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Abstract

A gait is a walking pattern that can be used to identify a person. Walking
involves changing the whole body’s joints and initiating postures. Humans
have individual walking postures that depend on their velocity, arm swing,
foot placement, etc. It can represent personality, identity, and health con-
ditions that affect walking, such as pain, injuries, and neurological diseases.
Understanding the human gait improves an analysis system for clinical, psy-
chological, security, and more. Recently, gait analysis has incorporated a
vision-based method, using a camera as a tool to access the gait informa-
tion. Accordingly, it is a non-complicate, flexible, and cost-effective system.
However, it suffers from a view-variation issue that reduces the reliability of
a vision-based gait analysis, especially for identification tasks.

The surveillance scenario is crucial as it is included in a real-world sit-
uation. It can be applied in general for various purposes, such as security
purposes. The reliable identification of video surveillance cameras is essen-
tial to improving security. We can identify suspicious individuals through
their gait when they appear on the surveillance cameras because the gait is
difficult to pretend or change, unlike appearance.

This research aims to propose a method for handling identification in a
multiple surveillance camera environment using pattern matching based on
the distance calculation method and voting. We apply a majority vote to
integrate the information from multiple perspectives to overcome the view-
variations problem. Notably, it is not a cross-view recognition, as in the
previous studies.

Because the surveillance scenario is uncontrollable, markers cannot be at-
tached to the walker’s body. This research implements vision-based human
pose estimation algorithms to solve this problem. We applied these algo-
rithms to the human joints on sequences and extracted the features. We pro-
pose two approaches according to the features. Approach 1 & 2 are a pattern
matching based on Dynamic Time Warping (DTW) with time-dependent
features (joint angles and time-dependent correlation), and approach 3 is a
pattern matching based on Euclidean distance (EU) with a time-independent



correlation feature. We extract the joint angles and correlation as features
based on a skeleton landmark from vision-based pose estimation.

This experiment used the CASIA-B dataset to represent the eye-level sce-
nario and the OUMVLP-Pose dataset to represent the surveillance scenario.
Furthermore, we adjust parameters by separating features into three parts,
i.e., whole, upper, and lower body, to study the impact of different body
parts on gait, and remove each joint one by one to study its importance
to the gait analysis. Moreover, we separate the number of subjects in the
CASIA-B and OUMVLP-Pose datasets into three cases to study the effect
of the data amount on the gait analysis.

For approach 1, the whole body feature (excluding the back ankle) is
essential for the eye-level scenario and surveillance scenario when using Al-
phaPose as a pose estimator, but the lower body feature is sufficient for the
surveillance scenario when using OpenPose as an estimator. However, the
whole body feature is critical for approach 3. Furthermore, approach 1 is
the most suitable to apply with gait because it maintains time information
and DTW allows time warping. This makes approach 1 better at handling
a situation when the same person is walking at a different speed. We found
that approach 2 is unable to be employed for identification due to insufficient
data variations.

In addition, we determined the significance of each joint and found that
the back ankle is a noise (for the eye-level scenario). We can increase the
accuracy by removing it from a feature vector. We conducted the experiment
by using weighted voting instead of majority voting. The results prove that
a majority vote improves the view-variation issue by integrating different
perspectives, which is better than a weighted vote.

Compared with the existing studies, our approaches produce a compet-
itive result, especially for the surveillance scenario that is our main focus.
Furthermore, the results indicate that pattern matching can perform the
identification task on a small database and provide flexibility when changing
the database’s quantity. It suggests that pattern matching is an alternative
method for accessing human gait.

Keywords : multi-view gait analysis, joints feature, distance calculation,
pattern matching, voting algorithm
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Chapter 1

Introduction

Walking is a basic mode of transportation for humans. It is a relationship
between bones, joints, and muscles that interact with each other, and the
nervous and brain systems relate to these activities, and the gait is an in-
dividual’s walking pattern that involves position changes in the upper and
lower body. It refers to the movement of joints and muscles as they change
position over time when we take a step. It appears to be a simple behavior
that occurs in our daily lives, but the gait or walking pattern provides more
insight into individual information than the direction and destination we are
heading to.

Our walking pattern, similar to the face, iris, and finger print, can repre-
sent a person’s personality as shown in Figure 1.1. These unique movements
can serve as a representative of our identity, physiology condition, and overall
well-being, as suggested by Singh et al. [42].

Figure 1.1: Visualization of human personality definition.

The significant changes in walking pattern, such as an irregular arm swing
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or body asymmetry, may indicate a medical condition like balance or coordi-
nation issues. Furthermore, it can show other diseases, such as neurological
disorders. Additionally, our gait reflects our emotions and psychological con-
ditions. Human feelings affect posture and gait differently as many previous
studies indicated that our feelings are visible through our walking patterns.
This knowledge benefits widespread areas, e.g., security, re-identification,
clinical examination, and emotion recognition.

For humans, gait is more complex than a simple mode of transporta-
tion. It provides information about an individual beyond their walking style,
including their personality, emotions, and health. Understanding the gait
should have positive impacts. Figure 1.2 presents the diagram of the gait
analysis tasks that digests the gait into various information depending on
purposes.

Figure 1.2: Diagram to presents the gait analysis purposes.

1.1 Background of the gait analysis

This section presents the background and previous studies on gait analysis. In
clinical analysis, there are various tasks that use gait as the main information,
as well as emotions, activity or action, and identity recognition. One of the
most familiar studies about gait is related to clinical examination tasks. It
uses gait to examine abnormalities such as pain, injuries, and diseases that
affect changes in walking patterns. The gait-based emotion analysis uses the
walking pattern to identify the walker’s feelings, including happiness, sadness,
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fear, anger, and neutrality. It is proof that our emotions affect our walking
patterns. Activity and action recognition is an analysis that uses a walking
pattern, or gait, to predict the target’s activity. Additionally, gait-based
identity recognition has recently become a widespread and active research
topic. It is an analysis that uses gait to identify the walker’s identity, which
is mostly vision-based. Figure 1.3 summarizes the main purposes of the gait
analysis. Mostly, the classification is applied to analyze complex information
from gait, especially for medical conditions and emotion analysis, because the
classification is mostly related to the neural networks. Meanwhile, pattern
matching is more suitable for identity or personal analysis. The following
subsections included the categorized previous studies for presenting what
has been done in this research field.

Figure 1.3: Visualization of the analysis system for analyzing the human
gait.

1.1.1 Gait in clinical analysis

Gait analysis can identify some neurological diseases, such as Parkinson’s
disease (PD), which affect a walking pattern. Parkinson’s disease (PD) is a
progressive disorder that affects the nervous system. The walking pattern
presents some of PD’s symptoms. The study by S. R. Hundza et al. [26]
showed how to use an Inertia Measurement Unit (IMU) to find the first steps
of people with Parkinson’s disease. They did this by reversing a gyroscope’s
angular rate to examine their gait cycle. A. P. Rocha et al. [40] employ
the Kinect RGB-D camera system as a tool to assess PD by extracting the
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skeleton of PD patients. Their goal was to distinguish between PD and
non-PD subjects, as well as between two PD states.

In addition to adults and elderly diseases, children can suffer from damage
that affects brain development, which is known as cerebral palsy (CP). It
typically occurs before birth and affects children’s movement and posture. D.
Slijepcevic et al. [44] used different machine learning (ML) and deep neural
networks (DNN) techniques to classify the walking patterns of children who
have CP. They aimed for explainable ML to gain trust in using ML to analyze
human gait. They found that the classification from ML approaches is better
than DNNs. However, DNNs employed additional features to predict the
results.

Moreover, researchers can use gait analysis to assess the risk of falling,
thereby preventing potentially serious injuries. There is research using gait
analysis to detect a fall state in adults and the elderly, as in the paper from
G. Sun and Z. Wang [49]. They suggested using vision-based fall detection
by OpenPose to figure out what the human pose is, as well as applying SSD
mobilenet object recognition to get rid of OpenPose’s mistakes. Then, apply
the SVDD classification for fall detection.

Other research related to the gait for clinical analysis has been studied,
such as the work from Y. H. Yeh et al. [54] that proposed the method to
analyze the frequency domain of the IMU acceleration signal by applying the
Discrete Fourier Series to detect the gait cycle time (GCT). They suggested
that GCT is in between the heel strike and toe-off sub-phases in the human
gait cycle, and their method can detect this information. Meanwhile, the
ML model has been employed with gait analysis and is aimed at classifying
or identifying abnormalities in the patients. However, the ML model suffers
from trust issues due to its black box characteristic, which is unable to ex-
plain the reasons for the obtained results. D. Slijepcevic et al. [43] aimed
to enhance the visibility of the black box characteristic of neural networks
by explainable artificial intelligence (XAI). They selected the layer-wise rel-
evance propagation (LRP) method to obtain the explanation from multi-
classification techniques such as the Convolutional Neural Network (CNN),
Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). The
signal they analyzed is based on Ground Reaction Force (GRF), which is a
wearable force sensor to measure the force that reacted to the ground. They
claimed that XAI can detect the bias of the ML model, which is crucial for
gaining the trust of the automatic gait analysis model. Vision-based gait
analysis has become an active research topic in clinical analysis. Since it re-
quires less equipment than wearable sensor-based devices and is non-contact
with patients, it remains an efficient and reliable analysis outcome. Since
vision-based gait analysis mostly relies on a visual pose estimation algorithm,
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which will mark the estimated human joints on the captured sequences, S.
Jan et al. established a video-based clinical gait analysis workflow that can
deploy videos from smart phones or tablets without prior gait analysis exper-
tise [48]. They employed OpenPose pose estimation to estimate 2D human
landmarks from the frontal and sagittal planes. Then, they estimated depth,
step length, and gait speed by using trigonometric relationships. They found
that this proposed method produces the same accurate results as the one
from the 3D motion capture system, and it can perform an analysis over
different groups of patients, such as adults with normal gait, post-stroke
patients, and Parkinson’s disease patients. A. Cimorelli et al. proposed a
validation study on a video-based clinical gait analysis for prosthesis users
[11]. Since the general pose estimation algorithms are employed with general
human anatomy, their performance has become poor with prosthesis users.
However, they improved it by training a prosthetic-specific joint detector to
let it work on prosthesis users, and they claimed that it performed better
than MMPose with the COCO dataset. Moreover, they validated the results
of gait parameters based on video compared with the data obtained from
IMU. Their proposed method produces results close to the values measured
by the IMU. Furthermore, H. Chang Soon et al. published a research ar-
ticle on automated gait analysis based on a pose estimation algorithm [22].
They employed MediaPipe pose estimation to detect the key gait events in
gait videos, which are heel strike and toe-off. After that, calculate the gait
parameters, such as stance time, swing time, step time, and double support
time, compared with Vicon moCap, the motion capture system. They found
that the gait parameters extracted from the pose estimation algorithm were
satisfied when compared to the motion capture system. However, they found
that it still produces false detection that affects the missing and incorrect
values in the gait parameter calculation.

1.1.2 Gait in emotion analysis

There are many studies that prove the human gait can be used to detect
emotions, as per the survey from S. Xu et al. [53]. The study from G. E.
Kang et al. [28] looked at how bipolar disorder patients control their bal-
ance while walking and sitting to walk. To do this, they used motion data
from 16 cameras. Y. Bhatia et al. [6] adopted Long Short-Term Memory
(LSTM) and MLP models to recognize four emotions, i.e., happiness, sad-
ness, anger, and neutral, through the gait. They provided joint coordinates
based on motion capture as an input to the networks for classifying these
four emotions. They claimed that the proposed method performed better
and required less inference time than other gait-based emotion recognition
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methods. Moreover, N. Jianwattanapaisarn [27] conducted a study to ana-
lyze an emotion characteristic by providing 49 subjects to walk in a setting
region while watching the emotion-inducing videos on Microsoft Hololens 2
smart glasses. They used OptiTrack motion capture to obtain human gaits
and postures, and they extracted features such as the angle between body
parts and walking straightness for analysis. A previous study by C. Song et
al. [45] proposed a self-supervised gait-based emotion representation (SSAL)
to recognize the emotion through the gait. They fed a 3D human skeleton
into the input and used Selective Strong Augmentation (SSA) to predict the
class of emotion from unlabeled data. They created the SSA, which aimed
to improve the model’s performance and acquire more resilient features from
positive samples. Then, they employed the complementary feature fusion
network (CFFN) to extract the features, which are a fusion between struc-
tural and representative features. Their proposed method suffered from the
unbalanced emotion label in the gait dataset. C. Bisogni et al. [45] also men-
tioned an unbalanced gait emotion dataset in their paper. They constructed a
framework for recognizing emotions based on gait called “Walk-as-you-Feel”
(WayF). This approach focused on skeleton sequence analysis and avoided
using facial features, which aimed to retain the privacy of walkers. When
using an unbalanced dataset, their method incorrectly classifies ”sad” emo-
tions. However, they suggested that excluding ”neutral” increases accuracy.

