures are employed to eliminate skeletal-2D HPE jitters. Smoothing filters
can be utilized both online and offline. An online or real-time filter does not
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Right Shoulder

Right Elbow

Right Wrist
Left Wrist

Left Elbow

Left Shoulder

Left Hip Right Hip

Figure 5.1: Visualization of output from a 2D-HPE where only the upper
body is visible.

know in advance what value it will process, and a combination of high-pass
and low-pass filters is commonly used because it reduces both high and low
oscillations. On the other hand, an offline filter uses all values as input,
allowing the filter algorithms to view all values before smoothing them.

The Savitzky-Golay filter is utilized by EXAMINER to reduce jitters.
Figure 5.2 illustrates that it is one of the offline filters capable of smoothing
down noisy inferencing results. The subsequence right wrist trajectory is
shown in R2 over 30 frames, representing the recording of the performer in
the assembly scene reaching for the product with their right hand, as digitized
by HPE. In contrast, the original HPE appears to oscillate, necessitating the
application of a smoothing filter. The Savitzky-Golay filter accomplishes
polynomial least-squares fitting by approximating data points under each
sliding filter and taking the estimated data point at the center. Given filter
length FIL and filter order FIO, the selection of FIO < FIL results in
smoothing; hence, FIO + 1 = FIL represents a polynomial interpolation
of the data in FIL. All smoothing approaches result in some data loss,
especially when the data includes rapid activity changes.

After removing noise and potentially erroneous data, the pipeline pro-
ceeds to feature scaling, focusing on data transformation to reduce bias from
different measurements.
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Figure 5.2: The subsequence right wrist trajectory with length 30 frames
plotted in R2. It shows the performer’s recording using the right hand,
reaching for the object in the assembly scene as digitized by HPE. However,
the original HPE appears jitter, requiring a smoothing filter to mitigate.

Feature scaling

Different measurements among features may lead to bias in training a clas-
sifier; hence, it is recommended to scale features. Various methods are avail-
able for scaling, including normalization and standardization. Normalization,
such as the min-max scaling, can be performed as follows.

J ′
ki

=
Jki − Jkmin

Jkmax − Jkmin

(5.1)

Here, k denotes the joint, and i denotes the channel, either x or y. The
min-max scaling requires knowing the Jkmax and Jkmin

in advance; otherwise,
the scaling value will not stay under Jk ∈ [0, 1]. Another scaling method is
to standardize or center the features. One of the popular methods is to make
each of the features have a zero mean by performing Z-score normalization
as follows.

J ′
ki

=
Jki − Jk

σJk

(5.2)

The selection of either normalization or scaling solely depends on the clas-
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sification algorithms. Even though most deep learning architecture does not
require feature scaling, doing so will help the model to converge faster, taking
less time to train them [98]. The pipeline proceeds to feature engineering,
focusing on data transformation to generate a feature vector.

Feature engineering

Feature engineering is essential in preparing human pose estimation (HPE)
data for deep learning models, which may struggle with raw coordinate input
due to body scale and position variation. This variation is caused by differ-
ences in individual anthropometry and the various positions that subjects
may take within a scene. The process converts the coordinates into a more
consistent feature space to address these issues.

EXAMINER opted for three commonly used methods to transform the
feature outlined in [107], including

• Normalized distances of each joint from the center of the pose account
for positional variance on the scene. In this method, the original joint
location is subtracted from the center of the pose and normalized to
reduce variance from a different anthropometry. The normalization is
typically based on the height of the pose, and the resulting distance
can be directly divided.

• The angles of rotatable joints provide a feature independent of scene
position and body rotation. This is especially useful when comparing
the orientation of body parts across subjects. The rotatable joints
generally include shoulders, elbows, hips, and knees.

• Normalized displacement of joints between frames, reflecting the move-
ment while invariant to translation and scaling. The normalization is
relative to the height of the pose, ensuring that the motion is measured
consistently regardless of the subject’s size or distance from the camera.

The feature vector resulting from these transformations includes 26 features
for normalized distances, 26 for displacements, and four for joint angles,
totaling 56 features. The feature vector excludes joints from the lower body
part as they are not visible in the scene. The pipeline now proceeds to feature
segmentation.

Feature segmentation

Feature segmentation is crucial in preparing sequential data for machine
learning and deep learning models. In the context of EXAMINER, an over-
lapping sliding windows segmentation technique is employed to partition the
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Figure 5.3: The original time series data is segmented by using the sliding
windows of length three with the sliding of one resulting in multiple wn.

input sequence of joints location of the whole video V into smaller windows
(wι) with overlapping [100]. Figure 5.3 visualizes an overlapping sliding win-
dows segmentation technique, given a sequential data sequence Fτ , where
τ = 1, 2, 3, . . . , T , the overlapping sliding windows feature segmentation di-
vides Fτ into a set of windows or segments W = {w1, w2, w3, . . . , wn}, where
ι ∈ N represents the index of the segment staring from 1 to n. Each segment
wι is of fixed size |wι|; it is typically small enough to capture short activities
without disregarding them. The overlap can be defined as a percentage of
the window size or a specific number of data points to shift the window at
each step. It ensures that each data point is included in multiple segments,
capturing the temporal dependencies and preserving the continuity of the
sequential data.

For example, given a sequential frame F sequence of a video V , the sliding
windows segmentation technique would generate segments wι such that:

w1 = Fτ :τ+|w1|

w2 = Fτ+δ:τ+δ+|w2|

w3 = Fτ+2δ:τ+2δ+|w3|
...

wn = Fτ+(n−1)δ:τ+(n−1)δ+|wn|

where δ represents the shift or overlap between consecutive windows; for
demonstration purposes, EXAMINER assumes equal-size windows, hence
|w1| = |w2| = |w3| = . . . = |wn|. Sliding window feature segmentation pre-
serves the temporal relationship between data points, allowing for capturing
short-term activities or patterns within the sequential data. Additionally,
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this segmentation strategy generates multiple data samples, enhancing the
model’s training process.

Before proceeding with model selection and training, it is important to
acknowledge that a single wι may contain multiple activity labels (ACT ).
This is because, in manual assembly tasks, operators may simultaneously
perform multiple activities. As a result, the recognition problem needs to
be treated as a multi-label classification, and it can be represented by the
following equation

Yι = (y1, y2, y3, ..., yn) ∈ {true, false}N (5.3)

where yκ represents the occurrence of an activity (ACT ) either true or false,
and κ serves as an identifier for each activity. Furthermore, since the sliding
windows feature segmentation can include partial activity transitions from
the previous (wι−1) and next (wι+1) segments, a majority voting technique is
employed to determine the final label for wι. However, in the event of a tie in
the voting process, the label for wι is a multi-label, indicating the presence
of multiple activities within wι. Subsequently, after the feature segmentation
step, the pipeline advances to model selection and training.

Model selection and training

Based on the given HPE(V ) input, various machine learning models are suit-
able for classifying ACT, including support vector machine, k-nearest neigh-
bor, hidden Markov model, and random forest. Multi-layer perceptron as
deep neural network architecture also receives attention from researchers. As
the data is temporal, a variation of recurrent neural network(RNN) such as
a Long short-term memory(LSTM) should yield a satisfactory result. LSTM
is a recommended choice from several published research [55], [69]. Before
providing further details on LSTM model implementation, tuning of hyper-
parameters, and model training, this dissertation provides some basics on
deep neural networks.

Convolution neural network A convolution neural network(CNN) learns
the convolution filters or weights to obtain the features map of the input. It
has proven to be successful in learning the features of an input image. It
can be applied for an image recognition task [26]. However, it cannot encode
the location and orientation of the object [54]; some additional layers and
measures must be implemented. A CNN’s architecture generally consists
of a convolution layer, pooling layer, and fully connected layer [79]. The
explanation for each layer is as follows:
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Figure 5.4: An example of convolution operation.

• Convolution layer - The convolution layer received input in the form
of a tensor as (number of inputs) x (input height) x (input width) x
(number of input channels). The input is then multiplied with m ×
n convolution filter or kernel, resulting in a feature map. A feature
map is in the form of (number of inputs) x (feature map height) x
(feature map width) x (feature map channels). It is also trivial to have
multiple feature maps to learn different features. Figure 5.4 provides
an illustrated example of a convolution filter. The 1 × 5 × 5 × 1 input
matrix is being multiply with 3 × 3 convolution filter. Here the stride
(or the shift of kernel on input) is one, and the padding is not in use.
The final result is in the form of 1 × 3 × 3 × 1 feature map. The
Output[0][0] can be obtained by performing calculation (9 × 0) + (4 ×
2) + (1 × 1) + (1 × 4) + (1 × 1) + (0 × 1) + (1 × 1) + (2 × 0) + (1 × 1).

• Pooling layer - The pooling layer reduces the dimension of an output
or feature map from the convolution layer. By doing so, it reduces the
location sensitivity of the features. There are three types of pooling
layers, max pooling, average pooling, and global pooling [101].

– Max pooling: calculates the maximum value in each patch of
each feature map highlight the most present feature as in figure
5.5. Here, the patch is 2 × 2, and the stride is 2 or equal to the
size of the patch. The result of the patch contains 9, 10, 11, 12 is
12.

– Average pooling: calculates the average value in each patch of
each feature map as in figure 5.6. Here, the patch is 2 × 2, and
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Figure 5.5: An example of a max pooling on a feature map.
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Figure 5.6: An example of an average pooling on a feature map.

the stride is 2 or equal to the size of the patch. The result of
the patch containing 9, 10, 11, 12 is 10.5 or the average among the
values inside the patch.

– Global pooling: downsamples the entire feature map to a single
value as in figure 5.7. Here is an example of a global average
pooling on four feature maps. The patch is 4 × 4 or equal to the
size of a feature map. It results in a vector of length equal to the
number of feature maps.

• Fully connected layer - The fully connected layer is for providing the
classification output. It is the same as a traditional multi-layer percep-
tron(MPL). Here, all the inputs from the previous layer are connected
to every activation unit of the next layer forming the hidden layer. A
fully connected layer may consist of more than a single hidden layer.
The hidden layer then connects to the output layer providing probabil-
ity for each class. Figure 5.8 is an example of a fully connected layer.
The input is the flattening of the pooling layer. Input is then passed
through the hidden layer, and it contains an activation function consist-
ing of weight and bias. Lastly, each hidden layer output is connected to
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Figure 5.7: An example of a global average pooling on four feature maps.

Input Hidden Layer Output

Figure 5.8: An example of a fully connected layer.

the output layer, which reports the probability for each class. The out-
put layer consists of two nodes indicating the two possible classification
classes, e.g., positive and negative.

• A typical CNN architecture - A simple CNN architecture can be re-
alized by combining convolution, pooling, and fully connected layers.
Figure 5.9 is an example of a CNN architecture consisting of a single
convolution layer with pooling and a fully connected layer with a single
hidden layer. The architecture received a single channel input of size
6 × 6. By applying 3 × 3 convolution with stride 1, the output of the
convolution layer is in the size of 4 × 4. The output is then pooled by
2 × 2 patch with a stride of 2, resulting in 2 × 2 output. The output
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Figure 5.9: An example of a CNN architecture that consists of a single
convolution layer with pooling and a fully connected layer.

then proceeds to the fully connected layer, which performs the final
classification by providing class probabilities.

• CNN architectures for human activity recognition - Currently, the pri-
mary usage of CNN is mainly related to computer visions. However,
it is also possible to encode the sequence of sensor reading as suitable
tensor input to CNN architecture by sampling data streams into sub-
sequences of equal size windows. The data from sensors may consist of
multiple channels; for instance, the data from the accelerometer usu-
ally consists of x, y, and z axes. Here, the modeler may model the
input into (number of equal size windows) × (length for each window)
× (number of channels) × one or else. There are various CNN-based
HAR proposals, and they can be categorized by the length of the input,
types of warble sensors, prepossessing techniques, and CNN architec-
ture. For instance, a typical CNN as in figure 5.9 with the input from
an accelerometer length of 64 and 3 channels can recognize activity
including jog, walk, walk up, walk down, sit, and stand [36]. The
transformation and combination of input from various sensors such as
gyroscope and accelerometer can also be applied for creating activity
images and introducing additional hidden layers [58]. Various hyper-
parameters of CNN, including the number of hidden layers, filter size,
and pooling size, are also evaluated for finding the best combinations
that yield the best accuracy [41].

Recurrent neural network RNN is an MLP where the input is treated
as a temporal sequence from t. In contrast with a feed-forward network,
for instance, a fully connected layer in CNN, each perceptron’s weight and
biased parameters also share from t − 1 to t as in figure 5.10. The sharing
of the parameter indicates the dependency of each value in the sequence of
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Figure 5.10: A visualization of the recurrent neural network shows that the
unfolded version of the RNN emphasized parameter sharing.

input. A typical RNN architecture comprises an input layer, a single hidden
layer, and an output layer. The arrow from perceptron at t− 1 to t indicates
that the parameter is being shared. The RNN architecture is many-to-many,
or the input and output lengths are equal. It receives a sequence xt0:n of
single-channel input and provides a sequence yt0:n as output.

There are various RNN architectures; LSTM is a popular variation of
RNN due to its ability to handle the problem of vanishing gradients [96].
The problem arises during backpropagation, where only the last perceptrons
and hidden layers usually receive significant weight updates. This update
decreases from t to t − 1, eventually leading to no or tiny update at early
perceptrons and hidden layers. LSTM solves this by introducing an addi-
tional mechanism into its perceptron or cell, gradually increasing the weight
update between layers. In addition, LSTM can forget or ignore the parameter
from the cell and hidden layer, allowing it to ignore the irrelevant long-term
dependencies.

