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Abstract

Medical image segmentation plays a crucial role in quantifying diseases,
assessing prognosis, and evaluating treatment results. However, manual
segmentation is time-consuming, prone to interobserver variability, and
limited by the availability of skilled experts. Despite advances in deep
learning-based approaches for automatic segmentation, challenges such as
precise boundary delineation, limited annotated data, and the trade-off
between model complexity and performance persist. In addition, data
privacy concerns hinder the sharing of medical images between institutions,
preventing collaborative research and model development.

This dissertation focuses on improving medical image segmentation by
addressing three key aspects: model accuracy, data privacy, and computa-
tional efficiency. This dissertation proposes novel deep learning architectures
and techniques that leverage the power of attention mechanisms, transformer
models, federated learning, and knowledge distillation to tackle these chal-
lenges.

Firstly, this dissertation introduce DA-TransUNet, a dual attention
transformer U-Net architecture that integrates spatial and channel attention
mechanisms with transformer models. DA-TransUNet effectively captures
fine-grained details and long-range dependencies in medical images, leading
to improved segmentation accuracy compared to state-of-the-art methods.

Secondly, this dissertation proposes MIPC-Net, a mutual inclusion mech-
anism for precise boundary segmentation. MIPC-Net uses complementary
information from position and channel features to enhance the delineation of
complex anatomical structures and small lesions, resulting in a more accurate
boundary segmentation.

Thirdly, this thesis introduces FKD-Med, a framework for medical image
segmentation that prioritizes privacy and optimizes communication. FKD-
Med integrates federated learning and knowledge distillation techniques to
enable collaborative model training between multiple institutions while pre-
serving data privacy. It also improves model efficiency by distilling knowledge
from complex models to lighter ones, reducing computational requirements
without compromising segmentation performance.

Extensive experiments on multiple benchmark datasets demonstrate the
superior performance of the proposed methods and frameworks in terms of
segmentation accuracy, boundary precision, and computational efficiency.
The contributions of this dissertation advance the field of medical image
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segmentation by proposing novel architectures, mechanisms, and frameworks
that address key challenges related to model accuracy, data privacy, and
computational efficiency.

Future research directions include exploring additional attention mech-
anisms and transformer variants, extending the proposed methods to 3D
and volumetric segmentation tasks, integrating differential privacy techniques
for enhanced data protection, developing advanced model compression and
acceleration techniques, investigating the generalizability and transferability
of the proposed approaches to different medical imaging modalities and
anatomical regions, and improving the interpretability and explainability of
the segmentation models.

By advancing the state-of-the-art in medical image segmentation, this dis-
sertation contributes to the development of accurate, privacy-preserving, and
efficient segmentation models that can be seamlessly integrated into clinical
workflows, ultimately improving patient care through more precise diagnosis,
treatment planning, and monitoring of various diseases and conditions.

Keywords: Medical Image Segmentation, Dual Attention, Mutual In-
clusion, Federated Learning, Knowledge Distillation.
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Chapter 1

Introduction

1.1 Background and Motivation

Medical image segmentation is a fundamental task in medical image analysis,
playing a crucial role in quantifying diseases, assessing prognosis, and evalu-
ating treatment outcomes. It involves delineating regions of interest within
medical images, such as organs, lesions, or other anatomical structures.
Accurate and efficient segmentation is essential for clinical decision-making
and patient care.

Traditionally, medical image segmentation has been performed manually
by skilled professionals, such as radiologists and clinical experts. However,
manual segmentation is a time-consuming and labor-intensive process, often
taking hours or even days to complete for a single patient. Moreover, manual
segmentation is prone to variability between observers, as different experts
may have different interpretations and delimitations of the same image,
leading to inconsistencies in the results [1].

With rapid advances in deep learning technologies, automatic medical
image segmentation has gained significant attention in recent years. Deep
learning-based approaches, such as convolutional neural networks (CNNs)
and their variants, have shown promising results in segmenting various
anatomical structures and lesions across different imaging modalities. These
approaches aim to improve the efficiency and precision of the segmentation
process, alleviating the burden on medical professionals and enabling more
consistent and reproducible results.

Medical image segmentation differs from general segmentation tasks
in several key aspects. First, target regions in medical images often
exhibit irregular shapes, ambiguous boundaries, and complex anatomical
structures, while general segmentation tasks typically involve objects with
more regular shapes and clearer boundaries. Second, medical images are
heterogeneous, originating from various imaging modalities (e.g. CT, MRI,
X-ray) and presenting anatomical variations among patients. In contrast,
general segmentation tasks often deal with images from the same domain,
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which feature relatively consistent characteristics. Third, medical image
datasets are usually smaller and more costly to annotate compared to large-
scale annotated datasets available for general segmentation tasks. Finally,
medical image segmentation requires high precision, especially along the
boundaries of target regions, as accuracy directly impacts diagnosis and
treatment decisions. General segmentation tasks, on the other hand, may
have lower accuracy requirements for object boundaries. These distinct
characteristics of medical image segmentation require the development of
specialized algorithms and techniques that can effectively address the unique
challenges posed by medical images.

Despite the progress made in medical image segmentation using deep
learning, several challenges remain. One major challenge is the need for
precise boundary delineation, especially for complex anatomical structures
and small lesions. Accurate boundary segmentation is crucial for treatment
planning and surgical interventions, where even minor inaccuracies can have
significant clinical consequences. Another challenge is the limited availability
of annotated data, as manual annotation of medical images is a time-
consuming and expensive process. This scarcity of labeled data hinders the
development and generalization of deep learning models. Furthermore, there
is often a trade-off between model complexity and performance, as more
complex models may achieve higher segmentation accuracy, but at the cost
of increased computational requirements and longer inference times [1–3].

In addition to these challenges, data privacy and security concerns are
of the utmost importance in the medical domain. Medical images contain
sensitive patient information, and sharing such data between different insti-
tutions for collaborative research and model development is often restricted
by privacy regulations and ethical considerations. This poses a significant
barrier to the use of large-scale datasets and the use of collective knowledge
from multiple institutions to improve segmentation models.

Motivated by these challenges and the potential impact of accurate and
efficient medical image segmentation on patient care, this dissertation aims
to explore novel techniques and frameworks to enhance the performance,
privacy, and efficiency of medical image segmentation using deep learning.

1.2 Research Objectives

The main objectives of this research are as follows:

1. To develop advanced deep learning architectures that can effectively
capture fine-grained details and long-range dependencies in medical
images for accurate segmentation.
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2. Investigate techniques for precise boundary delineation of complex
anatomical structures and small lesions.

3. Explore privacy-preserving approaches for collaborative model training
across multiple institutions while ensuring data security and confiden-
tiality.

4. Improve the computational efficiency of medical image segmentation
models, enabling faster inference and deployment in clinical settings.

1.3 Research Framework

To better illustrate the research objectives and the relationships between
the key components of this dissertation, a research framework is presented
in Figure 1.1. The research framework, as shown in Figure 1.1, revolves

Figure 1.1: Research framework of the dissertation, highlighting the main
research directions and their corresponding chapters.

around the central goal of enhancing medical image segmentation. This
goal is approached from three main research directions: model accuracy,
data privacy, and model efficiency. In the direction of model accuracy, two
novel architectures are proposed: DA-TransUNet (Chapter 3) and MIPC-
Net (Chapter 4). DA-TransUNet integrates dual attention mechanisms and
transformer models into a U-Net architecture to capture fine-grained details
in medical images. MIPC-Net introduces a mutual inclusion mechanism for
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precise boundary segmentation, leveraging complementary information from
position and channel features. The data privacy direction is addressed by
FKD-Med (Chapter 5), a federated learning framework that preserves privacy
that allows the training of collaborative models across multiple institutions
while ensuring data confidentiality. FKD-Med also contributes to the model
efficiency direction by employing knowledge distillation techniques for model
lightweighting, reducing computational requirements without compromis-
ing segmentation performance. This research framework provides a clear
overview of the main contributions and their interconnections, guiding the
structure and content of the dissertation.

1.4 Contributions

The main contributions of this dissertation are summarized as follows:

• This dissertationpropose DA-TransUNet, a novel dual attention trans-
former U-Net architecture that integrates spatial and channel attention
mechanisms with transformer models (Chapter 3). DA-TransUNet
effectively captures fine-grained details and long-range dependencies in
medical images, leading to improved segmentation accuracy compared
to existing methods.

• This dissertation introduces MIPC-Net, a mutual inclusion mechanism
for precise boundary segmentation (Chapter 4). MIPC-Net uses com-
plementary information from position and channel features to enhance
the delineation of complex anatomical structures and small lesions,
resulting in a more accurate boundary segmentation.

• This dissertation presents FKD-Med, a privacy-sensitive communication-
optimized framework for medical image segmentation (Chapter 5).
FKD-Med integrates federated learning and knowledge distillation
techniques to enable collaborative model training across multiple insti-
tutions while preserving data privacy. It also improves model efficiency
by distilling knowledge from complex models to lighter ones, reduc-
ing computational requirements without compromising segmentation
performance.

• This dissertation conducts extensive experiments on multiple bench-
mark datasets to evaluate the effectiveness of the proposed methods
and frameworks. The results demonstrate the superior performance of
our approaches compared to state-of-the-art methods in terms of seg-
mentation accuracy, boundary precision, and computational efficiency.
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1.5 Thesis Organization

The remainder of this dissertation is organized as follows:

• Chapter 2 provides a comprehensive literature review of the recent
advances in medical image segmentation. Covers various topics, in-
cluding U-Net and its variants, attention mechanisms, transformer-
based models, federated learning, and knowledge distillation. The
limitations of existing approaches and potential research directions are
also discussed.

• Chapter 3 introduces DA-TransUNet, a dual attention transformer U-
Net architecture for medical image segmentation. The architecture
design, integration of attention mechanisms and transformer models,
and experimental results are presented in detail.

• Chapter 4 presents MIPC-Net, a mutual inclusion mechanism for
precise boundary segmentation. The methodology, including the ex-
traction and fusion of position and channel features, is described, along
with the experimental evaluation and comparison with state-of-the-art
methods.

• Chapter 5 describes FKD-Med, a privacy-sensitive privacy-optimized
communication framework for medical image segmentation. The inte-
gration of federated learning and knowledge distillation techniques, as
well as the experimental setup and results, is discussed in depth.

• Chapter 6 concludes the dissertation by summarizing the main find-
ings, contributions, and potential future research directions. It also
highlights the impact of the proposed methods and frameworks on the
advancement of medical image segmentation and improving patient
care.
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Chapter 2

Literature Review

2.1 Overview of Medical Image Segmentation

Techniques

Medical image segmentation plays a crucial role in quantifying diseases,
assessing prognosis, and evaluating treatment results. It involves delineating
regions of interest within medical images, such as organs, lesions, or other
anatomical structures. However, manual segmentation by experienced pro-
fessionals is time-consuming and prone to variability between observers [1].
With the advent of deep learning technologies, automatic medical image
segmentation has gained significant attention in the research community,
with the aim of improving the efficiency and accuracy of the segmentation
process.

Despite the progress made in medical image segmentation, several chal-
lenges remain. These include the need for precise boundary delineation,
limited availability of annotated data, and the trade-off between model
complexity and performance [1–3]. In addition, medical image segmentation
differs from generic image segmentation tasks, as it requires capturing fine-
grained details and handling variations in anatomy and pathology between
patients.

This chapter provides a comprehensive overview of recent advances in
medical image segmentation, focusing on deep learning-based approaches.
The discussion begins with the U-Net architecture and its variants, which
have been widely adopted in medical image segmentation. The applica-
tion of attention mechanisms, particularly models based on dual attention
and transformers, is explored to enhance segmentation performance. The
challenges of data privacy and scarcity are discussed, and the discussion
focuses on how federated learning can address these issues. Finally, the role
of knowledge distillation in improving model efficiency and performance is
examined. Throughout the chapter, the limitations of existing approaches are
highlighted and potential research directions to advance the field of medical
image segmentation are identified. By addressing these challenges and
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exploring innovative solutions, the aim is to contribute to the advancement
of medical image segmentation techniques and ultimately improve patient
care through more accurate and efficient disease quantification, prognosis
evaluation, and treatment evaluation.

2.2 U-Net and Its Variants in Medical Image

Segmentation

2.2.1 U-Net Architecture

U-Net is a widely adopted architecture in medical image segmentation, known
for its efficient use of data augmentation and its ability to achieve superior
performance even with limited datasets [4].

2.2.2 Variants of U-Net

Building upon the U-Net architecture, various variants have been proposed
to further enhance its segmentation performance. ResUNet [5] incorporates
residual connections to improve segmentation, particularly in the context
of polyp detection during colonoscopy examinations. Attention U-Net [6]
integrates attention mechanisms to boost the localization and segmentation
of the pancreas. Other notable variants include DAResUNet [7], which
combines double attention and residual mechanisms, and Attention Res-UNet
[8], which explores the substitution of hard attention with soft attention.

TransUNet [9] represents a significant advancement by innovatively com-
bining the Transformer architecture with the U-Net structure. Subsequent
works, such as TransU-Net++ [10], build on this foundation by incorporating
attention mechanisms into skip connections and feature extraction. Swin-
Unet [11] goes one step further by replacing every convolution block in U-Net
with the Swin-Transformer [12]. DS-TransUNet [13] proposes the integration
of a multiscale Transformer module (TIF) into skip connections, while AA-
TransUNet [14] leverages the Block Attention Model (CBAM) and Deep
Separable Convolution (DSC) to optimize TransUNet.

2.2.3 Skip Connections and Model Integration

Skip connections play a vital role in U-Net-based models, aiming to bridge
the semantic gap between the encoder and decoder and effectively recover
fine-grained object details [15] [16] [17]. Modifications to skip connections can
be categorized into three primary approaches. The first focuses on increasing
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the complexity of skip connections, as exemplified by the Dense-like structure
in U-Net++ [18] and the full-scale skip connections in U-Net3++ [19]. The
second approach involves processing feature maps within skip connections,
such as the 3D hybrid residual attention-aware method introduced in RA-
UNet [20] for precise feature extraction. The third approach combines feature
maps of encoder and decoder, as seen in BCDU-Net [21], where a bidirectional
convolutional long short-term memory (LSTM) module is added to the skip
connections.

Model integration techniques have also been explored to enhance the
learning capacity of deep neural networks. DAResUNet [7] incorporates
residual modules and dual attention blocks into skip connections, while
DS-TransUNet [13] merges Transformer mechanisms into skip connections.
IB-TransUNet [3] integrates a multiresolution fusion mechanism into skip
connections, and DA-TransUNet [2] optimizes skip connections using image
feature positions and channels. However, these approaches often focus on
specific aspects of the model, lacking a comprehensive consideration of the
overall structure.

2.3 Attention Mechanisms in Medical Image

Segmentation

2.3.1 Overview of Attention Mechanisms

Attention mechanisms have gained significant traction in medical image
segmentation due to their ability to guide the model’s focus towards relevant
features and improve performance. The concept of attention mechanisms
was first introduced in the context of machine translation [22] and has since
been applied to various domains, including image generation [23], image
captioning [24], and visual question answering [25].

2.3.2 Channel Attention and Spatial Attention

Two primary types of attention mechanisms have been explored in medical
image segmentation: channel attention and spatial attention. Channel
attention focuses on assigning importance to different channels of the feature
maps, while spatial attention emphasizes the importance of different spatial
locations. The Squeeze-and-Excitation (SE) block [26] is a popular choice for
channel attention, while the Convolutional Block Attention Module (CBAM)
[27] incorporates both channel and spatial attention. These attention mech-
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anisms have been successfully integrated into various U-Net-based models,
such as Attention U-Net [6] and SA-UNet [28].

2.3.3 Dual Attention Mechanisms

Dual attention mechanisms, which combine channel attention and spatial
attention, have demonstrated promising results in medical image segmen-
tation. The Dual Attention Network (DANet) [29] employs position and
channel attention modules to capture long-range dependencies and improve
segmentation accuracy. The Multilevel Dual Attention U-Net [30] integrates
dual attention modules at different scales to enhance polyp segmentation.

2.4 Transformer-based Models in Medical Im-

age Segmentation

2.4.1 Overview of Transformer Models

Transformer models, initially proposed for natural language processing tasks
[31], have recently gained traction in computer vision, including medical im-
age segmentation. The self-attention mechanism in Transformers allows for
capturing long-range dependencies and global context, which is particularly
beneficial for medical images with complex structures and variations.

2.4.2 Transformer-based Architectures for Medical Im-
age Segmentation

TransUNet [9] pioneered the application of Transformers in medical image
segmentation by incorporating Transformer layers into the encoder of the
U-Net architecture. Swin-Unet [11] further advanced this approach by in-
troducing a pure transformer-based U-shaped encoder-decoder architecture,
using the power of the Swin-Transformer [12]. Other notable Transformer-
based architectures include DS-TransUNet [13], which integrates a multiscale
Transformer module (TIF) into skip connections, and MT-UNet [32], which
incorporates a Mixed Transformer module for enhanced feature extraction.

2.4.3 Integration of Transformer and CNN

Efforts have also been made to combine the strengths of Transformers
and convolutional neural networks (CNNs) for medical image segmentation.
TransFuse [33] introduces a fusion of CNNs and Transformers, utilizing
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the BiFusion module and the AG block to combine features from both
architectures. ResViT [34] integrates the contextual sensitivity of vision
transformers, the precision of convolution operators, and the realism of
adversarial learning. These hybrid approaches aim to leverage the global
context captured by Transformers and the local details extracted by CNNs
to improve segmentation accuracy.

2.5 Federated Learning in Medical Image Seg-

mentation

2.5.1 Overview of Federated Learning

Federated learning (FL) has emerged as a promising approach to address
data privacy and scarcity issues in medical image segmentation. FL enables
collaborative model training across multiple institutions without the need
for direct data sharing, thus preserving patient privacy and adhering to
regulatory requirements.

2.5.2 Applications of Federated Learning in Medical
Image Segmentation

Several studies have explored the application of FL in medical image
segmentation. [35] introduced a distributed real-time network framework
and provided a comprehensive analysis of different FL methods for the
segmentation of brain tumors. [36] investigated the integration of differential
privacy techniques to strike a balance between model performance and
privacy protection. [37] proposed a scalable FL framework with a U-Net
architecture, achieving significant improvements in brain tumor segmentation
while ensuring advanced data privacy and security measures.

Other notable contributions include FedMix [38], which addresses the
varying levels of image supervision across local clients by dynamically adjust-
ing the aggregation weights, and FedSeg [39], which tackles the challenges
of non-IID data distribution and class heterogeneity in FL for semantic
segmentation.

2.5.3 Challenges and Future Directions

Despite the progress made in applying FL to medical image segmentation,
several challenges remain. These include the communication overhead as-
sociated with transferring model updates between clients and the server,
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the potential for model performance degradation due to data heterogeneity
across clients, and the need for effective aggregation strategies to handle
non-IID data distributions. Future research directions may explore the
integration of FL with other techniques, such as knowledge distillation and
model compression, to further improve the efficiency and performance of FL
in medical image segmentation.

2.6 Knowledge Distillation in Medical Image

Segmentation

2.6.1 Overview of Knowledge Distillation

Knowledge distillation (KD) is a technique that aims to transfer knowledge
from a large, complex teacher model to a smaller, more efficient student
model. Using the knowledge learned by the teacher model, KD enables the
student model to achieve comparable performance with reduced computa-
tional complexity and memory requirements.

2.6.2 Applications of Knowledge Distillation in Medical
Image Segmentation

KD has been applied to various tasks in medical image segmentation to im-
prove the efficiency and performance of the model. The adaptive perspective
distillation approach (APD) [40] introduces an adaptive local perspective for
each training sample, enhancing the KD process. Cross-Image Relational
Knowledge Distillation (CIRKD) [41] focuses on transferring structured
relations, such as pixel-to-pixel and pixel-to-region correlations, between
images.

In the context of medical imaging, [42] proposed an efficient architecture
that combines improved segmentation capability with runtime efficiency. [43]
introduced a novel methodology that integrates two individual segments,
each focusing on obtaining modality-specific knowledge. The Structural and
Statistical Texture Knowledge Distillation (SSTKD) framework [44] leverages
both structural and statistical texture knowledge to enhance the KD process.

2.6.3 Challenges and Future Directions

The integration of KD with FL for medical image segmentation remains
largely unexplored. Although some studies have proposed frameworks that
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combine FL and KD, such as FedDKD [45], FedICT [46], and MetaFed [47],
more research is needed to understand how to effectively integrate these
techniques in the context of medical image segmentation. Investigating
the synergies between KD and FL, and developing efficient and privacy-
preserving KD strategies represent promising avenues for future research.

2.7 Chapter Summary

In this chapter, this dissertation has provided a comprehensive overview
of the recent advances in medical image segmentation, focusing on deep
learning-based approaches. This dissertation discussed the U-Net archi-
tecture and its variants, which have been widely adopted in the field,
and highlighted the importance of skip connections and model integration
techniques. This dissertation also explored the application of attention
mechanisms, particularly dual attention- and transformer-based models, to
capture long-range dependencies and improve segmentation performance.

Furthermore, this dissertation addressed the challenges of data privacy
and scarcity in medical image segmentation and discussed how federated
learning can enable collaborative model training across multiple institutions
while preserving patient privacy. This dissertation also examined the role
of knowledge distillation in improving model efficiency and performance and
identified the potential for integrating knowledge distillation with federated
learning.

Throughout the chapter, this dissertation emphasized the limitations of
existing approaches and identified potential research directions to advance
the field of medical image segmentation. These include the development
of more comprehensive model integration strategies, the exploration of novel
attention mechanisms tailored to medical images, the investigation of efficient
and privacy-preserving federated learning techniques, and the integration of
knowledge distillation with federated learning.