1.1.3 Gait in activity analysis

This sub-section presents previous studies about gait and activity recogni-
tion. Since gait can recognize walking, it is one of the activities performed
by humans. We can use it to categorize related activities, such as running,
jumping, and jogging.

The paper from J. Gupta et al. [19] proposed a vision-based activity
recognition through gait to identify the performed activity, such as walking,
running, jogging, or jumping, by a movement of human legs. They uti-
lized Hu-moments to determine the centroid of the human body. Then, they
applied the Mean-shift algorithm to recognize the leg component. Finally,
they extracted and classified four activities based on the features extracted
from the leg components. H. Chidananda and T. Hanumantha Reddy [20]
presented the method to recognize human activity based on foot movement
patterns in the gait sequences. They performed human tracking to extract
human sequences and find the foot points based on the human body’s thresh-
old, on which only the lower part was focused. Then, they determined dis-
tance and angle and classified four activities, i.e., walking, running, jogging,
and jumping, based on the extracted features. Meanwhile, P. Srihari and J.
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Harikiran [47] performed activity prediction based on the human skeleton of
thermal images using Siamese networks. They employed PoseNet to iden-
tify the human pose and used Siamese networks to determine the similarity
between images. They used the similarity score to predict activities.

1.1.4 Gait in identity recognition

The following prior studies suggest that we can identify a person’s identity
using gait.

The work from M. Alotaibi and A. Mahmood [1] intends to increase gait
recognition accuracy by developing eight layers of deep CNN that are less sen-
sitive to variations and occlusions. They employed CASIA-B, a multi-view
gait database with various walking conditions, for the experiment. Their pro-
posed method can overcome several issues, but the performance will decrease
if the gallery set does not cover a variety of walking conditions. They achieve
an average correct classification, rank-1, and rank-5 accuracy of 86.70%,
85.51% and 96.21% on the CASIA-B dataset, respectively. M. Deng and
C. Wang focus on proposing gait recognition in different clothing conditions
[12]. They employ silhouette gait images to extract the shape of a human
and divide it into four sub-regions. Then, select the gait features based on
the width of each sub-region and input the gait feature vector into Radial
Basis Function (RBF) neural networks. Their proposed method returns the
correct classification rate on NM and CL conditions of the CASIA-B dataset
as 90% when using NM as a probe set and 93.5% when using the CL con-
dition as a probe set. S. Hou et al. developed the Gait Lateral Network
(GLN) to recognize the human gait [23]. It is a deep CNN that can learn
discriminative and compact representations from silhouette images. GLN
achieves average rank-1 accuracy of 96.88% on NM and 94.04% on BG con-
dition of CASIA-B dataset, respectively. However, the clothing condition
affects the slight decrease in rank-1 accuracy to 77.50%. C. Fan et al. [13]
claim that different parts of the human body consist of diverse visual appear-
ances and movement patterns during walking. GaitPart was proposed as a
way to extract gait features. The goal is to improve the learning of part-level
features using a frame-level part feature extractor made up of FConv and
get the short-range spatiotemporal expression by using a Temporal Feature
Aggregator with a Micromotion Capture Module (MCM). The results from
GaitPart achieve average rank-1 accuracy on the CASIA-B dataset as 96.2%
on NM, 91.5% on BG, 78.7% on CL conditions, and 88.7% on the OU-MVLP
dataset. GaitEdge is a framework described by J. Liang et al. [32] for rec-
ognizing human gait. It can make this framework more practical and keep
performance from dropping in cross-domain situations by blocking irrelevant
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gait information. They designed the module to integrate the trainable edges
of the segmented person’s shape with the fixed internals of silhouette images
based on the mask operation, named Gait Synthesis. GaitEdge achieves the
average Rank-1 accuracy on the CASIA-B* dataset (across different views)
of 97.9% on NM, 96.1% on BG, and 86.4% on CL conditions.

The early works from R. Liao et al. [34] proposed a model-based gait
recognition by extracting 14 body joints of 2D human pose estimation from
images and transforming them into 3D poses, called PoseGait. The CNN
is implemented to extract the gait features. Moreover, they combine three
spatio-temporal features with the body pose to enhance the features and
recognition rate. Their proposed method achieves recongition rates on the
CASIA-B dataset of 63.78% on NM, 42.52% on BG, and 31.98% on CL con-
ditions. Additionally, they proposed another model-based method for gait
recognition with pose estimation and graph convolutional networks, named
PoseMapGait [33]. They aimed to preserve the robustness against human
shape and the human body cues of the gait features by using a pose esti-
mation map, which claimed to enrich the recognition rate. PoseMapGait
achieves the average recognition rate on the CASIA-B dataset as 75.7% on
NM, 58.1% on BG, and 41.2% on CL conditions. X. Li et al. [30] mentioned
the information loss suffering of 2D poses, unlike 3D poses, which have richer
pose information. They present a 3D human mesh model with parametric
pose and shape features. In addition, they trained a multi-view to over-
come the poor pose estimation in 3D space. They achieve Rank-1 accuracy
on the CASIA-B dataset as 60.92% on NM, 42.01% on BG, and 32.81% on
CL conditions. This study is not trained for gait recognition directly, but
they aim to create the database for multiple related purposes. The research
from C. Xu et al. [52] considered the occlusion-aware human mesh model
for gait recognition. They mentioned that a partial occlusion of the human
body mostly occurred in surveillance scenes. So, they create model-based
gait recognition for handling the occluded gait sequences without any pre-
requisite. They set the SMPL-based human mesh model to an input image
directly, extracting the pose and shape features for the recognition task. The
most challenging part is when the occluded ratio is huge (around 60%). Their
proposed method outperforms the other state-of-the-art methods by 15% of
the rank-1 accuracy. K. Han et al. proposed a discontinuous gait image
recognition based on the extracted keypoints of the human skeleton [21].
They aim to overcome the situation of discontinuity in the gait images. This
study achieves a high recognition rate and is robust to common variations.
Mostly, model-based gait analysis aims to increase the recognition rate by
implementing machine learning. They achieve the average Rank-1 accuracy
on 3 conditions of the CASIA-B dataset as 79.5%.
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Previous studies have addressed various variations that make gait analysis
unreliable, such as camera perspective, clothing, illumination, occlusion, and
carrying. These variations are significant challenges for analyzing the gait.
Furthermore, it is crucial to apply gait analysis in practical settings where
cameras are fixed and perspectives are limited, such as surveillance cameras,
in contrast to laboratory settings.

1.2 Research questions

The main objective of this study is to proposed a new method for gait analysis
in multi-camera environments to overcome the view-variation issue. Since
it is one of the challenge for analyze the human gait that can degrade a
reliability of the analysis system. The following research questions are set to
accomplish our purpose.

• How to analyze human motion from a multi-view gait image for human
behavior analysis based on their walking pattern?

• How to improve human gait analysis method from the multi-view gait
image sequences for person identification under surveillance scenarios?

• How to explore the optimal feature to estimate the human gait?

1.3 Objectives

According to the research questions as above, the objectives are set to answer
it. The following objectives intend to describe the philosophy of this study.

• To analyze the human behavior from the motion based on walking
pattern.

• To improve the gait analysis method for person identification from mul-
tiple perspectives of surveillance cameras.

• To find the optimal feature for human gait estimation.
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Chapter 2

Vision-based gait analysis

This chapter is an explanation of the vision-based gait analysis, starting
with an overview. Then, introduces methods, systems, and devices used
for an analysis. Followed by the introduction of the gait parameters, the
information obtained from the gait, literature review and the motivations
and challenges of the gait analysis.

2.1 The overview of vision-based

Vision-based gait analysis proceeds based on the data captured from cameras.
It can be a marker-based or non-marker-based analysis. The marker-based is
simply a case where we attach markers to the joints of the subject’s body and
capture their walking sequences. Then, extract the required features based
on the marker’s position.Figure 2.1a presents a sample image that captures
a subject walking on a treadmill with attached markers on her limb.

The non-marker-based system requires only cameras to capture the sub-
ject’s walking sequences. Subsequently, the features will be extracted de-
pending on the requirements of the analysis approach, i.e., appearance-based
and model-based, and the required features that will be employed with that
approach. Our interest is a non-marker-based system due to it is impossible
to attach markers on people in the real-world situation, especially for the
surveillance scenario.

Researchers have used a variety of methods to study gait. Here are some
examples of Machine Learning (ML) methods:

• Pattern matching

• K-Nearest Neighbor (K-NN)

• Support Vector Machine (SVM)
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(a)

(b)

Figure 2.1: Example images to show the different between marker-based and
non-marker-based gait analysis. (a) Sample image of the marker-based gait
analysis. The markers is attached at the hip, knee, and ankle position to
mark interested points for further analysis. (b) Sample image of the non-
marker-based gait analysis that processes directly on image with no makers
attached on the subject’s body. The right image that used for skeleton plot
is originally from [55].
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As well as Deep Neural Networks (DNNs) methods:

• Convolutional Neural Networks (CNN)

• Long Short-Term Memory (LSTM)

Despite the reliability of both algorithms, this study selects the pattern
matching due to the insufficient data for DNNs to learn. Since it is a clas-
sification technique, it does not require training state or a large number of
datasets.

There are various studies that employ DTW in gait analysis, such as the
research of R. Hughes et al. [25]. They improved the floor-based monitoring
system and implemented DTW with KNN to enhance walking identification.
M. B lażkiewicz et al. [7] applied DTW to assess the gait asymmetry of
barefoot walking to evaluate the gait symmetry. The work from Y. Ge et al.
[17] employed DTW to match the signals from LoRa sensors with a database
to recognize the gait. D. Avola et al. proposed wearable sensor-based gait
recognition using a smartphone accelerometer, based on a modified DTW,
and applied modified majority voting to return the matched identity of the
best comparison score in order to improve the recognition’s accuracy [4].

The previous studies show that the pattern matching method is effective
in recognizing the gait, and data visualization is possible. However, the
DNNs method is crucial for extending the gait analysis beyond recognition
tasks, which is our future plan.

Figure 2.2: Sample visualization of appearance-based and model-based anal-
ysis of the gait recognition.
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2.2 Approaches to recognize the gait

There are two main approaches for multi-view gait recognition, i.e., appearance-
based and model-based approaches [42], as in Figure 2.2.

2.2.1 Appearance-based approach

The appearance-based approach is model-free analysis, which analyzes di-
rectly from images or videos and uses shape and textural information as a
feature without directly measuring body movements. Various previous stud-
ies employed this approach to recognize the gait for identifying people from
multiple perspectives from more than one cameras.

The paper from X. Huang et. al [24] employed CNN and used multi-scale
features to represent the motions on images. They used Frame-level feature
to represents the appearance characteristics, Short-term temporal feature to
represents a short period temporal motion patterns, and Long-term feature
to represents a combination of the motion from every frames. The work from
M. Alotaibi and A. Mahmood [1] intends to increase gait recognition accuracy
by developing eight layers of deep CNN that are less sensitive to variations
and occlusions. They employed CASIA-B, a multi-view gait database with
various walking conditions, for the experiment. Their proposed method can
overcome several issues, but the performance will decrease if the gallery set
does not cover a variety of walking conditions. C. Fan et al. [13] claim that
different parts of the human body consist of diverse visual appearances and
movement patterns during walking. GaitPart was proposed as a way to ex-
tract gait features. The goal is to improve the learning of part-level features
using a frame-level part feature extractor made up of FConv and get the
short-range spatiotemporal expression by using a Temporal Feature Aggre-
gator with a Micromotion Capture Module (MCM). GaitEdge is a framework
described by J. Liang et al. [32] for recognizing human gait. It can make
this framework more practical and keep performance from dropping in cross-
domain situations by blocking irrelevant gait information. They designed
the module to integrate the trainable edges of the segmented person’s shape
with the fixed internals of silhouette images based on the mask operation,
named Gait Synthesis.