• RNN architectures for human activity recognition - Human activity can
be measured and encoded in the form of Spatio-temporal; for example,
the movement of a limb can be encoded as a trajectory or changes of
measurements, including acceleration and orientation in a temporal do-
main. A typical pure RNN-based architecture is usually concatenated
with a dense layer for classification tasks. A Deep RNN-LSTM with
three hidden layers is usually implemented as a baseline comparison
[51]. An example of a deep RNN with three hidden LSTM layers is
presented in figure 5.11. It receives a single-channel temporal sequence
input. Outputs from the final LSTM layer are usually forwarded to
the fully connected layer for performing classification. Multiple chan-
nel inputs are separately treated by separating each LSTM layer for
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Figure 5.11: A visualization of the unfolded version of the LSTM.

each channel; the output combines using a fully connected layer. Some
variations for realizing ensembled architecture can also be performed
using train-validation-test model selection and split [69].

Hybrid combination of deep learning network The combination of
deep learning architecture is mainly from an assumption that the different
types of architecture handle different features. For instance, CNN handles the
spatial features, while RNN handles temporal features. The main difference
between architecture proposals can be categorized mainly by the order of the
architecture components. For instance, CNN and then RNN or the RNN
then CNN. The CNN-LSTM is when the input is passed through the CNN
layers, and then the output feature map is flattened for the LSTM layers.
Lastly, the output from RNN is passed through the fully connected or dense
layer [55], [105], [106]. On the opposite, the LSTM-CNN is also proposed
[112].

A baseline LSTM architecture is selected for implementation to demon-
strate EXAMINER case-study implementation. HyperBand is selected for
fine-tuned hyper-parameter models, including the number of layers, nodes,
and drop out [71]. The tuning was performed based on the assumption that
input characteristics are different from the baseline model as follows

• Activity, most of the state-of-the-art (SOTA) model was developed
based on the common human daily activity. EXAMINER, in contrast,
focuses on MA-related activity.
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Component Parameter Value

LSTM
Number of layer 3
Number of nodes 448

Training
Dropout 0.7
MaxNorm 2
Learning Rate 0.01

Table 5.1: The table summarize the optimized LSTM model’s hyperparam-
eters including the parameter for training the model.

• Input length - most of the architecture develops based on the publicly
available action recognition dataset [27]. The dataset records the com-
mon daily activity, which, on average, has a longer sequence than MA
activity.

• Sensor - SOTA ACT recognition models mainly employ multi-modal
sensor input, including gyroscope and accelerometer. Here, pose in-
formation from a vision-based sensor has different characteristics as it
reports trajectory, not acceleration and orientation.

After performing hyper-parameter tuning, the summarized architecture
is presented in the table 5.1 together with the visualized model architec-
ture in figure 5.12. Here, the visualization shows a single channel input.
An extension to multiple-channel or multi-modal requires horizontal scaling
or independently stacking the LSTM hidden layers. The output from each
channel later combines and reduces using a pooling layer and provides class
probabilities using a fully connected layer [17].

Model inference

The model inference is the process of providing unseen data as input to
the recognition model. The model assigns the corresponding label with the
highest class probability to the input by doing so. It either provides the
correct classification or misclassifies in comparison with the ground truth.
Continuous activity recognition model performance can be analyzed differ-
ently depending on the application. For instance, the performance can be
measured by correctly identifying the activity and its boundary. It is also
trivial to assume that the model is not perfect and will produce some errors
as EXAMINER has to compare digitized skills later and provide feedback.
The error from the activity recognition model will propagate through com-
ponents and provide false feedback. Without considering activity boundary,
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Figure 5.12: A visualization of LSTM architecture for single channel input
activity recognition.
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Figure 5.13: The visualization of possible error introduces by inference ACT
recognition model.

as will be discussed later, five main types of error and two combination errors
are introduced in the literature as visualized in figure 5.13 [10].s

These error measurement forms are introduced in addition to the general
evaluation and ranking matrix, including the confusion matrix, f-measure,
and receiver operating characteristic.

Even though humans can ignore false augmented feedback because it
conflicts with personal intuition or intrinsic feedback, these introduced errors
should be considered and mitigated because they cause nuance to the user.
For instance, the experimenter may revisit each step in the pipeline, tweak
parameters, and perform the tasks differently to compare the changes in
model performance.

5.1.2 Assembly Space Context Sensing

However, the ACT is only a primitive activity lacking location context. The
later stage of step digitization compares the differences in context to define
the state of the assembly-related item. Commonly, on the assembly surface,
there are four fixed spaces, including the assembly area, parts area, tool area,
and the submission area, as visualized in figure 5.14.

Vision-based activity context sensing is research under image understand-
ing. Setting up the area is usually carefully done by the expert. It mainly
focuses on motion efficiency, organization, and ergonomics, which are not the
focus of this dissertation. Most of the proposal aims to describe the given
input by combining the perceived contexts from various sensing models. For
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Figure 5.14: A simulated assembly cell at the perspective of the operator,
consisting of non-overlapping spaces.

instance, the activity recognition model can be combined with the object
recognition model to describe the activity context [48]. There are various
ways to perform the sensing task visually. For instance, activation of the re-
gion of interest(ROI) registers activity in the surveillance camera. The ROI
is a sub-region in F specified for further analysis defined as a closed set on
R2 consisting of px,y on F. The technique is proven to work in the assembly
space set up with a material organization bin as the activation region can
be located at the bin’s boundary [66]. EXAMINER employs context com-
parison on the ROI instead. It ensures the context state, including present
and not present, of tools and material. Background and object segmentation
is a possible technique to detect changes in image context. It is one of the
topics heavily studied in computer vision. In the simplest form, image bi-
nary thresholding is a technique that can perform an image’s segmentation.
It changes the grayscaled px,y to 0 or 255 based on the preset threshold pixel
values. By doing so, the presence of the assembly object in the ROIn is going
to appear as a white silhouette with the pTx,y = 255 as the color of the object
appears to be contrasted with the scene. Additional techniques, including
contour detection, can also be applied to detect the silhouette’s shape and
boundary. However, additional state handling or computer vision techniques
may be required if the object and the assembly surface fail to meet the men-
tioned condition. EXAMINER assumes that all area tools and parts are
spreading out and not overlapping for demonstration purposes. Each item
is going to have its designated area on the surface. Before doing so, this
dissertation introduces the concept of automatic detection of the region of
interest. It also presents some of the underlying concepts applied in context
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sensing.

Automatically Detection of the Region of Interests

The camera location may change, or there is a slight difference in the scene
setup. The user can deploy the system remotely and separately. Automated
Region of Interests Calibration is a process where the rectangle ROIs are
semi-automatically recognized and calibrated on the given input F scene.
It is required to be done once at every physical change in the setup. The
summarized process is as follows,

1. Remove background noise
The selected sampling frame F is filtered using an edge-preserving
smoothing to remove background noise called a bilateral filter. The
image sensor is subjected to Gaussian noise during acquisition, result-
ing in some grains in an obtained F . These noises can cause the image
processing techniques in the later step to produce random behavior;
hence, they need to be filtered out. There are various noise reduction
techniques. The simplest way is to blur the image using Gaussian blur.
The noise is significantly filtered out, but the edge feature is lost. A
bilateral filter is introduced to tackle this by changing the filter kernels
based on the shape of the input [5]. For instance, instead of using the
same Gaussian kernel on all px,y, the Bilateral filter introduces a range
weight term that varies by px,y to the Gaussian kernel.

2. Convert to grayscale
As the color information is not necessary to detect the ROI as the
boundary is presented by a black line with low intensity, the F filtered

is converted to grayscale to generalize the intensity on each px,y. A
grayscale image is a representation of an amount of intensity ι on each
px,y. For each px,y a grayscale pixel ιx,y can be obtained by applying
the sum of the product based on the NTSC formula as

ιx,y = (0.299ι1 + 0.587ι2 + 0.114ι3) (5.4)

Where ιn represents the intensity value for red, green, and blue, respec-
tively. By applying on all px,y ∈ F , an F grayed is obtained.

3. Construct a binary image
A binary image construction is a step requires prior to the detection of
the image contours, here it converts the eight bits unsigned intensity
value of px,y into either 0 or 255 using the predefined threshold values.
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For instance, the black line with very low intensity is going to repre-
sent as 0, otherwise 255, this can be however swapped based on the
implementation preferences. A threshold pixel pthreshx,y ∈ 0, 255 from a
grayscale pixel ιx,y can be obtained as follows

pthreshx,y =

{
0, ιx,y > Tx,y

255, otherwise
(5.5)

4. Detect contour In comparison with the edge detection, where it per-
forms the differential between the neighbors px,y looking for the drastic
changes in intensity and joining them together as a curve. Contours
detection, in contrast, joins all the neighbor’s pixels having the same
color or intensity, forming a close [2]. However, contour detection is a
method that should be considered if the image contains a shape that
has to be recognized. It requires an earlier process of transforming the
input frame to represent black and white so that the contour detection
algorithm can detect the boundary of the same color.

5. Polygons approximation Approximate polygons use the output from
closed contours to construct the polygons. The output is defined as a
set of all close polygon chains with each vertex’s coordinates R2.

6. Removes irrelevant polygons It is a process to filter out irrelevant
polygons that do not meet the requirement to be an ROI. For instance,
the number of geometric sides(edges) and size must be under the pre-
defined boundary. For instance, the rectangular ROI should have four
edges and a size in a suitable range. Only a polygon that has four
points is considered. Otherwise, the polygons are discarded.

7. Inspects result The expert must carefully inspect the resulting ROI
from the process, as the process may fail to include all ROIs. The
compression introduced by the camera encoding automatically applies
anti-aliasing on F , making the intersection of lines grayed out. Once
it is done, the ROI coordinates data is obtained. The expert later
specifies the context information of each ROI.

Assembly State Transition

EXAMINER handles two types of context: the availability of items relevant
to MA, and the positioning of limbs in relation to the region of interest
(ROI). The assembly space context capture subcomponent provides transi-
tion information when the availability state of either item or limb(s) at the
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ROI changes from present (P ) to not present (NP ), or vice versa. This
information is later used to record TOPT . To achieve this, vision-based
context sensing is employed, leveraging the existing camera installation for
skeletal-2d-HPE. In Figure 5.14, EXAMINER is configured with four pre-
defined areas on the assembly surface: the assembly area, the parts area,
the tool area, and the submission area, each bounded by geometric bound-
aries. This dissertation first addresses the methodology for recognizing the
transition moment of item availability shortened as the item’s availability
module, followed by the recognition of limb positioning, as the underlying
mechanisms for obtaining these two contexts differ.

Item’s availability module Identifying transitional moments in the avail-
ability state of MA-related items involves handling state changes in the parts,
tools, and submission areas. To achieve this, this sub-component may em-
ploy various computer vision techniques, which can be categorized into neu-
ral network-based and non-neural approaches. Models like YOLO (You Only
Look Once) [56], SSD (Single Shot MultiBox Detector) [53], and Faster R-
CNN [44] represent the neural network category and are highly effective for
real-time object detection, recognizing, and precisely locating objects within
images.

Despite these advantages, neural network approaches require extensive
data labeling and training and typically demand substantial computational
resources. While these models are invaluable in contexts requiring advanced
object recognition and localization, their implementation is excessive in set-
tings with static or predictable environments.

A non-neural approach is advantageous for the MA station under EXAM-
INER, with its fixed physical configuration and specific geometric boundaries.
This method focuses on image preprocessing, feature extraction, and detec-
tion, which are well-suited to EXAMINER-controlled conditions. Hence, it
meets the requirements without the additional complexity and resource de-
mands of neural network models.

The following is an implementation of non-neural network approaches to
identify the transitional moment of MA-related items. In the initial step of
image preprocessing, all p(x,y) ∈ F is converted to grayscale GRAY (p(x,y)),
and bilateral filtering is then used to perform edge-preserving smoothing.
Converting p(x,y) to grayscale reduces by at least two-thirds the memory
usage and time complexity of the subsequent image processing step while
preserving the intensity of all color spaces. Then, edge-preserving smoothing
reduces image noise introduced by the camera sensor while maintaining the
sharpness of the edge features.
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Second, image feature extraction employs an inverted binary threshold-
ing. It is a technique for image segmentation typically employed when
the background is plain and contrasts with the object. The opted image
feature extraction operation involves the conversion of the grayscale value
GRAY (p(x,y)) to either 0 or 255, based on the threshold value THLB. Since
the setup assumes a white background, the binary thresholding of the image
can be achieved using the following equation:

p′(x,y) =

{
0 GRAY (p(x,y)) > THLB

255 otherwise
(5.6)

This equation is applied to all pixels p(x,y) in image F . Consequently,
the presence of the assembly object in the image will be represented as a
white silhouette against a black background. Additional techniques, such as
contour detection, can determine the shape and boundary of the silhouette.
However, suppose the object and the assembly surface do not meet the earlier
requirement. In this case, additional state handling or another computer
vision technique may be required.