By addressing these challenges and exploring innovative solutions, the
aim is to contribute to the advancement of medical image segmentation
techniques and ultimately improve patient care through more accurate and
efficient disease quantification, prognosis evaluation, and treatment evalua-
tion.
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Chapter 3

DA-TransUNet: Dual Attention
Transformer U-Net for Accurate
Medical Image Segmentation

3.1 Motivation and Objectives

Machine learning and deep learning techniques have emerged as powerful
tools in biomedical research, revolutionizing disease diagnosis, treatment
planning, and personalized medicine [48, 49]. Medical image segmentation
is the process of delineating regions of interest within medical images for
diagnosis and treatment planning. It serves as a cornerstone in medical image
analysis. Manual segmentation is accurate and affordable for pathology di-
agnosis, but is vital in standardized clinical settings. In contrast, automated
segmentation ensures a reliable and consistent process, enhancing efficiency,
cutting down on labor and costs, and preserving accuracy. Consequently,
there is a substantial demand for exceptionally accurate automated medical
image segmentation technology within the realm of clinical diagnostics.
However, medical image segmentation faces unique challenges, such as the
need for precise delineation of complex anatomical structures, variability
between patients, and the presence of noise and artifacts in images [50]. These
challenges require the development of advanced segmentation techniques that
can capture fine-grained details while maintaining robustness and efficiency.

In the past decade, the U-Net architecture has emerged as the cornerstone
of various segmentation tasks, consistently delivering impressive results. The
original U-Net model [51], along with its subsequent enhancements, has
achieved remarkable success. Notable variants have emerged during this
period, such as ResUnet [5], which incorporates residual learning concepts,
and UNet++ [18], which focuses on optimizing skip connections. While
these CNN-based approaches have dominated the field, the introduction of
the Transformer architecture has ushered in a paradigm shift. Originally
conceived for sequence-to-sequence modeling in Natural Language Processing
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(NLP) [52], Transformers have since found significant applications in Com-
puter Vision (CV). Vision Transformers (ViTs) [53], for instance, segment
images into patches and process their embeddings through a transformer
network, achieving strong performance. This development marks a significant
trend towards more flexible and powerful models, moving beyond traditional
CNN architectures. The shift from CNNs to Transformers represents a funda-
mental change in approach, offering new possibilities to improve segmentation
tasks in medical imaging. Although the above-mentioned U-Net structures
have enhanced the capabilities of models in segmentation tasks [51] [5] [18],
they do not integrate the more powerful feature extraction abilities inherent
in the Transformer and attention mechanisms, which limits their potential for
further improvement. On the one hand, several studies have made progress
in image segmentation by leveraging Dual Attention (DA) mechanisms for
both channels and positions. The Dual Attention Network (DANet) uses
a Position Attention Block (PAM) and a Channel Attention Block (CAM)
from the DA Network to segment images of natural scenes [54]. This research
focuses primarily on scene segmentation and does not explore the unique
characteristics of medical imagery. In addition, DAResUnet [7] introduces
a dual attention block combined with a residual block (Res-Block) in a U-
net architecture for medical image segmentation, demonstrating significant
improvements in this domain. However, in the realm of medical image
segmentation, existing models, including those employing Dual Attention
mechanisms, have not yet extensively explored the optimal integration of
Dual Attention with Transformer models for enhanced feature extraction;
this oversight represents a significant research opportunity in the task of
medical image segmentation. Therefore, addressing this gap and optimizing
the integration of Transformers and Dual Attention mechanisms in the
context of medical image segmentation poses a significant challenge for future
research in the field.

To overcome the above drawbacks, recent studies have explored the
application of Transformer models in medical image segmentation. Inspired
by ViTs, TransUNet [9] further combines the functionality of ViTs with the
advantages of U-net in the field of medical image segmentation. Specifically,
it employs a transformer’s encoder to process the image and employs CNN
and hopping connections for accurate up-sampling feature recovery, yet it
neglects image-specific features like position and channel. These aspects
are crucial in capturing the nuanced variations and complex structures that
often present in medical images, which are essential for accurate diagnosis
and analysis. Swin-Unet [11] combines the Swin transform block with the
U-net structure and achieves good results. However, adding extensive Trans-
former blocks inflates the parameter count without significantly improving
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results. This study merely stacked multiple Transformers to enhance models,
resulting in inflated parameters and computational complexity with marginal
gains in performance. In addition, some studies have specifically focused on
incorporating position and channel attention mechanisms in medical image
segmentation. For example, DA-DSUnet has been applied to head and neck
tumor segmentation, but it does not combine the position attention module
(PAM) and the channel attention module (CAM), nor does it discuss the
potential filtering role of DA blocks in skip connections [55]. Additionally,
it does not leverage ViT for feature extraction. Another example is research
on brain tumor segmentation, which, when applying DA blocks, limits its
scope to brain tumors without validating other types of medical images [56].
These studies integrate DA blocks with other blocks but do not thoroughly
explore the role of DA in skip connections or optimize DA blocks for the
unique intricacies of medical imaging.

However, despite the progress made by these transformer-based ap-
proaches, they often overlook the importance of integrating image-specific
features, such as position and channel information, which are crucial for
capturing the nuanced variations and complex structures in medical images.
In addition, existing methods that incorporate dual attention mechanisms
have not been optimized for the unique characteristics of medical images,
leaving room for further improvement. To address these limitations, this
dissertation proposes DA-TransUNet, which strategically integrates the Dual
Attention Block (DA-Block) into the transformer-based U-Net architecture,
specifically tailored for medical image segmentation.

In this chapter, the proposed model DA-TransUNet is an innovative
approach to medical image segmentation that integrates the Transformer
mechanism, specifically the Vision Transformer (ViT) and a Dual Attention
(DA) mechanism within a U-Net architecture. First, the ViT Transformer is
combined with DA in the U-Net structure encoder, enhancing feature extrac-
tion capabilities by leveraging the detailed characteristics of medical images.
This integration allows the model to capture both local and global contex-
tual information, which is essential for accurate segmentation of complex
anatomical structures. Then, to further refine the feature extraction tailored
to medical images, DA is optimized for specific channels and incorporated
into every module of the skip connections, allowing the model to effectively
filter out irrelevant information and focus on the most discriminative features.
Skip connections pass the shallow positional information from the encoder,
while the DA module refines the crucial detailed features. This targeted
optimization is substantiated by extensive ablation studies, demonstrating its
significance in improving the model’s performance. Lastly, this architecture
has been rigorously tested in five medical image segmentation datasets and
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Figure 3.1: Illustration of the proposed dual attention transformer U-
Net(DA-TransUNet).

extensive ablation studies, demonstrating its effectiveness and superiority
[57] [58] [59,60] [61] [62] [63,64].

The main contributions of this chapter are summarized as follows:

1) The model of DA-TransUnet is proposed by integrating Transformer
ViT and Dual Attention in U-net architecture’s encoder and skip
connections. This design enhances feature extraction capabilities to
better extract detailed features of medical images.

2) This dissertation proposes an optimized dual attention (DA) block that
is designed for medical image segmentation with two key enhancements:
the optimization of intermediate channel configurations within the DA
block, and its integration into each skip-connection layer to effectively
filter irrelevant information. These are validated through comprehen-
sive ablation experiments.

3) The segmentation performance and generalizability of DA-TransUnet
are validated on five medical datasets. Compared to recent related
studies, DA-TransUnet exhibits superior results in medical image seg-
mentation, demonstrating its effectiveness in this field.

3.2 Methodology

Before delving into the details of our proposed DA-TransUNet architecture,
it is essential to understand the concept of channels in digital images and
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convolutional neural networks (CNNs).
In digital images, a channel refers to a specific component of the image

data. For grayscale images, there is only one channel that represents the
intensity of each pixel. However, for color images, there are typically three
or four channels, each representing a different color component. The most
common color space is RGB (Red, Green, Blue), where each pixel is described
by the intensity of these three color channels. In some cases, a fourth channel,
known as the alpha channel, is used to represent transparency. The number
of channels and their interpretation depend on the specific image format and
color space being used.

In the context of convolutional neural networks (CNNs), the concept of
channels extends beyond just the input image. As the data flows through the
layers of the network, each layer typically has multiple channels, also known
as feature maps. These channels can be thought of as different ”views”
or ”aspects” of the input data, each learning to detect specific features or
patterns. The number of channels in a layer is a hyperparameter that can
be adjusted to control the complexity and capacity of the network.

In the subsequent section,this study proposes the DA-TransUNet archi-
tecture, illustrated in Figure.3.1. This dissertation starts with a comprehen-
sive overview of the architecture. Next,this study detailed the architecture’s
key components in the following order: the dual attention blocks(DA-Block),
the encoder, the skip connections, and the decoder.

3.2.1 Overview of DA-TransUNet

Figure 3.1 illustrates the innovative architecture of DA-TransUNet, which is
composed of three fundamental components: an encoder, a decoder, and
skip connections. This design represents a significant advancement over
traditional segmentation models.

The encoder in DA-TransUNet is distinguished by its hybrid structure,
which seamlessly integrates a conventional convolutional neural network
(CNN) with a transformer layer. This fusion is further enhanced by the
novel Dual Attention Block (DA-Block), a key innovation exclusive to this
architecture. In contrast, the decoder maintains a more traditional structure,
primarily utilizing conventional convolutional mechanisms for upsampling
and feature reconstruction.

A crucial aspect of DA-TransUNet’s design is the optimization of skip
connections through the strategic placement of DA-Blocks. These blocks
serve a dual purpose: they act as information filters in skip connections,
effectively reducing noise and irrelevant data, while simultaneously enhancing
the accuracy of image reconstruction by preserving and emphasizing salient
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features. This approach marks a departure from both traditional convo-
lutional methodologies and models that rely heavily on transformer archi-
tectures. DA-TransUNet’s unique use of DA-Blocks enables the extraction
and utilization of image-specific positional and channel features, significantly
boosting the model’s overall performance.

When compared to conventional U-Net architectures, DA-TransUNet
offers several advantages. The incorporation of a transformer layer in the
encoder facilitates the capture of global dependencies, a capability lacking in
the purely convolutional approach of U-Net. Additionally, the inclusion of
DA-Blocks in both the encoder and skip connections enhances the model’s
ability to extract and utilize image-specific positional and channel features.
This combination allows for more effective capture of fine-grained details,
which is crucial in medical image segmentation tasks.

The rationale behind DA-TransUNet’s design stems from a critical
analysis of the strengths and limitations of both U-Net architectures and
transformers in feature extraction. Transformers excel in global feature
extraction through self-attention mechanisms but are limited by their uni-
directional focus on positional attributes. Conversely, traditional U-Net
architectures are adept at local feature extraction but lack comprehensive
global contextualization capabilities.

To address these constraints, DA-TransUNet strategically integrates DA-
Blocks both before the transformer layers and within the encoder-decoder
skip connections. This design achieves two primary objectives: it refines the
feature map input to the transformer, enabling more nuanced and precise
global feature extraction, and it optimizes the features transmitted through
skip connections, facilitating more accurate feature map reconstruction in
the decoder.

In conclusion, DA-TransUNet’s architecture successfully combines the
strengths of both U-Net and transformer-based models while mitigating their
respective weaknesses. The result is a robust system capable of advanced,
image-specific feature extraction, particularly suited for the complexities of
medical image segmentation.

3.2.2 Dual Attention Block(DA-Block)

The Dual Attention Block (DA-Block), depicted in Figure 3.2, represents
a novel approach to feature extraction in image segmentation tasks. This
innovative module is designed to capture and integrate both positional and
channel-specific information, allowing for a more comprehensive representa-
tion of image characteristics.

In the context of U-Net-style architectures, the DA-Block’s specialized
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Figure 3.2: The proposed Dual Attention Block (DA-Block) is shown in the
Figure.

feature extraction capabilities play a pivotal role. While traditional Trans-
former models excel at leveraging attention mechanisms for global feature
extraction, they often lack the specificity required for capturing image-unique
attributes. The DA-Block addresses this limitation by excelling in both
position-based and channel-based feature extraction, resulting in a more
nuanced and accurate feature set.

The integration of the DA-Block into both the encoder and skip con-
nections of our model significantly enhances its segmentation performance.
This strategic placement allows for refined feature propagation throughout
the network, contributing to improved overall accuracy.

At its core, the DA-Block comprises two essential components: a Position
Attention Module (PAM) and a Channel Attention Module (CAM). The
PAM focuses on capturing spatial relationships within the image, while
the CAM emphasizes the importance of channel-wise information. These
modules are adapted from the Dual Attention Network, originally proposed
for scene segmentation tasks [54]. By repurposing these components for
medical image analysis, our model achieves a more thorough and context-
aware feature extraction process.

The synergy between PAM and CAM within the DA-Block enables
our model to simultaneously consider spatial configurations and feature
channel correlations. This dual-focus approach results in a richer, more
comprehensive representation of the input image, particularly beneficial for
the intricate task of medical image segmentation where both local details
and global context are crucial.
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PAM (Position Attention Module): As illustrated in Figure 3.3,
the Position Attention Module (PAM) is designed to capture and leverage
spatial dependencies between different positions on feature maps. This
module operates by updating specific features through a weighted sum of
all positional features, where the weights are determined by the similarity of
features between any two given positions. This mechanism enables PAM to
effectively extract meaningful spatial features.

The process begins with PAM taking a local feature A ∈ RC×H×W as
input, where C represents the number of channels, and H and W denote the
height and width, respectively. This input is then fed through a convolutional
layer, producing three new feature maps: B, C, and D, each with dimensions
RC×H×W . Subsequently, B and C are reshaped to RC×N , where N = H×W
represents the total number of pixels.

A matrix multiplication is performed between the transpose of C and
B, followed by a softmax operation to compute the spatial attention map S
∈ RN×N :

Sji =
exp (Bi · Cj)∑N
i=1 exp (Bi · Cj)

(3.1)

In this equation, Sji quantifies the influence of the i-th position on the
j-th position. The matrix D is then reshaped to RC×N and multiplied with
the transpose of S. The resulting product is reshaped back to RC×H×W .

To balance the contribution of the position attention features extracted by
PAM with the original features, a learnable parameter α is introduced. The
final output E ∈ RC×H×W is obtained by multiplying the reshaped product
by α and performing an element-wise sum with the original features A:

Ej = α
N∑
i=1

(SjiDi) + Aj (3.2)

The weight α is initialized as 0 and learned progressively during train-
ing. PAM’s strong capability to extract spatial features is evident from
Equation 2. The resulting feature E at each position is a weighted sum
of features across all positions and the original features, indicating that it
incorporates global contextual information while aggregating context based
on the spatial attention map. This mechanism ensures effective extraction of
position-specific features while maintaining a comprehensive global context,
making PAM particularly suitable for tasks requiring fine-grained spatial
understanding, such as medical image segmentation.

CAM (Channel Attention Module): As shown in Figure 3.4, this is
CAM, which excels in extracting channel characteristics. Unlike PAM, this
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study directly reshapes the original feature A ∈ RC×H×W to RC×N , and then
performs matrix multiplication between A and its transpose. Subsequently,
this study apply a softmax layer to obtain the channel attention map X ∈
RC×C :

Xji =
exp (Ai · Aj)∑C
i=1 exp (Ai · Aj)

(3.3)

Here, xji measures the impact of the i-th channel on the j-th channel.
Next, this study performs matrix multiplication between the transpose of
X and A, reshaping the result to RC×H×W . β is a learnable parameter
that controls the fusion ratio between the channel attention features and the
original features. This study then multiply the result by a scale parameter
β and perform an element-wise sum operation with A to obtain the final
output E ∈ RC×H×W :

Ej = β
N∑
i=1

(XjiAi) + Aj (3.4)

Like α, β is learned through training. Similarly to PAM, during the
extraction of channel features in CAM, the final feature for each channel
is generated as a weighted sum of all channels and original features, thus
endowing CAM with powerful channel feature extraction capabilities.

DA (Dual Attention Module): Figure 3.2 illustrates the Dual Atten-
tion Block (DA-Block) architecture, which combines the Positional Attention
Module (PAM) and Channel Attention Module (CAM) to enhance feature
extraction. The DA-Block consists of two main components, one focused on
PAM and the other on CAM.

The first component processes input features through a convolution
operation, reducing the number of channels by a factor of sixteen to obtain α1.
This step simplifies the extraction of PAM features and adjusts the feature
dimensions for subsequent attention computations. After PAM processing
and another convolution, α̂1 is produced, further refining the extracted
features.

Similarly, the second component applies CAM-focused processing. This
dual-attention approach allows the DA-Block to capture both spatial and
channel-wise dependencies effectively. By integrating positional and channel
information, the DA-Block achieves a comprehensive feature extraction
process, particularly beneficial for medical image segmentation tasks where
both spatial relationships and channel-specific information are crucial.

α1 = Conv (input) (3.5)
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Figure 3.3: Architecture of Position Attention Mechanism(PAM).

Figure 3.4: Architecture of Channel Attention Mechanism(CAM).

α̂1 = Conv
(
PAM

(
α1

))
(3.6)

The other component is the same, with the only difference being that the
PAM block is replaced with a CAM with the following formula:

α2 = Conv (input) (3.7)

α̂2 = Conv
(
CAM

(
α2

))
(3.8)

After extracting α̂1 and α̂2 from the two layers of attention, the output
is obtained by aggregating and summing the two layers of attention and
recovering the number of channels in one convolution.

output = Conv
(
α̂1 + α̂2

)
(3.9)

To optimize DA-Block for medical image segmentation, this study fine-
tuned the number of intermediate channels. This optimization allows the
model to focus on the most critical features, improving its sensitivity to key
information in medical images. By adapting the DA-Block to the specific
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characteristics of medical images, this study allows the model to better
capture the fine-grained details necessary for accurate segmentation. This
targeted optimization sets the approach apart from previous work, which
often overlooks the importance of tailoring attention mechanisms to the
unique demands of medical image segmentation.

3.2.3 Encoder with Transformer and Dual Attention

As illustrated in Figure 3.1, the encoder architecture consists of four key com-
ponents: convolution blocks, DA-Block, embedding layers, and transformer
layers. Of particular significance is the inclusion of the DA block before the
transformer layer. This design is aimed at performing specialized image
processing on the postconvolution features, enhancing the Transformer’s
feature extraction for image content. While the Transformer architecture
plays a crucial role in preserving global context, the DA block strengthens
the Transformer’s capability to capture image-specific features, enhancing its
ability to capture global contextual information in the image. This approach
effectively combines global features with image-specific spatial and channel
characteristics.

The first component comprises the three convolutional blocks of the
architecture of the U-Net and its diverse iterations, seamlessly integrating
convolutional operations with downsampling processes. Each convolutional
layer halves the size of the input feature map and doubles its dimension,
a configuration empirically found to maximize feature expressiveness while
maintaining computational efficiency. The second component uses DA-Block
extract features at both the positional and channel levels, enhancing the
depth of feature representation while preserving the intrinsic characteristics
of the input map. The third component is that the embedding layer serves
as a critical intermediary, enabling the requisite dimensional adaptation,
a prelude to the subsequent transformer strata. The fourth component
integrates transformer layers for enhanced global feature extraction, beyond
the reach of traditional CNNs.

Putting the above parts together, it works as follows: the input image
traverses three consecutive convolutional blocks, systematically expanding
the receptive field to encompass vital features. Subsequently, the DA-Block
refines features through the application of both position-based and channel-
based attention mechanisms. Following this, the remodeled features undergo
a dimensionality transformation courtesy of the embedding stratum before
they are channeled into the Transformer framework for the extraction of all-
encompassing global features. This orchestrated progression safeguards the
comprehensive retention of information across the continuum of successive
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convolutional layers. Ultimately, the Transformer-generated feature map is
restructured and navigated through skip connection layers to feed into the
decoder.

By combining convolutional neural networks, transformer architectures,
and dual-attention mechanisms, the encoder configuration culminates in a
robust capability for feature extraction, resulting in a symbiotic powerhouse
of capabilities.

3.2.4 Skip-connections with Dual Attention

Similar to other U-structured models, this study have also incorporated
skip connections between the encoder and decoder to bridge the semantic
gap that exists between them. To further minimize this semantic gap, this
study introduced dual attention blocks (DA-blocks), as shown in Figure 3.1,
in each of the three skip connection layers. This decision was based on
the observation that traditional skip connections often transmit redundant
features, which DA-Blocks effectively filter. Integrating DA-Blocks into
the skip connections allows them to refine the sparsely encoded features
from both positional and channel perspectives, extracting more valuable
information while reducing redundancy. By doing so, DA-Blocks help the
decoder to reconstruct more accurate feature maps. Moreover, the inclusion
of DA-Blocks not only enhances the model’s robustness but also effectively
mitigates sensitivity to overfitting, contributing to the overall performance
and generalization capability of the model.

3.2.5 Decoder

As depicted in Figure 3.1, the right half of the diagram corresponds to the
decoder. The primary role of the decoder is to reconstruct the original feature
map utilizing features acquired from the encoder and those received through
skip connections, employing operations like upsampling.

The decoder’s components include feature fusion, a segmentation head,
and three upsampling convolution blocks. The first component: feature
fusion involves the integration of feature maps transmitted through skip
connections with the existing feature maps, thereby assisting the decoder in
faithfully reconstructing the original feature map. The second component:
the segmentation head is responsible for restoring the final output feature
map to its original dimensions. The third component: the three upsampling
convolution blocks incrementally double the size of the input feature map in
each step, effectively restoring the image’s resolution.
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Putting the above parts together, the workflow begins by passing the
input image through convolution blocks and subsequently performing upsam-
pling to augment the size of the feature maps. These feature maps undergo
a two-fold size increase, while their dimensions are reduced by half. The
features received through the skip connections are then fused, followed by
continued upsampling and convolution. After three iterations of this process,
the generated feature map undergoes a final round of upsampling and is
accurately restored to its original size by the segmentation head.

Thanks to this architecture, the decoder demonstrates robust decoding
capabilities, effectively revitalizing the original feature map using features
from both the encoder and skip connections.

Furthermore, compared to other transformer-based approaches that ex-
tensively utilize transformer blocks throughout the architecture, such as
Swin-Unet, DA-TransUNet achieves a more favorable balance between perfor-
mance and computational efficiency. The judicious integration of DA-Blocks
in the encoder and skip connections allows DA-TransUNet to enhance feature
representation while maintaining a manageable computational footprint.

3.3 Experimental

To assess the efficacy of the proposed DA-TransUNet model, comprehen-
sive experiments were carried out in six diverse medical imaging datasets:
Synapse [57], CVC-ClinicDB [58], Chest X-ray Masks and Labels [63, 64],
Kvasir-SEG [61], Kvasir-Instrument [62], and ISIC 2018 Task [59, 60]. The
results of these experiments demonstrate the superior performance of DA-
TransUNet compared to existing state-of-the-art methods across all evaluated
datasets.

The following subsections provide a detailed overview of each dataset,
followed by a description of the implementation specifics and a comprehensive
analysis of the results obtained for each of the six datasets.