Even if the appearance-based approach achieves great performance in gait
recognition with lower system complexity, it requires more complex features
for discriminating the gait. The significant challenges of this approach still
exist, as it mostly extracts features based on silhouette images, making it
sensitive to environmental factors such as lighting and dynamic background,
especially when applied to a real-life situation. Additionally, the silhouette
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images contain other non-relevant gait information that is unreliable in prac-
tice. Furthermore, if parts of the body are occluded, which is mostly self-
occlusion, such as crossed legs, it is unable to extract the features. Moreover,
it has the inability to capture some features that are invisible through textu-
ral and shape, such as joint angles. These reasons make the appearance-based
approach suitable for the controllable setting environment, such as a labora-
tory setting, unlike the real situation, which includes various uncontrollable
conditions.

2.2.2 Model-based approach

The model-based approach requires a mathematical model to distinguish
the gait characteristics. This approach requires a prior human model, such
as the human pose estimation algorithm that is used to extract the joint
coordinates, unlike the appearance-based approach, which employs features
directly from images. It makes a model-based approach more robust to the
surrounding environmental conditions and allows us to extract various fea-
tures in addition to shape and textural information.

As in the previous studies from R. Liao et al. [34]. They proposed
a model-based gait recognition by extracting 14 body joints of 2D human
pose estimation from images and transforming them into 3D poses, called
PoseGait. The CNN is implemented to learn the handcrafted gait features
which is a fusion of 3D poses, joint angle, limb length, and joint motion. They
evaluate the proposed method by a cross-view recognition on the CASIA-B,
a multi-view gait database. T. Teepe et al. conducted a gait recognition
based on the skeleton landmark of human joints from a Graph Convolu-
tional Networks (GCNs) named GaitGraph2 [50]. They used pre-calculated
joint positions, motion velocities, and bone features that extracted from the
skeleton-based information, and implemented the ResGCN architecture to
construct the model for gait recognition. Their research focus on the useful
and reliable gait features for further study that aim to apply with a practi-
cal situation. They apply the multi-view gait database, the CASIA-B and
OUMVLP-Pose to evaluate the work and achieve outstanding performance
on OUMVLP-Pose dataset. K. Han et al. proposed a discontinuous gait
image recognition based on the extracted keypoints of the human skeleton
[21]. They aim to overcome the situation of discontinuity in the gait images.
This study achieves a high recognition rate and is robust to common varia-
tions. Y. Fu et al. proposed a frame work to generalized the model-based
approach for gait recognition [16]. They focused conducted a preliminary
study and found that previous studies were lack of the important issue that
caused the degraded of recognition performance when performed with un-

14



seen scenarios, which is a generalization of joint keypoints. They proposed
Human-Oriented Transformation (HOT) and Human-Oriented Descriptors
(HOD). The HOT used for transforming the skeleton sequences in camera
coordinate system into human-oriented coordinate system, and implemented
HOD to obtained the features based on body ratio and structure. Moreover,
they designed a Part-Aware Graph Convolutional Network (PAGCN) to learn
the relationship between features. They evaluated the work by recognizing
on the same dataset (source-domain) and across the different dataset (cross-
domain), and achieves great performance on cross-domain without decreased
the performance on source-domain testing.

Compared to the appearance-based approach, the model-based approach
loses shape information and requires a more complex system to address the
human body’s skeleton landmark for obtaining joint coordinates and em-
ploying it for further feature extraction. However, the features used in the
model-based approach are more simple yet have strong potential to achieve
impressive results compared with the appearance-based approach, in which
the system is less complex but requires more complicated features to discrimi-
nate the gait. Moreover, the gait features from the model-based approach are
possible to apply in the real situation because they relate directly to the mo-
tion of the human body and are robust to the surroundings. Meanwhile, the
features from silhouette images include the irrelevant gait information that
can mislead the system to the wrong analysis. On top of that, appearance-
based suffers with the occlusions, especially a self-occlusion, because it rely
on silhouette images that is enriched with shape and textural information.

Previous studies show that the model-based approach for vision-based
gait analysis primarily extracts features based on joint coordinates from the
pose estimation algorithm. It suggests that our proposed method is a model-
based approach.

Mostly, the existing studies applied DNNs to the gait analysis and tried to
recognize the known persons with the unknown persons. However, our pro-
posed method aims to identify the people we already know and ignore the
others, for example, searching for the suspicious person. Thus, the DNNs are
unnecessary for this purpose, the pattern matching can perform this task.
Additionally, the previous studies tried to recognize people across different
perspectives to overcome the view-variation by DNNs, but we employ the
voting algorithm to integrate the information from multiple cameras to over-
come the view-variation.
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2.2.3 Vision-based human pose estimation

In recent years, vision-based joint estimation has been widely deployed to
extract the human joint landmark for vision-based gait analysis, especially
for the model-based approach, which is simpler to implement. It requires no
additional cost or time spent on equipping markers, only setting the scene
with cameras is required. There are various pre-trained human pose esti-
mation models that can be applied. This makes the model-based approach
more accessible and affordable.

This section presents an example of features based on joint parameters.
Let pj,i,t = [x, y]T represent a location of joint j on x-axis and y-axis in
Figures 2.3a and 2.3b, which present the human body joints from MediaPipe
[5] and OpenPose [8], respectively. The parameters i represent a person
index, and t represents time or frame number. The changing of pj,i,t can
present a walking pattern. By this definition, a walking pattern includes not
only a lower body but also the upper body. When a person walks, their
entire body moves, leading to the correlation of all joints.

There are various state-of-the-art techniques for vision-based human pose
estimation, such as MediPipe [5], OpenPose [8], and AlphaPose [15], [29],
[14]. Researchers have applied these most commonly used pose estimations
to various human-related fields such as activity, gait, hand gestures, and
facial recognition, as some benchmarks offer detailed estimations of face and
hand landmarks.

• openpose pose estimation

Openpose is a real-time multi-person pose estimation based on Part
Affinity Fields (PAFs) that include face, hand, body, and foot land-
marks [8], [41], [9], [51]. It is a bottom-up approach that begins with
locating the position and orientation of the limb in an image, followed
by estimating the other parts.

OpenPose, the most widely used pose estimation tool, supports re-
search purposes by providing an open-source library compatible with
many platforms. Moreover, it can apply to both the CPU and GPU
to run the program, depending on the model. There are three human
landmark models that can be employed with Openpose, i.e., MPII [3]
that produces 15 keypoints of human joints, COCO [35] that returns
17 keypoints of human joints, and body 25 models, which is a COCO
with extended feet landmarks that gives 26 keypoints of human joints.

OpenPose is applicable to extracting the 3D keypoints with the require-
ment of the stereo cameras. It is unable to extract 3D keypoints with
a single camera.
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• AlphaPose pose estimation

AlphaPose is an open-source system for a real-time multi-person pose
estimator [15], [29], [14]. It is similar to OpenPose, but the difference
between them is the estimation method. AlphaPose is a top-down
strategy that detects the human first and then estimates their pose.
Furthermore, it allows pose tracking, which predicts the pose keypoint
over time in the sequences to separate multiple people’s identities. The
COCO model [35] with 17 joints keypoint and the Fast Pose model
with 26 joints keypoint.

Accordingly, it is an open-source system and supports both the Win-
dows and Linux platforms. In addition, it provides an online platform
for open-source pose trackers.

• MediaPipe pose estimation

MediaPipe is an open-source single-person pose estimation tool from
Google. It uses the BlazePose model [5], which is a lightweight ML
model that produces 33 keypoints of human landmarks, including hands
and faces, but we employed only 16 keypoints for the experiment, as
shown in Figure 2.3a. Each keypoint contains the coordinates in the x,
y, and z axes. Moreover, it provided joint coordinates for both image
coordinates and real-world coordinates. The real-world coordinates
present the x, y, and z in a unit of meters, where z is a depth.

There are previous studies that show comparative results between three
benchmarks. X. Li et al. [31] proposed fitness action counting and classifi-
cation based on MediaPipe. They present the comparative results between
MediaPipe, OpenPose, and AlphaPose, which claim that MediaPipe is faster
to recognize and achieves high accuracy. K. Y. Chen et al. also used Me-
diaPipe to get the features they needed to use transfer learning deep neural
networks to find the type of fitness movement and how complete it was [10].
They also suggested that MediaPipe has an uncomplicated implementation,
fast computational speed, and high accuracy.

Additionally, we check the the self-occlusion on MediaPipe by selecting
a sequence that includes the overlap of two legs, as shown in Figure 2.4a.
Then, we plot the skeleton of joint coordinates on selected image as shown
in Figure 2.4b, as well as the extracted coordinates and confident score. It
suggests that the pose estimation algorithm can handle the self-occlusion
problem even though some parts are occluded, e.g., left arm and left knee.
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(a)

(b)

Figure 2.3: Human pose landmarks that used in this study. (a) 16 keypoints
from MediaPipe [5] pose estimation. (b) 13 keypoints from OpenPose pose
[8] estimation.
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(a)

(b)

Figure 2.4: Self-occlusions problem testing by MediaPipe on a sequence from
CASIA-B (90◦) [55]. (a) Original image and (b) Skeleton plot.
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2.3 Gait information

Gait is a periodic sequence of joint movement in which each joint movement
pattern is repeated as cycles. In a cycle, it consists of a change in joint po-
sition over time. When joints have motion, postures occur. Each person has
different postures according to their individual walking speed, arm swing,
foot placement, weight transfer, etc. These behaviors refer to the neuro-
logical control that expresses our individual walking trait, which represents
the walking pattern. It is noticeable when we visualize a human landmark
frame-by-frame as a sample in Figure 2.5.

Equation (2.1) defines the changing of joints location when walking over
time, which can represent the walking pattern. We call it ’posture’ because
it records human postures while walking frame-by-frame.

posture =


[pj1,i,0...pju,i,0]

...
[pj1,i,t...pju,i,t]

...
[pj1,i,n...pju,i,n]

 (2.1)

The pju,i,t represents the location of joint ju, where u ∈ U and U is a
number of joints, i is a person index, and t = 0 and t = n represent the first
and last frames in a sequence, respectively.

Furthermore, it can present information about the transportation mode,
such as the direction, and use it to predict the walker’s destination. It also
includes individual information that represents the walker’s personality, med-
ical condition, behaviors, and emotions. We can extract the mentioned in-
formation by distance in any direction on horizontal, e.g., front, rear, side,
and also on multi-vertical view, such as on the top. Since gait is a walking
trait, it is hard to pretend, copy, or change.
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Figure 2.5: Sample images to demonstrate how joints are changed its position
over times from t=0 to t=10. Where t represents time or frame number in
this study. Images used for demonstration are from CASIA-B dataset [55]

21



2.4 Motivations & Challenges

According to the previous studies have addressed that the problem with
multi-view gait analysis was that the gait information would change when
the camera angle changed, leading to less reliable analysis results. Our aim
is to overcome this problem and improve multi-view gait analysis in surveil-
lance scenes. As the reliable identification of video surveillance cameras can
improve security. By identifying suspicious individuals through their gait,
we can prevent them from changing their appearance to avoid detection.
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Chapter 3

Gait analysis in surveillance
scenes

This chapter describes the gait analysis in surveillance scenes based on joint
features. We start by working on single-view gait images before extending to
a multi-view gait analysis. It includes the definition of a single-view scenario
and discussions on a single-view gait analysis. The next step is to introduce
multi-view gait analysis, which builds upon single-view gait analysis and
outlines the methodology for analyzing the multi-view gait images. This
section includes an explanation of the methods, equations, and calculations
to clarify our methodology that was deployed in this study, which is a major
part of this research.

3.1 Single-view gait analysis

A single-view scenario involves capturing a scene from a single perspective
using a single camera. Figure 3.1 shows a sample setting environment to
obtain single-view scenarios, where a single camera captures the walking
within its field of view. This setup has served as the foundation for vision-
based gait analysis in the past years. Its simplicity and accessibility have
made it a common starting point for various research projects in this field.
Furthermore, it avoids the difficulties related to view variation because it
is a single perspective. However, the perspective and coverage area of a
single camera limit the information it can capture. These make the extracted
information useful in that identical perspective, which is not covered when
changing the perspective or camera angle.

Our aim is to properly understand the concepts of gait analysis. There-
fore, we begin this research by investigating single-view gait analysis, as prior
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studies have done, before continuing to multi-view gait analysis.