Thirdly, the proposed approach performs image segmentation by defining
regions of interest (ROIλ), where λ serves as an identifier for each object’s
location (LO). Each ROIλ represents a closed set in R2 and is constructed
from the pixels p(x,y) in image F . These regions of interest are designated for
subsequent analysis and further processing. Under consideration of EXAM-
INER, ROIλ is an expert’s predefined geometric boundary for each assembly
item, tool, and area. Each item is assigned a specific location on the assembly
surface. For demonstration, the system assumes that all objects, tools, and
parts are dispersed, non-overlapping, and positioned within a predetermined,
fixed boundary. In addition, there are no mistakes caused by placing any item
not belonging to the ROIλ. This predefined geometric boundary ensures that
the objects of interest are isolated within their respective boundary regions.

Lastly, the proposed approach focuses on recognizing state transition
STRAN ∈ {NPtoP, P toNP} of ROIλ, and records the transition moment
as

Hη = (T (η), STRAN (η), ST (η)) (5.7)

where η ∈ N represents the order index of the transaction starting at η = 1.
Here, T is the specific moment when STRANη occurs, and STη represents
the outcome of STRANη either P (present) or NP (not-present). To maintain
a comprehensive record of these transactions, a transaction list is defined as:

TXNROI,λ = {H1, H2, H3, ..., Hn} (5.8)
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To populate the transaction list TXNROI,λ, the recognition module contin-
uously compares the summation of pixel values p′(x, y) within the region of
interest ROIλ at a specific moment T . The summation function σ(λ, T ) is
defined as follows:

σ(λ, T ) =
∑

p′(x,y)∈ROIλ,T

p′(x,y) (5.9)

In Equation (5.9), the moment T can take on two possible values: T = τ ,
indicating the present frame, and T = τ−c, representing c frames in the past.
By doing so, the σ(λ, T ) with an object is going to have higher values as it
consists of more p′(x,y) = 255 than the empty one as demonstrated in Figure
5.15. The figure visualizes an ROIλ going through both types of STRANη,
demonstrating the action of the operator picking the tool and returning it to
its original location after use. The comparison between the present moment
T = τ and the past moment T = τ − c can be quantified using the difference
function ∆(λ, c), defined as:

∆(λ, c) = σ(λ, τ) − σ(λ, τ − c) (5.10)

The equation calculates the difference between the summation of pixel values
within the region of interest ROIλ at the present moment and the past mo-
ment separated by a temporal distance of c frames, allowing for the detection
of state transitions of ROIλ.

In the initialization phase, each H1 in the transaction list TXNROI,λ is
populated with the tuple (1, ∅, ST ). The state ST is determined based on
the difference between the summation of pixel values within ROIλ at the
first moment, σ(λ, 1), and a prior measurement ωλ ∈ N is a measurement
when an object belongs to ROIλ is (P ) using Equation (5.9). The state ST
is assigned as follows:

ST =

{
P, |σ(λ, 1) − ωλ| ≈ 0

NP, otherwise
(5.11)

If the absolute difference between σ(λ, 1) and ωλ is approximately zero, in-
dicating availability of object in ROIλ, the state ST is assigned as P . Oth-
erwise, if there is a significant difference, the state ST is assigned as NP ,
indicating an absence of the object in ROIλ at the beginning of the assem-
bly process. Later when T > 1, the transaction list TXNROI,λ is appended
with Hη with STRAN ∈ {PtoNP,NPtoP}. First, to recognize PtoNP the
function having a precondition that ST in the latest Hη is P :

PtoNP =

{
true, ωλ,L− ≤ ∆(λ, c) ≤ ωλ,U−

false, otherwise
(5.12)
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Figure 5.15: State transition of a hand tool from P to NP and back to P.

Here, ωλ,L− and ωλ,U− are predefined lower (L) and upper (U) bound con-
stants, respectively, in negative integer Z−. These values can be obtained
from prior measurements of the difference between σ(λ, T ) at the moment
when the object is NP and the moment when the object is P . The intro-
duction of L and U makes the transition more robust against any possible
overshoot and undershoot of σ(λ, T ) that occurs during the state transition.
While ROIλ,τ is in state P , the function continuously compares σ(λ, T ) be-
tween the present moment (T = τ) and an earlier moment (T = τ−c). Since
ROIλ with an object present contains more p′x,y = 225 values compared to
when it is absent, σ(λ, T = τ) is significantly smaller than at T = τ − c.
In such cases, Hη = (τ, P toNP,NP ) is recorded in the transaction list to
signify the transition. On the other hand, the transition from NP to P
occurs with the precondition that the latest Hη is NP . The condition for
recognizing the NP to P transition is as follows:

NPtoP =

{
true, ωλ,L+ ≤ ∆(λ, c) ≤ ωλ,U+

false, otherwise
(5.13)

In this case, ωλ,L+ and ωλ,U+ are predefined upper (U) and lower (L) bound
constants, respectively, in positive integer Z+.

EXAMINER proposed the digitized method that can perform operation
time digitization automatically by utilizing a traditional computer vision
pipeline. As a result, it is necessary to manually adjust the parameters of
each computer vision process under the pipeline so that the silhouette of
parts and tools is clearly in contrast with the assembly desk. Based on the
introduced computer vision pipeline, two processes under the pipeline re-
quire parameter adjustment, including Bilateral filtering and binary thresh-
olding. Three parameters under Bilateral filtering must be adjusted, includ-
ing Diameter, SigmaColor, and SigmaSpace. The THLB can be estimated
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Table 5.2: Parameters of Computer Vision Pipeline
ValueParameterPipeline

5 Diameter

Bilateral filtering 40 SigmaColor

40 SigmaSpace

MeanadaptiveMethod
Adaptive binary 
thresholding 15 blockSize

4 constant

manually or automatically for binary thresholding using Otsu’s method or
OpenCV’s adaptive thresholding. OpenCV’s adaptive thresholding is chosen
based on the experiment setup to contrast the scene’s parts and tools. The
thresholding method divides the image into smaller regions and calculates
a threshold for each region. Because the environment under recording lacks
a dedicated light source, this method mitigates the varying light conditions
in different parts of the image. Three adaptive thresholding parameters will
be set: adaptiveMethod, blockSize, and constant. The parameter values for
Bilateral filtering and adaptive binary thresholding are shown in Table 5.2.
In this dissertation, the parameter was manually adjusted to reduce image
noise and improve the edge feature of parts and tools without compromising
any necessary image features.

Based on the proposed method of determining ST , PtoNP , and NPtoP
in Equations (5.11), (5.12), and (5.13) for each ROI, the experiment is re-
quired to determine the c of Equation (5.10), ωλ, ωλ,L and ωλ,U . The exper-
iment uses c = 50 or a one-second period. Table 5.3 provides an example
of the initial state ST decision boundary and the transactional period from
present not to present PtoNP manually obtained for each ROIλ. Each de-
cision boundary for each ROIλ is different due to the object’s size and the
camera’s distance. Generally, the bigger objects appear on the camera, the
higher the value for the decision boundary.

Up to this point, the module can register a state transition TXNROI,λ of
part, tool, and submission area. The ”Item’s availability module” of the EX-
AMINER framework employs a non-neural approach to identify transitional
moments in the availability state of MA-related items, offering a precise and
resource-efficient solution. This method adeptly manages the state changes of
parts, tools, and submission areas within a controlled environment by utiliz-
ing straightforward image processing techniques such as grayscale conversion,
bilateral filtering, and binary thresholding. The selected techniques are par-
ticularly well-suited to the fixed and predictable setup at the MA station,
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Table 5.3: Eaxmple of state transaction decision boundary for each ROI

ROIλ
ST PtoNP
ωλ ωλ,L− ωλ,U−

Chasis1 1,000,000 -500,000 -700,000
Wheel1 822500 -1,000,000 -755,000

Bushing1 47,000 -94,000 -130,000
Rod1 161,000 -282,000 -328,000

Spacer1 19,000 -28,000 -61,200
Collar1 29,750 -55,000 -106,500

Hex1 101,000 -155,000 -188,000
Hex2 108,500 -161,000 -195,000

ensuring high accuracy and low computational demand. This approach not
only simplifies the implementation but also aligns perfectly with the opera-
tional needs of EXAMINER, proving that the method is not only adequate
but ideally optimized for monitoring state transitions in industrial assem-
bly settings. By effectively recognizing and recording these transitions, the
module provides a robust foundation for the subsequent processing stages,
which are crucial for the comprehensive monitoring and analysis required in
manual assembly tasks. Next, the dissertation addresses the implementation
of recognition of the transition moment on the limb’s position concerning
ROIλ shortened as the limb’s availability module.

Limb’s availability module The limbs in the assembly area detection
module verify the spatial positioning of the limbs by evaluating the two-
dimensional Cartesian coordinates of target limbs obtained from skeletal-
2d-HPE. Specifically, it determines whether the coordinates of the targeted
limb fall within the designated ROIλ defined for the assembly area. The
module records transition in the same form as introduced in Equation (5.8);
however, λ must be any of an assembly area, and the methodology to obtain
Hη especially, TRANS and ST differs as the information can be directly
leveraged from skeletal-2d-HPE.

The ray casting algorithm, also known as the crossing number algorithm
or even–odd rule algorithm, is suitable for verification and was chosen due to
its simplicity and efficiency in determining point-in-polygon inclusion. The
method depicted in Figure 5.16 casts a ray from the point in the direction of
the x-axis and counts the number of intersections between the ray and the
polygon’s edges. If the ray from point JT(x,y) where JT can be either left
or right or both wrists intersect the polygon’s edge at odd intervals, in this
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Figure 5.16: The left wrist’s ray intersects the assembly area’s edge, indicat-
ing that it is inside.

case, ROIλ where λ is an assembly area, the JT(x,y) presented (P ) within the
ROIλ otherwise it is not presented (NP ).

The population of the transaction TXNROI,”assembly area” can be achieved
using the following steps. During the initialization phase, the transition
moment H1 is filled with the tuple (1, ∅, ST ). The state ST is obtained
directly from the ray casting algorithm, either P or NP . As time progresses
(T > 1), the transaction list TXNROI,λ is expanded by adding Hη with
STRAN ∈ PtoNP,NPtoP . Two conditions must be met to populate the
PtoNP transition moment: the state ST in the latest Hη is P , and the
output from the ray tracing algorithm is NP . Conversely, to populate the
NPtoP transition moment, the state ST in the latest Hη must be NP , and
the output from the ray tracing algorithm is P . By doing so, the moment a
limb enters or exits an assembly area can be recorded.

The Limb’s Availability Module effectively uses the ray casting algorithm
to verify whether the operator’s limbs are within the designated assembly
area, ensuring precise tracking of limb movements and transitions in a simple
and straightforward manner.

All necessary data for digitizing cognitive skills, including TOPT , LOinit,
and LOdest, have been obtained from activity recognition and assembly space
context recognition modules. The pipeline continues digitizing the TOPT
using the recently generated TXNROI,λ.

5.2 Motor Skill Digitization

To accurately evaluate the operator’s motor skills, including a sub-component
for recording operation time (TOPT ) is essential. This sub-component mea-
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Figure 5.17: Ambiguity of ACT boundary

sures and records the time taken for each performed MA activity. The deci-
sion to incorporate a dedicated sub-component for recording operation time
stems from the inherent ambiguity of activity boundaries in the MA activity
recognition sub-component. Figure 5.17 illustrates the potential overlapping
segments between consecutive activities. This ambiguity arises when an ac-
tivity, such as ACT2, exceeds the length of a single window, for instance,
|ACT2| ≥ |w1|, resulting in overlapping activity segments.

In the depicted scenario, windows w4 and w5 contain partial actual activ-
ity of both ACT2 and ACT3. Utilizing an activity recognition sub-component
with the majority voting for result aggregation may preserve the correct se-
quence of activities. However, it may underestimate the duration of ACT2

and overestimate ACT3 as w5 extends back to the duration of ACT2.
Another key consideration is the frame rate of the video camera used for

recording. Consumer video cameras typically operate at 15 to 120 frames per
second (FPS). This means the time measurement error can be up to ±1000

FPS

milliseconds. For time-sensitive applications, a high-speed or dynamic vision
sensor event camera can be chosen to reduce measurement errors [12].

Industrial manual operation heavily utilized motion time study. It is a
study aiming to reduce waste introduced by an operator’s poorly optimized
movement trajectory to perform a manual task. An observer will use a stop-
watch to record the operator’s TOPT at each step to measure time. This
enables the firm to precisely measure, record, and perform statistical anal-
ysis of TOPT . It is crucial as the firm will use this information to plan
production. Stopwatch timing is a method prone to human error and must
be carried out by a specific expert. Various studies attempt to automate
this process by collecting and processing data from multiple vision and non-
vision sensors installed on the assembly station. The models aim to detect
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the starting and stopping points of an activity. Because the camera was
already installed in the simulated assembly station, EXAMINER chose a
vision-based methodology. There are two types of detection models: super-
vised and unsupervised. A supervised recognition model uses available data
to label and train the model. For example, a video frame F containing the
starting and stopping point of the MA activity can be labeled and directly
used to train the image recognition model [103]. Instead, the unsupervised
model infers them from the learned frame features. For example, the output
of skeletal-2d-HPE in time-series format can be inferred directly using search
methods and cost functions to detect change points in time series [109].

EXAMINER precisely measures the operation time (TOPT ) for each
ST by utilizing the context state changes recently captured by assembly
space context capture sub-components and the activity sequences recognized
by the MA activity recognition sub-components to enhance accuracy and
reduce redundancy, introducing an additional technique for measuring the
operation time. The measurement focuses on adjusting ACT ’s beginning or
ending points or both, which are classified as an adjustment at PR levels.
Based on the evaluation case study for EXAMINER, the measurement can
be divided into four primary measurement cases: a reach, a retracting, an
assembly, and a tool use. Each instance is described as follows:

1. A reach - It is a primitive step (PR) in which the operator performs
motion (ACT = ”reach”). The action includes acquiring the compo-
nent or tools at ROIλ and submitting the final assembly. EXAMINER
has identified five types of reach, each requiring a distinct measurement
strategy for operation time (TOPT ).