3.3.1 Dataset Descriptions

3.3.1.1 Synapse Multi-organ Segmentation Dataset

The Synapse dataset is a comprehensive collection of abdominal CT scans,
covering 30 volumetric images that capture eight distinct abdominal organs.
These organs include the bilateral kidneys (left and right), the aorta, spleen,
gallbladder, liver, stomach, and pancreas. In total, the dataset comprises
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3,779 axially enhanced abdominal CT image slices, providing a rich resource
for multiorgan segmentation tasks in the abdominal region.

3.3.1.2 CVC—ClinicDB

CVC-ClinicDB is a database of frames extracted from colonoscopy videos,
which is part of the Endoscopic Vision Challenge. This is a dataset of
endoscopic colonoscopy frames for the detection of polyps. CVC-ClinicDB
contains 612 still images from 29 different sequences. Each image has its
associated manually annotated ground truth covering the polyp.

3.3.1.3 Chest Xray

Chest Xray Masks and Labels X-ray images and the corresponding masks are
provided. X-rays were obtained from the Montgomery County Department
of Health and Human Services Tuberculosis Control Program, Montgomery
County, Maryland, USA. The set of images contains 80 anterior and posterior
X-rays, of which 58 X-rays are normal and 1702 X-rays are abnormal with
evidence of tuberculosis. All images have been de-identified and presented
in DICOM format. The set contains a variety of abnormalities, including
exudates and corneal morphology. It contains 138 posterior-anterior radio-
graphs, of which 80 radiographs were normal and 58 radiographs showed
abnormal manifestations of tuberculosis.

3.3.1.4 Kvasir SEG

Kvasir SEG is an open-access dataset of gastrointestinal polyp images and
corresponding segmentation masks, manually annotated and verified by an
experienced gastroenterologist. It contains 1000 polyp images and their
corresponding ground truths, the resolution of the images contained in
Kvasir-SEG varies from 332x487 to 1920x1072 pixels, and the file format
is jpg.

3.3.1.5 Kvasir-Instrument Dataset

The Kvasir-Instrument dataset is a specialized collection focused on gas-
trointestinal endoscopic instruments. This comprehensive dataset comprises
590 high-quality endoscopic images, each accompanied by its corresponding
ground truth segmentation mask. The images in this collection showcase
a diverse array of gastrointestinal (GI) procedure instruments, including
snares, balloons, biopsy forceps, and other essential tools used in endoscopic
procedures.
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Image resolutions within the dataset vary, ranging from 720x576 to
1280x1024 pixels, providing a realistic representation of the variability en-
countered in clinical settings. All images are stored in the widely-used JPEG
format, ensuring compatibility with most image processing software. This
carefully curated collection serves as a valuable resource for developing and
evaluating algorithms aimed at instrument detection and segmentation in
endoscopic procedures. Such applications are crucial for advancing computer-
assisted interventions in gastroenterology, potentially improving the accuracy
and efficiency of diagnostic and therapeutic endoscopic procedures.

3.3.1.6 2018ISIC-Task

The dataset used in the 2018 ISIC Challenge addresses the challenges of skin
diseases. It comprises a total of 2512 images, with a file format of JPG. The
images of lesions were obtained using various dermatoscopic techniques from
different anatomical sites (excluding mucous membranes and nails). These
images are sourced from historical samples of patients undergoing skin cancer
screening at multiple institutions. Each lesion image contains only a primary
lesion.

3.3.2 Implementation Settings

3.3.2.1 Baselines

To establish the efficacy of our proposed approach in the domain of medical
image segmentation, we conducted a comprehensive evaluation against a
diverse set of established and state-of-the-art models. The selection of
comparative models encompasses both foundational architectures and recent
innovations in the field.

Our evaluation begins with the seminal U-Net [51], which has served
as a cornerstone in biomedical image segmentation. We then consider its
advanced variants: UNet++ [18], which enhances the original architecture
with dense skip connections and deep supervision; and Attention U-Net [6],
which incorporates attention gates for more precise feature selection.

We further extend our comparison to include more recent developments:
DA-UNet [30], which leverages dual attention mechanisms to enrich feature
extraction, and TransUNet [9], which integrates transformer modules to
capture global context effectively.

To ensure a thorough assessment against the latest advancements, we also
include several cutting-edge models in our benchmark:
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• UCTransNet [65], which innovatively applies attention mechanisms to
skip connections within the U-Net framework

• TransNorm [66], which incorporates transformer modules in both the
encoder and skip connections of the standard U-Net

• MIM [67], featuring a novel transformer-based design specifically tai-
lored for medical image segmentation tasks

Through this extensive comparison against both well-established baselines
and advanced contemporary models, our aim is twofold: to demonstrate the
unique strengths of our proposed approach and to highlight its potential for
wide-ranging applications in medical image analysis. This comprehensive
evaluation serves to position our model within the current landscape of
medical image segmentation techniques, showcasing its superior performance
and innovative features.

3.3.2.2 Implementation Details

The proposed DA-TransUNet model was implemented using the PyTorch
deep learning framework and trained on an NVIDIA RTX 3090 GPU [68].
The training process incorporated the following key parameters and consid-
erations:

For most data sets, the model was configured with an input image
resolution of 256x256 pixels and a patch size of 16. The optimization process
used the Adam algorithm with the following hyperparameters: a learning rate
of 1 × 10−3, a momentum of 0.9, and a weight decay coefficient of 1 × 10−4.

The training duration was set to 500 epochs for most datasets. However,
to account for the varying sizes of different datasets and ensure convergence,
the training process for the chest X-ray masks and labels dataset, as well as
the ISIC 2018-Task dataset, was adjusted to 50 epochs.

During the training phase on five datasets, including CVC-ClinicDB, the
DA-TransUNet model was trained end to end. The objective function was
formulated as a combination of weighted binary cross-entropy (BCE) and
Dice coefficient loss:

Losscombined = 0.5 × BCE + 0.5 × DiceLoss (3.10)

For the Synapse dataset, to ensure a fair evaluation, we employed the pre-
trained ”R50-ViT” model with an adjusted input resolution of 224x224 pixels
and a patch size of 16. The optimization process for this dataset utilized the
SGD algorithm with a learning rate of 0.01, momentum of 0.9, and weight
decay of 1 × 10−4. The batch size was set to 24. The loss function for the
Synapse dataset was defined as:
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LossSynapse = 0.5 × CrossEntropyLoss + 0.5 × DiceLoss (3.11)

These carefully tuned parameters and dataset-specific adjustments were
crucial in optimizing DA-TransUNet performance across various medical
image segmentation tasks.

This loss function balances the contributions of cross-entropy and Dice
losses, ensuring impartial evaluation during testing on the synapse dataset.

When using the data sets, this study uses a 3 to 1 ratio, where 75% is
the training set and 25% is the test set, to ensure the adequacy of training.

3.3.2.3 Model Evaluation

In evaluating the performance of DA-TransUNet, this study uses a com-
prehensive set of metrics including Intersection over Union (IoU), Dice
Coefficient(DSC), and Hausdorff Distance (HD). These metrics are industry
standards in computer vision and medical image segmentation, providing a
multifaceted assessment of the model’s accuracy, precision, and robustness.

The choice of these metrics is based on their complementary nature and
the ability to capture different aspects of segmentation quality. IoU and DSC
measure the overlap between the predicted and ground truth segmentation
masks, providing a global assessment of the model’s ability to accurately
identify and delineate target structures. HD, on the other hand, captures the
maximum distance between the predicted and ground truth segmentation
boundaries, ensuring that the predicted segmentation closely adheres to
the true boundaries of the target structures, even in the presence of small
segmentation errors or irregularities.

IOU (Intersection over Union) is one of the commonly used metrics to
evaluate the performance of computer vision tasks such as object detection,
image segmentation, and instance segmentation. Measures the degree of
overlap between the predicted region of the model and the actual target
region, helping us to understand the accuracy and precision of the model.
In target detection tasks, IOU is usually used to determine the degree of
overlap between the predicted bounding box (Bounding Box) and the real
bounding box. In image segmentation and instance segmentation tasks, IOU
is used to evaluate the degree of overlap between the predicted region and
the ground-truth segmentation region.

IOU =
TP

FP + TP + FN
(3.12)
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The Dice coefficient (also known as the Srensen-Dice coefficient, F1
score, DSC) is a measure of model performance in image segmentation
tasks and is particularly useful for dealing with class imbalance problems.
Measures the degree of overlap between the predicted results and the ground-
truth segmentation results, and is particularly effective when dealing with
segmentation of objects with unclear boundaries. The Dice coefficient is
commonly used as a measure of the model’s accuracy on the target region
in image segmentation tasks and is particularly suitable for dealing with
relatively small or uneven target regions.

Dice(P, T ) =
|P1 ∩ T1|
|P1| + |T1|

⇔ Dice =
2|T ∩ P |
|F | + |P |

(3.13)

The Hausdorff Distance (HD) serves as a crucial metric in the evaluation
of image segmentation models, particularly in the domain of medical imaging.
This measure quantifies the degree of similarity between two point sets,
making it especially valuable for assessing the accuracy of segmentation
boundaries. In the context of medical image analysis, HD provides a robust
means of comparing predicted segmentation outputs against ground truth
annotations.

The fundamental principle of the Hausdorff Distance lies in its ability
to capture the maximum discrepancy between two segmentation contours.
Mathematically, it can be expressed as:

H(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)} (3.14)

where A and B represent the two sets of points being compared (e.g.
predicted and true segmentation boundaries), and d(a, b) denotes the distance
between points a and b.

The distinctive feature of HD is its sensitivity to outliers, as it identifies
the most significant disparity between the two sets. This characteristic makes
HD particularly adept at evaluating segmentation performance in regions
where precise boundary delineation is critical, such as in tumor margin
detection or organ boundary identification in medical imaging.

By providing a quantitative measure of the maximum deviation between
predicted and true segmentations, HD offers valuable insights into a model’s
ability to accurately capture intricate boundary details. This property is
especially beneficial in medical applications where even small inaccuracies in
segmentation boundaries can have significant clinical implications.

This study evaluate using both Dice and HD in the Synapse dataset and
both Dice and IOU in other datasets.
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Figure 3.5: Comparison of qualitative results between DA-TransUNet and
existing models on the task of segmenting Chest X-ray Masks and Labels
X-ray datasets.

Figure 3.6: Comparison of qualitative results between DA-TransUNet and
existing models on the task of segmenting Kvasir-Seg datasets.

Figure 3.7: Comparison of qualitative results between DA-TransUNet and
existing models on the task of segmenting Kavsir-Instrument datasets.

3.3.3 Comparison to the State-of-the-Art Methods

3.3.3.1 Segmentation Performance and Comparison

To rigorously evaluate the performance of our proposed DA-TransUNet
model, we conducted a comprehensive comparative analysis against a spec-33



Figure 3.8: Comparison of qualitative results between DA-TransUNet and
existing models on the task of segmenting 2018ISIC-Task datasets.

Figure 3.9: Comparison of qualitative results between DA-TransUNet and
existing models on the task of segmenting CVC-ClinicDB datasets.

trum of state-of-the-art (SOTA) segmentation models. The benchmark
models selected for this comparison include the foundational U-Net [51],
as well as its advanced variants such as Res-UNet [5], U-Net++ [18], and
Att-UNet [6]. Furthermore, we included more recent architectures that
leverage transformer mechanisms, namely TransUNet [9], TransNorm [66],
UCTransNet [65], and Swin-UNet [11]. The comparison also encompasses
other innovative designs like MultiResUNet [69] and MIM [67].

The primary experimental evaluation was performed on the Synapse
multiorgan segmentation dataset, with the results presented in Table 3.1.
This dataset was chosen for its complexity and relevance in medical image
analysis.

As illustrated in Figure 3.11, our DA-TransUNet model achieved remark-
able performance metrics, with an average Dice Similarity Coefficient (DSC)
of 79.80% and an average Hausdorff Distance (HD) of 23.48 mm. These
results represent significant improvements of 2.32% in DSC and 8.21 mm in
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HD compared to the TransUNet baseline. Such enhancements indicate the
superior capability of DA-TransUNet in both overall segmentation accuracy
and precise organ boundary delineation.

Figure 3.10 further corroborates these findings, showing that DA-
TransUNet achieves the highest DSC value among all the compared models.
Although its HD performance is marginally higher than Swin-UNet, it
still shows substantial improvement over several recent models, including
TransUNet.

In terms of computational efficiency, DA-TransUNet requires 35.98 ms for
segmenting a single image, compared to 33.58 ms for TransUNet. This min-
imal difference in processing time suggests that the improved segmentation
quality of DA-TransUNet comes with a negligible additional computational
cost.

Detailed analysis of individual organ segmentation reveals that DA-
TransUNet outperforms TransUNet across multiple organs:

• Gallbladder: 2.14% improvement
• Right kidney: 3.43% improvement
• Liver: 0.48% improvement
• Spleen: 3.45% improvement
• Stomach: 4.11% improvement
• Pancreas: A notable 5.73% improvement

While DA-TransUNet demonstrates superior performance in most organs,
it shows slight decreases in segmentation accuracy for the aorta (0.69%)
and left kidney (0.17%) compared to TransUNet. Nevertheless, the model
achieves peak segmentation rates for the right kidney, liver, pancreas, and
stomach, indicating its enhanced feature learning capabilities for these spe-
cific anatomical structures.

These comprehensive results underscore the efficacy of DA-TransUNet in
medical image segmentation tasks, particularly in scenarios requiring high
precision and robust performance across diverse anatomical structures.

To further confirm the better segmentation of our model compared to
TransUNet, this study visualized the segmentation plots of TransUNet and
DA-TransUNet (see Figure3.11). From the yellow and purple parts in the
first column, this study can see that our segmentation effect is obviously
better than that of TransUNet; from the second column, the extension of
purple is better than that of TransUNet, and there is no vacancy in the blue
part; from the third column, there is a semicircle in the yellow part, and
the vacancy in red is smaller than that of TransUNet, etc. It is evident
that DA-TransUNet outperforms TransUNet in segmentation quality. In
summary, DA-TransUNet significantly surpasses TransUNet in segmenting
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the left kidney, right kidney, spleen, stomach, and pancreas. It also offers
superior visualization performance in image segmentation.

This study simultaneously took DA-TransUNet in five datasets, CVC-
ClinicDB, chest X-ray masks and labels, ISIC2018-Task, kvasir instrument
and kvasir-seg, and compared it with some classical models (see Table 3.2).
In the table, the values of IOU and Dice of DA-TransUNet are higher than
those of TransUNet in the five datasets, CVC-ClinicDB, Chest X-ray Masks
and Labels, ISIC2018-Task, kvasir-instrument and kvasir-seg. In addition,
DA-TransUNet has the best dataset segmentation in four of the five datasets.
As seen in the table, our DA-TransUNet has more excellent feature learning
and image segmentation capabilities.

This study also shows the results of the image segmentation visualization
of DA-TransUNet in these five datasets, and this study also show the results
of the comparison models for the comparison. The visualization results for
chest X-ray masks and labels, Kvasir-Seg, Kvasir-Instrument, ISIC2018-Task
and CVC-ClinicDB datasets are presented in Figure3.5, Figure3.6, Figure3.7,
Figure3.8, and Figure3.9, respectively. In the figure, it can be seen that the
segmentation effect of DA-TransUNet has a good performance. Firstly, DA-
TransUNet has better segmentation results than TransUNet. In addition,
compared to the four classical models of U-net, Unet++, Attn-Unet, and
Res-Unet, DA-TransUNet has a certain improvement. It can be seen that
the effectiveness of DA-TransUNet for model segmentation is confirmed not
only in the Synapse dataset, but also in the five datasets (CVC-ClinicDB,
Chest X-ray Masks and Labels, ISIC2018-Task, kvasir-instrument, kvasir-
seg). This study further establishes that DA-TransUNet excels in both 3D
and 2D medical image segmentation.

Table 3.1: Experimental results on the Synapse dataset
Model Year DSC↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Sple en Stomach
U-net [51] 2015 76.85% 39.70 89.07 69.72 77.77 68.6 93.43 53.98 86.67 75.58
U-Net++ [18] 2018 76.91% 36.93 88.19 68.89 81.76 75.27 93.01 58.20 83.44 70.52
Residual U-Net [5] 2018 76.95% 38.44 87.06 66.05 83.43 76.83 93.99 51.86 85.25 70.13
Att-Unet [6] 2018 77.77% 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
MultiResUNet [69] 2020 77.42% 36.84 87.73 65.67 82.08 70.43 93.49 60.09 85.23 75.66
TransUNet [9] 2021 77.48% 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
UCTransNet [65] 2022 78.23% 26.75 84.25 64.65 82.35 77.65 94.36 58.18 84.74 79.66
TransNorm [66] 2022 78.40% 30.25 86.23 65.1 82.18 78.63 94.22 55.34 89.50 76.01
MIM [67] 2022 78.59% 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
swin-unet [11] 2022 79.13% 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
DA-TransUNet(Ours) 2023 79.80% 23.48 86.54 65.27 81.70 80.45 94.57 61.62 88.53 79.73
Average Relative Improvement - 2.03% -9.00 -0.73% -1.09% 0.28% 5.21% 0.82% 4.86% 1.97% 4.5%

3.3.3.2 Computational Complexity and Efficiency

The integration of DA-Blocks in the encoder and skip connections introduces
additional computational overhead compared to the standard TransUNet
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Table 3.2: Experimental results of datasets (CVC-ClinicDB, Chest Xray
Masks and Labels, ISIC2018-Task, kvasir-instrument, kvasir-seg)

CVC-ClinicDB Chest Xray Masks and Labels ISIC2018-Task kvasir-instrument kvasir-seg

Iou↑ Dice↑ Iou↑ Dice↑ Iou↑ Dice↑ Iou↑ Dice↑ Iou↑ Dice↑
U-net [51] 0.7821 0.8693 0.9303 0.9511 0.8114 0.8722 0.8957 0.9358 0.8012 0.8822
Attn-Unet [6] 0.7935 0.8741 0.9274 0.9503 0.8151 0.876 0.8949 0.9359 0.7801 0.8661
Unet++ [18] 0.7847 0.8714 0.9289 0.9505 0.8133 0.873 0.8995 0.9389 0.7767 0.8657
ResUNet [5] 0.5902 0.7422 0.9262 0.9505 0.7651 0.8332 0.8572 0.9141 0.6604 0.7785
TransUNet [9] 0.8163 0.8901 0.9301 0.9535 0.8263 0.8878 0.8926 0.9363 0.8003 0.8791
DA-TransUNet(Ours) 0.8251 0.8947 0.9317 0.9538 0.8278 0.8888 0.8973 0.9381 0.8102 0.8847

Figure 3.10: Line chart of DSC and HD values of several advanced models
in the Synapse dataset

architecture. Let the input feature map have a spatial resolution of H ×W
and C channels. The computational complexity of the Position Attention
Module (PAM) is O(H2W 2C), while the Channel Attention Module (CAM)
has a complexity of O(C2HW ). As the DA-Block consists of both PAM
and CAM, its overall computational complexity is O(H2W 2C + C2HW ).
However, it is worth noting that the DA-Block itself is not computationally
intensive, as it only involves simple matrix multiplications and element-wise
operations.

Table 3.3 compares the number of parameters, Dice Similarity Coefficient
(DSC), and Hausdorff Distance (HD) between DA-TransUNet and Tran-
sUNet. Incorporation of DA-Blocks leads to a modest increase of 2.54% in the
number of parameters compared to TransUNet. This incremental increase
in parameters is justifiable considering the substantial performance gains
achieved by DA-TransUNet, as demonstrated in our experimental results.
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Figure 3.11: Segmentation results of TransUNet and DA-TransUNet on the
Synapse dataset.

DA-TransUNet achieves an average improvement of 2.99% in DSC and 25.9%
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in HD compared to TransUNet. The strategic placement of DA-Blocks allows
for efficient feature refinement while maintaining a reasonable model size.

Table 3.3: Comparison of model parameters and performance between DA-
TransUNet and TransUNet.

Model Params Params Increase DSC Improvement HD Improvement
TransUNet 105,276,066 - - -

DA-TransUNet 107,950,840 2.54% 2.99% 25.9%

3.3.4 Ablation Study

This study conducted ablation experiments on the DA-TransUNet model
using the Synapse data set to discuss the effects of different factors on model
performance. Specifically, it includes: 1) DA-Block in Encoder. 2) DA-Block
in Skip Connection.

3.3.4.1 Effect of the DA-Block in Encoder And Skip Connection

This study conducted a series of experiments to evaluate the effectiveness
of integrating DA-Blocks into various components of the model architecture,
as illustrated in Table 3.4. The investigation focused on two key areas: the
incorporation of DA-Blocks into skip connections and their placement within
the encoder.

The introduction of DA-Blocks at each layer of skip connections yielded
notable improvements in model performance. Specifically, the Dice Similarity
Coefficient (DSC) increased from a baseline of 77.48% to 78.28%, while
the Hausdorff Distance (HD) metric showed a reduction from 31.69mm
to 29.09mm. These results suggest that the DA-Blocks enhance feature
refinement in skip connections, potentially mitigating information loss dur-
ing upsampling and contributing to improved model stability and reduced
overfitting.

Further experimentation involved placing DA-Blocks in the encoder,
preceding the Transformer layer. This modification resulted in an even more
substantial improvement, with the DSC rising to 78.87% and the HD de-
creasing to 27.71mm. The marked enhancement in both metrics underscores
the significance of feature refinement prior to transformer processing.

The cumulative findings, as presented in Table 3.4, provide strong ev-
idence for the efficacy of DA-Blocks in medical image segmentation. The
strategic placement of these blocks, both within skip connections and before
the transformer layer in the encoder, demonstrates a synergistic effect

39



that significantly enhances the model’s overall segmentation capabilities for
medical imaging tasks.