Figure 3.1: Sample of a single-view setting environment to obtain single
perspective sequences in surveillance scenario.

3.1.1 Patterns matching based on Cosine similarity

We begin with a single-view gait analysis using Euclidean distance to mea-
sure the relative distance between two joints on the lower body of a human
landmark, estimated by MediaPipe. Usually, the definition of the gait refers
to the lower body, including the hip, knee, ankle, and feet, as defined by
J. Perry and J. M. Burnfield [38]. Therefore, our focus is on the changes
between the lower body parts. Then, we apply cosine similarity to match
the patterns.

Figure 3.2 presents sample images of a dataset used in a single-view gait
analysis experiment, which was collected by the authors. It is a walking scene
with eight subjects with different backgrounds.

The Euclidean distance is defined as the length of the line segment be-
tween two points. We use it to measure the distance from the first point to
the second point. We obtain the joint coordinates by using MediaPipe to
estimate the human pose landmarks. We calculate the Euclidean distance
between these joints as shown in Figure 3.3, i.e., the distance between hip,
knee, ankle, heel, and toe, to extract their periodic patterns. Equation 3.1
presents a calculation of Euclidean distance between two interested joints,
pj,i,t,D and p(j+2),i,t,D.

24



ed = ∥pj,i,t,D − p(j+2),i,t,D∥ (3.1)

Finally, we apply cosine similarity to measure the parity between patterns.
Since it is a similarity measurement between two vectors, ED1 and ED2

represent the vectors that store Euclidean distance along the time t of the
sequences 1 and 2, respectively, as described in Equation (3.2), and Equation
(3.3) presents the way to score the similarity between two patterns.

ED =
[
ed0...edt...edn

]
(3.2)

Cosine similarity(ED1,ED2) =
ED1 · ED2

|ED1| · |ED2|
(3.3)

Our findings from this experiment indicate that these separated features
are insignificant for identity matching. Even though we extracted a pattern of
the distance between two joints that changes over time, when humans walk,
all body parts have movement. Thus, we should employ the features together,
not individually. Additionally, it suggests we employ body angles instead of
the relative distance between two joints. According to an observation from
frame-by-frame skeleton landmark images, as shown in Figure 2.5, it presents
the way joint angles occur when humans walk and the walking posture is
changed over time. Hence, we focus on employing whole-body joint angles
instead.

Moreover, the cosine similarity is improper to match the time series
data that vary timing and speed, that is, when the corresponding points
in two sequences may not line up perfectly. The cosine similarity has its own
advantages and is suitable for comparing the similarity of vectors in high-
dimensional spaces. However, it may not be appropriate for time series data
where temporal relationships and variations need to be considered.

3.1.2 Patterns matching based on Dynamic TimeWarp-
ing (DTW)

After we acknowledged that the Cosine similarity is inappropriate to dis-
criminate the walking patterns, the Dynamic Time Warping (DTW) is then
applied according to the time warping characteristic that can handle the time
series data.

We extracted the joint angles based on the joint coordinates that were
extracted from MediaPipe. According to the paper from M. Alvaro et al. [36],
the joint angle is one of the most commonly used features for gait analysis.
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Figure 3.2: Sample images of the dataset used in a single-view gait analysis.

Figure 3.3: Euclidean distance between two joints description.

Additionally, the other features for gait analysis can be extracted from joint
angle. Hence, the joint angle is selected as a feature in this study.

Furthermore, W. Pirker and R. Katzenschlager [39] summarized the im-
portant parameters for clinical examination in their paper in addition to the
listed parameters above, such as arm swing. It is crucial to know that gait
analysis involves the whole body. Therefore, to enhance our understanding
of an individual’s gait, we need to concentrate on the entire body.

To extract the joint angles, we initialize the process by connecting three
joints, i.e., p(j−1),i,t,D, pj,i,t,D, and p(j+1),i,t,D, from the human pose estima-
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tion landmarks in Figure 2.3a as a triangle. Figure 3.4 represents the men-
tioned triangle connection. We determine the Euclidean distance between
each joint to generate a triangle. We let it be Legs a, b, and c using Equa-
tions (3.4)–(3.6). Leg a represents a connection line between joints p(j−1),i,t,D

and p(j),i,t,D, leg b is a connection line between joints pj,i,t,D and p(j+1),i,t,D,
and leg c is a connection line between joints p(j−1),i,t,D and p(j+1),i,t,D. Fi-
nally, we apply the cosine law in Equation (3.7) to extract the middle angle
(θj,i,t,D), which is a preferred joint angle to use as a feature.

a = ∥pj,i,t,D − p(j−1),i,t,D∥ (3.4)

b = ∥pj,i,t,D − p(j+1),i,t,D∥ (3.5)

c = ∥p(j−1),i,t,D − p(j+1),i,t,D∥ (3.6)

θj,i,t,D = cos−1(
(a2 + b2) − c2

2 × (
√
a2 ×

√
b2)

) (3.7)

In this research, we extracted ten angles, including elbow, hip, knee, front
ankle, and back ankle (both left and right sides) from using MediaPipe as
a pose estimation method. Thus, after obtained the middle angle as θj,i,t,D,
the θi,t,D variable in Equation (3.8) represents a feature vector that used for
pattern matching, and we gathering it together as vector of (10,1) dimension.

θi,t,D =
[
θ1,i,t,D...θj,i,t,D...θ10,i,t,D

]T
(3.8)

Table 3.1: Results of DTW distance on the dataset in Figure 3.2

True label

0 1 2 3 4 5 6 7

0 253.12 305.36 324.22 507.30 254.47 273.08 481.51 285.35
1 320.37 251.15 330.81 447.17 282.05 311.17 516.14 255.89
2 272.33 305.84 265.60 485.96 267.31 296.93 469.75 265.90
3 297.48 298.39 303.35 505.97 254.76 268.39 507.73 288.14
4 296.69 306.25 283.11 516.98 239.55 307.05 470.09 290.69
5 263.28 290.57 296.52 518.08 284.77 196.10 452.85 263.81
6 214.67 285.65 263.33 500.85 246.70 271.27 448.29 224.86

Matched

7 308.87 269.86 324.70 504.57 237.04 308.64 504.14 248.21
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Table 3.1 presents the calculated DTW distance of the dataset shown
in Figure 3.2. The single view accuracy of the correct matching from using
DTW distance is 42.90%. From this experiment, we found that DTW is
suitable to handle the time series data and produces great result on this
dataset. Unfortunately, a single-view is unable to recognize the gait in the
other perspectives. According to this limitation, we move our focus to multi-
view gait analysis.

Figure 3.4: Joint angle calculation using cosine law to calculate a middle
angle (θj,i,t,d) between 3 joints.
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3.2 Multi-view gait analysis

Multi-view scenario is a scene captured by more than one camera with dif-
ferent perspectives. Figure 3.5 shows a sample of the setting environment
using three cameras to obtain scenarios with different perspectives. The lab-
oratory setting usually equips multiple cameras consecutively to capture the
same scene as a sample in Figure 3.6a. Figure 3.6b presents the obtained
images from the setting environment in Figure 3.6a. In practice, this scenario
equips multiple cameras separately and may be non-consecutive, resulting in
more challenges to an analysis of the multi-view gait images.

The view-variation problem is one of the significant challenges of multi-
view gait analysis. This issue arises because, as the perspective changes
across different camera angles, the classified identity may vary significantly.
Even if it is the same person walking, their gait can be recognized as that
of a different person according to this variation. Many researchers proposed
algorithms that aimed to handle the view-variation problem by employing
computer vision, machine learning, and deep learning methods. However,
the view-variation problem remains significant in multi-view gait analysis as
it decreases the understanding of human movement across different perspec-
tives, especially in real-world scenarios such as scenes from a surveillance
camera.

In this study, we apply a pattern matching to match walking patterns for
person identification purposes. Moreover, we apply a majority vote to address
the view-variation issue. This strategy aims to aggregate the information
from multiple perspectives to enhance the accuracy and reliability of the
pattern matching technique over the view-variation problem.
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Figure 3.5: Sample of a multi-view setting environment from.

(a)

(b)

Figure 3.6: Sample of a multi-view in laboratory setting environment images
from [55]. (a) Setting environment of the multi-view sequences. (b) Obtained
scenarios of multi-view sequences.
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3.3 Methodology for multi-view gait analysis

Figure 3.7 shows our overall methodology for this study. We separate the
sequences into reference, which is our database, and target, which is the
input sequence to be analyzed. Each sequence is a captured person i walking
scenario from each camera perspective (D).

The authors extract the joint coordinates of the reference and target
sequences as pj,ik,t,D and pj,itar,t,D. The variable k denotes the number of
reference sequences, which is k ∈ K. We let j be a joint number, D be a
camera perspective, and i be a person identity label. Then, we extract the
features from reference and target sequences as the joint angles (θiref ,t,D and
θitar,t,D). The joint angles extracted from MediaPipe keypoints consist of ten
angles, including the elbow, hip, knee, and ankle (front and back). The joint
angles extracted from OpenPose keypoints consist of six angles according to
the feet landmarks are not included. Thus, the extracted joint angles consist
of the elbow, hip, and knee. We extract each joint angle from both the left
and right sides of the body.

Next, we calculate the correlation between joint angles of reference and
target sequences as ciref ,t,D and citar,t,D, which represent the frame-by-frame
or time-dependent correlation feature. Additionally, we calculate the rank
correlation between each joint angles from the entire sequences to represents
the overall individual walking pattern as ciref ,D and citar,D. In the other
word, it is a time-independent correlation feature.

Then, we apply the distance calculation to determine the distance be-
tween reference and target sequences, which will divided into two approaches
based on the extracted features.

• Approach 1 & 2: Apply Dynamic Time Warping (DTW) with time-
dependent features.

For this approach, we apply DTW to match the patterns based on the time-
dependent features, which are joint angles (Approach 1) and time-dependent
correlation features (Approach 2), as shown in the diagram in Figure 3.8a.
The reason is that these features, including time information, require the time
warping characteristic of DTW to match the patterns that vary in speed,
time, and length. We let the measured DTW distance be Si,D

DTW.

• Approach 3: Apply Euclidean distance (EU) with time-independent
feature.

Essentially, the correlation requires variations of data in order to see their
relationship and association. We then propose the feature representative
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to represent the walking pattern of the entire sequence. For this reason,
time information will be ignored. Hence, direct matching is applied in this
approach.

We proposed another approach to studying the gait by calculating the
time-independent correlation, as shown in Figure 3.8b. The rank correlation
between each joint angles will be calculated, which will re-arrange the en-
tire sequential data by its ranking order. This makes the time-independent
correlation the feature descriptor that ignores the time order, which implies
that the variation of time, speed, and data length disappear. Therefore, we
can apply the Euclidean distance (EU) to this feature. We let the calculated
EU be Si,D

EU .
After determining the distance, we find a minimum distance to match a

person’s identity in the target sequence with the reference sequence. Then,
the matched person identity is returned as iDk , which refers to the person
identity in each camera perspective (D). Finally, we aggregate the separated
person identity (iDk ) from each D by applying majority voting to increase the
reliability of a person identity matching.

In fact, we select the unsupervised learning method, i.e., DTW and EU
matching. However, the definition of unsupervised learning is clustering the
input data without having labeled data to supervise them. Meanwhile, the
supervised learning method will classify the input data according to the
labeled data, such as the database, in which the K-NN is included. Our
method is pattern matching that includes labeled identity in the reference
(or database), which should be categorized as the supervised method.

Unfortunately, both our method and K-NN are not learning anything
from the features or input data. Even though its category is the supervised
learning method, it is not included in DNNs, but it is a machine learning.
The different between ours and K-NN is we perform a pattern matching
across every samples in the identical view database, but K-NN perform a
matching across every sample in database, includes the different view.
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Figure 3.7: Overall methodology for walking pattern matching in this study.
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(a)

(b)

Figure 3.8: Diagram of two approaches for walking pattern matching based
on features. (a) Approach 1 & 2: Apply Dynamic Time Warping (DTW)
with time-dependent features. (b) Approach 3: Apply Euclidean distance
(EU) with time-independent feature.
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3.4 Calculations & equations

3.4.1 Features extraction

• Joint angles calculation

The procedure of joint angles extraction is the same as described in single-
view gait analysis. We apply law of cosine in Equation (3.7) to extract the
middle angle (θj,i,t,D) of a triangle that perform by connecting three joints,
i.e., p(j−1),i,t,D, pj,i,t,D, and p(j+1),i,t,D together. We calculate the three legs
of a triangle by calculating the Euclidean distance between two points as
Equations 3.4–3.6, and let it be leg a, leg b, and leg c. Finally, the desired
angles are gathered in a vector form as an Equation 3.9.