(a) An initial reach is a special case that marks the beginning of an
MA iteration. Here, the operator reaches for the first part or tools
at ROIλ, where λ is an identifier for that particular part or tool.
Duration is measured from the moment when (ACT = ϵ) changes
to (ACT = ”reach”) to the moment when (ACT ̸= ”reach”).
An adjustment of the start and stop points of the activity using
TXNROI,λ can be obtained as follows:

• Start point: Use the value T of H2 = (T, P toNP,NP ) ∈
TXNROI,”assembly area”.

• Stop point: Use the value T of H2 = (T, P toNP,NP ) ∈
TXNROI,λ given that λ is not either ”assembly area” or ”sub-
mission area.”

Using Hη, with η = 2, is specific to the EXAMINER’s case study,
implying that it considers values from transactions following the
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initialization (where η = 1) and assumes that at the beginning
any of the hand is located in the assembly area. The actual im-
plementation may vary depending on the specific MA.

(b) A reach follows assembly or retract - It is a motion in which
the operator reaches for ROIλ where λ ∈ {”part area”, ”tool area”}
after performing an assembly or retracting the previous part/tool.
The latter usually happens after reaching the first part of MA it-
eration. The duration is measured from
(ACT = ”retract”, ”assembly”, ϵ) changes to (ACT = ”reach”)
to (ACT ̸= ”reach”). An adjustment of the start and stop points
of the activity can be obtained as follows:

• Start point: Use the value T of Hη = (T, ”PtoNP”, NP ) ∈
TXNROI,”assembly area”, where η > 3. Using Hη, with η > 3,
implies that it considers the value from the fourth transaction,
meaning that after the initialization, another two transactions
happen under an assembly area.

• Stop point: Use the value T of Hη = (T, ”PtoNP”, NP ) ∈
TXNROI,λ, where η > 1, and λ can be either the ”part area”
or the ”tool area. This means that the operator picked a
tool/part from ROIλ. Using Hη, where η > 1, implies that it
considers the value after the initialization.

(c) A reach following tool use - It is a motion where the operator
returns the tool to its original ROIλ. The duration is measured
from (ACT = ”tool use”, ϵ) becomes (ACT = ”reach”) and then
(ACT ̸= ”reach”). An adjustment of the start and stop points of
the activity can be obtained as follows:

• Start point: Use the value T of Hη = (T, ”PtoNP”, NP ) ∈
TXNROI,”assembly area”, where η > 3.

• Stop point: Use the value T of Hη = (T, ”NPtoP”, P ) ∈
TXNROI,”tool area”, where η > 1.

(d) A reach for submission of a finished assembly - As the name
suggests, is a motion of placing a finished product in the desig-
nated ROIλ. The duration is measured from the moment when
(ACT = ”retract”, ”assembly”, ”tool use”, ϵ) becomes (ACT =
”reach”) and then (ACT ̸= ”reach”). An adjustment of the start
and stop points of the activity can be obtained as follows:

• Start point: Use the value T of
Hη = (T, ”PtoNP”, NP ) ∈ TXNROI,”assembly area”, where η >
3.
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• Stop point: Use the value T of Hη = (T, ”NPtoP”, P )
∈ TXNROI,”submission area”, where η > 3.

(e) A reach following reach - It is a motion in which the operator
performs a second reach immediately after submitting a completed
assembly or returning the tool. As it is possible for the operator to
perform a subsequent reach after the reach for submission, the MA
activity recognition system is not designed to distinguish between
successive reaches. As of that, the measurement disregards T
from the MA activity recognition. With the prerequisite that
ACT = ”reach”, an adjustment of the start and stop points of
the activity can be obtained as follows:

• Start point: Use the value T of
Hη = (T,NPtoP”, P ) ∈ TXNROI,λ, where η > 3, and λ is
either ”part area” or ”tool area.”

• Stop point: Use the value T of
Hη = (T, ”PtoNP”, NP ) ∈ TXNROI,λ, where η > 3, and λ is
either ”part area” or ”tool area.”

2. A retract - It is a primitive step in which the operator performs
(ACT = ”retract”) immediately after a reach. Currently, EXAM-
INER recognizes one type of retract as a retract after reach, and du-
ration is measured from the moment activity recognition recognized
(ACT = ”retract”l, ϵ) to the moment when (ACT ̸= ”retract”). An
adjustment of the start and stop points of the activity can be obtained
as follows:

• Start point: Use the value T of
Hη = (T, ”PtoNP”, NP ) ∈ TXNROI,λ, where η > 1, and λ is
either ”part area” or ”tool area.”

• Stop point: Use the value T of
Hη = (T, ”NPtoP”, P ) ∈ TXNROI,”assembly area”, where η > 2. Us-
ing Hη, with η > 2, implies that it considers the value from the
third transaction, meaning that after the initialization, a transac-
tion happens under an assembly area.

3. A tool use - Is is a primitive step in which the operator performs
(ACT = ”tool use”) after a retract. Currently, EXAMINER recognizes
one type of tool use that happens after a retract (and ϵ), and duration
is measured from the moment activity recognition recognized (ACT =
”tool use”) to the moment when (ACT ̸= ”tool use”). An adjustment
of the start and stop points of the activity can be obtained as follows:
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• Start point: Use the value T of
Hη = (T, ”PtoNP”, NP ) ∈ TXNROI,”tool use”, where η > 1.

• Stop point: Use the value T of
Hη = (T, ”NPtoP”, P ) ∈ TXNROI,”assembly area”, where η > 2.

4. An assembly - Is is a primitive step in which the operator performs
(ACT = ”assembly”) immediately after a retract. Currently, EXAM-
INER recognizes one type of assembly that happens after a retract, and
duration is measured from the moment activity recognition is recog-
nized (ACT = ”assembly”) to the moment when (ACT ̸= ”assembly”).
An adjustment of the start and stop points of the activity can be ob-
tained as follows:

• Start point: Use the value T of
Hη = (T, ”PtoNP”, NP ) ∈ TXNROI,λ, where η > 1, and λ is
either ”part area” or ”tool area”

• Stop point: Use the value T of
Hη = (T, ”NPtoP”, P ) ∈ TXNROI,”assembly area”, where η > 2.

The introduced methodology for TOPT measurement offers the ability
to adjust activities’ (ACT ) starting and ending points earlier recognized by
the MA activity recognition sub-component by combining state transaction
information from the assembly space context capture. The measurement
is introduced based on EXAMINER’s case study covering basic MA oper-
ation. An actual implementation may require further investigation for any
additional activity transition that is not covered by EXAMINER’s operation
time digitization. By obtaining precise time measurements for each activ-
ity, the overall effectiveness of the MA system can be improved, allowing for
in-depth analysis and skill evaluation of the operator.

Until now, the information needed to finalize MA has been digitized by
introduced sub-components. Including ACT by activity recognition, LO,
and TOPT by context capture sub-component and recording of operation
time sub-component. For TRAJ and LI, motion capture was already pre-
digitized. A boundary T creates a subsequence TRAJ from a time series
JT(x,y). However, the digitization of MA is a semi-automatic process. The
expert must add more information that EXAMINER cannot digitize, espe-
cially for the expert’s template. The data includes the name of each assembly-
related tool and part associated with each ROI, the name and description
of the ST , and the name of the MA. The expert may also provide a text
description of each step and media, such as photos and videos, to create a
training medium. Later, the dissertation will refer to an expert’s template as
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a template. After the elaboration of techniques under digitization of operator
skill, the dissertation continues with the evaluation of proposed techniques.

5.3 Evaluation

The evaluation section evaluates subcomponents of EXAMINER. The eval-
uation objectively assesses performance for skill digitization components, in-
cluding deep learning-based MA activity recognition, assembly space context
capture, and step recognition. The dissertation first introduces the details of
the experiments, then the evaluation metrics used, and finally, it reports the
performance evaluation results of each target component.

5.3.1 Experiment

The experiments subsection aims to provide the experiment details for each
skill digitization component separately. It first provides details about hard-
ware and software setup, followed by data collection, and then the specific
experiment details on each component.

Hardware and software setup

This study uses the following hardware and software configurations for per-
forming experiments and evaluation. The setup includes resources for train-
ing the manual assembly activity recognition model and running the EXAM-
INER application, highlighting both computational and application-specific
environments.

Hardware setup Multiple instances of Google Colab were used to accel-
erate and parallelize the training of the manual assembly activity recognition
models with hyperparameter tuning. Each Google Colab environment pro-
vided an Intel Xeon CPU with 2 vCPUs, 13GB of memory, and an NVIDIA
T4 GPU with 15GB of memory. A personal PC was used for the EXAM-
INER application, equipped with an AMD Ryzen 5 3600 CPU, 16GB of
memory, and an NVIDIA GeForce RTX 2060 SUPER graphics card. The PC
was connected to a professional-grade monitor, and a Logitech Streamcam
web camera capable of recording the experiment in full HD 1080p resolution
at 60 fps. The total hardware cost for the EXAMINER application is ap-
proximately 1,500 United States Dollars per station. This setup was chosen
to leverage the high computational power required for deep learning model
training and inference while ensuring public accessibility.
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Software setup The EXAMINER application ran on a Windows 10 Edu-
cation operating system. The programming language used was Python 3 due
to its extensive support for scientific computing and machine learning. Essen-
tial libraries included Keras for deep learning-based MA activity recognition,
OpenCV for context recognition tasks, and Tkinter for the graphical user in-
terface. The 2D-skeletal-HPE inference using AlphaPose required PyTorch.
For training the deep learning-based MA activity recognition model, Google
Colab ran on Ubuntu 20.04 LTS, with Keras-Tuner used for hyperparameter
optimization.

Following the hardware and software setup for the experiment, the sub-
section continues addressing the data collection method.

Data collection

As no publicly available MA dataset can be used to evaluate the digitiza-
tion components, this research collected the data manually. Data collection
was performed in a simulated semi-virtual environment. The environment
is a laboratory environment that mimics the essentials of an actual envi-
ronment. Here, the simulated MA standing single-cell setup consists of a
table, assembly area, parts/tools area, and a submission area. The cell has
a vision-based EXAMINER for recording the participant assembly iteration.
The simulated MA scenario was employed due to COVID-19 when this exper-
iment was conducted. Hence, the regulation limits the number of participants
in this research. The scenario aims to simulate all possible outcomes of the
education robot track wheel assembly case study. Here, the experiment was
conducted by the paper’s co-author with the approval consent to collect the
video recording without face. The experiment asked to assemble the robot
with a scenario mainly including a perfect assembly iteration and an erro-
neous iteration. For instance, a person must strictly adhere to instructions
that produce a correct assembly or an assembly with one or more intention-
ally performed cognitive errors. A cognitive error mainly consists of omitting
a step, substituting a step, and performing an extra step that is not in the
general process. The scenario also included steps performed slower or faster
than usual for the motor skills.

For each recording iteration, the participant must assemble five robot
track wheels of eight parts and two hand tools for tightening each experi-
ment iteration as visualized in Figure 5.18. The robot assembly comprises
eleven steps STα,β. Each STα,β is comprised of a series of PRα,β,γ. First,
reach for an assembly part or hand tool from an ROIλ and retract it to
the assembly area. Second, an assembly or a tool use to assemble parts.
A final act of reaching to return the tool and place the completed assembly
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Parts

Tools

Final Assembly

Figure 5.18: Educational robot track wheel with parts and tools.(Not to
scale)

in a designated area. Each STα,β may have one or up to four PRα,β,γ se-
quence. Considering all of PRα,β,γ, there are thirteen reach activities, ten
retract activities, seven assembly activities, and two tool use activities for
the assembly of the educational robot. Together with assembly scenarios,
the participant executes five correct and 12 incorrect repetitions of assembly.

Automatically providing generated augmented feedback based on com-
paring digitized operator skills is a feature of EXAMINER’s. Hence, three
possible scenarios arise from the simulated assembly scenario, including a per-
fect performance in which the participant correctly executes a strictly STα,β

sequence under a desirable RTOPTα,β,γ with distα,β,γ(OIDφ+1, OIDφ) ≈ 0,
and the other two scenarios of erroneous assemblies are further categorized
as follows.

• The assembly with an incorrect STα,β sequence, the participant is re-
quested to performs iterations of MAα, with the following scenario:

– Intentionally missing a STα,β,

– Intentionally inserting STα,β \MAα.

– Intentionally substituting STα,β with STα,β′ , and

By requesting the participant to perform the mentioned incorrect STα,β

sequence iteration, the cognitive performance comparison and aug-
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mented feedback for the cognitive skill component of EXAMINER can
be further evaluated.

• The assembly with fluctuation in motor performance, the participant
is requested to experiment with including:

– Intentionally performs RTOPTα,β,γ < 0 , and

– Intentionally performs RTOPTα,β,γ > 0.

The collected data will be used separately to evaluate each of EXAMINER’s
digitization components, including assembly activity recognition and assem-
bly space context capture. After the data collection process, the experiment
subsection section proceeds with the ground truth annotation of collected
data.