Table 3.4: Effects of Combinatorial Placement of DA-Blocks in the Encoder
and Through Skip Connections on Performance Metrics

Encoder with DA Skip with DA DSC↑ HD↓
DA-TransUNet 77.48 31.69
DA-TransUNet

√
78.28 29.09

DA-TransUNet
√

78.87 27.71
DA-TransUNet

√ √
79.80 23.48

Table 3.5: Effects of Incorporating DA-Block in the Encoder and Skip
Connections at Different Layers on Performance Metrics

1st layer 2nd layer 3rd layer DSC↑ HD↓
DA-TransUNet 78.87 27.71
DA-TransUNet

√
79.36 25.80

DA-TransUNet
√

78.65 23.43
DA-TransUNet

√
79.49 30.71

DA-TransUNet
√ √ √

79.80 23.48

Table 3.6: Effect of the number of intermediate channels in DA-Block
1 2 4 8 16 32 DSC↑ HD↓

DA-TransUNet
√

78.55 28.22
DA-TransUNet

√
79.35 23.77

DA-TransUNet
√

79.71 25.90
DA-TransUNet

√
79.35 25.66

DA-TransUNet
√

79.80 23.48
DA-TransUNet

√
79.71 24.45

3.3.4.2 Effect of adding DA-Blocks to skip connections in different
layers

Based on the quantitative results of Table 3.5, this study experimented with
various configurations of the placement of the DA block in three different
layers of skip connections to identify the optimal architectural layout to
enhance the performance of the model. Specifically, when DA blocks were
added to just the first layer, the DSC metric improved to 79.36% from a
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baseline of 78.87%, and the HD metric decreased to 25.80mm from 27.71mm.
Adding DA-Blocks to the second and third layers resulted in some progress.
When DA locks were integrated across all layers, there was an improvement,
reflected by a DSC of 79.80% and a HD of 23.48mm. In contrast to traditional
architectures where skip connections indiscriminately pass features from the
encoder to the decoder, our approach with DA-Blocks selectively improves
feature quality at each layer. The results, as corroborated by Table 3.5, reveal
that introducing DA blocks into even a single layer improves performance,
and the greatest gains are observed when applied across all layers. This
indicates the effectiveness of integrating DA-Blocks within skip connections
to enhance both feature extraction and medical image segmentation. There-
fore, the table clearly supports the idea that the layer-wise inclusion of DA-
Blocks in skip connections is an effective strategy to improve medical image
segmentation.

3.3.4.3 Effect of the number of intermediate channels in DA-Block

Based on the results shown in Table3.6, this study conducted a discussion
on the size of the intermediate layer in the DA-Block, which demonstrates
the effectiveness of convolutional layers from an experimental perspective.
The original DA-Block had an intermediate layer size that is one-fourth of
the input layer size. However, since its intended application is for road scene
segmentation and not specifically tailored for medical image segmentation,
this study deemed that setting the intermediate layer size at one-fourth of
the input layer size might not be suitable for the medical image segmentation
domain. As seen in the graph, when this study set the intermediate layer size
to be the same as the input size, the evaluation results show a DSC of 78.
55% and a HD of 28.22 mm. In the related DANet research [54], where the
intermediate layer was set to one-fourth of the input layer, the DSC result was
79.71%, and HD was 25.90 mm. However, when this study further reduced
the size of the intermediate layer to one-sixteenth of the input layer size, this
study observed an improvement in DSC to 79.80%, and HD decreased to
23.48 mm. It is evident that setting the intermediate layer to one-sixteenth
of the input layer size is more suitable for medical image segmentation tasks.
The reduction in the intermediate layer size can help the model mitigate the
risk of overfitting, optimize computational resources, and, given the precision
requirements of medical image segmentation tasks, enable the model to focus
more on selecting the most crucial features, thereby enhancing sensitivity to
critical information for the task.
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Figure 3.12: The flowchart of statistical detection is shown in the figure.

3.4 Discussion

In this present study, this study has discovered promising outcomes from the
integration of DA-Blocks with the transformer and their combination with
skip-connections. Encouraging results were consistently achieved across all
six experimental datasets.

3.4.1 Statistical Validation of the Improvements by DA-
TransUNet

To enhance the credibility of our results and further validate the superiority of
DA-TransUNet, this study evaluated the performance of the models discussed
in the Experimental Section (U-Net, TransUNet and DA-TransUNet) on
12 subsets of the Synapse dataset, constituting 40% of the total data, and
obtained their Dice Similarity Coefficients (DSC). It is important to note that
both DA-TransUNet and TransUNet are based on the U-Net architecture,
which serves as a baseline model. Therefore, using U-Net as the benchmark
to assess whether the improvements of DA-TransUNet over TransUNet are
significant is a valid approach.

As shown in Figure.3.12, this study first assessed the normality of DSC
improvement values for both DA-TransUNet and TransUNet relative to U-
Net using the Shapiro-Wilk test. The results showed p-values of 0.36 and
0.82 for the improvements of DA-TransUNet and TransUNet, respectively.
Since both p-values are greater than 0.05, this study cannot reject the null
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hypothesis of normality. This indicates that the DSC improvement values
for both DA-TransUNet and TransUNet relative to U-Net can be considered
approximately normally distributed. This study then performed a paired t-
test to compare the significance of the improvements. As shown in Table 3.7,
the test yielded a t-statistic of 2.45 and a p-value of 0.032, demonstrating a
significant difference between the improvements achieved by DA-TransUNet
and TransUNet.

Furthermore, to further quantify the superiority of DA-TransUNet over
TransUNet, this study calculated the confidence interval 95% for the differ-
ence in improvements between DA-TransUNet and TransUNet. The results
showed that the mean difference was 3.96, with a standard deviation of 5.61,
and the confidence interval was [0.40, 7.53]. This means that, at a confidence
level 95%, the magnitude of the difference in DSC improvements between
DA-TransUNet and TransUNet lies between 0.40 and 7.53.

To provide a comprehensive overview of the performance of the models,
this study calculated the confidence intervals 95% for their DSC scores. DA-
TransUNet achieved a mean DSC of 79.80 ± 5.01, with a confidence interval
of [74.79, 84.81], while TransUNet achieved a mean DSC of 75.84 ± 6.77, with
a confidence interval of [69.06, 82.61]. These results, summarized in Table 3.7,
suggest that DA-TransUNet not only achieves higher average performance
but also exhibits more consistent results compared to TransUNet.

Statistical analysis, confidence intervals, and quantification of relative
improvement provide strong evidence for the superiority of DA-TransUNet
over TransUNet in the task of medical image segmentation. These results
highlight the effectiveness of our proposed approach and its potential to
advance the field of medical image analysis.

Table 3.7: Statistical Analysis of DSC Improvements and Model Performance
Model Mean DSC ± SD 95% CI for DSC
DA-TransUNet 79.80 ± 5.01 [74.79, 84.81]
TransUNet 75.84 ± 6.77 [69.06, 82.61]

Comparison of DSC Improvements Achieved by DA-TransUNet and TransUNet Relative to U-Net
Metric Mean Difference 95% CI for Difference t-Test p-value
Improvement 3.96 [0.40, 7.53] 0.032

3.4.2 Enhancing Feature Extraction and Segmentation
with DA-Blocks

The empirical findings presented in Table 3.4 demonstrate the significant
impact of integrating DA-Blocks into the encoder, notably enhancing feature
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extraction capabilities and segmentation performance.

In the field of computer vision, Vision Transformers (ViT) have gained
recognition for their robust global feature extraction [53]. However, they
exhibit limitations in specialized tasks like medical image segmentation,
where image-specific feature attention is crucial. To address this, DA-
TransUNet strategically positions DA-Blocks before the Transformer module.
These DA-Blocks are designed to initially extract and refine image-specific
features, including spatial and channel attributes. This refined data is then
processed by the Transformer, leading to enhanced global feature extraction
and significantly improved feature learning and segmentation performance.

The strategic placement of DA-Blocks preceding the transformer layer
represents an innovative approach that substantially improves both feature
extraction efficacy and medical image segmentation precision.

Furthermore, Table 3.5 illustrates that integrating DA-Blocks with skip
connections markedly enhances semantic continuity and the decoder’s ability
to reconstruct accurate feature maps. While traditional U-Net architectures
[51] use skip connections to bridge the encoder-decoder semantic gap, our
novel incorporation of Dual Attention Blocks within these layers yields
promising outcomes. This integration across skip-connection layers enables
focus on relevant features while filtering out extraneous information, resulting
in a more efficient and accurate image reconstruction process.

The inclusion of DA-Blocks in skip connections thus represents a ground-
breaking approach that enhances both feature extraction and overall model
performance in medical image segmentation.

Our comprehensive evaluation across six diverse medical image segmen-
tation datasets underscores the effectiveness and generalizability of DA-
TransUNet. Consistent improvements over state-of-the-art methods, as
evidenced in Table 3.1, highlight the impact of our targeted DA-Block
integration. Additionally, ablation studies (Section 3.3.4) provide valuable
insights into the individual contributions of DA-Blocks in various architec-
tural components.

These findings not only emphasize the novelty of our approach but also
illuminate the importance of strategically incorporating attention mecha-
nisms for enhanced medical image segmentation. DA-TransUNet marks a
significant advancement in leveraging attention mechanisms and transformers
for accurate and robust segmentation across diverse medical imaging modal-
ities. Our work opens avenues for further exploration of targeted attention
mechanisms in medical image analysis, with potential implications for clinical
decision-making and patient care.
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3.4.3 Limitations and Future Directions

Despite the advantages, our model also has some limitations. Firstly, the
introduction of the DA-Blocks contributes to an increase in computational
complexity. This added cost could potentially be a hindrance in real-time
or resource-constrained applications. Although this increase in parameters is
relatively modest considering the performance gains achieved, it could still be
a concern in resource-constrained scenarios or when dealing with very large-
scale datasets. Secondly, the decoder part of our model retains the original
U-Net architecture. Although this design choice preserves some of the
advantages of U-Net, it also means that the decoder has not been specifically
optimized for our application. This leaves room for further research and
improvements, particularly in the decoder section of the architecture. Third,
one potential limitation of our DA-TransUNet architecture is the risk of
losing fine-grained details during the tokenization process, which occurs after
the convolution and pooling operations in the encoder. This is particularly
concerning for medical images with thin and complex structures, where
preserving intricate details is crucial for accurate segmentation. Although
our proposed integration of the Dual Attention (DA) module before the
transformer in the encoder and within the skip connections helps mitigate
this issue to some extent, as evidenced by the improved segmentation
performance, this study acknowledges that there may still be room for further
enhancement in capturing and retaining fine-grained information.

In addition, in the design of the Dual Attention (DA) module, this
study considered the relative importance of channel attention and position
attention for improving the model’s performance. The channel attention
focuses on capturing the inter-dependencies between different channels, while
the position attention emphasizes the spatial relationships between different
positions. Both of these attention mechanisms contribute to the model’s
ability to learn discriminative features. However, the question arises as
to whether one of these attention mechanisms should be considered as
predominant and the other as auxiliary.

To address this question, this study conducted experiments and analysis
to determine the optimal configuration of channel and position attention
within the DA module. The results of these experiments led to the in-
troduction of the Mutual Inclusion mechanism in the subsequent chapter.
The Mutual Inclusion mechanism aims to effectively integrate channel and
position attention, allowing them to mutually enhance each other. By
treating both attention mechanisms as equally important and facilitating
their interaction, the Mutual Inclusion mechanism seeks to further improve
the model’s ability to capture fine-grained details and enhance the overall

45



segmentation performance.
The introduction of the Mutual Inclusion mechanism represents a promis-

ing direction for future research, as it explores the synergistic relationship
between channel and position attention. By optimizing the integration of
these attention mechanisms, this study aims to develop more advanced and
effective architectures for medical image segmentation. The next chapter
will delve into the details of the Mutual Inclusion mechanism and present
the experimental results demonstrating its effectiveness.

3.5 Chapter Summary

In this chapter, this study presented DA-TransUNet, a novel architecture
for accurate medical image segmentation that strategically integrates Dual
Attention (DA) blocks with a Transformer-based U-Net architecture. The
proposed model leverages the strengths of both the attention mechanisms and
the transformers to enhance feature extraction and improve segmentation
performance.

The key contributions of this chapter are threefold. Firstly, this study
proposed the integration of Vision Transformer (ViT) and Dual Attention
(DA) blocks in the encoder of the U-Net architecture, which enhances the
model’s ability to capture both global and local features crucial for medical
image segmentation. Secondly, this study introduced an optimized DA block
tailored for medical image segmentation and incorporated it into each skip
connection layer, enabling effective filtering of irrelevant information and
refining the transmitted features. Third, this study extensively validated
the segmentation performance and generalizability of DA-TransUNet on five
diverse medical image segmentation datasets, demonstrating its superiority
over state-of-the-art methods.

The experimental results on the Synapse multiorgan segmentation dataset
showed that DA-TransUNet outperformed the baseline TransUNet model,
achieving an average Dice Similarity Coefficient (DSC) of 79.80% and a
Hausdorff Distance (HD) of 23.48 mm. Furthermore, DA-TransUNet consis-
tently outperformed other state-of-the-art models in five additional medical
image segmentation datasets, including CVC-ClinicDB, chest X-ray masks
and labels, ISIC 2018 lesion segmentation, Kvasir-SEG polyp segmentation,
and Kvasir-Instrument segmentation.

Ablation studies provided valuable information on the individual contri-
butions of the DA blocks to the encoder and skip connections. The results
highlighted the importance of strategically integrating attention mechanisms
for improved medical image segmentation performance. Statistical analysis
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further validated the significance of the improvements achieved by DA-
TransUNet over the baseline TransUNet model.

Despite its advantages, DA-TransUNet has some limitations, such as
increased computational complexity and the potential loss of fine-grained
details during the tokenization process. Future research directions may
include optimizing the decoder architecture, exploring more efficient atten-
tion mechanisms, and developing strategies to better preserve fine-grained
information in medical images with complex structures.

In conclusion, DA-TransUNet represents a significant advancement in
medical image segmentation by leveraging the power of attention mechanisms
and transformers. The proposed architecture has the potential to impact
clinical decision-making and patient care by providing accurate and robust
segmentation results across a wide range of medical imaging modalities.
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Chapter 4

MIPC-Net: Mutual Inclusion of
Position and Channel Features
for Precise Boundary Segmenta-
tion

4.1 Motivation and Objectives

Medical image segmentation plays an essential role in quantifying diseases,
assessing prognosis, and evaluating treatment outcomes. It describes crucial
observations in images, such as the degree, size, and location of the lesions.
However, manual segmentation by experienced professionals is both time-
consuming and tedious [1]. Therefore, with the advance of deep learning
technologies, automatic medical image segmentation has attracted growing
research interest.

Existing medical image segmentation methods usually follow the practice
of combining Convolutional Neural Networks (CNNs) with Vision Trans-
former modules under the U-Net structure [51, 53, 70]. For example, various
U-Net variants have been proposed to improve medical image segmentation
performance. ResUnet [5], Unet++ [18], and Unet3++ [19] introduced
residual connections and complex skip connections, while Attention-Unet [6]
integrated attention mechanisms into the U-Net architecture. TransUNet [9]
and Swin-Unet [11] incorporated the Transformer and Swin-Transformer [12]
modules, respectively, to capture global information. However, medical
image segmentation differs from generic image segmentation tasks. In
medical image segmentation, data is characterized by small sample sizes and
the need for precise boundary delineation. Unlike generic image segmentation
models, which are required to cover all details of the image, medical image
segmentation demands special attention to abnormal regions and boundary
details in organ or pathological images. Therefore, the features of the local
image must be combined with the global features. To this end, attention
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mechanisms focusing on both channel and position information need to be
introduced into the research.

In recent research, there has been a trend towards incorporating both
channel and position attention mechanisms into models. SA-UNet [28] and
AA-TransUNet [14] incorporated spatial and channel attention, respectively,
but did not make full use of the features of the image. TransUNet++
[10] and DS-TransUNet [13] integrated Transformers into skip connections
but have limitations in overall architecture and feature integration. DA-
TransUNet [2] merges position and channel attention but merely adapts a
block of road segmentation, lacking custom feature extraction for medical
images. These methods achieve better performance over previous medical
image segmentation models. However, they primarily focus on the overall
segmentation overlap rather than specifically enhancing the boundary details
of the segmentation results. Moreover, when extracting features from the
perspective of channel and position, these models only focus on repeated
feature extraction, potentially disrupting the original information without
considering how to restore the boundary details of the image.

Inspired by radiologists’ working patterns, this paper proposes a simple
and effective mutual inclusion mechanism for medical image segmentation.
Instead of simply stacking transformer-related modules, this study introduces
the Mutual Inclusion of Position and Channel Attention (MIPC) module,
which enhances the focus on channel information when extracting position
features and vice versa. Figure 4.1 illustrates the superiority of the proposed
mutual inclusion of position and channel attention compared to existing
attention mechanisms. This study proposes two pairs of channel and position
combinations, each pair emphasizing either channel or position information
while mutually including the other. This approach mimics the radiologists’
working patterns, where mutual inclusion is practiced with varying emphasis.
The experimental results demonstrate that this method effectively improves
the model’s ability to accurately segment image boundaries. Furthermore,
this study focuses on the restoration of medical images by proposing the
GL-MIPC-Skip-Connection. This connection introduces a Dual Attention
mechanism to filter out invalid information while utilizing a global residual
connection to restore the most effective information lost during the feature
extraction process.

This study evaluated the proposed methods on three publicly accessible
datasets: the Synapse dataset [57], the ISIC2018-Task dataset [59, 60], and
the Segpc dataset [71]. In addition to the Dice coefficient (DSC) metrics,
which deal with class imbalance problems, this study adopts the Hausdorff
distance (HD) to analyze the quality of the segmentation results, as it is
particularly convincing in evaluating boundary region segmentations. The
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results show that the proposed method achieves state-of-the-art performance
on both DSC and HD metrics. Notably, there was a 2.23mm reduc-
tion over competing models in the HD metric on the benchmark Synapse
dataset, strongly evidencing the model’s enhanced capability for precise
image boundary segmentation. This finding also indicates that medical image
segmentation benefits from the mechanism of mutual inclusion of position
and channel attention.

The main contributions are as follows:

1) This paper proposes a novel model, MIPC-Net, which incorporates
a Mutual Inclusion attention mechanism for position and channel
information. This approach further improves the precision of boundary
segmentation in medical images.

2) This paper introduces the GL-MIPC-Residue, a global residual connec-
tion that improves image restoration by enhancing the integration of
the encoder and decoder.

3) Experiments demonstrate that the proposed components achieve con-
sistent performance improvements. Furthermore, the model achieves
state-of-the-art performance in all metrics in the public Synapse [57],
ISIC2018-Task [59,60], and Segpc [71] datasets.

The rest of this article is organized as follows. Section II reviews the related
work of automatic medical image segmentation, and the description of the
proposed MIPC-Net is given in Section III. In Section IV, comprehensive
experiments and visualization analyzes are then conducted. Finally, Section
V draws a conclusion to the whole work.

4.2 MIPC-Net Architecture

In the following section, this study introduces the MIPC-Net architecture,
as depicted in Figure 4.2. This study begins by providing an overview of the
overall structure. Subsequently, this study presents its key components in
the following sequence: Mutual Inclusion of Position and Channel (Section
4.2.2), encoder (Section 4.2.3), GL-MIPC-Skip connections (Section 4.2.4)
and decoder (Section 4.2.5).

4.2.1 Overview of MIPC-Net

Figure 4.2 illustrates the detailed configuration of the MIPC-Net model,
which is a medical image segmentation model capable of capturing image-
specific channel and position information and incorporates improved skip
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Figure 4.1: Comparison of attention mechanisms used in different medical
image segmentation models: (a) only attention, (b) only channel or position
attention, (c) integration of position and channel attention, and (d) Mutual
nclusion of position and channel attention proposed in this work, which
enhances the focus on channel information when extracting position features
and vice versa”

connections.
The model consists of three main components: the encoder, the decoder,

and the GL-MIPC-Skip connections. In particular, the encoder integrates
the traditional convolutional neural network (CNN) and transformer mech-
anisms, while using MIPC-Block to enhance encoding capability (Section
4.2.3). The decoder relies on deconvolution to restore the features to
the original feature map size (Section 4.2.5). GL-MIPC-Skip-Connections
employ DA-Block to purify the features of skip connection transmission.
Furthermore, they use the GL-MIPC-Residue to further enhance the integrity
of the encoder and decoder (Section 4.2.4). MIPC-Net, made up of three
integral components, exhibits superior image segmentation performance.

Given the constraints highlighted by traditional models, it is evident that
while the conventional U-net architecture excels in capturing image features,
it lacks effective methods for preserving and extracting global features.

On the other hand, Transformers exhibit remarkable proficiency in pre-
serving and extracting global features through self-attention mechanisms [9].
However, they are inherently limited to unidirectional positional attention,
overlooking the utilization of image-special position and channel. To ad-
dress these limitations, this study has integrated the Mutual Inclusion of
Position and Channel Block (MIPC-Block) and leveraged GL-MIPC-Skip-
Connections to enhance the integrity of the encoder and decoder, thereby
improving the performance of medical image segmentation.

In medical image segmentation tasks, current models usually use at-
tention mechanisms to enhance the segmentation capabilities of the model.
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Figure 4.2: The illustration of the proposed MIPC-Net is depicted.

For example: TransUNet uses ViT, and Swin-Unet uses Swin-Transformer.
These approaches do not adapt attention mechanisms to the specific features
of the image and hence are unable to extract deep image-related information.
To solve this problem, the proposed MIPC-Block enhances the segmentation
capabilities of the model by leveraging image-specific features related to
position and channel. It effectively combines these two features in a mu-
tually inclusive manner to extract deeper image-related features, achieving
subdivided extraction of image features and more fully mining features.

As illustrated in Figure 4.3, the MIPC-Block architecture seamlessly
integrates image-specific channel and positional features, enriched by the
application of residual concepts. The amalgamation of channel and positional
features empowers the MIPC-Block with profound insight into the image,
surpassing the capabilities of conventional attention modules.

The MIPC-Block architecture consists of three parts: PART A, PART
B, and PART C. PART A and PART C serve as crucial feature extraction
modules, ingeniously integrating both position and channel information of
image features. The tight coupling of positional and channel information
further enhances the feature extraction capability of the module. In Part A,
the module undergoes a channel-wise average pooling layer (ChannelPool)
to compress the feature map. Subsequently, it passes through fully con-
nected layers to learn the correlations between different channels in the
features. Following this, a sigmoid function is applied to constrain the
values between 0 and 1, which yields channel correlations. Multiplying
these correlations with the features obtained through the Position Attention
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Module (PAM) results in information where the position is the primary
focus and channels act as auxiliary. In contrast, in Part C, the features are
first subjected to MaxPool and AvgPool operations (PositionPool) along the
spatial dimensions. The resulting features from these two pooling operations
are concatenated, and through fully connected layers, correlations between
different spatial dimensions in the features are learned. Similarly to Part
A, a sigmoid function constrains the values between 0 and 1. Multiplying
these spatial correlations with the features obtained through the Channel
Attention Module (CAM) produces information where channels are the main
focus and spatial dimensions serve as auxiliary. Part B employs a residual
approach to minimize the loss of valuable original information introduced by
the convolution and attention modules.