This experiment separates feature vectors into three parts, i.e., whole,
upper, and lower body, to determine the distance for a matching purpose.
Typically, human gait refers to the motion of lower body parts, i.e., the hip,
knee, and ankle. However, we notice that the whole body has motion while
humans walk, not just the lower parts. Thus, we decide to employ the upper
body feature to study the effect of the body parts on an analysis of the gait.

The θi,t,D variable in Equation (3.9) represents a feature vector of the
whole body. Upper body (θi,t,D

u ) consists of two angles, left and right elbow,
as in Equation (3.10), and the lower body (θi,t,D

l ) consists of the remaining
angles as in Equation (3.11). Where u ∈ U represents the number of joints.
The U = 10 joints for MediaPipe, and 6 joints per each for OpenPose and
AlphaPose.

θi,t,D =
[
θ1,i,t,D...θj,i,t,D...θu,i,t,D

]T
(3.9)

θi,t,D
u =

[
θ1,i,t,Dθ2,i,t,D

]T
(3.10)

θi,t,D
l =

[
θ3,i,t,Dθ4,i,t,D...θj,i,t,D...θu,i,t,D

]T
(3.11)

• Time-dependent correlation calculation

The time-dependent correlation calculation used to calculate the pearson
correlation between each pair of joint angles of the same t, or it is a frame-
by-frame correlation that proposed as frame-by-frame feature descriptor of
the walking pattern. Since the correlation calculation requires at least two
values per a variable, so it is impossible to calculate the correlation between
each θj,i,t,D. Hence, the time-dependent correlation will be the correlation
between each pair of joint angles.
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Table 3.2: Sample of the G and H that store the values of elbow angles and
hip angles to be used for calculating the correlation between them.

G H
θ1,i,t,D θ2,i,t,D

θ3,i,t,D θ4,i,t,D

The pearson correlation uses to measure the linear relationship between
two variables, we let it be G and H. The calculated correlation is [−1, 1],
which implies that two variables are similar and have a negative or positive
linear relationship. Table 3.2 shows an example of the G that stores the
values of elbow angles (θ1,i,t,D and θ2,i,t,D), and H that stores the values of
hip angles (θ3,i,t,D and θ4,i,t,D). Each G and H store the value of a pair of
joint angles that represent left and right parts of each angle.

Next, we calculate the correlation between each pair of joint angles by
using Equation 3.12.

ci,t,DGH =
E[GH] − E[G]E[H]√

E[G2] − E[G]2
√

E[H2] − E[H]2
(3.12)

Then, the final form of time-dependent matrix (ci,t,D) is shown in Equa-
tion 3.13. It stores all ci,t,DGH of v pair of joint angles, where v ∈ V represents
the number of pair of joint angles.

ci,t,D =

c
i,t,D
G1H1

· · · ci,t,DG1Hv
...

. . .
...

ci,t,DGvH1
· · · ci,t,DGvHv

 (3.13)

• Time-independent correlation calculation

In this study, we calculate the time-independent correlation between joint
angles by implementing rank correlation. Based on frame-by-frame human
pose extraction, we extract individual joint angles with respect to the frame
(or time t), resulting in a pattern that is time-dependent. The rank corre-
lation aims to be a time-independent feature that can be used as a feature
descriptor for the overall individual’s pattern.

Spearman correlation is a method to measure dependence between two
ranking variables [46]. It is a non-parametric rank measurement that employs
a monotonic function to define a relationship between them. The calculated
correlation is [−1, 1], which implies that two variables are similar and have a
positive monotonic relationship when it is closer to 1. However, if it is closer
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to −1, the two variables are perfectly opposite and have a negative monotonic
relationship. If a calculated value is close to 0, there is no correlation.

Figure 3.9 shows the way to assign the ranks to θ1,i,t,D and θ2,i,t,D values.
The θj,i,t,D value represents values of joint angle j in time t. Figure 3.9a
presents the values of θ1,i,t,D and θ2,i,t,D before assigning the ranks, and Figure
3.9b presents the rankings of θ1,i,t,D and θ2,i,t,D as X and Y, respectively. The
lowest rank value is assigned to the maximum value, and the highest rank
value is assigned to the minimum value. Then, arrange the assigned ranks
from highest rank to lowest rank values. For the tied ranks, the average
number between them will be assigned to all tied ranks. Figure 3.9a shows
that there are two identical values of θ2,i,D, which actually are orders of 3
and 4, but we assign an order of 3.5 as they are tied ranks.

Figure 3.9: Sample ranking of θ1,i,t,D and θ2,i,t,D for calculating the correlation
between them. (a) is the values before ranking of θ1,i,t,D and θ2,i,t,D. (b) is
the values after ranking of θ1,i,t,D (X ) and θ2,i,t,D (Y ).

The Equation (3.14) employs to calculate the correlation between two
joint angles as ci,DXY , where the E[•] value represents an expected value.

ci,DXY =
E[XY ] − E[X]E[Y ]√

E[X2] − E[X]2
√

E[Y 2] − E[Y ]2
(3.14)

Finally, all ci,DXY between u joint angles are stored in a matrix as shown
in Equation 3.15. The final form of a matrix that stores correlation between
each joint angles of the entire sequences are shown as an example in Table
3.3.

ci,D =

c
i,D
X1Y1

· · · ci,DX1Yu
...

. . .
...

ci,DXuY1
· · · ci,DXuYu

 (3.15)
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Table 3.3: Sample of the calculated individual correlation between each joint
angle.

LElbow RElbow LHip RHip LKnee RKnee
LAnkle
(Front)

RAnkle
(Front)

LAnkle
(Back)

RAnkle
(Back)

LElbow 1.00 0.43 -0.47 -0.32 -0.65 -0.30 -0.31 -0.01 0.10 0.03
RElbow 0.43 1.00 -0.37 0.06 -0.19 0.17 -0.34 -0.46 0.24 0.54
LHip -0.47 -0.37 1.00 0.06 0.58 0.28 0.07 -0.08 -0.23 -0.30
RHip -0.32 0.06 0.06 1.00 0.33 0.86 -0.33 -0.54 0.04 0.45
LKnee -0.65 -0.19 0.58 0.33 1.00 0.47 0.30 -0.34 -0.52 0.08
RKnee -0.30 0.17 0.28 0.86 0.47 1.00 -0.43 -0.61 -0.13 0.41
LAnkle
(Front)

-0.31 -0.34 0.07 -0.33 0.30 -0.43 1.00 0.23 -0.31 0.00

RAnkle
(Front)

-0.01 -0.46 -0.08 -0.54 -0.34 -0.61 0.23 1.00 0.13 -0.57

LAnkle
(Back)

0.10 0.24 -0.23 0.04 -0.52 -0.13 -0.31 0.13 1.00 0.17

RAnkle
(Back)

0.03 0.54 -0.30 0.45 0.08 0.41 0.00 -0.57 0.17 1.00

3.4.2 Distance measurement

Since we proposed two approaches that used time-dependent and time-independent
features, then we employ the Dynamic Time Warping (DTW) and Euclidean
distance (EU).

Dynamic Time Warping (DTW) is an algorithm to measure the distance
between time series, which can be used to find similarities. This algorithm
can handle varying walking speeds and endure time shifts between two se-
quences. This algorithm is versatile and can be used for different recognition
tasks, such as speech and signature recognition, as in the work of C. S. Myers
and L. R. Rabiner [37].

DTW offers the most affordable and optimum option for two sequences
to be aligned, known as the DTW distance (Si,D

DTW ). Figure 3.11 shows an
example of the DTW warping path on the cost matrix of the right hip angle
of reference (y-axis) and target sequences (x-axis) between the same person
(Figure 3.11a) and a different person (Figure 3.11b).

In fact, the EU is able to match the patterns. However, its straightfor-
ward nature makes it unsuitable for analyzing time series data, particularly
when comparing sequences that vary in time or speed. This refers to the
situation where two corresponding points in sequence do not perfectly line
up. Additionally, most of the time series data have different lengths, and
Euclidean distance requires sequences to have the same length, making it
less suitable for variable-length data. This makes DTW more suitable for
use with time series data because it enables time warping to align two pat-
terns, which are walking patterns that vary in time, speed, and sequence
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length. Figure 3.10 presents the different patterns of alignment by Euclidean
distance (Figure 3.10a) and DTW (Figure 3.10b).

By this reason, the time-independent correlation feature is suitable for
EU since the length of two data are fixed to be the same, and the entire
sequences are perfectly lined up. In this situation, the measured distance
from DTW or EU are the same. However, it has no specific reason for DTW
because the time warping characteristic is not required. We conduct this
approach to see that weather the time is a requirement for walking pattern
matching or else.

(a)

(b)

Figure 3.10: Comparison between Euclidean distance and DTW distance
alignments. (a) Direct patterns alignment of Euclidean distance algorithm.
(b) Time warping patterns alignment of DTW algorithm.

3.4.3 Matching algorithm

After determining the distance, we match the person identity in a target with
reference sequences by finding a minimum distance as in Equation (3.16).
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Figure 3.11: Sample of the DTW warping path on the cost matrix of right
hip angle at D = 162◦. (a) DTW warping path with the same person. (b)
DTW warping path with a different person.

Since it has multiple cameras for multi-view gait analysis, we let iDk represent
the matched person identity from each camera perspective (D).

iDk = argmin
ik

(Si,D) (3.16)

3.4.4 Voting algorithm

Since the multi-view databases use multiple cameras, we obtain multiple
matched identities. This implies that the matching accuracy depends on
the camera perspective. We then apply majority voting to aggregate the
identity from each D by selecting the most frequently appearing identity in
every view, as in Figure 3.12a, on the other hand, it is a modal identity. The
’vote’ in Equation (3.17) refers to the mentioned voting algorithm. In fact,
it is simply a mode in statistics [18].

ik = vote{i0◦k , ..., iDk } (3.17)

In the case that it have no modal identity, ik will be selected from the
main camera that achieves highest accuracy, as an example shown in Figure
3.12b. It is a situation when modal identity is unavailable, then it select the
iDk from stared camera to be ik.
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Figure 3.12: Example of the voting situation to describe the procedure to
obtain ik by ’vote’. (a) Example of the case where modal identity is available.
(b) Example of the case where modal identity is unavailable.

3.4.5 Accuracy measurement

We evaluate the proposed method by calculating the accuracy in equations
(3.18) and (3.19) to measure the correctness of the matched identities. Equa-
tion (3.18) is used to calculate the accuracy of the matched identities without
a majority vote, and equation (3.19) is used when applying a majority vote.

Accuracy (without voting) =
ΣiDk,c
|K|

(3.18)

Accuracy (with voting) =
Σik,c
|K|

(3.19)

41



Chapter 4

Experiments and results

This chapter includes all experiment results. This chapter will begin by
introducing the objectives, experiment methods, and datasets used in the
experiments. Then, followed the results obtained from these experiments.

The objectives of this experiment are defined as follows:

• To analyze human motion from the multi-view gait image.

• To improve the human gait analysis method from view-variation prob-
lem.

• To study the effect of the human body part features to an analysis of
the gait.

• To find an importance of each joint feature to an analysis of the gait.

• To find the optimal approach for identification.

In this study, we divide the experiments into 6 parts as follows:

1. The significance of different body parts determination.

2. Robustness of the different body parts features.

3. The significance of different joints determination.

4. Comparative results of different voting algorithms.

5. Comparative results between distance measurement algorithms.

6. Comparative results with prior studies.
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4.1 Experimental conditions

4.1.1 Datasets

• CASIA-B dataset

We apply our method to the CASIA-B dataset [55]. It is a multi-view gait
database that captures 124 subjects. This study implements the sequences
of —K— = 118 subjects. It includes —D— = 11 cameras that equipped at
eye-level. Its perspectives (D) spans from 0◦ to 180◦ with 18◦ intervals, as
shown in Figure 4.1a.