Ground truth annotation

Annotation of the ground truth is performed as follows. First, the expert
examines the recording frame by frame with the non-linear video editor,
using the keyboard’s left and right arrow keys to navigate between frames
and obtain the frame’s time code. The time code is essential for documenting
the beginning and ending times of a primitive step. It is generally under the
format of Hours:Minutes:Seconds.FramesNumber. Milliseconds is obtained
from FramesNumber× 1000

FPS
. Second, the expert observes the recording closely

and records each primitive action sequentially. The expert must record the
following details in the provided recording template:

1. The action of primitive step.

2. The executed limb(s).

3. Movement of the executed limb(s) from the beginnings to the destina-
tion. Including any tools or parts employed.

4. Beginning and ending times for each of the primitive steps.

The experiment utilizes the operation time digitization section’s definition of
the start and end time or boundary of each primitive step. The expert then
combines successive primitive steps into a single assembly step. Figure 5.19
represents the final document curated by the expert, in which the recorded
information serves as the ground truth for evaluating the EXAMINER’s un-
derlying components. The sampled documents show the annotation of the
9th-step in which the operator tightens the axel hub. This step comprises four
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Time end
(mm:ss.ms)

Time start
(mm:ss.ms)

Move toMove fromLimbPrimitive
Step 

#

… (Continue from step 8th) …

Step 9th: Tighten the axle hub

01:01.5001:00.00Large hex key areaAssembly areaRightReach24

01:02.0001:01.51Assembly areaLarge hex key areaRightRetract25

01:30.0001:02.01N/AN/ABothTool use26

01:31.0001:30.01Large hex key areaAssembly areaRightReach27

… (Continue to step 10th) …

Figure 5.19: Ground truth recording template

primitive steps: reach, retract, tool use, and reach, respectively. The experi-
ment section continues with the deep learning-based MA activity recognition
experiment addressing the hyperparameter optimization of deep learning net-
works.

5.3.2 Basis of Evaluation

First, the dissertation explains basic evaluation metrics and a ranking ma-
trix for multi-class supervised classification problems for balanced and im-
balanced data sets. This includes confusion matrix, F-score, ranking matrix,
and error measurement as mean squared error(MSE) or mean squared devi-
ation(MSD).

Evaluation Metric

The confusion matrix is one of the most used metrics for the multi-class
supervised classification problem. It is a N×N matrix where N is the number
of classes being recognized. The matrix row represents the actual class, while
each column is the recognized class. Before constructing a confusion matrix,
some definitions must be clarified.

• True Positive (TP): the amount of actual positive class being recognized
as positive

• True Negative (TN): the amount of actual negative class being recog-
nized as negative

• False Negative (FN): the amount of actual positive class being recog-
nized as negative
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• False Positive (FP): the amount of actual negative class being recog-
nized as positive

• Sensitivity/Recall: or true positive rate, the probability or proportion
of a recognizer correctly recognizing positive class proportion to overall
recognized classes.

Sensitivity =
TP

TP + FN
(5.14)

• Precision/Positive Predicted Value: it is the probability of a recognizer
correctly recognizing the class corresponding to the actual occurrence.

Precision =
TP

TP + FP
(5.15)

• Specificity: it is the probability or proportion of a recognizer correctly
recognizing negative class proportion to overall true negative classes.

Specificity =
TN

TN + FP
(5.16)

• Negative Predictive Value (NPV): it is the probability of a recognizer
correctly recognizing a negative class corresponding to all negative
recognition.

NPV =
TN

TN + FN
(5.17)

• Accuracy: it is a proportion of correct recognition relative to all the
samples, only used when the class is equally distributed.

Accuracy =
TP + TN

TotalNumberOfSamples
(5.18)

Here is an example of N = 2, a binary confusion matrix consisting of
positive and negative classes. For example, a positive class is reached for rec-
ognizing a reach activity, while a negative class is not reached. The confusion
matrix is as follows.

The confusion matrix for the N class (C) is as follows.
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Figure 5.20: Binary classes confusion matrix.
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Figure 5.21: Multi-classes confusion matrix.
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Performance evaluation for imbalance data

Standard matrix including accuracy (5.18) assumes a balanced class distri-
bution. If the data is imbalanced or skewed, the errors will not be equally
treated, resulting in misleading model performance. This subsection intro-
duces some other popular matrices suitable for imbalanced data.

• F-measure or F-score: is the harmonic mean of precision (5.15) and
recall (5.14). Precision is the probability of a recognizer correctly rec-
ognizing class corresponding to the real occurrence, and recall is the
probability or proportion of a recognizer correctly recognizing positive
class proportion to overall recognized classes—the F-measure addresses
both concerns.

F −measure = 2 ∗ Precision ∗Recall

Precision + Recall
(5.19)

5.3.3 Evaluation of Skill Digitization

In this subsection, the dissertation presents the performance evaluation of
activity recognition and context capture as both sub-components work di-
rectly to digitize physical information. The evaluation reports begin with
the deep learning-based MA activity recognition.

Deep learning-based MA activity recognition MA activity recogni-
tion is designed to identify human activities based on two-dimensional human
pose estimation (2D-HPE) inputs. This process involves the application of
a trained model that executes inference across each segment using a sliding
window approach.

The LSTM model was utilized for manual assembly (MA) activity recog-
nition, with experiments conducted on various models using the manual as-
sembly activity data. Details of the dataset can be found in the appendix
under the section ”Manual Assembly Activity Dataset.” Classes 0, 1, 2, and
3 represent reach, retract, assembly, and tool use, respectively. The fine-
tuned LSTM model achieved the highest F-measures, as well as the best
accuracy and macro/weighted averages, as shown in Table 5.4. The experi-
ment’s performance metrics were based on a test split of 0.2 from the original
data. Additionally, the dissertation compares the confusion matrix (Figure
5.22), ROC-AUC as in figure 5.23, and PR-Curve as in figure 5.24 of a highly
competitive model to LSTM which is LSTM-CNN.

The experimental results in Table 5.4 and Figure 5.22 provide a detailed
comparison of various deep learning models (CNN-TUNED, LSTM-TUNED,
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Model
F-Measure

accuracy macro avg weighted avg
0 1 2 3

CNN-TUNED 0.88 0.86 0.94 0.82 0.9 0.87 0.9
LSTM-TUNED 0.97 0.94 0.97 0.9 0.96 0.95 0.96

CNN-LSTM 0.93 0.91 0.95 0.84 0.93 0.91 0.93
LSTM-CNN 0.95 0.93 0.97 0.9 0.95 0.94 0.95

Table 5.4: Performance comparison on manual assembly activity recognition
on various deep learning based model.

Figure 5.22: The multi-class confusion matrix comparison of LSTM and
LSTM-CNN model.

Figure 5.23: The top left corner zoom-in of ROC-AUC comparison of LSTM
model and LSTM-CNN model.
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Figure 5.24: The top right corner zoom-in of PR-Curve comparison of LSTM
model and LSTM-CNN model.

CNN-LSTM, and LSTM-CNN) for manual assembly activity recognition.
The activities are categorized into four classes: 0 (Reach), 1 (Retract), 2
(Assembly), and 3 (Tool Use). The experimental results are discussed further
as follows:

• F-Measure

– LSTM-TUNED achieves the highest F-measure across all ac-
tivity classes with scores of 0.97 (Reach), 0.94 (Retract), 0.97
(Assembly), and 0.9 (Tool Use).

– LSTM-CNN also shows strong performance with F-measures of
0.95 (Reach), 0.93 (Retract), 0.97 (Assembly), and 0.9 (Tool Use),
indicating competitive performance but slightly lower than LSTM-
TUNED in some classes.

• Accuracy and Averages

– LSTM-TUNED has the highest overall accuracy at 0.96 and the
highest macro and weighted averages, both at 0.96.

– LSTM-CNN follows closely with an accuracy of 0.95, a macro
average of 0.94, and a weighted average of 0.95.

• Confusion Matrix Analysis Figure 5.22 compares the confusion matrices
for LSTM-TUNED and LSTM-CNN models:
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– LSTM-TUNED demonstrates high precision with minimal mis-
classification across all classes. For example, it achieves a high
score (0.98) for Class 0 (Reach) and maintains strong performance
across other classes.

– LSTM-CNN also shows strong performance but has slightly higher
misclassification rates, particularly in Class 1 (Retract), where it
scores 0.90 compared to LSTM-TUNED’s 0.93.

• Key Takeaways

1. LSTM-TUNED outperforms other models across all metrics,
making it the best model for manual assembly activity recognition.

2. LSTM-CNN is a strong competitor but falls slightly short in
accuracy and F-measure compared to LSTM-TUNED.

3. The confusion matrix analysis highlights that LSTM-TUNED has
superior precision and lower misclassification rates, particularly in
critical classes like Reach and Retract.

Overall, LSTM-TUNED is the most effective model for this task, pro-
viding high accuracy and reliable performance across different activity classes,
thus making it the best choice for manual assembly activity recognition in
this experiment.

Context capture The subcomponent effectively identifies frame numbers
where an object within the Region of Interest (ROI) transitions from Present
to Not Present (PtoNP ) and Not Present to Present (NPtoP ). This experi-
ment’s ground truth comprised 181 PtoNP iterations, 43 NPtoP iterations,
and 234 non-transitional activities labeled as ”none.” We employed a direct
subtraction method to determine the temporal offset, comparing the frame
number identified by the subcomponent with the ground truth. The evalu-
ation includes statistical analysis, a histogram, and a box plot to visualize
deviations from the ground truth.

Of the 224 transactions involving either PtoNP or NPtoP , the subcom-
ponent accurately identified 218 (97%). The average offset was approxi-
mately 4.93 frames, with a standard deviation of 6.47 frames. The observed
offsets ranged from -5 to 36 frames. Half of the transitions had an offset of
2 frames or less. These statistics indicate a relatively high variability in the
model’s detection timing, with some instances of early and delayed detec-
tions. As shown in Figure 5.25, the histogram illustrates that most temporal
offsets cluster near zero, signifying that many detections closely align with
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Figure 5.25: Histogram of Temporal Offsets of State Transitions

Figure 5.26: Box Plot of Temporal Offsets of State Transitions

the actual transition frames. However, the data spread to the right highlights
some delayed detections.

Figure 5.26 further dissects the model’s performance by separating the
PtoNP and NPtoP transitions. It reveals that PtoNP transitions exhibit a
narrow interquartile range (IQR) and a strong central tendency around the
median, suggesting that detections for these transitions are generally close
to the actual frames. Conversely, the NPtoP transitions display a broader
distribution, indicating greater variability in offset.

EXAMINER demonstrates an effective method to detect the presence or
absence of an object under ROI using computer vision techniques, primarily
through image thresholding. With a 97% success rate in detecting transi-
tions, the model reliably identifies transitional frames, with most detections
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Table 5.5: Accuracy of step recognition.
AccuracyRecognizedTotal StepStep 

90.91%1011Pick

91.00% 80 88 Assembly

72.22% 13 18 Tool Use

100.00%1313Submit

occurring proximate to the actual transition moments. This performance
suggests that the model can effectively delineate activity boundaries, mak-
ing it a viable tool for specifying activity transitions in various applications.
After obtaining the MA activity and context, the cognitive skill digitization
continues with step recognition, showing the error’s effects that propagate
from the MA activity recognition and assembly space context capture.

Step recognition The process of assembling robot track wheels involves
four main steps: pick, assembly, tool use, and submission. These steps are
further broken down into primitive steps, as per the EXAMINER data model.
Step recognition is an information processing point for the MA activity recog-
nition and context recognition. It transforms them into primitive steps and
matches the list of primitive steps to a step.

For the recognition to be deemed accurate, every element in the primitive
step list must be correctly identified. Out of 130 ground truth steps, the step
recognition system successfully identified 116, yielding an accuracy rate of
89.23%. Table 5.5 outlines a detailed report on the model’s performance.
Notably, the model exhibits precise recognition of the ”Submit” step, and
both ”Pick” and ”Assembly” steps also demonstrate high accuracy levels.
However, the accuracy for the ”Tool Use” step is lower, primarily due to
errors in MA activity recognition that cannot be eliminated.

In the skill digitization evaluation, the EXAMINER system demonstrates
strong performance in recognizing left-hand activities and distinguishing com-
plex tasks involving both hands. Although it accurately detects right-hand
movements, the precision for ”Assembly” tasks could be enhanced. Context
capture excels with a 97% accuracy rate in identifying object transitions
within the ROI, though some temporal variability is noted. These results af-
firm the system’s robust digitization capabilities with opportunities for fur-
ther precision improvements. The performance evaluation of components
continues to evaluate the skill comparison component.
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5.4 Summary of Digitization of Operator Skills

The chapter on ”Digitization of Operator Skills” comprehensively evaluates
the EXAMINER system’s ability to convert physical actions and contexts
into digital formats for assessment. It covers the implementation and perfor-
mance of several key components, including MA activity recognition, context
capture, and step recognition.

MA Activity Recognition The LSTM-TUNED model is identified as
the most effective for recognizing manual assembly activities. It outperforms
other models like CNN-TUNED, CNN-LSTM, and LSTM-CNN, achieving
the highest F-measures, accuracy, and macro/weighted averages. This model
demonstrates excellent precision and low misclassification rates, especially in
critical classes like Reach and Retract, making it a robust tool for activity
recognition.

Context Capture The context capture component successfully identifies
frame transitions within the ROI with a 97% success rate. Temporal offset
analysis shows that most detections are closely aligned with actual transi-
tions, though some variability exists. This reliability in detecting activity
boundaries and transitions underlines the model’s effectiveness in recogniz-
ing the presence and absence of objects within the ROI using computer vision
techniques.