Part A (Position-Dominant Extraction with Channel): As il-
lustrated in Figure 4.3, ChannelPool facilitates the extraction of channel
information from the input characteristics. Subsequently, a series of fully
connected layers is employed to capture interchannel correlations, resulting
in β1. Currently, another set of input features is processed by the Position
Attention Module (PAM) to extract position information features, resulting
in β2. Following sigmoid processing of β1, it is multiplied element by element
with β2 to obtain β. In contrast to Part C, where channel-wise modulation
is utilized for distributing feature maps from the spatial module, this process
generates feature maps with spatial and channel emphasis.

β1 = FC(ChannelPool(Input)), (4.1)

β2 = PAM(Input), (4.2)

β = Sigmoid(β1) · β2, (4.3)

PART B (Residual Part) : As shown in the figure, the inputs from
Part A and Part B undergo a convolutional operation to obtain ω1 and ω2,
respectively. Subsequently, the two are multiplied in element and then passed
through another convolutional layer to yield ω. It extracts and refines the
features of both inputs, thus refining the original features.

ω1 = Conv(PartA′s Input), (4.4)

ω2 = Conv(PartC ′s Input), (4.5)

ω = Conv(ω1 · ω2) (4.6)

PART C (Channel-Dominant Extraction with Position) : As
shown in Figure 4.3, the input features undergo PositionPool along the
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spatial dimension to effectively extract spatial information while eliminating
noise and irrelevant details in the image. Subsequently, the feature maps are
further processed by convolution to capture spatial correlations, resulting in
α1. Gleichzeitig, the Channel Attention Module (CAM) to extract channel
characteristics, denoted α2. The channel attention module is used to extract
detailed channel features from the image. After sigmoid processing of α1,
it is multiplied in element by α2 to obtain the output α. Unlike Part A,
where the feature maps extracted by the spatial module are weighted by the
channel attention module, effectively integrating image-specific spatial and
channel features, generating feature maps with channel emphasis and spatial
emphasis.

α1 = Conv(PositionPool(Input)), (4.7)

α2 = CAM(Input), (4.8)

α = Sigmoid(α1) · α2, (4.9)

Finally, the outputs of Parts A, B, and C are summed along the channel
dimension, and then passed through a residual network (see Figure 4.2.2) to
obtain the output.

Output = Residual(α + β + ω), (4.10)

4.2.2 Mutual Inclusion of Position and Channel

The Mutual Inclusion of Position and Channel Block (MIPC-Block) mutually
includes the image features’ position and channel, capturing deeper features
associated with image features compared to standard attention modules.

4.2.3 Encoder

As shown in Figure 4.2, the encoder consists of four key components: convo-
lution blocks, MIPC-Block, an embedding layer, and transformer layers.

It is particularly significant that the MIPC-Block is introduced just
before the transformer layers. The purpose is to subject the convolutional
features to specialized image processing, enhancing the transformer’s feature
extraction capabilities with respect to the image’s content. The Transformer
architecture excels at capturing global information. Integrating the MIPC-
Block enhances its ability to maintain and extract global features specifically
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Figure 4.3: The proposed Position and Channel Mutual Inclusion Block
(MIPC-Block) .

Figure 4.4: The specific structure of the last Residual module in MIPC-Block.

from images, enriching the Transformer’s image-processing capabilities. This
approach effectively combines image-specific channel and positional features
with global features.

It begins with three convolutional blocks of the U-Net. Each block
consists of a series of convolutions, normalization, and activation, designed
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Figure 4.5: Architecture of Dual Attention Block (DA-Block).

to progressively refine the input features, halve their size, and double their
dimensions, thereby achieving efficient feature extraction. The MIPC-Block
then purifies these features, highlighting specific image details for a deeper
analysis. An embedding layer adjusts the feature dimensions for transformer
layers, which address CNN limitations by capturing global information.
Finally, the transformer’s output is recombined and directed through skip
connections to the decoder, ensuring comprehensive information retention
and enhancing segmentation performance in a streamlined process.

By incorporating convolutional neural networks, transformer architecture,
and Mutual Inclusion of Position and Channel, the encoder configuration ul-
timately attains robust feature extraction capabilities, resulting in synergistic
strength.

4.2.4 GL-MIPC-Skip-Connections

Within the framework of the U-shaped encoder-decoder architecture, skip
connections are utilized to alleviate semantic discrepancies between encoder
and decoder components. However, optimization of skip connections remains
an area in need of improvement. Primarily, there exist challenges such as
loss of feature fidelity during transmission and insufficient overall integrity
between the encoder and decoder. To address these issues, this study em-
ployed two strategies: purifying the features transmitted via skip connections
and augmenting skip connections with global information. These approaches
facilitate the decoder in accurately restoring the original feature map, thereby
significantly enhancing the model’s segmentation capabilities. Here, this
study calls the entire skip connection part GL-MIPC-SKip-Connections. It
is divided into two parts: DA-SKip connections and GL-MIPC residue.

57



4.2.4.1 DA-Skip Connections

Analogously to conventional U-structured models [51] [7], the approach
utilizes traditional skip connections to diminish the semantic disparity be-
tween the encoder and decoder. To further narrow this gap, this study
has incorporated dual attention blocks (DA-Blocks) within the three skip
connections, as illustrated in Figure 4.5. This enhancement stems from
the observation that features conveyed through skip connections frequently
harbor redundancies, which DA-Blocks are adept at filtering out, thereby
refining the feature transmission process.

The integration of Dual Attention Blocks (DA-Blocks) into skip con-
nections empowers the model to meticulously refine features relayed from
the encoder, through the lens of image-specific positional and channel-based
considerations. This process facilitates the extraction of more relevant
information while minimizing redundancy. Such an enhancement not only
bolsters the model’s robustness, but also significantly reduces the likelihood
of overfitting, thereby contributing to superior performance and enhanced
generalization capabilities.

4.2.4.2 GL-MIPC-Residue

The distinction from other U-structured models lies in the sophisticated
refinement of the decoder features and their strategic incorporation into the
skip connections, as illustrated in Figure 4.2. This approach is motivated by
the realization that, although encoder features are extensively leveraged via
skip connections, decoder features often remain underexploited. By purifying
the features of the decoder prior to their integration into skip connections,
thus enhancing the restoration process of the original feature map, this study
facilitate a deeper use of the features of the decoder.

Purifying features within the decoder, after three stages of upsampling,
using Mutual Inclusion of Position and Channel (MIPC-Blocks), oriented
specifically towards image-relevant channels and positions, significantly ele-
vates the quality of information. Subsequent transmission of these enhanced
features to skip connections, followed by their integration into the decoder,
ensures the complete utilization of the decoder features. This methodology
effectively minimizes redundancy between the encoder and the decoder,
enriches the depth of the features, mitigates overfitting risks, and improves
the model’s capabilities in image segmentation and generalization.
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4.2.5 Decoder

As depicted in Figure 4.2, the right-hand section of the diagram represents
the decoder. The decoder’s fundamental task is to leverage features sourced
from the encoder and those transmitted via skip connections. Through
processes including upsampling, it endeavors to accurately reconstruct the
original feature map.

The decoder architecture is structured around three pivotal elements:
feature fusion, the segmentation head, and a series of three upsampling
convolution blocks. Initially, feature fusion operates by amalgamating feature
maps received through skip connections with current feature maps, thereby
equipping the decoder to accurately reconstitute the original feature map.
Subsequently, the segmentation head undertakes the task of adjusting the
final output feature map back to its original dimensions. The final element
comprises three upsampling convolution blocks, methodically increasing the
size of the input feature map at each stage to adeptly reinstate the image’s
resolution.

Due to the synergistic operation of these three components, the decoder
showcases formidable decoding prowess. It adeptly harnesses features con-
veyed via skip connections, as well as those derived from intermediate layers,
enabling a proficient reconstruction of the original feature map.

4.3 Experiment and Results

4.3.1 Datasets

The experiments are conducted on two distinct datasets: Synapse [57], ISIC
2018 [59,60] and Segpc [71] for the following reasons:

Firstly, the Synapse dataset is among the most frequently utilized bench-
mark datasets in medical image segmentation, featuring segmentation tasks
for eight different organs. This variety not only challenges, but also demon-
strates the generalization capabilities of the model across diverse anatomical
structures.

Secondly, the selection encompasses both a 3D multiclass segmentation
challenge (Synapse) and a 2D single-class segmentation task (ISIC 2018,
Segpc). This combination allows us to evaluate the model’s segmentation
abilities from different perspectives, effectively showcasing its versatility and
robustness in handling both complex three-dimensional data and simpler
two-dimensional images.

This strategic choice of datasets underscores the commitment to validat-
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ing the model’s performance across a range of segmentation tasks, highlight-
ing its potential for widespread application in medical image analysis.

4.3.1.1 Synapse

The Synapse dataset comprises 30 CT scan images encompassing 8 abdomi-
nal organs, including the left kidney, right kidney, aorta, spleen, gallbladder,
liver, pancreas, and stomach. In total, 3779 abdominal CT images enhanced
with axial contrast were obtained. The in-plane resolution of these images
varies from 0.54 x 0.54 mm2 to 0.98 x 0.98 mm2, while the slice thickness
ranges from 2.5 mm to 5.0 mm.

4.3.1.2 ISIC-2018-Task

The dataset used in the 2018 ISIC Challenge addresses the challenges of skin
diseases. It comprises a total of 2512 images, with a file format of JPG. The
images of lesions were obtained using various dermatoscopic techniques from
different anatomical sites (excluding mucous membranes and nails). These
images are sourced from historical samples of patients undergoing skin cancer
screening at multiple institutions. Each lesion image contains only a primary
lesion.

4.3.1.3 Segpc

This challenge targets robust segmentation of cells and is the first stage in the
construction of such tools for plasma cell cancers known as multiple myeloma
(MM), a blood cancer. Provides images of normalized stained colors. The
dataset contains a total of 298 images.

4.3.2 Implementation Settings

4.3.2.1 Baselines

In order to innovate in the field of medical image segmentation, this study
conducted benchmark testing of the proposed model against a series of well-
regarded baselines, including U-net, UNet++, Residual U-Net, Att-UNet,
TransUNet, and MultiResUNet. U-net has been a foundational model in
the medical image segmentation domain [51]. UNet++ enriches the skip
connections [18]. Residual U-Net integrates a single residual module into
the U-Net model [5], while MultiResUNet incorporates multiple residual
modules [69]. Att-UNet utilizes attention mechanisms to improve the weight
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of feature maps [6]. Finally, TransUNet integrates the Transformer architec-
ture, establishing a new benchmark in segmentation accuracy [9]. Through
comprehensive comparisons with these renowned baselines, the objective is
to highlight the unique advantages and wide-ranging potential applications of
the proposed model. In addition, this study benchmarked the model against
advanced models. UCTransNet allocates attention modules in the traditional
U-net model for skip connections [65], while MISSFormer moves attention
module allocation into a transformer module-based U-shaped structure [72].
TransNorm integrates Transformer modules into the encoder and skips stan-
dard U-Net connections [66]. A novel transformer module was designed and
a model named MT-UNet was constructed with it [32]. Swin-UNet further
enhances segmentation by extensively applying Swin-transformer modules
[11]. DA-TransUNet enhances the model segmentation capabilities by using
image feature location contracts [2]. Through extensive comparisons with
current state-of-the-art solutions, this study aim to showcase its outstanding
segmentation performance.

4.3.2.2 Implementation Details

This study implemented MIPC-Net using the PyTorch framework and
trained it on a single NVIDIA RTX 3090 GPU [68]. The Transformer module
used in this study employs the pre-trained model ”R50-ViT”. The input
resolution and patch size are set to 224x224 and 16, respectively. This study
trained the model using the SGD optimizer, setting the learning rate to 0.01,
the momentum to 0.9, and the weight decay to 1e-4. The default batch size
was set to 24. The loss function employed for dataset is defined as follows:

Loss =
1

2
× Cross-Entropy Loss +

1

2
× DiceLoss (4.11)

4.3.2.3 Model Evaluation

When evaluating the performance of MIPC-Net, this study utilizes a com-
prehensive set of metrics, including Intersection over Union (IoU), Dice
Coefficient (DSC) and Hausdorff Distance (HD). These metrics are industry
standards for computer vision and medical image segmentation and allow a
multifaceted assessment of a model’s accuracy, precision, and robustness.

AC(Accuracy): Accuracy is a widely used metric that assesses the overall
correctness of a model’s predictions. Calculate the proportion of correctly
predicted samples over the total number of samples.Accuracy gives a general
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idea of how well the model performs across all classes.

AC =
TP + TN

TP + TN + FP + FN
(4.12)

PR (Precision): Precision focuses on the accuracy of the positive predic-
tions made by the model. Precision is the ratio of correctly predicted positive
observations to the total predicted positives.High precision indicates that the
model is good at not misclassifying negative instances as positive.

PR =
TP

TP + FP
(4.13)

SP (Specificity): Specificity measures the accuracy of the negative pre-
dictions made by the model. Specificity is the ratio of correctly predicted
negatives to the total predicted negatives. High specificity suggests that the
model is effective at correctly identifying true negatives.

SP =
TN

TN + FP
(4.14)

In summary, accuracy provides an overall view of model performance,
precision emphasizes positive predictions’ accuracy, and specificity assesses
the accuracy of negative predictions.

IOU (Intersection over Union) is one of the commonly used indicators to
evaluate the performance of computer vision tasks such as target detection,
image segmentation, and instance segmentation. Measures how much the
predicted area of the model overlaps with the actual target area, helping us to
understand the accuracy and precision of the model. In image segmentation
and instance segmentation tasks, IOU is used to assess the degree of overlap
between predicted regions and ground-truth segmentation regions.

IOU =
TP

FP + TP + FN
(4.15)

The Dice coefficient (also known as Srensen-Dice coefficient, F1 score,
DSC) is a measure of model performance in image segmentation tasks and is
particularly useful for dealing with class imbalance problems. Measures the
degree of overlap between prediction results and ground-truth segmentation
results and is particularly effective when dealing with object segmentation
with unclear boundaries. The Dice coefficient is commonly used in image
segmentation tasks as a measure of the accuracy of the model in the target
area.

Dice(P, T ) =
|P1 ∩ T1|
|P1| + |T1|

⇔ Dice =
2|T ∩ P |
|F | + |P |

(4.16)
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Hausdorff distance (HD) is a distance metric that is used to measure the
similarity between two sets and is often used to evaluate the performance
of models in image segmentation tasks. It is particularly useful in the
field of medical image segmentation, where it can quantify the difference
between predicted and true segmentations, and it is particularly convincing in
evaluating boundary region segmentations. The calculation of the Hausdorff
distance captures the maximum difference between the true and predicted
segmentation results.

H(A,B) = max

{
max
a∈A

min
b∈B

∥a− b∥,max
b∈B

min
a∈A

∥b− a∥
}

(4.17)

This study used Dice and HD in the Synapse dataset, used AC, PR, SP,
Dice in the ISIC-2018-Task and Segpc datasets.

4.3.3 Comparison to the State-of-the-Art Methods

4.3.3.1 Synapse

To evaluate the performance of the proposed MIPC-Net model, this study
conducted extensive experiments on the widely used Synapse multiorgan
segmentation data set [57]. Using 12 state-of-the-art (SOTA) methods,
including CNN-based and transformer-based approaches, such as U-Net [51],
Res-Unet [5], TransUNet [9], U-Net++ [18], Att-Unet [6], TransNorm [66],
UCTransNet [65], MultiResUNet [69], Swin-Unet [11], MT-UNet [32], and
DA-TransUNet [2]. The experimental results are presented in Table 4.1.

As shown in Table 4.1, MIPC-Net achieves the highest mean Dice
Similarity Coefficient (DSC) of 80.00% and the lowest average Hausdorff
Distance (HD) of 19.32 mm among all the compared methods. This
demonstrates the superior performance of MIPC-Net in both the overall
segmentation accuracy and the boundary delineation precision. Compared to
the popular transformer-based model TransUNet [9], MIPC-Net significantly
improves the DSC by 2.52% and reduces the HD by 12.37 mm, highlighting
the effectiveness of the proposed mutual inclusion mechanism and global
integration strategy.

In addition, MIPC-Net consistently outperforms TransUNet in terms of
DSC for the eight individual organs, with improvements ranging from 0.07%
to 4.12%. In particular, MIPC-Net achieves substantial DSC improvements
of 3.29%, 3.35%, 3.59%, 4.12%, and 3.93% for the gallbladder, right kidney,
pancreas, spleen, and stomach, respectively. These organs are known to
be particularly challenging to segment due to their variable shapes, sizes,
and locations, as well as their low contrast with surrounding tissues. The
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significant performance gains achieved by MIPC-Net demonstrate its strong
capability in handling these difficult cases and accurately delineating organ
boundaries.

Figure 4.6 provides a visual comparison of the DSC and HD values
achieved by MIPC-Net and several other advanced models on the Synapse
dataset. It is evident that MIPC-Net achieves the highest DSC and the lowest
HD among all the compared models, further confirming its state-of-the-art
performance in multi-organ segmentation.

To gain deeper insights into the boundary delineation performance of
MIPC-Net, this study also evaluated the HD metric for each individual organ,
as shown in Table 4.2. MIPC-Net achieves the lowest HD for five out of
eight organs, including the aorta, gallbladder, right kidney, pancreas, and
stomach. In particular, MIPC-Net significantly reduces HD by 6.31 mm
and 2.73 mm for the aorta compared to TransUNet and DA-TransUNet,
respectively. These results highlight the superior boundary segmentation
capability of MIPC-Net, which can be attributed to the effective integration
of position and channel information through the proposed mutual inclusion
mechanism.

It should be noted that while MIPC-Net achieves state-of-the-art per-
formance, its computational efficiency is comparable to that of TransUNet.
The image segmentation time of MIPC-Net is 38.51 ms, only slightly higher
than TransUNet’s 33.58 ms. This indicates that the superior performance of
MIPC-Net does not come at the cost of significantly increased computational
overhead, making it a practical solution for real-world clinical applications.

Figure 4.7 presents a qualitative comparison of the segmentation results
produced by TransUNet and MIPC-Net on the Synapse dataset. The regions
highlighted by orange borders clearly demonstrate that MIPC-Net generates
more accurate and precise segmentations compared to TransUNet, especially
in challenging areas such as organ boundaries and small structures. The
visual results further validate the effectiveness of the proposed approach
in capturing fine-grained details and producing high-quality segmentation
masks.

4.3.3.2 ISIC 2018-Task Dataset

To further validate the generalizability of MIPC-Net, this study performed
experiments on the ISIC 2018 dataset [59, 60] for skin lesion segmentation.
This dataset presents unique challenges, such as varying lesion sizes, shapes,
and color variations.

Table 4.3.3.2 compares MIPC-Net with several state-of-the-art mod-
els on the ISIC 2018 dataset. MIPC-Net achieves the highest Accuracy
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Table 4.1: The experimental results on the Synapse dataset include the
average Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) for
each organ, as well as the individual DSC for each organ.

mDSC, mHD DSC of a single organ
Model Year DSC↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

U-net [51] 2015 76.85% 39.70 89.07 69.72 77.77 68.6 93.43 53.98 86.67 75.58
U-Net++ [18] 2018 76.91% 36.93 88.19 68.89 81.76 75.27 93.01 58.20 83.44 70.52
Residual U-Net [5] 2018 76.95% 38.44 87.06 66.05 83.43 76.83 93.99 51.86 85.25 70.13
Att-Unet [6] 2018 77.77% 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
MultiResUNet [69] 2020 77.42% 36.84 87.73 65.67 82.08 70.43 93.49 60.09 85.23 75.66
TransUNet [9] 2021 77.48% 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
UCTransNet [65] 2022 78.23% 26.75 84.25 64.65 82.35 77.65 94.36 58.18 84.74 79.66
TransNorm [66] 2022 78.40% 30.25 86.23 65.1 82.18 78.63 94.22 55.34 89.50 76.01
MT-UNet [32] 2022 78.59% 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
swin-unet [11] 2022 79.13% 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
DA-TransUNet [2] 2023 79.80% 23.48 86.54 65.27 81.70 80.45 94.57 61.62 88.53 79.73
MIPC-Net 80.00% 19.32 87.30 66.43 83.24 80.37 94.48 59.45 89.20 79.55

Table 4.2: The Hausdorff Distance (HD) for each organ in the Synapse
dataset experimental results.

Model Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach
TransUNet 14.94mm 15.81mm 59.92mm 45.76mm 37.86mm 17.34mm 43.33mm 18.56mm
swin-unet 8.64mm 27.98mm 41.83mm 34.00mm 22.17mm 12.43mm 9.90mm 15.45mm

DA-TransUNet 11.37mm 27.93mm 30.76mm 48.93mm 20.26mm 12.29mm 12.91mm 23.37mm
MIPC-Net 8.63mm 15.74mm 41.65mm 27.12mm 22.33mm 11.58mm 12.09mm 15.39mm

Figure 4.6: Line chart of DSC and HD values of several advanced models in
the Synapse dataset

(AC) of 0.9560, Precision (PR) of 0.9279, and Specificity (SP) of 0.9831,
demonstrating its superior performance in accurately segmenting skin lesions.
Notably, MIPC-Net significantly outperforms the transformer-based model
TransUNet, with improvements of 0.0108 in AC, 0.0453 in PR, 0.0178 in SP,
and 0.0376 in Dice index. These improvements can be attributed to the effec-
tiveness of the proposed mutual inclusion mechanism and global integration
strategy in capturing both local and global contextual information.

Interestingly, while MIPC-Net achieves the highest AC, PR, and SP, its
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Figure 4.7: Segmentation results of TransUNet and MIPC-Net on the
Synapse dataset.