All sequences captured the subjects walking from a starting point to the
marked endpoint with cameras equipped at eye level, as shown in Figure
3.6a. The 0◦ captured a frontal perspective, the 90◦ captured a side perspec-
tive, and the 180◦ captured a rear perspective. It consists of three walking
conditions, i.e., normal walking (NM), walking while carrying a shoulder bag
(BG), and walking while wearing a down coat (CL), as shown in Figures
4.1b–4.1d. In this study, our interest is the NM condition.

There are six sub-datasets containing in the NM condition as NM01–
NM06. We employ the NM01 to be a reference sequences and NM02 to be a
target sequences.

• OUMVLP-Pose dataset

The OUMVLP-Pose is an OU-ISIR gait database with extracted 2D pose
estimation (pji (x, y, t)) by OpenPose and AlphaPose [2]. It contains sequences
of 10,307 subjects walking round trip. This study employ K = 100 subjects
that captured by 14 cameras, which D spanning from 0◦ to 270◦ with 15◦

intervals as shown in Figure 4.2. The cameras are equipped at a higher
position, making the captured images of OUMVLP-Pose similar to the real
surveillance scenarios.

For this dataset, we employ two sub-datasets (OP01 and OP02) that
extract the joints using OpenPose. We use one sub-dataset (OP01) as a
reference sequence and another as a target sequence (OP02). For the sub-
dataset that used AlphaPose to estimate human joints, we employed AP01 as
reference sequences and AP02 as target sequences for matching. To perform
pattern matching, we use two sub-datasets for experimentation, one as a
reference and one as a target. Even if there are more than two sub-datasets,
we select only two of them.

It is crucial to note that we match the reference and target sequences
under the identical view. The reason is that the proposed method is pat-
tern matching, and it has no feature learning state. Basically, accuracy will
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Figure 4.1: Samples of a multi-view CASIA-B gait database [55]. (a) Gait
images from the different camera perspectives. (b) Normal walking condition
(NM sub-dataset). (c) Walking with carrying condition (BG sub-dataset).
(d) Walking with clothing condition (CL sub-dataset)

decrease when compared across different perspectives. Therefore, our main
focus is to overcome the view-variation by integrating the multiple perspec-
tives using voting method.

4.1.2 Parameters adjustment

• Eye-level scenario

We let the NM sub-dataset from CASIA-B multi-view gait database to be
a representative of eye-level scenario in this experiment. It is a scenario
where cameras are equipped at the same level of human’s eyes. In fact, this
scenario is enriched of the gait information, but not practical enough for the
real situation application.

The number of subjects K are divided into three conditions, i.e., 20, 49,
and 118 subjects.

• Surveillance scenario
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Figure 4.2: Capturing setup environment of OUMVLP-Pose [2] and samples
images with extracted human pose estimation. The ”actually set cameras”
implies to the cameras perspectives that capture subjects walking from A to
B, and vice versa on ”virtual set cameras”.

The OUMVLP-Pose dataset takes a representation of surveillance scenario.
Since the cameras are equipped at a higher level, which is the same per-
spective as real surveillance cameras. Generally, this scenario brings more
challenges to the research due to self occlusion issues. However, its perspec-
tive is practical in real-world situation.

We divided |K| into 20, 50, and 100 subjects from the OUMVLP-Pose
dataset.

4.1.3 Pose estimation algorithm

• Eye-level scenario

Since the CASIA-B dataset is provided only the video sequences, MediaPipe
is selected to be a pose estimation algorithm to extract the 2D joints coor-
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dinate in x-axis and y-axis, and 3D joints coordinate in x-axis, y-axis, and
z-axis.

We can extract ten angles by using MediaPipe as a pose estimation algo-
rithm including elbow, hip, knee, front and back ankle, both left and right
sides. The number of in Equation (3.9).

• Surveillance scenario

The OUMVLP-Pose dataset already provides 18 joint landmarks as 2D joint
coordinates in x-axis and y-axis from OpenPose and AlphaPose. Unfortu-
nately, it lack of the video sequences, makes it impossible to apply MediaPipe
with this dataset.

Furthermore, the human landmark estimation model does not allow for
the extraction of ankle angles. Thus, the number of joint angles of this
dataset is |U| = 6 angles.
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4.2 The significance of different body parts

determination

In this experiment, we separate the features into three parts with respect to
the body parts, i.e., whole, upper, and lower body, to study the significance
of the body parts to an analysis of the gait in each scenario.

We propose two approaches that use DTW and EU to match patterns
based on time-dependent and time-independent features, respectively. No-
tably, the results without majority vote refer to the results of the matching
on a single perspective, and with a majority vote is a result after applying
majority vote for views integration.

Figure 4.3: Diagram to describe the process of 3 approaches in the signifi-
cance of different body parts determination experiment.

4.2.1 Approach 1 & 2: Apply Dynamic Time Warping
(DTW) with time-dependent features.

This approach employs DTW with time-dependent features to match the pat-
terns. These features include joint angles (Approach 1) and time-dependent
correlation (Approach 2). It will be separated into three vectors with respect
to the body parts, as shown in Figure 4.3.

• Eye-level scenario

Figure 4.4a presents the accuracy of the matching without majority vote,
which Figures 4.4a–4.4c display the accuracy without majority vote when
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employing the joint angles as a feature of K = 20, 49, and 118 subjects,
and Figures 4.4d–4.4f show the accuracy without majority vote when em-
ploying the time-dependent correlation as a feature of K = 20, 49, and 118
subjects, respectively. Notably, the entire results are shown in tables 5.1-5.2
in Appendix.

Figure 4.5 presents the accuracy with majority vote when employing joint
angles as a feature (Figure 4.5a), and time-dependent correlation as a feature
(Figure 4.5b).

In this scenario, we found that the accuracy of whole body and upper
body parts increases and becomes stable when D ≥ 54◦, as shown in Figure
4.4a–4.4c. It indicates that gait information is enriched from these perspec-
tives. Moreover, increasing the number of K affects the decreasing accuracy.
Normally, noise or irrelevant data will be normalized when the number of
samples is increased. However, it might suppress individual data by treating
it as noise, and it reduces the accuracy of the matching.

Figure 4.5a shows that the upper body part achieves the highest accuracy,
but it is far enough to conclude that the upper part is the most important
part in gait recognition since it includes only two angles. Generally, it is
impossible to identify people by observing only their arm swings. This could
be due to an outlier or data overfitting.

Figures 4.4d–4.4f and Figure 4.5b indicate that the time-dependent corre-
lation fails to identify the person’s identity. This is because the data points
are not varied enough to represent the relationships and associations be-
tween them. The upper body, consisting of only two angles, is incapable of
determining the time-dependent correlation between two data points. Fur-
thermore, when combining both features, i.e., the joint angles and time-
dependent correlation, it is unable to improve the performance and accuracy
of the matching, as shown in Figure 4.6. According to the time-dependent
correlation itself, it fails to identify people, making it useless when combined
with another feature. The entire result is shown in table 5.3 in Appendix.

Additionally, we found that the accuracy of the matching is increased
when employing the 3D joints extracted from MediaPipe (Figure 4.7b). Com-
pared to 2D joints, the accuracy of 118 subjects is increased from 48% to 66%
(increased relatively by 37.5%). For 3D joint angles, the whole body part
is the most reliable features as same as 2D joints. The entire result for 3D
feature is presented in table 5.5 in Appendix.

In this case, the whole body part of the joint angles feature is significant
for identifying identities based on the walking pattern matching.

• Surveillance scenario
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This scenario is critical, but it presents the greatest challenge to gait analy-
sis because it is similar to the real-world situation where cameras are mostly
equipped in higher positions (over the head of a human). This scenario holds
significant importance in the study of human gait patterns. In this experi-
ment, the OUMVLP-Pose dataset will be representative of this scenario.

Figures 4.8a–4.8f show the accuracy without majority vote on the OUMVLP-
Pose dataset that joints extracted by OpenPose. Figures 4.8a–4.8c present
the accuracy without majority vote when using joint angles as a feature, and
Figures 4.8d–4.8f present the accuracy without majority vote when using
time-dependent correlation as a feature of 20, 50, and 100 subjects.

Figures 4.8a–4.8c suggest that the joint angles of the lower body achieve
the most reliable and consistent part. It might be because in this scenario,
the lower body parts are less occluded by the upper body parts, which makes
them more clearly visible, unlike in the eye-level scenario. Unfortunately, Fig-
ures 4.8d–4.8f indicate that approach 2 is unable to identify person’s identity.

The results, with a majority vote that shown in Figure 4.9a, imply that
the lower body feature of joint angles serves better in pattern matching. In
addition, it is less variable in the number of K compared with the whole and
upper body features. Since the whole body feature includes both upper and
lower body parts, but the upper body is not significant to improve accuracy
and is inconsistent, the whole body feature becomes unreliable and drastically
affected by the number of K, similar to the upper body feature. In this
case, the lower body joint angles feature is the most significant feature for
identifying a person’s identity based on walking pattern matching.

Unfortunately, the time-dependent correlation also fails to identify peo-
ple, especially when using OpenPose (in Figure 4.9b), for the same reason
described in the eye-level scenario. Figure 4.10 presents the results after com-
bining both joint angles and time-dependent correlation together. However,
it is not significant enough to improve the match.

Additionally, Figures 4.11a–4.11f show the accuracy without a major-
ity vote in which joints were extracted by AlphaPose. Figures 4.11a–4.11c
present the accuracy without majority vote when using joint angles as a fea-
ture, and Figures 4.11d–4.11f present the accuracy without majority vote
when using time-dependent correlation as a feature of 20, 50, and 100 sub-
jects, respectively. Figures 4.12a and 4.12b display the accuracy with a ma-
jority vote based on the extracted joints from AlphaPose when using joint
angles and time-dependent correlation as a feature, respectively.

For this case, the whole body is the most significant part, unlike the
OpenPose case. Similarly, approach 2 fails to identify person’s identity, even
though we combine it with joint angles, it still unable to use (see the results
in Figure 4.13). The results for OUMVLP-Pose can be found in tables 5.7
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and 5.14

Figure 4.4: Accuracy of the matching without majority vote on NM sub-
dataset. These results are from employing 2D joints extracted by MediaPipe.
(a) Accuracy of the joint angles being used as a feature of 20 subjects. (b)
Accuracy of the joint angles being used as a feature of 49 subjects. (c)
Accuracy of the joint angles being used as a feature of 118 subjects. (d)
Accuracy of the time-dependent correlation being used as a feature of 20
subjects. (e) Accuracy of the time-dependent correlation being used as a
feature of 49 subjects. (f) Accuracy of the time-dependent correlation being
used as a feature of 118 subjects.
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(a)

(b)

Figure 4.5: Accuracy of the matching with majority vote on NM sub-dataset.
These results are from employing 2D joints extracted by MediaPipe. (a)
Accuracy with majority vote of the joint angles being used as a feature of 20,
49 and 118 subjects. (b) Accuracy with majority vote of the time-dependent
correlation being used as a feature of 20, 49 and 118 subjects.
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Figure 4.6: Accuracy of the matching with majority vote on NM sub-dataset.
These results are from employing 2D joints extracted by MediaPipe. (a) Ac-
curacy with majority vote of the joint angles and time-dependent correlation
features being used of 20 subjects (b) Accuracy with majority vote of the
joint angles and time-dependent correlation features being used of 49 sub-
jects (c) Accuracy with majority vote of the joint angles and time-dependent
correlation features being used of 118 subjects. (d) Accuracy with majority
vote of 20, 49 and 118 subjects.
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Figure 4.7: Accuracy of the matching with majority vote on NM sub-dataset.
These results are from employing 3D joints extracted by MediaPipe. (a)
Accuracy without majority vote of the joint angles being used as a feature of
20 subjects (b) Accuracy without majority vote of the joint angles being used
as a feature of 49 subjects (c) Accuracy without majority vote of the joint
angles being used as a feature of 118 subjects. (d) Accuracy with majority
vote of 20, 49 and 118 subjects.
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Figure 4.8: Accuracy of the matching without majority vote on OUMVLP-
Pose dataset. These results are from employing 2D joints extracted by Open-
Pose. (a) Accuracy of the joint angles being used as a feature of 20 subjects.
(b) Accuracy of the joint angles being used as a feature of 50 subjects. (c)
Accuracy of the joint angles being used as a feature of 100 subjects. (d)
Accuracy of the time-dependent correlation being used as a feature of 20
subjects. (e) Accuracy of the time-dependent correlation being used as a
feature of 50 subjects. (f) Accuracy of the time-dependent correlation being
used as a feature of 100 subjects.
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(a)

(b)

Figure 4.9: Accuracy of the matching with majority vote on OUMVLP-Pose
dataset. These results are from employing 2D joints extracted by OpenPose.
(a) Accuracy with majority vote of the joint angles being used as a feature
of 20, 50 and 100 subjects. (b) Accuracy with majority vote of the time-
dependent correlation being used as a feature of 20, 50 and 100 subjects.
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Figure 4.10: Accuracy of the matching with majority vote on OUMVLP-Pose
dataset. These results are from employing 2D joints extracted by OpenPose.
(a) Accuracy with majority vote of the joint angles and time-dependent cor-
relation features being used of 20 subjects (b) Accuracy with majority vote of
the joint angles and time-dependent correlation features being used of 50 sub-
jects (c) Accuracy with majority vote of the joint angles and time-dependent
correlation features being used of 100 subjects. (d) Accuracy with majority
vote of 20, 50 and 100 subjects.