Step Recognition The step recognition process is vital for translating MA
activity and context data into meaningful steps. The system accurately iden-
tifies 89.23% of the steps involved in assembling robot track wheels, showing
high precision in recognizing steps like ”Submit,” ”Pick,” and ”Assembly.”
Challenges remain with the ”Tool Use” step due to errors in MA activity
recognition, indicating areas for improvement.

Feature Pre-Processing To address jitter in skeletal-2d-HPE outputs,
the Savitzky-Golay filter is employed to smooth noisy inference results. This
post-processing technique reduces oscillations in the inferred joint positions,
enhancing the accuracy of the data used for training the recognition models.
The effectiveness of the filter in mitigating false-positive data points is crucial
for maintaining the integrity of the digitized activity data.

Data Labeling Due to the lack of a publicly available MA dataset, data la-
beling is performed manually. This involves annotating the data with precise

99



time stamps for each primitive action and identifying any null-class activi-
ties. The labeled data serves as the foundation for training and evaluating
the recognition models, ensuring that the system can accurately differentiate
between various MA activities.

Evaluation Metrics The chapter explains the use of evaluation metrics
such as the confusion matrix, F-score, accuracy, precision, recall, and speci-
ficity. These metrics provide a comprehensive assessment of the models’ per-
formance, particularly in handling imbalanced data. The detailed analysis of
these metrics ensures a thorough understanding of the models’ capabilities
and limitations.

In conclusion, the digitization of operator skills in EXAMINER shows
strong potential, with the LSTM-TUNED model leading in activity recogni-
tion and the context capture component demonstrating high accuracy. Step
recognition and feature pre-processing contribute to the system’s overall ro-
bustness, making EXAMINER a reliable tool for digitizing and evaluating
manual assembly skills. Continuous improvement and fine-tuning of these
components will enhance the system’s precision and effectiveness in various
industrial training applications.
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Chapter 6

Comparison of Digitized Skill

The digitized skills comparison aims to objectively identify differences in
dexterity by comparing cognitive and motor skills between the trainee and
the defined expert’s template. These skill comparisons are conducted sepa-
rately, utilizing the previously digitized MAα as input to the skill comparison
component. To differentiate the digitized MA between the expert’s temple
and the trainee, EXAMINER introduces an additional operator identifica-
tion parameter, denoted as OID, resulting in the modified representation
MAα,OID.

As MAα,OID consists of hierarchized digitized objects at two levels, with
STβ representing the highest level and PRγ representing the lowest level,
cognitive ability comparison focuses on STβ. This choice is driven by the
need to evaluate the trainee’s ability to perform MA in a strict step-by-step
sequence. On the other hand, for motor skill comparison, PRγ is chosen as
it emphasizes the importance of similarity in performing the movement time
and trajectory of each assembly action. The following section comprehen-
sively explains the methodology employed for comparing cognitive skills.

6.1 Cognitive Skill Comparison

For the comparison of cognitive skill, the focus is directed towards the as-
sembly steps represented by STβ. A stakeholder can evaluate how trainees
comprehend and execute the assembly process by examining the list of STβ ∈
MAα,OID. Differences in the arrangement of STβ can indicate variations in
trainees’ cognitive abilities, problem-solving abilities, and decision-making
processes during the assembly operation. In the case of EXAMINER, any
dissimilarity in MAα,OID between the trainee (OID = trainee) and the tem-
plate (OID = template) is considered an error in the MA operation sequence.
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The cognitive skill comparison sub-component not only determines a binary
evaluation of pass or fail but also identifies the specific type of error that
occurred. EXAMINER aims to report two errors: missing and executing an
unexpected step.

Consequently, an element-wise comparison of STβ ∈ MAα,OID where
OID ∈ {trainee, template} is inadequate as it only reports either match
or unmatched of an input sequence. An edit distance algorithm or Leven-
shtein distance is chosen as it can fulfill the requirement to report the type
of error efficiently [1]. The algorithm measures the minimum number of
single-character edits, either insertions, deletions, or substitutions required
to transform one string into another. It quantifies the dissimilarity between
two character strings by counting the minimum number of operations needed
to convert one string into another. The algorithm considers all possible oper-
ations and determines the optimal sequence of edits that yields the smallest
total cost.

Under the context of EXAMINER, the algorithm is utilized to determine
the minimum number of edits required to convert a trainee’s MA sequence
(MAα,trainee) into an expert’s template sequence (MAα,template). Before de-
termining the optimal cost, the algorithm encodes each sequence’s MAα,OID

as a string so that each STβ is treated as a single character. Figure 6.1 de-
picts every kind of edit for each STβ. After determining the resulting optimal
cost, the subcomponent directly stores the distance result by introducing an
additional member called sequence edit distance (EDT ) to MAα,OID=trainee.
As EXAMINER assumes that the trainee must perform each step precisely
and in strict order, the resulting edit distance of any trainee with perfect
cognitive skill evaluation must be zero. This indicates that no changes were
made to transform the trainee sequence to the template sequence. Other-
wise, the algorithm enters the second stage of backtracking for the optimal
edits path and stores the types of edits TEα,β,γ including insertion(STβ),
deletion(STβ), substitution(STβ, STβ′), and matched as an additional mem-
ber for each STβ,OID=trainee. The type of edit will later be converted to
augmented feedback.

This section compares the trainee’s operation step sequences and the
template in the context of EXAMINER. Any difference between them is
considered an MA operation sequence error. In addition to a pass or fail
evaluation, the comparison identifies the type of operation sequence edit,
including insertion, deletion, and substitution. The edit distance algorithm
(Levenshtein distance) is utilized to identify all possible edits. A resultant
edit distance of zero indicates a trainee with perfect cognitive abilities, while
other values indicate specific operation errors. However, the presence of ϵ
in insertion error can be relaxed with the τ boundary as the operator may
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Figure 6.1: The trainee’s sequence is optimally edited.

perform the following activity, which is not predefined and labeled including,

1. Pause motion - as the operator has to cognitively process the perceived
information, environment context, and assembly state. The lesser the
pause in time and quantity, the better cognitive performance.

2. Random motion - that does not belong in ACT, for instance, scratching
or flexing limbs to reduce any discomfort as self-relaxation. The relax-
ation, however, will introduce the difference in motor skill performance,
which the paper will emphasize in the next section.

EXAMINER compares each operator’s operation time and motion tra-
jectory in the following section to continue comparing their motor skills.

6.2 Motor Skill Comparison

Motor skill comparison received attention among the research community,
especially in sports, dance, rehabilitation, and medical training. In addition
to cognitive skills, mastering the motor skill reflects the performance out-
comes directly. The introduced papers mainly compared the recorded expert
and the trainee at the precise time trajectory.

EXAMINER proposed categorizing MA motor skill assessment into var-
ious levels based on the motion precision required to achieve the task. It
introduces the different levels of analysis for comparing the digitized mo-
tor skill from coarse up to fine motor skills based on the application while
maintaining precise operation time measurement. However, a precise time-
trajectory comparison is not always required. For instance, an operation of
a heavy machine usually requires only the operator’s judgment and response
to the situation. Hence, measuring the action correctness and response time
is needed.

In contrast, a precise task such as a printed circuit board(PCB) manual
assembly requires an operator to master soldering skills. As it is a dexterity
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task, EXAMINER requires precise articulated hand motion and later time
measurement. The analysis categorizes a task including snap-fit assembly
and hand tool-assisted as the middle of the two. It requires precise time
and trajectory similarity measurement as it may explain the difference in
operation time.

6.2.1 Operation time comparison

An operation time comparison aims to analyze the differences in operation
time for each primitive step (PRγ) in every individual step (STβ) in the MA
sequence (MAα,OID) between the trainee and the template. The operation
time of each PRγ is denoted as TOPTα,β,γ,OID.

EXAMINER determines how the operation time TOPT for each PRγ

in the assembly step STβ of the trainee differs from that of the template
by individually performing a subtraction on each TOPT . The difference
δα,β,γ(OID,OID′) is obtained as follows:

δα,β,γ(trainee, template) = TOPTα,β,γ,trainee

− TOPTα,β,γ,template

(6.1)

In this context:

• α represents an index to access different sets of assembly steps MAα.

• β represents the β-th assembly step STβ.

• γ represents the γ-th primitive step PRγ within the assembly step STβ.

• OID and OID′ represent unique operator identifications (IDs) for the
trainee and the template, respectively.

After determining the difference using Equation (6.1), the subcomponent
directly stores the comparison result by introducing an additional member
δα,β,γ(trainee, template) to PRα,β,γ,OID=trainee. As depicted in Figure 6.2, this
operation time comparison is essential for identifying potential performance
differences between the trainee and the template, assessing trainee profi-
ciency, and identifying areas where additional training or improvement may
be required. The following subsection addresses the motion similarity be-
tween the trainee and the template.
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Figure 6.2: In comparison with the template, an operator is either perform
the PR faster, slower, or exact(PR3)

6.2.2 Trajectory comparison

The trajectory comparison in EXAMINER aims to evaluate the motion dis-
similarity of individual primitive steps (PRγ) between the trainee and the
template. Given the context of our case study, which involves snap-fit and
hand tool-assisted assembly, EXAMINER uses a distance-based compari-
son method for a demonstration instead of applying motion quantification
[114]. This decision is based on the understanding that the trainee’s mo-
tion trajectory does not need to be a perfect duplicate of the template’s but
should demonstrate a certain level of motion similarity. The distance-based
comparison method provides a practical and effective means to evaluate the
alignment of motion trajectories while accounting for variations in human
anthropometry and individual motor skills.

Given that α, β, γ is fixed while OID ∈ {trainee, template}, a selection of
distance-based comparison method should consider the following multivariate
TRAJα,β,γ,OID input characteristics.

1. Variable length of trajectories, the trajectories |TRAJOID| often differ
in length.

2. Differences in human anthropometry and measurement, since different
MA operators may have varying physical characteristics and motion
patterns due to differences in human anthropometry, resulting in dif-
ferent raw motions trajectory in R3.

Dynamic Time Warping (DTW) in the trajectory comparison lies in its
ability to handle the complexity of the input characteristics TRAJα,β,γ,OID

when comparing the trainee’s trajectory with the expert template. It aligns
the trajectories, allowing for comparisons with different time durations. In
addition, it accounts for anthropometry variations by warping the trajectories
and finding the optimal alignment that minimizes the distance. This ensures
that variations in motion due to human differences are considered. DTW
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Figure 6.3: DTW of TRAJ ′ and TRAJ .

is a dynamic programming algorithm that can perform optimal matching
of two different length time series sequences x1:N and y1:M as visualized in
Figure 6.3 [3]. The figures show TRAJα,β,γ,OID of wrist movement in the
x-axis under R2 of the fixed α, β, γ, OID at different primitive operation
iterations. Here, the TRAJ ′ is shorter than TRAJ . DTW warps and aligns
sequence by finding the best point-to-point match by constructing a cost
matrix D ∈ R(N+1)×(M+1). The cost matrix D can be set to D0,0 = 0,
D1:N,0 = ∞ and D0,1:M = ∞. After initialization, the element in D can be
populated as follows.

Di,j = d(xi, yi) + min


Di−1,j−1 (match)

Di−1,j (insertion)

Di,j−1 (deletion)

(6.2)

where d(xi, yi) is the distance between points xi and yi. The distance can be
calculated in its most basic form by taking the difference as |xi − yi|. The
final alignment cost is the sum of the costs along the optimal warping path
in D. The cost is typically reported as the distance between two aligned
sequences.

Consider an MA motion TRAJ created by moving various limbs, includ-
ing the wrists, elbows, and other relevant body parts in an assembly space.
The comparison of TRAJ involves analyzing the aligned sequences of sub-
jects using specific limbs (e.g., wrists and elbows) in R2 as constrained by
2D-HPE data. The comparison aims to assess the similarity or dissimilar-
ity between the motion trajectories performed by different subjects during
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the MA task. The comparison is made independently by dimension and in
separate limbs, but it can also be done dimension-dependent [45]. The inde-
pendent DTW, denoted as DTWi, calculates the alignment cost separately
and then sums it. In contrast, dependent DTW denoted as DTWd converts
d(xi, yi) to cumulative squared Euclidean distances to treat all dimensions.
As a result, the data from different dimensions must be scaled using a z-score
to center the data, making it scale and offset invariant. The usage application
determines whether to use DTWd or DTWi. For example, multi-dimensional
time series pattern matching may benefit from DTWd. EXAMINER also
used this strategy of DTWd to report the distance as TRAJ is in the form
of multi-dimensional time series. The dissimilarity distα,β,γ(OID,OID′) is
obtained as follows:

distα,β,γ(OID,OID′) = DTWd(TRAJα,β,γ,trainee,

TRAJα,β,γ,template)
(6.3)

where (OID = trainee) and (OID′ = template). After determining the dis-
similarity between the trainee and the template, the subcomponent directly
stores the distance result by introducing additional member
distα,β,γ(trainee, template) to PRα,β,γ,OID=trainee. By utilizing DTW to ad-
dress these challenges, the trajectory comparison method can better capture
the essence of motion dissimilarity, considering individual differences between
the trainee and the template, without requiring strict matching of raw tra-
jectories. This justifies the selection of DTW to compare and evaluate the
trainee’s performance against the template.