Dice index of 0.8875 is slightly lower than that of UCTransNet (0.8898). This
suggests a potential trade-off between precision and recall, which could be
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Table 4.3: Experimental results on the ISIC2018-Task dataset
Method AC PR SP Dice

U-Net [51] 0.9446 0.8746 0.9671 0.8674
Att-UNet [6] 0.9516 0.9075 0.9766 0.8820

U-Net++ [18] 0.9517 0.9067 0.9764 0.8822
MultiResUNet [69] 0.9473 0.8765 0.9704 0.8694
Residual U-Net [5] 0.9468 0.8753 0.9688 0.8689

TransUNet [9] 0.9452 0.8823 0.9653 0.8499
UCTransNet [65] 0.9546 0.9100 0.9770 0.8898
MISSFormer [72] 0.9453 0.8964 0.9742 0.8657
MIPC-Net(ours) 0.9560 0.9279 0.9831 0.8875

Figure 4.8: Segmentation results of TransUNet and MIPC-Net on the
ISIC2018-Task dataset.

further investigated in future work.
Figure 4.8 qualitatively compares the TransUNet and MIPC-Net segmen-

tation results on the ISIC 2018 dataset. MIPC-Net generates more precise
and accurate segmentations, especially in challenging cases with irregular
lesion boundaries and low contrast. The visual results further validate the
superiority of the approach in capturing fine-grained details and producing
high-quality segmentation masks for skin lesions.

4.3.3.3 Segpc Dataset

This study further assessed the performance of MIPC-Net on the Segpc
dataset [71] for cell segmentation in microscopy images. This data set
presents challenges such as overlapping cells, variable cell sizes and shapes,
and low contrast between cells and background.

Table 4.3.3.3 compares MIPC-Net with state-of-the-art models on the
Segpc dataset. MIPC-Net consistently outperforms all compared methods,
achieving the highest Accuracy (AC) of 0.9817, Precision (PR) of 0.9079,
Specificity (SP) of 0.9898, and Dice index of 0.8675. Compared to Tran-
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Table 4.4: Experimental results on the Segpc dataset
Method AC PR SP Dice

Residual U-Net [5] 0.9733 0.8917 0.9871 0.8479
MultiResUNet [69] 0.9753 0.8391 0.9834 0.8613

TransUNet [9] 0.9671 0.8598 0.9882 0.8005
MISSFormer [72] 0.9663 0.8152 0.9823 0.8082

DA-TransUNet [2] 0.9713 0.8789 0.9845 0.8366
MIPC-Net(ours) 0.9817 0.9079 0.9898 0.8675

Figure 4.9: Segmentation results of TransUNet and MIPC-Net on the Segpc
dataset.

sUNet, MIPC-Net significantly improves performance across all metrics, with
improvements of 0.0146 in AC, 0.0481 in PR, 0.0016 in SP, and 0.067 in Dice
index. These substantial improvements demonstrate the effectiveness of the
approach in accurately separating overlapping cells and dealing with low
contrast.

In particular, MIPC-Net achieves a significantly higher Dice index
(0.8675) compared to all other methods, indicating a good balance between
precision and recall when segmenting cells, which is crucial for accurate cell
analysis and quantification.

Figure 4.9 visually compares the segmentation results of TransUNet and
MIPC-Net on the Segpc dataset. MIPC-Net generates more accurate and
precise segmentations, successfully separating individual cells and capturing
their fine boundaries, even in dense cell clusters.

The strong performance of MIPC-Net on the ISIC 2018 and Segpc
datasets, along with its state-of-the-art results on the Synapse dataset,
highlights the versatility and generalizability of the approach across different
medical image segmentation tasks and modalities.
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4.3.4 Ablation Study

To gain a deeper understanding of the effectiveness of key components in the
proposed MIPC-Net model, this study conducted a comprehensive ablation
study on the Synapse data set. The study focused on three main aspects: the
effects of mutual inclusion of position and channel, the impact of different
configurations within the MIPC-Block, and the influence of the GL-MIPC-
Residue in skip connections.

4.3.4.1 The effects of Mutual Inclusion of Position and Channel

Table 4.5: Effects of Mutual Inclusion of Position and Channel
Mutual Inclusion DSC↑ HD↓

PC-Net 79.09 23.34
MIPC-Net

√
80.00 19.32

As shown in Table 4.5, MIPC-Net, which incorporates the mutual in-
clusion mechanism, outperforms PC-Net by 0.91% in terms of DSC and
achieves a reduction of 4.02mm in HD. This improvement can be attributed
to the effective integration of position and channel information through the
mutual inclusion mechanism. By allowing the position and channel attention
modules to interact and mutually guide each other, MIPC-Net is able to
capture more comprehensive and discriminative features, leading to more
accurate and precise segmentations. In contrast, simply using position and
channel information independently, as in PC-Net, fails to fully exploit the
potential synergies between these two types of information, resulting in
suboptimal performance.

4.3.4.2 The effects of how to mix MIPC-Block internal mechanisms

Table 4.6: Effects of how to mix MIPC-Block internal mechanisms
Part.A Primary Part.A Auxiliary Part.C Primary Part.A Auxiliary DSC↑ HD↓

MIPC-Net PAM ChannelPool CAM PositionPool 80.00 19.32
MIPC-Net PAM ChannelPoll PositionPool CAM 78.87 21.55
MIPC-Net ChannelPool PAM CAM PositionPool 79.10 26.38
MIPC-Net ChannelPool PAM PositionPool CAM 79.11 24.27

Table 4.6 presents the results of different configurations within the MIPC-
Block. The optimal configuration, where position attention (PAM) is used
as the primary focus and channel attention (ChannelPool) as the auxiliary
focus in Part A, and channel attention (CAM) is used as the primary
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focus and position attention (PositionPool) as the auxiliary focus in Part C,
achieves the best performance with a DSC of 80.00% and an HD of 19.32mm.
This suggests that a balance between position and channel attention is
crucial for achieving the best segmentation results. By employing different
primary attention modules in Parts A and C, MIPC-Block is able to capture
complementary information from both position and channel perspectives,
leading to more comprehensive feature extraction. Furthermore, the results
demonstrate that the use of PAM and CAM as primary attention modules
consistently outperforms using ChannelPool and PositionPool as the primary
modules, indicating that the self-attention mechanisms employed in PAM
and CAM are more effective in capturing long-range dependencies and global
contextual information.

4.3.4.3 The effect of the GL-MIPC-Residue in skip connections

Table 4.7: Effects of the GL-MIPC-Residue in skip connections
GL-MIPC-Residue
1st 2nd 3rd DA-Skip-Connections Encoder with MIPC DSC↑ HD↓

MIPC-Net
√ √

79.28 25.27
MIPC-Net

√ √ √
80.00 19.32

MIPC-Net
√ √ √

79.90 21.82
MIPC-Net

√ √ √
78.64 27.78

MIPC-Net
√ √ √ √ √

78.25 28.06
MIPC-Net 77.48 31.69

Table 4.7 shows the impact of the GL-MIPC-Residue module on the
overall performance of MIPC-Net. Adding the GL-MIPC-Residue module
to the first skip connection layer alone achieves the best performance, with a
DSC of 80.00% and an HD of 19.32mm, outperforming the baseline MIPC-
Net without any GL-MIPC-Residue by 0.72% in terms of DSC and reducing
HD by 5.95mm. This suggests that the GL-MIPC-Residue module is most
effective when applied to the shallower skip connection layers, particularly
the first layer, as it captures more low-level and spatial information crucial
for accurate boundary delineation. The GL-MIPC-Residue module provides
a direct path for the propagation of high-resolution spatial information from
the encoder to the decoder, helping to preserve fine-grained details and
improve localization accuracy. However, applying the GL-MIPC-Residue
module to all skip connection layers leads to a significant performance drop,
indicating that excessive use of the module can be counterproductive.

In conclusion, the ablation study demonstrates the importance of the
mutual inclusion mechanism, the careful design of attention mechanisms
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within the MIPC-Block, and the strategic placement of the GL-MIPC-
Residue module in skip connections. These components work together
to capture comprehensive and discriminative features, leading to improved
segmentation accuracy and precise boundary delineation in medical images.

4.3.5 Discussion

In this chapter, this study found that Mutual Inclusion of Image-specific
Channels and Positions can provide significant assistance for Medical Image
Segmentation Tasks. The proposed MIPC-Block, based on the Mutual
Inclusion mechanism, combined with GL-MIPC-Residue, further enhances
the overall integration of the encoder and decoder. The proposition has been
validated through experiments on datasets, with the HD metric showing
an improvement of 2.23mm compared to competing models on the Synapse
dataset, demonstrating strong boundary segmentation capabilities.

Analyzing the ablation experiments validates the effectiveness of the
proposed MIPC Block and GI-MIPC-Residue. Firstly, according to the
experimental results presented in Tables 4.5 and 4.6, this study concluded
that mutual inclusion of image feature positions and channels yields better
performance compared to simple usage. Furthermore, as demonstrated by
the results in Table 4.7, the GL-MIPC-Residue module improves the overall
integrity of the encoder-decoder. This study concludes that reducing the loss
of effective features is of paramount importance when exploring features in
depth.

Despite these advantages, the model has some limitations. Firstly,
the introduction of MIPC-Block and DA-Blocks leads to an increase in
computational complexity. This added cost may pose a barrier for real-time
or resource-constrained applications. Furthermore, this approach combines
feature positions and channels attention with the Vision Transformer in a
parallel manner, without achieving deep integration between them, indicating
potential areas for further research and enhancement.

4.4 Chapter Summary

In this chapter, this study proposed MIPC-Net, a novel medical image
segmentation model that introduces the Mutual Inclusion of Position and
Channel (MIPC) attention mechanism and the GL-MIPC-Residue module
for precise boundary segmentation. The MIPC-Block effectively captures
image-specific features by mutually including position and channel informa-
tion, enabling the model to extract more comprehensive and discriminative
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features. The GL-MIPC-Residue module, strategically integrated into the
skip connections, enhances the overall integration of the encoder and decoder,
facilitating the preservation of fine-grained details and improving localization
accuracy.

The effectiveness of MIPC-Net was extensively evaluated on three pub-
licly available datasets: Synapse, ISIC 2018, and Segpc. The proposed model
achieved state-of-the-art performance across all datasets, outperforming
several well-established baselines and advanced models. Notably, MIPC-
Net demonstrated a significant improvement of 2.23mm in the Hausdorff
Distance (HD) metric on the Synapse dataset compared to competing models,
highlighting its strong boundary segmentation capabilities. The model also
exhibited superior performance in terms of Accuracy, Precision, Specificity,
and Dice index on the ISIC 2018 and Segpc datasets, further validating
its generalizability across different medical image segmentation tasks and
modalities.

The ablation study provided valuable insights into the contributions of
key components in MIPC-Net. The results confirmed the importance of the
mutual inclusion mechanism in capturing complementary information from
both position and channel perspectives, leading to more accurate and precise
segmentations. The study also highlighted the optimal configuration of
attention mechanisms within the MIPC-Block and the strategic placement of
the GL-MIPC-Residue module in skip connections for the best performance.

Despite its advantages, MIPC-Net has some limitations. The introduction
of MIPC-Block and DA-Blocks increases the computational complexity,
which may be a concern for real-time or resource-constrained applications.
Additionally, the current approach combines feature positions and channels
attention with the Vision Transformer in a parallel manner, leaving room for
further research on achieving deeper integration between these components.

In conclusion, MIPC-Net represents a significant advancement in medical
image segmentation, leveraging the power of mutual inclusion attention
mechanisms and global integration strategies for precise boundary delin-
eation. The proposed model has the potential to greatly benefit clinical
decision-making and patient care by providing accurate and reliable segmen-
tation results across a wide range of medical imaging modalities. Future
research directions may include exploring more efficient attention mecha-
nisms, investigating deeper integration of position and channel attention
with transformers, and adapting the model to additional medical image
segmentation tasks and datasets.
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Chapter 5

FKD-Med: Federated Learning
and Knowledge Distillation for
Privacy-Preserving and Efficient
Medical Image Segmentation

5.1 Motivation and Objectives

Within the healthcare domain, the field of medical image segmentation has
experienced a paradigm shift due to the advent of advanced deep learning
techniques. Federated Learning (FL) in medical image segmentation allows
institutions to collectively enhance models while protecting patient data
privacy. However, the problem arises from the need to share sensitive medical
data between institutions while ensuring efficient processing. Traditional
segmentation methods struggle to balance data privacy with computational
and communication efficiency. Enhancing communication efficiency in the
context of FL has substantial practical value. It enables the inclusion of
more extensive medical data from a broader range of hospitals for training,
significantly expanding the scope and depth of medical research and patient
care. This advancement is pivotal for the development of more accurate
and comprehensive medical analysis tools, ultimately benefiting healthcare
outcomes worldwide. In recent years, deep learning models in medical
scenarios have increasingly incorporated larger parameter volumes, signifi-
cantly intensifying the demand for efficient communication in FL applications
[73–75]. Therefore, this challenge has received widespread attention, prompt-
ing extensive research efforts to address these communication inefficiencies
in the training of medical models.

The study of medical image segmentation presents challenges due to
the scarcity of high-quality medical imaging data, particularly in contexts
involving user privacy concerns. Consequently, extensive research has
been dedicated to improving segmentation model structures in the past
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few decades [76].To address this bottleneck, the focus has largely been on
innovation of neural network architectures. The U-net model [4], introduced
in 2015, employed an encoder-decoder framework to amplify the precision
of segmentation despite the constraints of limited datasets. Following this,
subsequent studies such as Att-UNet [77], ResUNet [5], MLDA-Unet [78],
TransUNet [9], and FHI-Unet [79] built on this foundational work. The
primary objective of these advances has been to refine deep learning architec-
tures with the ultimate goal of improving segmentation accuracy. However,
these developments have overlooked the vital issue of increasing the pool of
available training samples.

To address these limitations, FL stands out as a potent approach.
Facilitates the amalgamation of data between various hospitals, ensuring
the adherence to stringent privacy norms [35]. Although studies like [35]
and [38] highlight the advantages of FL through approaches such as the
decentralized MQTT framework for brain tumor segmentation and the
label-agnostic FedMix method for diverse medical image segmentation, they
often overlook the critical need for communication efficiency optimization in
models with large parameters. However, the increasing size of the model and
the associated increase in communication costs in FL restrict its application,
limiting the inclusion of data to only a select number of medical institutions.
Moreover, to facilitate the inclusion of more nodes in Federated Learning
(FL), several studies have implemented Knowledge Distillation (KD) to
improve communication efficiency. MetaFed, with its cyclic KD, extended
FL to multiple federations, improving precision and reducing communication
costs [47]. FedX introduced unsupervised learning with dual-sided KD,
increasing performance in unsupervised algorithms [80]. Furthermore, some
research combined KD with a federated UNet for land use classification,
achieving notable improvements in model compression and accuracy [81].
However, there is a notable gap in the development of framework tools for
the integration of Federated Learning (FL) and Knowledge Distillation (KD)
specifically tailored to medical image segmentation. The clinical scenarios of
FKD-Med underscore its practical relevance, showcasing the potential for
application in diverse healthcare settings [82] [83].

Integrating FL with KD offers a potent mechanism for the reduction of
model parameters, thus reducing both computational and communication
costs in FL [84]. In Fig. 5.1, a schematic diagram serves as a representative
example to elucidate the method employed in this study, specifically the
integration of FL and KD for medical image segmentation. Without FL, the
computation would be limited to the data set of a single hospital. FL allows
the incorporation of Hospital-1, Hospital-2, and Hospital-3 datasets into the
computation by interacting with the central server, effectively tripling the
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Figure 5.1: Toy example demonstrating the key principles of FKD-Med. The
illustration simplifies the complex architecture into essential components,
highlighting the interaction between FL and KD processes. This serves as a
conceptual guide for understanding the integration of data aggregation and
model optimization in FKD-Med.

total data volume for computation. Conversely, the left segment of Fig. 5.1
illustrates the KD mechanism, wherein a pretrained teacher model guides
the learning process of a more compact student model. Through the use
of this lightweight student model, each hospital only needs to exchange the
parameters of its local student model with the central server, significantly
improving communication efficiency. In conclusion, by employing both
methods, this approach ensures that while training data volume is augmented
through FL, communication efficiency and training speed are simultaneously
optimized.

This study introduces an open-source, modular framework, initially
engineered for the specialized requirements of medical image segmentation.
This framework is designed with the versatility to be adapted for a broad
spectrum of computational tasks in medicine, including, but not limited
to, diagnostic analytics, treatment planning, and drug discovery. This
framework seamlessly integrates FL and KD. In the healthcare setting, where
the need for large training datasets must be balanced with data privacy
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concerns, the framework relies on FL to meet both objectives effectively.
Gleichzeitig, this study leverages KD techniques to increase training efficiency
and overall model performance. The empirical validation is centered on
medical image segmentation, utilizing datasets of CVC-ClinicDB [85] and
Chest Xray [86] [87]. Here, pre-trained TransUnet [9] and ResUNet [5] act
as teacher models, guiding the streamlined Tiny-Unet student model. In
the experiments, the parameters of the student model were reduced to the 1
/ 127 and 1/1027 fractions of the teacher models, resulting in an accuracy
improvement of 0.25%, 0.43%, 1.35%, and 1.46%, respectively, compared to
the scenario without KD. This not only substantiates the effectiveness of the
framework in the realm of medical image segmentation, but also underscores
its potential applicability to other medical computational areas, such as
diagnostic analytics and treatment planning.

In this work, the contributions are as follows:

1. Open-source Adaptable Framework: The open-source framework,
FKD-Med, offers versatility for a wide range of medical applications,
extending beyond simple image segmentation.

2. Pioneering Application of FL & KD for Medical Image Seg-
mentation: The work pioneers the application of FKD-Med for Med-
ical Image Segmentation, merging FL with KD to cut communication
costs in deep model training,

3. Effective Reduction of Computation Costs and Protecting Pri-
vacy: The framework significantly lowers computation and communi-
cation costs and preserves data privacy, compressing model parameters
by factors of 127 and 1027 without sacrificing accuracy. This study
validates this through experiments on two datasets.

The rest of the paper is organized as follows. Section II reviews the related
work of FL and KD in the medical image segmentation task. The description
of the proposed framework FKD-Med is given in Section III. The case study
of two data sets and the experimental analysis are conducted in Section IV.
Finally, Section V concludes the whole work.

5.2 The Proposed FKD-Med Framework

5.2.1 An Overview of The Framework

The primary novel contribution of the work is the FKD-Med framework,
a unique fusion of FL and KD specifically designed for medical image
segmentation. Unlike existing methods that apply either FL or KD, FKD-
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Med synergistically combines these two techniques to address the challenges
of limited training samples and high communication overhead. FKD-Med is a
novel, open-source framework designed specifically for medical image analysis
tasks, including segmentation and other computational processes related to
medical data. It uniquely combines the principles of FL and KD, leveraging
the strengths of both to provide a robust and efficient solution. To the best
of knowledge, FKD-Med is the first framework that integrates Federated
Learning and Knowledge Distillation for medical image segmentation.

The framework is equipped with a variety of U-Net-like models and loss
functions, allowing for customization and flexibility based on the specific
requirements of the task at hand. The primary aim of FKD-Med is to
facilitate privacy-preserving, efficient and high-performing medical image
segmentation, addressing some of the key challenges in the field.

The unique combination of FL and KD opens new vistas in clinical appli-
cations. Its potential extends to remote patient monitoring and telemedicine,
where efficient data handling and preservation of privacy are crucial. In
addition, FKD-Med paves the way for collaborative research in multiple
healthcare settings, fostering a more inclusive and comprehensive approach
to medical research. By allowing the amalgamation of diverse data sets while
ensuring data privacy, FKD-Med stands as a cornerstone in the advancement
of medical informatics and patient care.

The FKD-Med framework, as depicted in Fig 5.2 and Fig 5.3, is structured
around three core components, making it a dynamic, efficient and versatile
tool for medical image segmentation. The first component, the FL compo-
nent, ensures data privacy through local data processing and collaborative
model training. The second component, KD, boosts efficiency and reduces
the interhospital communication costs that come with FL, by transferring
complex models to simpler ones. Lastly, the U-Net-like model library and
the loss function library offer a range of customizable models and selection
of loss functions, respectively, suitable for various tasks. Together, these
elements position FKD-Med as a robust and versatile tool, not limited to
medical image segmentation. It is equally adept at handling a wide range of
other medical applications, such as diagnostic decision support and predictive
modeling for treatment outcomes.

5.2.2 Federated Learning in FKD-Med

The first key component is the FL component. The necessity of FL arises
from the need to train machine learning models on distributed datasets,
especially when data privacy and security are of paramount concern. In
the medical field, patient data is often spread across different hospitals
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Figure 5.2: Schematic representation of the FKD-Med framework.

and institutions, and sharing raw patient data is often restricted due to
privacy laws and regulations. FL enables us to leverage this distributed
data for model training without compromising patient privacy. Although
existing frameworks apply FL for data privacy, none have effectively reduced
interhospital communication costs in the manner FKD-Med does.

FL is engineered to handle the distributed machine learning process,
enabling data to be processed at local nodes, effectively safeguarding data
privacy. To illustrate, consider a scenario where each of the three hospitals
has a similar type of medical image. For example, in Fig. 5.2, the FL
component orchestrates a collaborative training process between these three
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Figure 5.3: Swimlane Diagram of Modules Interaction in FKD-Med.

hospitals using the federated averaging (FedAvg) method [88]. This method
allows each hospital to train models on their local datasets and then combines
these locally refined models to form a comprehensive global model. This
approach not only ensures the confidentiality of each hospital’s data, but also
capitalizes on the shared knowledge across all participating entities, thereby
enhancing the overall performance of the model.

In the FKD-Med framework, FL is implemented using the federated
averaging algorithm (FedAvg). This algorithm allows for the training of
models on local datasets and the subsequent aggregation of these locally
updated models to form a global model. The FedAvg algorithm is a key
part of the FL component in the FKD-Med framework. Each participating
institution (or ’client’) trains the model on its local data and only shares
the model parameters or updates with a central server. The server then
aggregates these updates to improve the global model. This process repeats
over multiple rounds until model performance meets the desired criteria. In
this way, the raw data never leaves the local institutions, thus preserving
data privacy. It begins with the weights of the global model as input. For
each training round, the algorithm performs a local update on each client
with the current global model weights and stores the local model weights.
After training the local models, the global model weights are updated by
taking the average of the local model weights. This process is repeated for
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a certain number of rounds. The final global model weights are returned
after all rounds of training are completed. This implementation of FL
allows for efficient training of models on distributed data while reducing
the communication overhead between different nodes, making the framework
more efficient and cost-effective for medical image segmentation tasks.