56



Figure 4.11: Accuracy of the matching without majority vote on OUMVLP-
Pose dataset. These results are from employing 2D joints extracted by Al-
phaPose. (a) Accuracy of the joint angles being used as a feature of 20
subjects. (b) Accuracy of the joint angles being used as a feature of 50 sub-
jects. (c) Accuracy of the joint angles being used as a feature of 100 subjects.
(d) Accuracy of the time-dependent correlation being used as a feature of 20
subjects. (e) Accuracy of the time-dependent correlation being used as a
feature of 50 subjects. (f) Accuracy of the time-dependent correlation being
used as a feature of 100 subjects.
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(a)

(b)

Figure 4.12: Accuracy of the matching with majority vote on OUMVLP-Pose
dataset. These results are from employing 2D joints extracted by AlphaPose.
(a) Accuracy with majority vote of the joint angles being used as a feature
of 20, 50 and 100 subjects. (b) Accuracy with majority vote of the time-
dependent correlation being used as a feature of 20, 50 and 100 subjects.
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Figure 4.13: Accuracy of the matching with majority vote on OUMVLP-Pose
dataset. These results are from employing 2D joints extracted by AlphaPose.
(a) Accuracy with majority vote of the joint angles and time-dependent cor-
relation features being used of 20 subjects (b) Accuracy with majority vote of
the joint angles and time-dependent correlation features being used of 50 sub-
jects (c) Accuracy with majority vote of the joint angles and time-dependent
correlation features being used of 100 subjects. (d) Accuracy with majority
vote of 20, 50 and 100 subjects.
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4.2.2 Approach 3: Apply Euclidean distance (EU) with
time-independent feature.

This approach uses a time-independent feature, eliminating the need for time-
warping during matching. As a result, we use direct matching (EU) to match
the patterns. The only feature for this approach is a time-independent cor-
relation, which will be separated into three vectors with respect to the body
parts as shown in Figure 4.3.

• Eye-level scenario

Figure 4.14 presents the accuracy with and without majority vote on NM
sub-dataset of CASIA-B. Figures 4.14a–4.14c show the accuracy without
majority vote, and Figure 4.14d show the accuracy with majority vote.

The whole body feature consistently outperforms other features in terms
of accuracy, both with and without voting. Unfortunately, the upper body
feature proves ineffective in identifying individuals. This is because, despite
an increase in the number of data points, the upper body still only includes
two angles. It indicates that even if we increase the number of data points in
each variable to make it possible for correlation calculation, the results prove
that to represent a walking pattern, it requires as many variables (or joint
angles). This also answers the question of why the whole body is the most
significant part, even if the upper body fails, unlike in approach 1.

However, time-independent correlation is still affected by the variations
of K, and the accuracy is reduced when the number of K is increased. Fur-
thermore, the accuracy differs depending on the perspective. Even though
it seems like a reliable feature, it appears to suffer the most with camera
perspectives.

When employing the 3D joints for calculating the time-independent cor-
relation, we found that the accuracy slightly decreased from 74% to 67% (it
decreased by 9.46%) on 118 subjects (see Figure 4.15d). This might be be-
cause of the error in joints estimation, especially the z-axis. Since MediaPipe
uses DNN to estimate the z-axis of the human joints on a single image from
a single perspective, it requires at least stereo vision for maximum reliabil-
ity. On top of that, the whole body of the 3D feature achieves the highest
accuracy, yet is more consistent than the lower body feature.

To conclude this, the whole body feature of time-independent correlation
is the most significant feature in this scenario.

• Surveillance scenario
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Figure 4.16 presents the accuracy without and with majority vote on the
OUMVLP-Pose dataset, which applies OpenPose for joints extraction. Fig-
ures 4.16a–4.16c show the accuracy without a majority vote, and Figure
4.16d show the result with a majority vote.

Figure 4.17 shows the accuracy without and with a majority vote on the
OUMVLP-Pose dataset when applying the AlphaPose to extract the joints.
Figures 4.17a–4.17c show the accuracy without a majority vote, and Figure
4.17d show the result with a majority vote.

In this scenario, the whole body is the best part of the feature for walking
pattern matching, just as in the eye-level scenario, for the same reasons
described in the previous section.

However, its weakness is that it is more affected by variations in camera
perspectives. Moreover, the result with a majority vote suggests that the
number of K dramatically affects the accuracy, as the accuracy drastically
decreased when the number of K increased. It implies that by using time-
independent correlation as a feature representative of walking pattern, it
loses fine detail that is meaningful for distinguishing people. Furthermore,
it suggests that this feature suffers more from outliers and data overfitting
than using joint angles directly, especially in this scenario, which is the most
challenging for gait analysis.

Let us conclude that the whole body part of the time-independent corre-
lation is the most significant feature in this scenario.
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Figure 4.14: Accuracy of the matching without and with majority vote on
NM sub-dataset. These results are from employed time-independent corre-
lation based on 2D joints extracted by MediaPipe. (a) Accuracy without
voting of the time-independent correlation being used as a feature of 20 sub-
jects. (b) Accuracy without voting of the time-independent correlation as a
feature of 49 subjects. (c) Accuracy without voting of the time-independent
correlation being used as a feature of 118 subjects. (d) Accuracy with voting
of the time-independent correlation being used as a feature of 20, 49, and
118 subjects.
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Figure 4.15: Accuracy of the matching without and with majority vote on
NM sub-dataset. These results are from employed time-independent corre-
lation based on 3D joints extracted by MediaPipe. (a) Accuracy without
voting of the time-independent correlation being used as a feature of 20 sub-
jects. (b) Accuracy without voting of the time-independent correlation as a
feature of 49 subjects. (c) Accuracy without voting of the time-independent
correlation being used as a feature of 118 subjects. (d) Accuracy with voting
of the time-independent correlation being used as a feature of 20, 49, and
118 subjects.
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Figure 4.16: Accuracy of the matching without and with majority vote on
OUMVLP-Pose dataset. These results are from employed These results are
from employed time-independent correlation based on 2D joints extracted
by OpenPose. (a) Accuracy without voting of the time-independent correla-
tion being used as a feature of 20 subjects. (b) Accuracy without voting of
the time-independent correlation as a feature of 50 subjects. (c) Accuracy
without voting of the time-independent correlation being used as a feature of
100 subjects. (d) Accuracy with voting of the time-independent correlation
being used as a feature of 20, 50, and 100 subjects.

64



Figure 4.17: Accuracy of the matching without and with majority vote on
OUMVLP-Pose dataset. These results are from employed These results are
from employed time-independent correlation based on 2D joints extracted by
AlphaPose. (a) Accuracy without voting of the time-independent correla-
tion being used as a feature of 20 subjects. (b) Accuracy without voting of
the time-independent correlation as a feature of 50 subjects. (c) Accuracy
without voting of the time-independent correlation being used as a feature of
100 subjects. (d) Accuracy with voting of the time-independent correlation
being used as a feature of 20, 50, and 100 subjects.
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4.3 Robustness of the different body parts

features

In this experiment, we reduced the number of camera perspectives (D) to
half in order to analyze the robustness of the body part features. For the
eye-level scenario, we reduce the number of D from 11 to 5 and 3, which are
0◦, 36◦, 90◦, 144◦, and 162◦, and 0◦, 54◦, and 144◦, respectively. We also
reduce the number of D from 14 to 7 and 5 for the surveillance scenario,
where 15◦, 30◦, 60◦, 90◦, 180◦, 225◦, and 255◦, and 15◦, 30◦, 75◦, 180◦, and
225◦ are selected.

This section provides the discussion from employing the whole body fea-
ture based on the approach 1 and approach 3, because approach 2 fails to
identify person.

4.3.1 Eye-level scenario

In this scenario, we reduce |D| from 11 to 5 (0◦, 36◦, 90◦, 144◦, and 162◦)
and 3 (0◦, 54◦, and 144◦), respectively.

Figure 4.18(a) shows the accuracy from using 2D whole body feature that
extracted by MediaPipe. After reduce |D| to 5 and 3, accuracy from approach
1 is reduced by 15.20% and 37.5%, respectively. Meanwhile, the accuracy of
approach 3 reduced by 17.57% and 29.72%. This indicates that the accuracy
from each D of approach 3 is higher than approach 1, makes it become more
robust than approach 1 when reduces |D|.

In contrast to the accuracy from implementing 3D feature, as in Figure
4.18(b). In this case, the accuracy of approach 1 is reduced by 15.15% and
28.79%, while approach 3 is reduced by 29.9% and 43.28%. It suggests that
approach 1 become more robust than approach 3 in this situation. For these
results, we are assured that approach 1 requires 3D features. It shows that
the 3D feature is more robust than the 2D feature. It suggests that even
though the estimated z-axis from MediaPipe might not be as accurate as
the stereo vision technique, it can improve the robustness and reliability of
the extracted joints, resulting in more consistent results from using these
features. However, 2D feature is suitable to apply with approach 3.

4.3.2 Surveillance scenario

For this scenario, we reduce the number of D from 14 to 7, where D = 0◦,
30◦, 60◦, 90◦, 195◦, 225◦, and 255◦ are selected.

Figure 4.19(a) presents the accuracy from OUMVLP-Pose dataset that
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applied OpenPose as a joint estimator. After reduced |D| to 7 and 5, accuracy
of approach 1 reduced by 25% and 33.33%, respectively. While the accuracy
of approach 3 is reduced by 21.28% and 48.94%. Even though the accuracy
from both approaches become exact value, but the reduction rate of approach
1 is less than approach 3. It suggests that approach 1 is more robust to this
variation in this case.

Figure 4.19(b) shows the accuracy of OUMVLP-Pose dataset that used
AlphaPose as a pose estimator. We found that the reduction rate of approach
1 after reduced |D| to 7 and 5 are 20.76% and 32.08%, while approach 3 are
20% and 35%. The result implies that approach 1 is more robust to this
variation according to lower reduction rate, even though value is slightly less
than approach 3.

Unfortunately, we cannot discuss the result from 3D feature in this sce-
nario due to the original data provided only 2D joints in x-axis and y-axis
without z-axis. However, the estimators itself are able to extract 3D joints.
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(a)

(b)

Figure 4.18: Accuracy of the matching with majority vote on NM sub-dataset
from employing whole body joints (2D) when |D| = 11, 5, and 3. (a) 2D joints
extracted by MediaPipe. (b) 3D joints extracted by MediaPipe.
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(a)

(b)

Figure 4.19: Accuracy of the matching with majority vote on OUMVLP-
Pose dataset when |D| = 14, 7, and 5. (a) Joints extracted by OpenPose.
(b) Joints extracted by AlphaPose.
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4.4 The significance of different joints deter-

mination

In this experiment, we will remove each pair of joints one-by-one from the
feature vectors. For example, we would like to remove a pair of elbow angles
from Equation (3.9) to observe its significance. The feature vector after

removing a pair of elbow angles will be θi,t,D =
[
θ3,i,t,D...θj,i,t,D...θu,i,t,D

]T
.

Additionally, we will use the feature vector after removing the pair of desired
joints to further calculate the correlation feature.

Notably, we calculate the difference between baseline percentages and the
percentage after removing joints by using Equation 4.1.

Difference =
Accremoved − Accbaseline

Accbaseline
× 100 (4.1)

Where Accbaseline is the accuracy from whole body features of 118 sub-
jects, and we let it be a baseline accuracy. The Accremoved represents the
accuracy after removing the desired joints of 118 subjects.