In summary, by utilizing distinct comparison levels for cognitive and mo-
tor skills, our methodology ensures a comprehensive and well-justified eval-
uation of the trainee’s cognitive and motor skills. This approach provides
a deeper understanding of the underlying factors contributing to skill differ-
ences. It enables specific strategies and training programs to improve the
overall skills of MA operators. After comparing the digitized trainee skills
to the template, the following section of this document provides the trainee
and interested parties with the human-interpretable comparison result.

6.3 Evaluation

Evaluating the skill comparison component demonstrates the effectiveness of
the proposed comparison method. However, the comparison directly utilizes
the information from the digitization component; if the digitization is incor-
rect, the effect will also be present in the comparison’s performance. The
subsection addresses the difference in operation sequence.
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As the difference in operation sequence utilizes the edit distance to iden-
tify the difference, the evaluation is performed as follows. First, the evalua-
tion identifies the ground truth of edit distance. Second, it uses the sequence
of activities recognized previously by the skill digitization component as input
for the edit distance algorithm. Finally, the resulting edit lists are compared
between the ground truth and the inferred result. The result shows a signifi-
cant discrepancy in the total number of edits, 26 in the ground truth, against
41 in the model. The ground truth consists of 24 inserts and three deletes. In
contrast, the model provides 45 inserts, one for each delete and substitution.
The model identified all actual ”inserts” with over-estimation. It failed to
recognize the correct number of ”delete” edits and incorrectly introduced a
”substitution” operation. The model will likely identify any missing step in
the operator’s sequence. However, it will also overestimate the missing step
and fail to identify some steps that do not belong to the sequence. As a
result, one of the noticeable effects of overestimating ”inserts” will be exhib-
ited in the feedback-providing component as it is likely to report some of the
missing assembly steps even though the trainee may have already performed
them.

Evaluating the skill comparison component demonstrates the effectiveness
of the proposed comparison method. However, inaccuracies in the digitiza-
tion component can affect the comparison’s performance. The evaluation
uses edit distance to identify differences in operation sequences, comparing
the ground truth with the model’s inferred results. The analysis reveals sig-
nificant discrepancies in the number of edits, with the model overestimating
”inserts” and failing to recognize ”deletes” accurately. This overestimation
can lead to feedback inaccuracies, potentially reporting missing steps that
the trainee has already performed.

6.4 Summary

The chapter on digitized skill comparison aims to objectively identify differ-
ences in dexterity by comparing cognitive and motor skills between trainees
and expert templates using EXAMINER. The chapter discusses methodolo-
gies for comparing cognitive skills through operation sequences and motor
skills through motion trajectories. It employs techniques like edit distance
for cognitive skill comparison and Dynamic Time Warping (DTW) for motor
skill comparison. The evaluation section assesses the performance of these
comparison methods, highlighting the effectiveness of the proposed approach
while acknowledging the impact of digitization inaccuracies on the results.
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6.4.1 Cognitive Skill Comparison

The cognitive skill comparison focuses on evaluating the trainee’s ability
to follow the exact sequence of assembly steps (STβ). EXAMINER uses
the Levenshtein distance algorithm to quantify the dissimilarity between the
trainee’s sequence and the expert’s template. The algorithm reports errors
such as insertions, deletions, and substitutions, providing a detailed under-
standing of cognitive skill discrepancies. A perfect cognitive skill evaluation
is indicated by an edit distance of zero.

6.4.2 Motor Skill Comparison

Motor skill comparison assesses the similarity in movement time and tra-
jectory of assembly actions between the trainee and the expert template.
EXAMINER categorizes motor skill tasks into various precision levels and
employs DTW for trajectory comparison. This method accommodates vari-
ations in human anthropometry and motion patterns, ensuring a comprehen-
sive evaluation of motor skills. The comparison considers both coarse and
fine motor skills, with tasks like PCB manual assembly requiring precise time
and trajectory measurements.

6.4.3 Evaluation

The evaluation section demonstrates the effectiveness of the proposed com-
parison methods but highlights the dependency on accurate digitization. The
analysis reveals discrepancies in edit distance calculations, with the model
overestimating insertions and failing to recognize deletions accurately. These
inaccuracies can affect feedback, potentially reporting missing steps that the
trainee has already performed. Overall, the chapter emphasizes the impor-
tance of refining digitization techniques to improve comparison accuracy and
enhance training outcomes.
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Chapter 7

Automatically Generated
Augmented Feedback for
Reporting a Training Outcomes

Dexterity plays a significant role in MA’s cognitive and motor aspects. To
master the MA process, a trainee must recall assembly steps, materials, lo-
cations, and tool usage. Trainees rely on their memory to complete the
assembly task. In contrast, motor skills emphasize the timing and trajectory
of assembly-related actions. Earlier, skill comparisons were conducted, and
the trainee’s comparison result was stored. However, these results frequently
required interpretation by an expert for non-specialists to comprehend them
fully.

To address this limitation, our proposed component for providing feed-
back aims to translate the initial comparison results for cognitive and motor
skills. The objective is to present the results in a manner that non-specialists
can easily interpret and comprehend, thereby eliminating the need for expert
intervention. The feedback component will enable trainees to improve their
MA skills independently, fostering continuous skill development and perfor-
mance improvement by providing a more straightforward and understandable
presentation of the comparison results. The feedback differentiates between
cognitive and motor abilities. The section first proposes a method to provide
augmented feedback for cognitive skills.

7.1 Cognitive Feedback

Augmented feedback plays a crucial role in enhancing cognitive skills during
training. The evaluation of cognitive skills focuses primarily on the trainee’s
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ability to accurately recall and reproduce the assembly sequence, including
the materials, tools, and methods for each step. Fundamental to cognitive
skill evaluation in the context of EXAMINER is the comparison between the
trainee’s captured and digitized MAα,OID=trainee and an expert’s template.
This comparison may result in a perfect match or reveal cognitive errors
within STβ, such as omitting a step, performing an unexpected step, or
substituting a step.

EXAMINER uses TEα,β stored within STβ iteratively from β = 1 to
β = N , with direct mapping through an edit-error mapping process. The
edit-error mapping categorizes errors into three classes:

1. insertion(STβ): This edit involves the addition of a missing STβ to the
MAα,trainee.

2. deletion(STβ): This edit removes an unexpected STβ from the MAα,trainee.

3. substitution(STβ, STβ′): This edit substitutes an incorrect step with
the correct one in MAα,trainee.

The mapping outcome as semantic feedback is stored as an ordered list
and will be directly reported to the trainee. EXAMINER only reports the
first cognitive error detected during the comparison, as the subsequent cog-
nitive error might propagate from the first error. In addition, the system
acknowledges that it can occasionally misinterpret activities, allowing the
trainee to mark the incorrect cognitive error determined by the system as
correct and dismiss it. This prompts the system to re-evaluate the sequence’s
edit distance by marking the corresponding TEα,β as matched and, if avail-
able, presenting the first cognitive error available after the re-evaluation.

The recent edit-error mapping is an example of semantic feedback being
provided as terminal feedback at the end of the training iteration. It is an
augmented feedback technique that generates human-readable text for the
trainee. The system continues to report the trainee’s motor performance
after the cognitive evaluation.

7.2 Motor Feedback

In contrast to cognitive skills, motor skills focus on the elapsed time and
correctness of motion to perform the assembly task. Two types of motor
skill comparisons, operation time and trajectory comparison, require differ-
ent methods to provide augmented feedback to the trainee. The subsection
begins with feedback on operation time.
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7.2.1 Operation time feedback

Operation time feedback aims to provide feedback from a recently compared
primitive step operation times, denoted as δα,β,γ(trainee, template). Each
record yields one of three possible outcomes, as illustrated in Figure 6.2:
”faster” (−δ), ”exact (0),” or ”slower” (+δ). These outcomes categorize the
deviations in operation times of individual primitive steps from the template.
For example, the performance of the trainee for PRα,β,1 was significantly
faster than the template. In contrast, the trainee’s performance lagged be-
hind the template for PRα,β,2, indicating room for improvement in executing
this particular step. Lastly, the trainee’s execution of PRα,β,2 matched the
template, demonstrating outstanding precision and accuracy in the operation
time for this primitive step.

The module further converts δα,β,γ(trainee, template) by making it rel-
ative to the template TOPT . The relative primitive step operating time
difference RTOPTα,β,γ is as follows.

RTOPTα,β,γ =
δα,β,γ(trainee, template)

TOPTα,β,γ,OID=template

(7.1)

The calculation is performed iteratively for all β and γ. The expert can
then introduce the grading scheme by utilizing a relative difference recently
calculated. Table 7.1 provides an example of a grading scheme based on the
relative difference.

Table 7.1: Grading scheme based on Relative Difference in Operation Time
(RTOPTα,β,γ)

Relative Difference Letter Grade

RTOPTα,β,γ < 0 A+
RTOPTα,β,γ = 0 A
0 < RTOPTα,β,γ ≤ 0.1 B
0.1 < RTOPTα,β,γ ≤ 0.3 C
0.3 < RTOPTα,β,γ ≤ 0.5 D
RTOPTα,β,γ > 0.5 F

The table presents an example of a grading scheme for evaluating the
relative difference in operation time (RTOPTα,β,γ) between an expert and a
trainee when performing manual assembly tasks. The scheme assigns letter
grades to distinguishing characteristics to quantify performance. The letter
grades range from A+, awarded to the trainee who demonstrates a faster
operation time, to an F for significant deviations from the expert. The grade
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mapping scheme considers various ranges of relative differences, enabling an
objective evaluation of trainee performance relative to the expert standard.

A trainee achieving RTOPTα,β,γ < 0 or A+, indicating a faster comple-
tion time of a primitive step than the expert. Even though this
−δα,β,γ(trainee, template) performance may appear exceptional, it is essen-
tial to consider the potential consequence. Rapid execution may introduce
fatigue risk due to increased exertion, compromising precision, and increas-
ing the probability of errors [43]. To ensure that speed does not come at
the expense of accuracy and overall task quality, it is necessary to evaluate
a trainee’s ability to maintain such high efficiency consistently. However,
it is essential to note that the article’s primary focus is on the training as-
pect. As such, the article does not go further into the specific implications of
prolonged execution at faster rates. The question of sustained performance
under such conditions is thus outside the scope of this paper. However, if
the proposed system is to be used to track operator performance beyond
training, implementers should consider allowance factors such as fatigue and
examine deviations from established standards.

The operation time feedback component provides the trainee valuable in-
sight into their performance. It is determined by comparing the operation
times for each primitive step to the template. First, the comparison yields
three results: ”faster,” ”exact,” and ”slower,” which indicate variances in exe-
cution time. These outcomes aid in identifying possibilities for improvement.
Later, feedback is introduced so that the comparison results can be further
refined by calculating the relative primitive step operating time and assign-
ing it a letter grade. This relative measurement and letter grade mapping
provides a more standard and non-expert-friendly interpretation of assess-
ment results. The subsection continues with feedback regarding trajectory
similarity.

Trajectory similarity feedback Trajectory similarity feedback aims to
interpret the resulting primitive step trajectory dissimilarity calculated by
Equation (6.3) from a numerical result and provides a comprehensible evalu-
ation to the trainee. As mentioned earlier, this feedback is additional infor-
mation to the operation time feedback and is not subject to an assessment.

Previously distα,β,γ(OID,OID′) is calculated using DTWd with Eucle-
dian distance. The resulting numerical result is under R≥0 and cannot be
normalized because the maximum possible distance cannot be reasonably
estimated. The number represents the total distance in pixels that the per-
formed sequence deviated from the template. This number alone is not useful
for reporting directly to the trainee, requiring an additional step. EXAM-
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INER proposes two additional modules to transform the distance data, in-
cluding the grading scheme and the relative similarity improvement between
training iterations.

The grading scheme for trajectory similarity feedback follows a similar
implementation idea of operation time feedback; instead of using the relative
values, the scheme directly utilizes the output from the Equation (6.3) and
matches them with the predefined matching scheme set by the expert. The
result from the equation is in the form of R≥0, hence requiring the expert
intervention of the grading range through their intuition and experiment on
a value range for all PRγ.

The relative similarity improvement between training iterations is intro-
duced based on one of the augmented feedback strategies. Given that OID′

φ

identifies the trainee’s operation ID, where φ ∈ {1, 2, 3, .., n} specifies the
training iteration number. Hence, distα,β,γ(OID,OID′

φ) shorten as Dφ is
the dissimilarity between the expert template of the training iteration φ.
For each consecutive training iteration, the calculation of relative distance
improvement can be performed as follows:

RDIMPα,β,γ,OID,φ+1 =
Dφ+1 − Dφ

Dφ

(7.2)

The result of RDIMPα,β,γ,OID,φ+1 < 0 means that the trainee performs
the consecutive PRα,β,γ more similar to the expert’s template than the previ-
ous iteration. Otherwise, the trainee does not have an improvement in terms
of motion similarity.

The trajectory similarity feedback component provides the trainee addi-
tional insight into their motor performance. It is determined by comparing
the trajectory for each primitive step to the template. First, the comparison
yields numerical distance from the template (dissimilarity), which indicates
variances in motion trajectory. Later, it reports the dissimilarity of the tra-
jectory as a grade, and once the trainee performs an additional iteration,
the feedback component reports the improvement or deterioration of train-
ing outcomes. Besides, the methodology can also be applied to the operation
time feedback.