In the FKD-Med framework, the implementation of FL is facilitated by
the use of the Flower framework. Flower is a flexible, friendly, and fast
machine learning framework for FL [89]. Provides a robust and efficient
infrastructure to build and execute FL experiments. In the context of FKD-
Med, Flower allows for efficient and scalable execution of the federated
averaging algorithm (FedAvg). It enables the training of U-Net-like models
on local datasets and the aggregation of locally updated models to form a
global model. This approach ensures data privacy, reduces communication
overhead, and enhances the overall performance of the model.

In the FKD-Med framework, this study applies FL to medical image
segmentation. Each participating hospital trains the segmentation model
locally using its own data. The model parameters are then shared with the
central server, where they are aggregated to update the global model. This
FL approach allows us to leverage a large amount of diverse data for model
training while ensuring patient data privacy.

5.2.3 Knowledge Distillation in FKD-Med

The second integral component of the FKD-Med framework is the KD
component, depicted in Fig. 5.4. Unlike traditional KD methods, FKD-Med’s
approach is uniquely designed to operate within federated environments and
effectively reduce communication costs associated with FL. This distinguishes
FKD-Med from existing methodologies.

FL trains models across decentralized devices, ensuring data privacy. In
this setup, KD compresses bulky models into smaller, more efficient ones,
addressing the rising communication overhead caused by complex model
parameters, which hampers scalability and efficiency. This bottleneck, sig-
nificant in transmitting extensive parameters over networks, is pivotal to im-
proving FL’s real-world viability, especially where communication resources
are scarce. FKD-Med targets this by refining model size and performance
balance, enhancing FL’s practicality. In FKD-Med, knowledge is transferred
from a complex ’teacher’ model to a simpler ’student’ model, slashing com-
putational demands while maintaining performance. This strategy notably
cuts communication costs among hospitals by minimizing data transmission
needs, thereby boosting the framework’s efficiency and cost-effectiveness.
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As illustrated in Fig 5.4, the FKD-Med framework uniquely and effec-
tively implements KD through a two-model process.

In the FKD-Med framework, the student model is intricately designed
to handle medical images, producing dual outcomes for a comprehensive
learning experience. The first, termed soft label, emerges from the final
softmax layer of the model. This output is meticulously refined by aligning
it with the soft labels from a pre-trained teacher model, ensuring a nuanced
understanding of the data. The second outcome, known as the hard-
label, is honed through direct comparisons with actual ground-truth labels,
establishing a concrete benchmark for accuracy. The essence of this dual
output mechanism lies in the integral role of the teacher model in refining
both outputs of the student models. It meticulously guides the fine-tuning
of the soft and hard labels, embodying a more detailed explanation of the
distillation process tailored for medical image segmentation. This approach
is strategically optimized not only to increase precision but also to minimize
computational load and communication demands, illustrating a sophisticated
balance between efficiency and effectiveness in model training.

The teacher model, known for its complexity and the large number of
parameters, is adept at achieving high accuracy. It is often selected from
models like Unet++, TransUnet, Swin-Unet, etc., that have demonstrated
state-of-the-art performance in medical image segmentation tasks and is pre-
trained on the entire training dataset with its parameters saved for future use.
In contrast, the student model is a more primitive tiny U-net configuration,
containing convolutional and deconvolutional layers and characterized by
fewer parameters. Comprising two layers of upsampling and two layers of
downsampling, the design of the student model facilitates a streamlined but
effective approach [4]. Together, these models contribute to FKD-Med’s
robust capability in medical image analysis tasks.

In the KD process, both the teacher and student models receive the same
input data. The teacher model processes the input data and outputs them to
a softmax function with a temperature parameter Temperature to penalize
the loss as in [90] shown in Equation (5.1). The softmax function is applied to
each element xi of the input vector to produce a new probability distribution.
In addition, n represents the total number of elements in the input vector
x. Temperature is used to adjust the soft objective function in the KD
process to achieve a model-optimal solution between the output probability
distribution of the teacher model and the output probability distribution of
the student model. The output of this function, referred to as the soft labels,
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is used to calculate the soft loss with the student model soft predictions.

Softmax(xi) =
exp

(
xi

Temperature

)
∑n

j=1 exp
(

xj

Temperature

) (5.1)

The student model processes the input data in two ways. One process
is similar to standard neural network training, where the model’s output,
referred to as the hard predictions, is compared with the ground truth to
calculate the hard loss. The other process involves passing the model output
through Equation (5.1) for feature amplification, resulting in soft predictions.

The student model produces two types of output from the input medical
images: soft predictions and hard predictions. The soft predictions are
obtained from the final Softmax layer of the student model and are used to
calculate the Soft Loss by comparing them with the soft labels from the pre-
trained teacher model. The hard predictions are compared with the ground
truth labels to compute the Hard Loss.

The total loss used to update the parameters of the student model is a
weighted sum of these two losses, as formulated in Equation (5.2):

TotalLoss = α× SoftLoss + (1 − α) × HardLoss (5.2)

Here, α is a hyperparameter in the range (0, 1), controlling the contri-
bution of each type of loss to the total loss. The value of α is empirically
determined to effectively balance Soft Loss and Hard Loss.

This implementation of KD in the FKD-Med framework allows for
efficient training of models with reduced computational requirements while
maintaining a high level of performance.

Table 5.1: Comparison of Parameter Quantities Between Student Model and
Teacher Model

Model Parameter Counts Parameter Optimization

tiny-unet [4] 102498 1×
Unet++ [18] 9162786 89×
ResUNet [5] 13040770 127×

AttentionUnet [77] 34877486 340×
TransUnet [9] 105322146 1027×
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Figure 5.4: Detailed illustration of the Knowledge Distillation (KD) process
in FKD-Med.

Table 5.2: Comparative of FKD-Med’s Communication Efficiency, and Data
Privacy with Related Models

Model FL KD Parameter Optimization

Spirit Distill [91] No Yes 2.48×
ContextNet [92] No Yes 20×
MKANet [93] No Yes 2×
FedUKD [81] Yes Yes 62×

FKD-Med(ResUnet) Yes Yes 127×
FKD-Med(TransUnet) Yes Yes 1027×

5.2.4 U-Net-like Model and Loss Function in FKD-Med

The third key component of the FKD-Med framework is the U-Net Models
Library. This library houses a diverse collection of U-Net-like models, each
uniquely suited for medical image segmentation tasks. The models, such
as U-Net [4], ResUNet [5], TransUnet [9], and others, can be selected and
customized to meet the specific requirements of the task at hand. One of the
distinguishing features of the framework is its dynamic nature. As research
progresses and new models emerge, this study continually update the U-Net
Models Library, ensuring that the users have access to the most advanced
and effective tools for their segmentation tasks. The inclusion of a diverse
range of U-Net-like models and customizable loss functions is a novel aspect
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of FKD-Med. This flexibility is unprecedented and allows the framework to
be adapted for a wide range of medical tasks beyond image segmentation.

The Table 5.1 provides a compelling comparison between the parameter
volumes of distinct models, specifically between more intricate Teacher
Models and their simpler Student Model counterparts. Remarkably, the
parameter counts in the Teacher Models are multiplied by factors of 89,
127, 340, and 1027 when compared to the Student Models. This stark
contrast underscores the efficiency of employing KD techniques when training
the Tiny-Unet model. This technique plays a pivotal role in condensing
the model size without significant loss in performance. Furthermore, this
approach proves to be an asset in the context of FL over medical datasets,
where it substantially trims communication overheads. Thus, KD emerges
as a game changer, enhancing computational efficiency and enabling more
effective model deployment in resource-constrained scenarios.

The Table 5.2 compares FKD-Med’s communication efficiency and data
privacy with other models. It details how FKD-Med applies FL and KD in its
ResUnet and TransUnet variants to achieve marked parameter optimization.
Compared to models such as U-net, Spirit Distill [91], ContextNet [92],
MKANet [93], and FedUKD [81], FKD-Med(ResUnet) demonstrates a 127-
fold increase in parameter efficiency, and FKD-Med(TransUnet) achieves
an even more impressive 1027-fold enhancement. These figures highlight
FKD-Med’s significant strides in optimizing communication efficiency and
reinforcing data privacy.

The fourth cornerstone of the FKD-Med framework is the provision of a
variety of Loss Functions. This feature equips the framework with multiple
loss functions that can be utilized to train the models. These loss functions,
which include but are not limited to BCELoss, DiceLoss, and Tversky Loss,
can be selected based on the nature of the segmentation task and the type of
images being processed [94]. This flexibility allows users to tailor their choice
of loss function to the specific requirements of their task, thereby optimizing
the performance of their model training process.

5.3 Case Study and Experimental Analysis

In this case study, this study conducted medical image segmentation experi-
ments on two datasets to validate the effectiveness of FKD-Med. As depicted
in the Fig 5.2, this study virtualized three hospitals as nodes within the FL
architecture. In the KD phase, a two-layer Tiny-Unet was employed as the
student model, with both ResUNet and TransUnet serving as teacher models.

The experimental results affirm the efficacy of FKD-Med in two significant
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Figure 5.5: Polyp images and corresponding labels – CVC-ClinicDB Dataset

dimensions. Firstly, in terms of model lightweighting, the results demonstrate
that KD under FL can substantially reduce the model size. The student
models’ parameters were reduced to 1/127 and 1/1027 of the teacher mod-
els’, respectively. Secondly, concerning accuracy computation, the models
subjected to KD exhibited accuracy improvements of 0.25%, 0.43%, 1.35%,
and 1.46% respectively, given the same parameter volume. These findings not
only confirm the practicality of FKD-Med but also underline its potential to
enhance both efficiency and precision in the context of medical computations.

5.3.1 Datasets

Two medical datasets from two different open-source data websites is used
to demonstrate the joint learning of individual Unet variant models in using
KD. Specific details are given below:

This studyused two different types of medical image data to demonstrate
the applicability of the FKD-Med model:

5.3.1.1 CVC-ClinicDB Dataset

The CVC-ClinicDB dataset [85] consists of 612 images of polyps and cor-
responding ground truth binary segmentation masks of standard resolution
384x288. CVC-ClinicDB [85] is the official database to be used in the train-
ing stages of MICCAI 2015 Sub-Challenge on Automatic Polyp Detection
Challenge in Colonoscopy Videos.

To accommodate federal learning scenarios, the CVC-ClinicDB dataset
was divided into the following 2 datasets. The CVC-ClinicDB dataset was
divided into the following 2 datasets:

• Training - A total of 573 raw medical data images were randomized
into three groups
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Figure 5.6: X-rays and corresponding masks – Chest-Xray Dataset

• Testing - 141 raw medical data images in total

5.3.1.2 Chest Xray Masks and Labels Dataset

The Chest-Xray dataset [86] [87] consists of 612 images of polyps and cor-
responding ground truth binary segmentation masks of standard resolution
384x288. To accommodate federal learning scenarios, the Chest-Xray dataset
was divided into the following 2 datasets. The Chest Xray dataset was
divided into the following 2 datasets:

• Training - A total of 704 raw medical data images were randomized
into three groups

• Testing - 563 raw medical data images in total

5.3.2 Evaluation Metrics

In the evaluation of the proposed medical image segmentation approach,
a critical metric employed is pixel-level accuracy. This metric offers a
granular assessment of segmentation quality by examining the individual
pixel predictions. Specifically, each pixel on the predicted segmentation
map is classified as 1 or 0, representing the two distinct classes of interest
in the image. The pixel-level accuracy is then calculated as the ratio of
correctly classified pixels to the total number of pixels in the image [95].
Mathematically, the pixel-level accuracy (PA) can be expressed as (5.3):

PA =
Number of Correct Pixels

Total Number of Pixels
=

∑N
i=1 δ(pi, gi)

N
(5.3)
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where pi is the predicted value of the i-th pixel, gi is the ground truth
value of the i-th pixel, N is the total number of pixels in the image, and
δ(x, y) is the Kronecker delta function, equal to 1 if x = y and 0 otherwise.
This metric encapsulates the exactness of the segmentation, providing a
robust and straightforward measure to evaluate the model’s performance on
individual medical images.

5.3.3 Experimental Setup

A FL architecture for image segmentation has been successfully implemented
using the Flower framework [89], specifically designed for medical image
data segmentation. To demonstrate the performance of the framework, this
study used three client nodes in the experiments, with each node aimed
at representing a different hospital site, simulating a diverse and realistic
FL environment. However, in practical applications, the segmentation of
medical image data involves the collaborative contributions of thousands of
hospital models. This complexity inherently leads to high communication
costs, underscoring the challenges and the necessity of efficient tools like
Flower in the real-world deployment of such systems.

In the KD process, the teacher models were specifically selected as
ResUNet and TransUnet, both of which are state-of-the-art (SOTA) models
in medical image segmentation. ResUNet is an improved U-net architecture,
boasting a total of 13,040,770 parameters, and integrates residual connections
to overcome the vanishing gradient problem [5]. This design facilitates
deeper network training and seamlessly combines the strengths of the U-net
structure with residual networks, offering improved feature extraction and
model generalization. On the other hand, TransUnet represents a fusion of
transformer and U-net architectures, comprising 105,322,146 parameters [9].
Capitalizing on the flexibility and attention mechanisms of Transformers,
TransUnet’s unique amalgamation enables precise localization and rich con-
textual information, making it highly effective for various segmentation tasks.

The student model chosen in this study differs from the unconventional
U-net model. This variant of the U-net is derived by taking the initial U-net
structure [4] and reducing both the number of layers and the parameters
within the structure. The proposed model consists of two upper and lower
sample layers each, two layers fewer than the initial U-net. The filters of the
convolution module have been reduced to 32 and 64, instead of the 64, 128,
256, and 512 filters found in the initial U-net. The reduction in the number
of layers and the scaling down of the filters led to the creation of Tiny-Unet,
with a total of 102,498 parameters.

In stand-alone training, each user will independently complete 50 training
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sessions and 50 tests to correspond to the FL Framework. In FL training
and in FL training for KD according to FedAVG characteristics, a complete
federation is completed by 10 training sessions and one test. This process is
repeated five times to complete the training of the whole model.

During the training process, three Nvidia RTX 3090 GPUs were utilized
as computing devices, customized to the number of clients, and integrated
with the PyTorch framework. For the training of the student model using
KD, specific parameters were optimized. The distillation temperature Tem-
perature was set at 5, and the proportion of training loss transferred from the
teacher model to the student model was calibrated to 0.5 for the Chest X-ray
Datasets and 0.8 for the CVC-ClinicDB datasets, reflecting the distinctive
characteristics of each dataset.

5.3.4 Experimental Results

The overall experimental results were divided into three distinct categories:
models trained without FL, models trained with FL but without KD, and
models trained with both FL and KD. This division served to comprehen-
sively assess the impact of each technique. Currently, to underscore the
efficacy of KD, parallel experiments were conducted on variants of U-net,
including Tiny-Unet, ResUNet, and TransUnet. These experiments adhere
to the following comprehensive assessment criteria:

• Baseline Performance Metrics: The initial aspect evaluates the funda-
mental effectiveness of various models, including the FKD-Med frame-
work, in different configurations: without FL, with FL but without KD,
and with both FL and KD. This provides a foundational landscape
for understanding the isolated and synergistic impacts of FL and
KD within FKD-Med. The detailed results of these evaluations are
presented in Table 5.3, Table 5.6, Fig. 5.7 and Fig. 5.9.

• Robustness and generalizability: As the second dimension, this study
extend the analysis to incorporate robustness and generalizability
features, particularly in the FKD-Med framework. Rigorous validation
techniques such as 5-fold cross-value are employed to gauge the models’
resilience and adaptability across different data splits, thus adding
statistical weight to the overall results. Detailed insights from this
assessment can be found in Table 5.4, Table 5.7, Fig. 5.8, and Fig.
5.10.

• Scalability and Efficiency Analysis: This final aspect emphasizes the
scalability and efficiency attributes of FKD-Med, beyond mere accu-
racy evaluation, and meticulously scrutinizes FKD-Med’s capability
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to streamline models. By achieving nearly comparable accuracy rates
with more lightweight architectures, FKD-Med inherently enhances
communication efficiency in FL scenarios, considering variables such as
training set size and parameter counts. These findings are elaborated
on in Table 5.5 and Table 5.8. The experimental design, reflected
in Tables 5.5 and 5.8, demonstrated the performance of FKD-Med in
scenarios that prioritize data privacy and parameter efficiency, crucial
for practical deployments.

These three dimensions collectively provide a complete and comprehensive
understanding of the methodological strengths and potential areas for im-
provement.

5.3.4.1 Results on CVC-ClinicDB Datasets

Table 5.3: Comparative Evaluation of tinyUnet and FKD-Med on the CVC-
ClinicDB Dataset with Identical Model Parameter Counts

Model Teacher in KD FL KD Loss Time Number of Parameters Acc

tinyUnet [4] N/A × × 0.2218 25min03s 102498 90.68%
tinyUnet [4] + FL N/A ✓ × 0.2553 15min23s 102498 90.80%

tinyUnet in FKD-Med(ours) ResUnet [5] ✓ ✓ 0.2185 19min35s 102498 91.05%
tinyUnet in FKD-Med(ours) TransUnet [9] ✓ ✓ 0.2105 20min54s 102498 91.23%

Table 5.4: The 5-Fold Cross-Validation Accuracy Results for tinyUnet and
FKD-Med Variants on the CVC-ClinicDB Dataset, Further Validating the
Comparative Evaluation Under Identical Model Parameter Counts

Model Teacher in KD FL KD Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg.

tinyUnet [4] N/A × × 90.91% 91.09% 91.62% 91.50% 90.78% 91.18%
tinyUnet [4] + FL N/A ✓ × 91.20% 91.53% 91.62% 91.50% 90.42% 91.25%

tinyUnet in FKD-Med(ours) ResUnet [5] ✓ ✓ 91.66% 91.62% 92.23% 91.50% 91.21% 91.64%
tinyUnet in FKD-Med(ours) TransUnet [9]) ✓ ✓ 91.95% 91.54% 91.62% 91.51% 91.42% 91.61%

Table 5.5: Comparison of Parameter Counts Between Data-Scalable FKD-
Med of tinyUnet Versus Non-Data-Scalable Complex Models on CVC-
ClinicDB Dataset, Maintaining Similar Accuracy Levels

Model Teacher in KD FL KD Acc Training Set Size Parameter Counts Parameter Optimization

ResUnet [5] N/A × × 90.79% 73 13040770 -
tinyUnet in FKD-Med(ours) ResUnet [5] ✓ ✓ 91.05% 489 102498 1/127

TransUnet [9] N/A × × 90.79% 73 105322146 -
tinyUnet in FKD-Med(ours) TransUnet [9] ✓ ✓ 91.23% 489 102498 1/1027
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Figure 5.7: Comparative visualization of segmentation results on the CVC-
ClinicDB datasets using various training models.

Table 5.3 provides a detailed comparison between Tiny-Unet and its
FKD-Med variants on the CVC-ClinicDB dataset, all with identical model
parameter counts. The FKD-Med models show improved performance in
all metrics. Specifically, using ResUNet and TransUnet as teachers, the
FKD-Med models achieve accuracies of 91.05% and 91.23%, respectively,
outperforming the Tiny-Unet 90 baseline. 68%. The FKD-Med variants
also register lower loss values of 0.2185 and 0.2105, compared to the baseline
value of 0.2218. These results underscore the effectiveness of incorporating
KD within a FL framework.

Table 5.4 presents the results of the 5-fold cross-value. The FKD-
Med variants outshine their counterparts in terms of average accuracy.
Specifically, the FKD-Med model trained with ResUNet and TransUnet as
teachers achieved an average precision of 91. 64% and 91. 61%, respectively.
These results affirm the robustness and generalizability of the model, which is
particularly significant given the medical image segmentation context where
high reliability is essential.

Table 5.5 highlights the superiority of the FKD-Med framework not
just in terms of parameter efficiency, but also in the context of real-world
applications that demand both privacy preservation and communication
efficiency. FKD-Med incorporates FL to enable a decentralized training
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Figure 5.8: Training loss evolution on CVC-ClinicDB Datasets.
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paradigm that safeguards data privacy between multiple medical institutions.
This architecture naturally facilitates the collation of a larger and more
diverse training dataset compared to the traditional centralized methods used
in ResUnet and TransUnet. Consequently, FKD-Med benefits from a more
robust learning environment. Despite the larger pool of training data, FKD-
Med requires only a fraction of the model parameters - 1 / 127 and 1/1027 as
compared to ResUnet and TransUnet, respectively. This drastic reduction in
model size is not just a technical achievement; it has profound implications
for real-world FL applications. Smaller models mean that less data need to be
communicated between nodes, drastically reducing communication overhead
and making it feasible to include more nodes in the network.

Fig.5.7 provides a visual representation of the experimental results in
the CVC-ClinicDB dataset. This comparative visualization underscores the
qualitative superiority of the FKD-Med models over their counterparts. It is
evident from the segmented images that the FKD-Med variants, particularly
when guided by ResUNet and TransUnet as teacher models, produce segmen-
tations that are not only more accurate but also consistently closer to the
ground truth. This visual affirmation reiterates the substantial benefits of
merging FL with KD, creating an effective synergy for medical image segmen-
tation. The depicted results offer a tangible perspective, substantiating the
model’s capabilities in capturing intricate morphological details, and further
emphasizing the strength and robustness of the FKD-Med approach.

Fig.5.8 presents the evolution of the loss over time for three clients in
the FL setting. As can be observed from the depicted trends, the FKD-Med
models, specifically those that take advantage of ResUnet [5] and TransUnet
[9] as teacher models, exhibit a distinct advantage in convergence speed. The
loss for these models reduces more rapidly with increasing training iterations
compared to the conventional tinyUnet [4] with FL. More importantly,
while all models experience fluctuations in loss as training progresses, the
FKD-Med variants show considerably smoother loss trajectories with less
pronounced oscillations. This steadiness not only underlines the robustness
of the FKD-Med framework, but also highlights its enhanced ability to resist
overfitting and maintain stable learning rates across clients in the federated
setup.