7.3 Summary

This chapter presents a comprehensive methodology for providing automat-
ically generated augmented feedback to report training outcomes. The feed-
back component translates comparison results of cognitive and motor skills
into an easily understandable format for non-specialists, enabling trainees
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to improve their manual assembly (MA) skills independently. The cognitive
feedback component uses an edit-error mapping process to provide human-
readable text detailing errors such as insertions, deletions, and substitutions
in assembly steps. The motor feedback component offers insights into oper-
ation time and trajectory similarity, utilizing grading schemes and relative
improvement metrics to standardize and simplify performance evaluations.
These feedback mechanisms enhance trainee comprehension and support con-
tinuous skill development, contributing to improved proficiency in industrial
manual assembly tasks. The chapter concludes with an evaluation of each
feedback component, highlighting their effectiveness and areas for further
refinement.
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Chapter 8

Conclusion, Discussion,
Limitation, and Future Work

This chapter provides a comprehensive overview of the conclusions drawn
from this research, discusses the implications and contributions of the EX-
AMINER framework, outlines the limitations encountered during the study,
and proposes directions for future research. The aim is to encapsulate the
findings and their significance while identifying areas for further exploration
and improvement.

8.1 Conclusion and Discussion

By introducing a comprehensive framework and data model, EXAMINER
aims to bridge the gap in adopting I-VTS for MA tasks. This model in-
corporates existing proposals from both industrial and other virtual training
systems. Central to the proposed framework is an elementary data structure
that governs the entire process, from capturing raw video feeds to provid-
ing feedback on training outcomes. Unlike many related studies that offer
broader frameworks for realizing an entire factory training environment, our
framework specifically addresses industrial manual assembly training [68].

The resulting framework consists of the following components: skill dig-
itization, skill comparison, feedback provider, and multimedia training ma-
terial. The implementation focuses on the first three components, ensuring
their seamless integration. The framework implementation utilized method-
ologies for skill digitization using a video camera, employing standard and
contemporary techniques such as deep learning in computer vision for human
pose estimation, recurrent neural networks for activity recognition, and com-
puter vision for contextual sensing. Each underlying subcomponent shows
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promising performance.
For instance, this paper utilizes a stacked LSTM on an in-house dataset of

industrial manual assembly activities, processed into pose coordinates by hu-
man pose estimation, to recognize MA activities. The performance is promis-
ing, as indicated by an F1 score of over 0.9 in most MA activity classes, com-
parable to public datasets using equivalent LSTM architecture [107], [117].
Additionally, our model introduces an activity recognition method using hu-
man pose estimation data, offering less intrusiveness than methods relying
on wearable sensors despite marginally lower performance [92], [100], [116].

Recognizing an MA operation involves more than just identifying activ-
ities; it requires integrating contextual information, including the object in-
teraction and the operation’s elapsed time. This article introduces a context
recognition subcomponent using computer vision techniques, accurately rec-
ognizing item state changes within 20-40 milliseconds. The proposed model
presents a viable non-deep learning alternative for motion-time studies and
activity segmentation [93], [103]. By combining context and activity data,
the digitization component can accurately recognize steps, encompassing ac-
tivities, operation time, and related objects.

The step recognition implementation opted for a predefined algorithm-
based matching, achieving over 90% accuracy in assembly steps like ’Pick,’
’Assemble,’ and ’Submit.’ However, the ’Tool Use’ steps lag at 72% accuracy
due to activity and context recognition performance limitations.

This study also introduces interpretable augmented feedback for training
outcomes. While this concept is heavily utilized in other industries, it is
rarely addressed in MA. Some related studies briefly use it in virtual reality
training environments, but they often overlook manual assembly’s touch and
feel aspect [70]. This study thoroughly explores augmented feedback imple-
mentation in a physical training setting. Despite errors in the digitization
process leading to overestimations in cognitive error feedback, the system re-
liably reports unperformed steps, demonstrating perfect recall performance.

Moreover, EXAMINER demonstrates that a simple hardware setup com-
prising a standard video camera and personal computer can effectively dig-
itize MA tasks. This approach simplifies the implementation and makes it
economically viable and accessible for small and medium-sized enterprises,
promoting broader adoption.

While results are promising, opting for contemporary methods and a
transparent data model allows future adaptations and improvements with
more advanced models. However, the current framework has limitations.
It is evaluated solely on hand-only, non-precise assembly in a single-station
setup. Extensions are required to accommodate additional limbs, precise
finger motions, and multi-station assembly tasks.
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8.2 Contribution

This study introduces a framework in the Industrial Manual Assembly Vir-
tual Training Systems domain, significantly reducing the need for expert
involvement and paving the way for autonomous skill development in MA
training. Distinctive in its approach, this research offers a comprehensive
solution that encompasses the entire spectrum of manual assembly opera-
tion digitization and the development of an effective, user-centric training
feedback system.

Central to our framework is the innovative digitization of MA operations
for experts and trainees. This digitization process is critical because it is the
foundation for subsequent skill analysis and comparison between trainees and
experts. In analyzing these operations, the study takes a novel approach,
employing algorithms such as edit distance and dynamic time warping to
identify and quantify skill differences. This methodology enables a more
in-depth understanding of cognitive and motor skill differences.

Another contribution of this research is the introduction of MA task data
model. This model enhances the framework’s adaptability across diverse
training scenarios and revolutionizes how information is systematically or-
ganized and utilized within I-VTS. The modular design of the framework,
emphasizing interconnected yet distinct components, significantly enhances
system flexibility and scalability, catering to a wide range of training needs
and environments.

The incorporation of augmented feedback is another key aspect of our
research. This study bridges the gap between complicated data analysis and
actionable training insights, transforming complex skill comparisons into in-
tuitive, easily comprehensible feedback for trainees. This feedback mech-
anism fosters self-learning and reduces dependency on expert intervention,
thereby facilitating a shift towards more independent skill development.

Economically, EXAMINER offers significant benefits by utilizing off-the-
shelf components such as a video camera and personal computers, which
drastically reduces setup costs. This cost-effectiveness makes the system
accessible to small and medium-sized enterprises, promoting wider adoption.
Additionally, the flexibility of EXAMINER to operate in various training
environments without the need for specialized hardware minimizes financial
barriers, further enhancing its economic impact.

In terms of broader societal impact, our framework aligns seamlessly with
several Sustainable Development Goals (SDGs), including Quality Education
(SDG 4), Economic Growth (SDG 8), and Reduced Inequalities (SDG 10).
By improving training methodologies and accessibility, the study contributes
significantly to advancing professional skills and educational methodologies

118



while also addressing environmental concerns by minimizing the need for
travel in traditional training setups.

In summary, this research offers a comprehensive, flexible, and efficient
I-VTS framework, representing a significant leap forward in virtual training
systems. The framework utilizes advanced digitization techniques, detailed
skill analysis, and user-friendly augmented feedback to address current gaps
in MA training and establish a new standard for future developments in the
field. The next section addresses the limitations of our current methodology
and anticipates investigating these aspects in future research.

8.3 Limitation

While promising, the proposed framework has been primarily evaluated in
simulated environments. Real-world testing with diverse user groups and
varying contexts is necessary to validate its effectiveness across different sce-
narios. The current implementation might also face challenges when applied
to highly complex assembly environments. The elaboration of each limitation
is as follows:

1. Simulated Environment: The implementation of the proposed frame-
work has been primarily tested in simulated environments. Real-world
validation across diverse scenarios and user groups is essential to as-
certain its effectiveness in practical applications. Challenges specific to
complex assembly environments need to be explored further.

2. Limited Dataset: The in-house dataset was created with a single par-
ticipant at a location, primarily due to restrictions during the COVID-
19 outbreaks. This limitation results in reduced variability, potentially
leading to overfitting. Although the study does not aim to develop a
new activity recognition model, it demonstrates the feasibility of using
the available model with the in-house dataset.

3. Lack of Real-User Validation: The absence of real-user validation
poses a limitation, impacting the comprehensive evaluation of each
component and the overall implementation under real-world conditions.
User experience and usability across diverse user demographics have not
been fully explored, including adjustments based on user feedback.
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8.4 Future Work

The research faces several limitations. Firstly, evaluations primarily in sim-
ulated environments necessitate real-world validation for diverse scenarios,
assembly environments, and user groups. The dataset’s limitation, gener-
ated from a single participant due to pandemic constraints, poses challenges
related to variability and overfitting. Lack of real-user validation impacts
the comprehensive assessment of system components and usability across
different users. As of that, the future work of this study is as follows.

• User-Centric Evaluation: It is a real-world test involving users from
various demographics to assess user experience, system usability, and
the effectiveness of the proposed framework in a practical training en-
vironment.

• Long-term User Studies: It is a measurement of the framework’s
effectiveness over extended periods. This could reveal insights into the
framework’s long-term impact on users’ skills and performance.

• Commercial Viability: The study should explore its commercial vi-
ability with the industry partner. For instance, consider scalability,
cost-effectiveness, return on investment, and ease of integration into
existing infrastructure.

In closing, this study introduces the EXAMINER framework, a compre-
hensive solution for Industrial Manual Assembly Virtual Training Systems,
filling significant gaps in previous research. By automating the digitization
of expert and trainee MA operations and providing automated augmented
feedback on training outcomes, EXAMINER significantly reduces expert in-
tervention in MA training. While the contributions are significant, several
limitations are recognized. Real-world testing is required to validate the ef-
fectiveness of the primary evaluation in simulated environments. The limited
dataset and lack of real-user validation hamper the system’s comprehensive
evaluation and usability across various users. To address these limitations,
future research will concentrate on User-Centric Evaluation, which will in-
volve a diverse range of users in assessing user experience and system ef-
fectiveness in real-world training environments. Long-term User Studies are
proposed to determine the framework’s efficacy over time, providing insights
into the framework’s long-term impact on users’ skills. Additionally, Com-
mercial Viability exploration with industry partners is advised, with scala-
bility, cost-effectiveness, and ease of integration into existing infrastructure
being considered. These initiatives seek to improve the framework’s practical
applicability and effectiveness.
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Appendix

Manual Assembly Activity Dataset

The dataset consists of the forward-facing video record of the manual activity
performance and the annotation of the activity at the primitive activity level.

Manual activity performance Performers were asked to assemble the
TETRIX®MAX Expansion TrackBot step 2.7 and 2.9 [121]. It is an incor-
poration of Tank Tread Idler Wheel to one of the chassis at the assembly
station. The assembly step consists of one partial assembly (chassis), five
distinct parts, and two hand tools as in table 8.1. The table shows TrackBot
part name, image, amount per assembly, and total amount for five assemblies.
The partial assembly consists of 11 steps. However, each step consists of mul-
tiple primitive actions and areas of interaction as comprehensively listed in
table 8.2. Primitive actions are motor activities related to the manual assem-
bly, including reach and pick, retract, assembly, tool use, reach and pick, and
reach and place. Areas can be either parts area, tools area, assembly area, or
submission area. An area interaction is when a primitive action is associated
in the form of the beginning to the ending location of the primitive action.
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Previously assembled parts
Name Image Amount Total

1 Partial assembled chassis 1 5

Parts
Name Image Amount Total

2 Tank Tread Idler Wheel 1 5

3 11 mm Bronze Bushing 2 10

4 100 mm Axle 1 5

5 Axle Spacer 3/8” 2 10

6 Axle Set Collar 1 5

Tools
Name Image

7 Hex Key Pack

Table 8.1: The parts and tools for TrackBot Assembly partial assembly of
step 2.7 and 2.9 122



Step Hand Primitive action From area To area
1: Pick the Partial assembled chassis

1 left reach and pick assembly or submission area Partial assembled chassis
2 left retract Partial assembled chassis assembly area

2: Incorporate the Tank Tread Idler Wheel to Partial assembled chassis
3 right reach and pick assembly area Tank Tread Idler Wheel
4 right retract Tank Tread Idler Wheel assembly area
5 any assembly

3: Insert the first 11 mm Bronze Bushing to the Partial assembled chassis
6 right reach and pick assembly area 11 mm Bronze Bushing
7 right retract 11 mm Bronze Bushing assembly area
8 any assembly

4: Insert the second 11 mm Bronze Bushing to the Partial assembled chassis
9 right reach and pick assembly area 11 mm Bronze Bushing

10 right retract 11 mm Bronze Bushing assembly area
11 any assembly

5: Insert the 100 mm Axle to the Tank Tread Idler Wheel
12 right reach and pick assembly area 100 mm Axle
13 right retract 100 mm Axle assembly area
14 any assembly

6: Insert the first Axle Spacer 3/8” to the 100 mm Axle
15 right reach and pick assembly area Axle Spacer 3/8”
16 right retract Axle Spacer 3/8” assembly area
17 any assembly

7: Insert the second Axle Spacer 3/8” to the 100 mm Axle
18 right reach and pick assembly area Axle Spacer 3/8”
19 right retract Axle Spacer 3/8” assembly area
20 any assembly

8: Insert the Axle Set Collar to the 100 mm Axle
21 right reach and pick assembly area Axle Set Collar
22 right retract Axle Set Collar assembly area
23 any assembly

9: Tighten Axle Hub
24 right reach and pick assembly area Hex Key Pack (large)
25 right retract Hex Key Pack (large) assembly area
26 any use tool
27 right reach and return assembly area Hex Key Pack (large)

10: Tighten Axle Set Collar
28 right reach and pick Hex Key Pack (large) Hex Key Pack (small)
29 right retract Hex Key Pack (small) assembly area
30 any use tool
31 right reach and return assembly area Hex Key Pack (small)

11: Submit the final assembly
32 left reach and place assembly area submission area

Table 8.2: The list of eleven sequential assembly step for the assemble of
Expansion TrackBot
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