5.3.4.2 Results on Chest Xray Datasets

In Table 5.6, the performance of tinyUnet and the FKD-Med models on
the chest X-ray dataset, each with consistent model parameter counts, is
detailed. The standalone tinyUnet achieves 95.40% accuracy with a loss
of 0.1321. When FL is integrated, the accuracy slightly drops to 94.24%
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Table 5.6: Comparative Evaluation of tinyUnet and FKD-Med on the Chest-
Xray Dataset with Identical Model Parameter Counts

Model Teacher in KD FL KD Loss Time Number of Parameters Acc

tinyUnet [4] N/A × × 0.1321 57min26s 102498 95.40%
tinyUnet [4] + FL N/A ✓ × 0.1576 56min31s 102498 94.24%

tinyUnet in FKD-Med(Ours) ResUnet [5] ✓ ✓ 0.1278 50min28s 102498 95.59%
tinyUnet in FKD-Med(Ours) TransUnet [9] ✓ ✓ 0.1207 52min14s 102498 95.70%

with a loss of 0.1576. However, the FKD-Med models excel in this context:
the version using ResUnet as the teacher gains 95. 59% precision with a
0.1278 loss, while the one paired with TransUnet boasts an accuracy of 95.
70% and a minimal loss of 0.1207. Furthermore, FKD-Med models optimize
training time, resulting in 50 min28 and 52 min14 for ResUnet and TransUnet
variants, respectively. This reaffirms the FKD-Med framework’s prowess,
particularly in FL environments on the chest-X-ray dataset.

Table 5.7: The 5-Fold Cross-Validation Accuracy Results for tinyUnet and
FKD-Med Variants on the Chest-Xray Dataset, Further Validating the
Comparative Evaluation Under Identical Model Parameter Counts

Model Teacher in KD FL KD Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg.

tinyUnet [4] N/A × × 94.34% 94.49% 93.28% 93.80% 93.44% 93.87%
tinyUnet [4] + FL N/A ✓ × 95.01% 94.57% 94.45% 95.07% 94.79% 94.78%

tinyUnet in FKD-Med ResUnet [5] ✓ ✓ 95.56% 94.99% 96.68% 95.15% 96.49% 95.77%
tinyUnet in FKD-Med TransUnet [9] ✓ ✓ 96.74% 95.14% 95.22% 95.15% 96.72% 95.80%

In Table 5.7, this study delved deeper into the robustness and generaliz-
ability of the models, particularly the FKD-Med framework, by employing a
5-Fold Cross-Validation on the Chest-Xray dataset. The results reiterate the
superior performance of FKD-Med, while the standalone tinyUnet averages
93. 87%, the FKD-Med with ResUnet and TransUnet teachers achieve
averages of 95.77% and 95.80%, respectively. These consistent results across
different data splits highlight the resilience and adaptability of FKD-Med,
emphasizing its statistical significance in the evaluation.

Table 5.8: Comparison of Parameter Counts Between Data-Scalable FKD-
Med of tinyUnet Versus Non-Data-Scalable Complex Models on Chest-Xray
Dataset, Maintaining Similar Accuracy Levels

Model Teacher in KD FL KD Acc Training Set Size Parameter Counts Parameter Optimization

ResUnet [5] N/A × × 95.84% 96 13040770 -
tinyUnet in FKD-Med(ours) ResUnet [5] ✓ ✓ 95.59% 563 102498 1/127

TransUnet [9] N/A × × 97.38% 96 105322146 -
tinyUnet in FKD-Med(ours) TransUnet [9] ✓ ✓ 95.70% 563 102498 1/1027

In Table 5.8, this study present a comparison between the data-scalable
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Figure 5.9: Comparative visualization of segmentation results on the the
Chest Xray datasets using various training models.

FKD-Med framework applied to tinyUnet and the non-data-scalable complex
models, specifically ResUnet and TransUnet, on the Chest-Xray dataset.
Notably, while ResUnet and TransUnet achieve accuracies of 95. 84% and
97. 38%, respectively, with a training set size of 96, the proposed FKD-Med
tinyUnet variants achieve competitive accuracies of 95.59% and 95.70% with
a significantly larger training set size of 563. Most strikingly, the tinyUnet
variants in the FKD-Med setting demonstrate a dramatic reduction in the
number of parameters, approximately 1/127th and 1/1027th of ResUnet and
TransUnet, respectively. This underlines the efficiency and scalability of the
FKD-Med framework, delivering comparable performance with a fraction of
the model complexity.

In Fig. 5.9, a detailed visual evaluation of the chest X-ray data set
showcases the prowess of various training methodologies. Starting with the
foundational X-ray images in (a) that act as the consistent input across
all models, the benchmark segmentation is highlighted in (b) as Ground
Truths. When observing the inherent performance of Tiny-Unet in (c),
a clear distinction emerges in (d), where FL augments its capabilities.
However, the standout results are evident in (e) and (f): Tiny-Unet, when
synergized with teacher models ResUnet and TransUnet, respectively, under
the FKD-Med framework, delivers segmentation results that underline the
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Figure 5.10: Training loss evolution on Chest-Xray Datasets.

pivotal enhancement achieved by harmoniously integrating FL with KD. This
consolidation distinctly underscores FKD-Med’s significant contribution to
advancing segmentation accuracy and model efficiency.
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Figure 5.11: Line graph of accuracy performances for four models across
CVC-ClinicDB and Chest-Xray datasets.

In Fig.5.10, the loss patterns for the chest-Xray data set echo the observa-
tions from Fig.5.8 for the CVC-ClinicDB data set. These trends, particularly
within the FL environment for the chest X-ray dataset, underscore the
prowess of the FKD-Med models. Using ResUnet [5] and TransUnet [9]
as guiding teacher models, the FKD-Med variants manifest a pronounced
edge in convergence efficiency, diverging from the standard trajectory of the
baseline tinyUnet [4] under FL. Such consistent behavior accentuates FKD-
Med’s proficiency in curbing overfitting and ensuring uniform learning rates
amongst clients, echoing the conclusions drawn from the CVC dataset.

5.3.4.3 Comprehensive Results Summary

Fig. 5.11 delineates the accuracy performances of four models in two data
sets. For the Chest-Xray dataset, represented by the blue line, this study
observes a notable augmentation in accuracy from the baseline tinyUnet
model, peaking when adopting FKD-Med with TransUnet as the teacher.
Performance in the CVC-ClinicDB dataset remains relatively stable across
different model configurations, showing a modest improvement when in-
tegrated with FKD-Med, and the efficacy of FKD-Med, especially with
advanced teacher models, becomes evident in elevating model performance
on complex imaging tasks.

The extensive experiments demonstrate the superior performance of the
FKD-Med framework over conventional methods in terms of segmentation
accuracy, training efficiency, and data privacy, confirming its effectiveness
and practicality in real-world medical image segmentation tasks.

96



5.4 Discussion

In this experiment, the joint learning of individual Unet variant models using
KD was demonstrated on two medical datasets. The applicability of the
FKD-Med framework was thus validated. The current challenges in medical
image analysis lie in the high costs and complexity of communication. By
introducing a teacher-student KD method, this study successfully optimized
communication costs and reduced communication time. Existing research
methods in medical image segmentation often suffer from high computational
complexity, limited adaptability to diverse data, and suboptimal performance
in real-world scenarios. In contrast, this experiment showcased a novel ap-
proach to handling medical image data via FL and KD. It combined FL with
KD, emphasizing the utility of KD to overcome the mentioned disadvantages,
thereby optimizing communication costs and improving efficiency.

5.4.1 Combination Benefits for Segmentation Challenges

In response to the challenges of data insufficiency and privacy concerns in
medical image segmentation, the FKD-Med framework innovatively com-
bines FL and KD to harness a broader spectrum of medical data without
compromising patient confidentiality. This integration enables individual
hospitals to contribute to a collective learning process, effectively expanding
the volume of training data available across institutions. Through FL, FKD-
Med aggregates insights from diverse, distributed datasets, overcoming the
limitation of data scarcity at single institutions. Currently, KD compresses
complex models into more efficient versions, maintaining high accuracy and
significantly reducing communication load and computational demand. This
approach not only addresses the challenge of limited annotated medical
images, but also ensures efficient model training and deployment in a privacy-
preserving manner, demonstrating a pragmatic advancement in medical
image segmentation.

5.4.2 Performance Analysis of Different U-Net-like mod-
els: ResUNet vs. TransUNet in FKD-Med

TransUnet and ResUnet are different U-Net-like models tested in FKD-
Med. TransUnet, as a teacher model in FKD-Med, exhibited a notable
improvement in segmentation accuracy. In the experiments, TransUnet as
Teacher Model achieved an average Dice coefficient of 91.23% on the CVC-
ClinicDB and 95. 7% on the chest X-ray datasets, surpassing traditional Tiny
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U-Net. ResUnet demonstrated enhanced training stability and efficiency. It
achieved an average Dice coefficient of 91. 05% in the CVC-ClinicDB and
95. 59% in the chest X-ray datasets. In the FKD-Med framework, ResUnet
achieves a parameter optimization ratio of 1/127, while TransUnet reaches
an even more impressive ratio of 1/1027.

From the above analysis, this study can conclude that TransUnet not
only demonstrates higher accuracy, but also achieves a greater degree of pa-
rameter optimization. This indicates that through FKD-Med, more complex
models like TransUnet manifest significant advantages in both computational
efficiency and accuracy. The framework’s capacity to effectively distill and
federate knowledge across diverse datasets enhances the performance of so-
phisticated architectures, making them more viable for practical applications.
This synergy underscores FKD-Med’s strength in leveraging complexity to
yield superior segmentation results while optimizing computational resources,
highlighting its potential to advance medical image analysis through the
integration of advanced AI models.

5.4.3 Potential Application of FKD-Med in in real-
world scenario

In real-world applications, healthcare facilities often face the challenges of
data privacy, varying data volumes, and computational resource limitations.
The FKD-Med architecture inherently addresses these issues by enabling
collaborative learning without direct data sharing, thus preserving patient
confidentiality. Furthermore, the framework’s use of KD optimizes model
performance by distilling knowledge from complex models into more compact,
efficient representations. This process reduces the computational load on
individual institutions, making advanced segmentation techniques accessible
even to facilities with limited processing capabilities.

Moreover, the adaptability of FKD-Med to diverse datasets and its
ability to maintain high segmentation accuracy under federated conditions
demonstrate its potential for widespread adoption. For example, hospitals
with smaller datasets can benefit from the collective learning process, gaining
insights from larger, more diverse datasets without compromising data
security. This collaborative approach not only improves the robustness of
the model, but also facilitates a more inclusive healthcare research ecosystem,
where institutions of varying sizes and capacities can contribute and benefit
from shared advancements in medical imaging technologies.

In essence, FKD-Med stands as a beacon for the future of medical image
analysis, where data privacy, computational efficiency, and collaborative
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innovation converge to advance patient care. Its real-world applicability
extends beyond the technical realms of machine learning, embodying the
potential to revolutionize how medical data is used to improve healthcare
outcomes globally.

5.4.4 Teacher Model Training Considerations in FKD-
Med: Balancing Data Quantity and Communica-
tion Efficiency

In the FKD-Med framework, the training of the student model relies on
the guidance of the teacher model. The performance of the teacher model
plays a crucial role in determining the final performance of the student
model. Ideally, the teacher model should be trained on as much data
as possible to achieve strong generalizability and accurate representation
of knowledge. In a federated learning environment, this implies that the
teacher model should leverage data from multiple participating nodes (such
as hospitals). Increasing the number of nodes not only provides more diverse
training samples but also helps the teacher model learn more robust feature
representations.

However, increasing the number of nodes also brings about the challenge
of communication overhead. In federated learning, model parameters need to
be frequently exchanged among participating nodes to enable collaborative
training. The more nodes there are, the higher the communication costs will
be. Therefore, there is a trade-off between data quantity and communication
efficiency in the training of the teacher model. One possible solution is to
selectively increase the number of nodes to achieve sufficient data diversity
while keeping the communication overhead within an acceptable range.

Another promising approach is to leverage pre-trained generic segmenta-
tion models to assist in the training of the teacher model. These large-scale
models, which are typically trained on extensive datasets, possess powerful
feature extraction and generalization capabilities. By incorporating the
knowledge from these pre-trained models into the training process of the
teacher model, the performance of the teacher model can be significantly
enhanced while reducing the reliance on large amounts of training data. This
approach can alleviate the conflict between data quantity and communication
efficiency to some extent, providing more flexibility for the application of the
FKD-Med framework.

In practical applications, the training strategy of the teacher model should
be determined based on the specific medical image segmentation task and
available computational resources. By appropriately selecting the number of
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participating nodes and leveraging pre-trained generic segmentation models,
the FKD-Med framework can achieve high-accuracy medical image segmenta-
tion while ensuring data privacy and communication efficiency. This flexible
training strategy further highlights the value and potential of the FKD-Med
framework in real-world medical applications.

5.4.5 Limitations of FKD-Med

The framework presented in this study has two main limitations. First, while
the KD part of the framework can be directly applied without significant
adjustments in the study of medical image segmentation, it may require
fine-tuning when used for other types of medical computation. Depending
on the specific model utilized, modifications to the KD operations might be
necessary. Second, the design of the KD part is constrained by the placement
of soft labels, which are currently set in the last layer of the model. Future
improvements could facilitate computing soft labels at any layer through
simple parameter settings, thereby enhancing the framework’s flexibility and
applicability.

In summary, this case study experimentally demonstrated the effective-
ness and feasibility of the FKD-Med framework in medical image segmenta-
tion. Through the integration of KD and FL, an innovative solution was pro-
vided for communication costs and efficiency, overcoming the shortcomings
found in existing research. The FKD-Med framework not only demonstrates
computational efficiency, but also has significant clinical value. By allowing
data integration across different healthcare settings without compromising
data privacy, FKD-Med may revolutionize collaborative medical research and
lead to more personalized and effective treatments.

5.5 Chapter Summary

In this chapter, this study presented FKD-Med, an innovative open-source
framework that integrates Federated Learning (FL) and Knowledge Distilla-
tion (KD) to address the challenges of data privacy, communication efficiency,
and model performance in medical image segmentation. The framework is
designed to be adaptable to a wide range of medical applications, extend-
ing beyond image segmentation to include diagnostic analytics, treatment
planning, and drug discovery.

The key contributions of FKD-Med include its pioneering application
of FL and KD for medical image segmentation, which effectively reduces
communication costs in deep model training while preserving data privacy.
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The framework significantly lowers computation and communication costs by
compressing model parameters by factors of 127 and 1027 without sacrificing
accuracy, as validated through experiments on the CVC-ClinicDB and Chest
Xray datasets.

The extensive experimental results demonstrate the superior performance
of FKD-Med compared to conventional methods in terms of segmentation
accuracy, training efficiency, and data privacy. The framework showcases
its effectiveness and practicality in real-world medical image segmentation
tasks, with the potential for widespread adoption in healthcare facilities
facing challenges of data privacy, varying data volumes, and computational
resource limitations.

The discussion section highlights the benefits of combining FL and KD
in addressing segmentation challenges, such as data insufficiency and privacy
concerns. The analysis of different U-Net-like models, specifically ResUNet
and TransUNet, within the FKD-Med framework reveals the advantages
of complex models in achieving higher accuracy and greater parameter
optimization. The potential real-world applications of FKD-Med are also
discussed, emphasizing its ability to facilitate collaborative learning while
preserving patient confidentiality and optimizing computational resources.

Despite its significant contributions, FKD-Med has some limitations.
The KD component may require fine-tuning when applied to other types of
medical computation, and the current design of the KD part is constrained by
the placement of soft labels. Future improvements could focus on enhancing
the framework’s flexibility and applicability by allowing soft labels to be
computed at any layer through simple parameter settings.

In conclusion, FKD-Med represents a groundbreaking framework that
leverages the synergy between FL and KD to advance medical image segmen-
tation. Its ability to optimize communication costs, improve efficiency, and
maintain high accuracy while preserving data privacy makes it a valuable
tool for collaborative medical research and personalized healthcare. The
framework’s adaptability and potential for real-world applications underscore
its significance in revolutionizing medical image analysis and advancing
patient care on a global scale.
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Chapter 6

Conclusion and Future Direc-
tions

6.1 Summary of Key Findings

This dissertation has focused on improving medical image segmentation by
addressing three key aspects: model accuracy, data privacy, and computa-
tional efficiency. In this dissertation, novel deep learning architectures and
techniques have been proposed that leverage the power of attention mecha-
nisms, transformer models, federated learning, and knowledge distillation to
tackle the challenges in medical image segmentation.

In Chapter 3, this dissertation introduced DA-TransUNet, a dual at-
tention transformer U-Net architecture that integrates spatial and channel
attention mechanisms with transformer models. Through extensive ex-
periments on multiple benchmark datasets, this dissertation demonstrated
that DA-TransUNet effectively captures fine-grained details and long-range
dependencies in medical images, leading to improved segmentation accuracy
compared to state-of-the-art methods. The integration of attention mech-
anisms and transformer models into a U-Net-like architecture has proven
to be a promising approach to improve the performance of medical image
segmentation models.

Chapter 4 presented MIPC-Net, a mutual inclusion mechanism for pre-
cise boundary segmentation. MIPC-Net uses complementary information
from position and channel features to enhance the delineation of complex
anatomical structures and small lesions. The experimental results showcased
the superiority of MIPC-Net in achieving accurate boundary segmentation
compared to existing methods. The mutual inclusion of position and channel
information has proven to be an effective strategy to improve the precision
of segmentation models, particularly in challenging scenarios with intricate
boundaries.

In Chapter 5, this dissertation introduced FKD-Med, a privacy-aware
and communication-optimized framework for medical image segmentation.
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FKD-Med integrates federated learning and knowledge distillation techniques
to enable collaborative model training between multiple institutions while
preserving data privacy. The framework also improves model efficiency by
distilling knowledge from complex models to lighter ones, reducing computa-
tional requirements without compromising segmentation performance. The
experimental results demonstrated the effectiveness of FKD-Med in achiev-
ing accurate segmentation while ensuring data privacy and communication
efficiency. The combination of federated learning and knowledge distillation
has proven to be a promising approach to enabling collaborative learning to
preserve privacy and optimizing the model in medical image segmentation.

6.2 Contributions to the Field

The contributions of this dissertation to the field of medical image segmen-
tation are significant and multifaceted. Firstly, the proposed DA-TransUNet
architecture advances the state-of-the-art in medical image segmentation by
leveraging the power of attention mechanisms and transformer models. The
integration of spatial and channel attention with transformer models in a
U-Net-like architecture provides a novel and effective approach to capture
fine-grained details and long-range dependencies, leading to improved seg-
mentation accuracy. This contribution paves the way for further exploration
and adoption of attention mechanisms and transformer models in medical
image segmentation tasks.

Secondly, the introduction of MIPC-Net and its mutual inclusion mech-
anism for precise boundary segmentation address a critical challenge in
medical image segmentation. By effectively combining position and channel
information, MIPC-Net enhances the delineation of complex anatomical
structures and small lesions, resulting in more accurate boundary segmen-
tation. This contribution has the potential to improve the precision and
reliability of segmentation models in clinical applications, aiding in treatment
planning and surgical interventions.

Third, the proposed FKD-Med framework addresses the important issues
of data privacy and computational efficiency in medical image segmentation.
By integrating federated learning and knowledge distillation techniques,
FKD-Med enables collaborative learning preserving privacy between multiple
institutions, overcoming the barriers posed by data sharing restrictions
and privacy concerns. Moreover, the framework optimizes model efficiency
through knowledge distillation, reducing computational requirements with-
out sacrificing segmentation performance. This contribution has significant
implications for the practical deployment of medical image segmentation
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models in resource-constrained clinical settings and for facilitating multi-
institutional collaborations in medical research.

In general, the contributions of this dissertation advance the field of
medical image segmentation by proposing novel architectures, mechanisms,
and frameworks that address key challenges related to model accuracy, data
privacy, and computational efficiency. These contributions have the potential
to improve patient care by allowing more accurate and efficient disease
quantification, prognosis assessment, and treatment evaluation.

6.3 Recommendations for Future Research

While this dissertation has made significant contributions to the field of medi-
cal image segmentation, there are still several avenues for future research that
can further enhance the performance, privacy, and efficiency of segmentation
models. Some recommendations for future research include the following:

• Exploring the integration of additional attention mechanisms and
transformer variants into the proposed DA-TransUNet architecture
to further improve the capture of fine-grained details and long-range
dependencies. Investigating the effectiveness of different attention
mechanisms and transformer configurations could lead to even higher
segmentation accuracy and robustness.

• Extending the MIPC-Net mechanism to handle 3D medical images
and volumetric segmentation tasks. Adapting the mutual inclusion of
position and channel information to the 3D domain could potentially
improve the accuracy of boundary segmentation in complex anatomical
structures and enable more precise quantification of lesions and organs.

• Investigating the integration of differential privacy techniques into
the FKD-Med framework to provide stronger privacy guarantees and
enhance the protection of sensitive patient information. Exploring the
trade-offs between privacy, model performance, and communication
efficiency in the context of federated learning and knowledge distillation
could lead to more secure and practical solutions for collaborative
learning in medical image segmentation.

• Developing advanced model compression and acceleration techniques to
further improve the computational efficiency of medical image segmen-
tation models. Investigating the use of pruning, quantization, and other
optimization techniques in conjunction with knowledge distillation
could enable the deployment of highly accurate segmentation models
on resource-constrained devices and real-time clinical applications.
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• Exploring the generalizability and transferability of the proposed
methods and frameworks to different medical imaging modalities and
anatomical regions. Evaluating the effectiveness of DA-TransUNet,
MIPC-Net, and FKD-Med on a wider range of medical image segmen-
tation tasks, such as brain tumor segmentation, cardiac segmentation,
and retinal vessel segmentation, could demonstrate the broad applica-
bility and robustness of these approaches.

• Investigating the interpretability and explainability of the proposed seg-
mentation models. Developing techniques to visualize and understand
the decision-making process of attention mechanisms and transformer
models could enhance the trust and adoption of these methods in
clinical practice, facilitating the collaboration between medical experts
and AI systems.

By addressing these future research directions, this dissertation can
further advance the field of medical image segmentation, bringing us closer to
the goal of accurate, privacy-preserving, and efficient segmentation models
that can be seamlessly integrated into clinical workflows. The continued
development and refinement of these techniques has the potential to rev-
olutionize medical image analysis and ultimately improve patient care by
enabling a more precise diagnosis, treatment planning, and monitoring of
various diseases and conditions.
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