4.4.1 Approach 1: Apply Dynamic TimeWarping (DTW)
with time-dependent features.

• Eye-level scenario

In this scenario, the results from 2D joints in table 4.1 and 3D joints in table
4.2 indicate that the upper body is significant for identifying the identity. It
is because most of the features used in this study belong to the lower part,
and even if one of them is removed, they associate with each other. However,
the upper body also plays a crucial role in this particular scenario. Hence,
a removed elbow will lose significant information needed to distinguish a
person.

Furthermore, the back ankle appears to be the least significant compo-
nent. The results show that removing the back ankle can increase the accu-
racy by 12% and 2.6% from the base line by using 2D and 3D joint coordi-
nates, respectively. This is because when performing a matching, the back
ankle is the least changing angle that may be treated as noise, so removing
this part leads to an increase in accuracy. Unfortunately, we are unable to
identify the exact reason due to insufficient data for experimenting because
we have only the CASIA-B dataset.

For this scenario, we arrange the ranking order of the most significant to
least significant joints as follows:
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1. Elbow

2. Front ankle

3. Knee

4. Hip

5. Back ankle

Table 4.1: Accuracy with majority vote on NM sub-dataset of CASIA-B after
removing each pair of joint angle (MediaPipe 2D).

Baseline Elbow Hip Knee Ankle (f) Ankle (b)

48% 40% 47% 45% 42% 60%

Difference -16.67% -2.08% -6.25% -12.5% +25%

Table 4.2: Accuracy with majority vote on NM sub-dataset of CASIA-B after
removing each pair of joint angle (MediaPipe 3D).

Baseline Elbow Hip Knee Ankle (f) Ankle (b)

66% 59% 64% 65% 62% 69%

Difference -10.61 % -3.03 % -1.52 % -6.06 % +4.55 %

• Surveillance scenario

According to the results shown in tables 4.3 and 4.4, the hip part is the
most significant in this scenario. It implies that the hip is the most accurate
feature to make patterns more distinguishable. It might be because of the
hip located at the center of the body, and even though the perspective of
the camera changed, it does not affect much. In fact, knees and elbows are
also important, but in this scenario, it easily caused the wrong estimation of
their location. The result suggests that the error from estimating the elbow
of OpenPose is higher than that of Alphapose, which agrees with the result
shown in Figure 4.9 that the upper part feature extracted by OpenPose is
unreliable.

In this scenario, we rank the most significant to least significant joints
based on the OpenPose estimator as follows:
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1. Hip

2. Knee

3. Elbow

Additionally, the ranking order of the joints based on AlphaPose are
ordered as follow:

1. Hip

2. Elbow

3. Knee

Table 4.3: Accuracy with majority vote on OUMVLP-Pose dataset after
removing each joint angle (OpenPose).

Baseline Elbow Hip Knee

36% 47% 32% 37%

Difference +30.56 % -11.11 % +2.78 %

Table 4.4: Accuracy with majority vote on OUMVLP-Pose dataset after
removing each joint angle (AlphaPose).

Baseline Elbow Hip Knee

53% 48% 47% 53%

Difference -9.43 % -11.32 % 0 %

4.4.2 Approach 3: Apply Euclidean distance (EU) with
time-independent feature.

• Eye-level scenario

In this scenario, tables 4.5 and 4.6 show that the most significant part is the
hip, and the least significant part is the back ankle on both 2D and 3D joints
from the MediaPipe estimator. It indicates that the hip is a center part
that connects each joint together, as the correlation will connect joints by
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finding the relationship between them. If we remove the hip, the relationship
between the remaining parts becomes insignificant, making it impossible to
identify individuals.

Moreover, the upper body part is an important part in this scenario,
but it is not the first priority for the time-independent correlation feature.
It is because this feature treats the upper body as a support for the lower
body. The other lower parts achieve lower significance than the elbow because
most of them belong to the lower body, which makes them associate with
each other. Additionally, the results suggest that it is a better choice to not
include the back ankle. Eliminating it can enhance the precision of both
approaches.

In this scenario, the ranking order for the most significant to least signif-
icant joints is as follows:

1. Hip

2. Elbow

3. Front ankle

4. Knee

5. Back ankle

Table 4.5: Accuracy with majority vote on NM sub-dataset of CASIA-B
after removing each pair of joint angle for calculating the time-independent
correlation (MediaPipe 2D).

Baseline Elbow Hip Knee Ankle (f) Ankle (b)

74% 58% 48% 64% 61% 79%

Difference -20.99% -34.73% -14.11% -17.54% +6.49%

• Surveillance scenario

The result from OpenPose in table 4.7 suggests that hip is the most important
part for this estimator, as the accuracy is drastically decreased after removing
it. Moreover, this result indicates that the elbow, which is a representative of
the upper body, is supporting the lower body. Removing the elbow resulted
in a 30% decrease in accuracy. This result related to Figure ?? shows that
only the lower body is insufficient for identifying people. However, the knee
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Table 4.6: Accuracy with majority vote on NM sub-dataset of CASIA-B
after removing each pair of joint angle for calculating the time-independent
correlation (MediaPipe 3D).

Baseline Elbow Hip Knee Ankle (f) Ankle (b)

66% 59% 64% 65% 62% 69%

Difference -10.61 % -3.03 % -1.52 % -6.06 % +4.55 %

appears to be the least significant part when using OpenPose. It is because
the lower body consists of parts, and the hip takes more weight than the
knee. Although the knee is the least significant part, its inclusion is crucial
as its removal results in a decrease in accuracy.

The result from using AlphaPose in table 4.8 indicates a difference. It
implies that the knee is the most important part, followed by the hip and
the elbow. This means the knee is the main part that connects each joint
together. Furthermore, the elbow serves as a vital support for the lower
body. It achieves the least significance but does not suggest being discarded.
It is because the accuracy is decreased by 27% after the elbow is removed.

In this scenario, the ranking order for the most significant to least signif-
icant joints based on OpenPose is as follows:

1. Hip

2. Elbow

3. Knee

Additionally, the ranking order for the most significant to least significant
joints based on AlphaPose is as follows:

1. Knee

2. Hip

3. Elbow
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Table 4.7: Accuracy with majority vote on OUMVLP-Pose dataset after
removing each pair of joint angle for time-independent correlation calculation
(AlphaPose).

Baseline Elbow Hip Knee

47% 17% 15% 21%

Difference -63.38 % -68.09 % -55.32 %

Table 4.8: Accuracy with majority vote on OUMVLP-Pose dataset after
removing each pair of joint angle for time-independent correlation calculation
(AlphaPose).

Baseline Elbow Hip Knee

60% 33% 30% 28%

Difference -45 % -50 % -53.33 %
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4.5 Comparative results of different voting

algorithms

This section will discuss on the comparison between majority vote and weighted
vote to find a proper voting algorithm for our method. Notably, the time-
dependent correlation feature fails to identify people due to insufficient data
variations. Neither a majority vote nor a weighted vote can improve the re-
sults from this feature. Hence, we will discuss only the results from approach
1 and approach 3.

Figure 4.20 presents a methodology of our weighted vote. After matching,
the weighted voting is simply starting from employ the accuracy of each D
(AccD) to be its weight as wD by the following equation:

wD =
AccD∑
AccD

(4.2)

Next, calculate the score of each D, called scorei
D
k , by a following equa-

tion:

scorei
D
k = wD × p (4.3)

where p is a binary score that refer to true or false as shown below:

p =

{
1, if correct iDk

0, otherwise
(4.4)

After that, we find the total score of every perspectives as:

scoreik =
∑

scorei
d
k (4.5)

Finally, the matched person (ik) will be selected by maximum scoreik as
follows:

ik = max(scoreik) (4.6)

The results in Figures 4.21–4.22 present the comparative results between
majority vote and weighted vote on both approaches. Notably, the threshold
for weighted vote is set to 0.1, which produces the best results. It indicates
that the weighted voting algorithm is unsuitable to apply with our method in
both scenarios. It is because it assigns weights that depend on the accuracy
of each camera. If the AccD is high enough, this voting technique is efficient.
However, the AccD produced by our proposed method varies depending on
each D. Some perspectives achieve very high AccD but fail on the others.
By this reason, threshold required to be small, but it inefficient.
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For this reason, we select a simple majority vote to integrate as much
information as possible to enhance the accuracy of the matching. In fact,
the majority vote is not the best algorithm, but at the initial point, it proved
to be more suitable than complicated weighted voting.

Figure 4.20: Diagram to describe the methodology of weighted voting.
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(a)

(b)

Figure 4.21: Accuracy of the matching with majority vote on NM sub-
dataset. These results are from employed 2D joints extracted by MediaPipe.
(a) Accuracy with majority vote from employing 2D joints. (b) Accuracy
with majority vote from employing 3D joints.
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(a)

(b)

Figure 4.22: Accuracy of the matching with majority vote on OUMVLP-
Pose dataset. (a) Accuracy with majority vote from employing 2D joints by
OpenPose. (b) Accuracy with majority vote from employing 2D joints by
AlphaPose.
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4.6 Comparative results between distance mea-

surement algorithms

In this experiment, we compare the DTW and EU methods to determine
which one is most suitable for walking pattern matching. As described in
Chapter 3, approach 1 employs DTW to match the time-dependent features,
which are joint angles and time-dependent correlation. However, insufficient
data variations prevent the application of time-dependent correlation for pat-
tern matching. Hence, we will employ only joint angles. For approach 3, the
EU employs the time-independent correlation feature. We will use the exact
video sequence for matching, one will be an original sequence, and the other
will be the same sequences with the starting time shifted by 0, 5, 10, 15, and
20 frames.

4.6.1 Eye-level scenario

The experiment conditions of this scenario are as following:

• The average steps per sec. = 1.47 steps/sec.

• The frame rate = 8 frames/sec.

• Number of step per frame = 0.183 step/frame

Hence, the step shifted conditions will be:

• 5 frames shifted = 0.92 step shifted.

• 10 frames shifted = 1.83 step shifted.

• 15 frames shifted = 2.75 step shifted.

• 20 frames shifted = 3.66 steps shifted.

Figures 4.23a and 4.23b show the results with majority vote of the match-
ing between original sequences and the same sequences with time shifted.
This allows for a comparison between approach 1 (DTW with joint angles
feature) and approach 3 (EU with time-independent correlation feature).

This scenario enhances gait information by clearly displaying the entire
body. When compared to exact sequences, the time delay has a minimal im-
pact. Still, results show that the performance of approach 3 is significantly
reduced when we increase the frame shift. Figure ??b shows that the accu-
racy of approach 3 is starting to reduce when time is shifted by 15 frames.
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It implies that approach 1 is better at handling this problem, which suggests
that approach 1 performs better when a person walks at a different speed and
starting position. Meanwhile, approach 3 may treat the exact person as oth-
ers when their walking speed and starting position are changed, resulting in
a misidentification. However, both approaches are not much different when
we apply a majority vote, as it will enhance the performance of the matching
results, but the accuracy of approach 1 is still higher than approach 3 when
shifting 20 frames. Moreover, approach 1 performs better without specifying
the starting point and normalizing the time of the data, unlike approach 3,
which requires time normalization by rearranging the data from the entire
sequence and reordering it according to its ranks instead of using the original
feature that includes time information.

4.6.2 Surveillance scenario

The experiment conditions of this scenario are as following:

• The average steps per sec. = 1.47 steps/sec.

• The frame rate = 25 frames/sec.

• Number of step per frame = 0.059 step/frame

The step shifted conditions for this scenario:

• 5 frames shifted = 0.29 step shifted.

• 10 frames shifted = 0.59 step shifted.

• 15 frames shifted = 0.88 step shifted.

• 20 frames shifted = 1.18 steps shifted.

Figure 4.24a shows the comparative results of delaying the starting time
for 0, 5, 10, 15, and 20 frames between approaches 1 and 3 that employ the
features based on the estimated joints from OpenPose. Furthermore, Figure
4.24b shows the comparative results from employing the features based on
the AlphaPose estimator.

The results from this scenario confirm that approach 1 is the best at
handling the time series data, especially for 15 frames. Despite the uneven
pattern lengths and significant reduction in matching information, approach
1 outperforms approach 3. The 20 frames shifted imply we remove almost the
entire sequence, the accuracy is dramatically reduced on both approaches. It
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suggests that approach 3 performs best when everyone is walking at the same
speed. However, this scenario is ideal, indicating that approach 3 is more
suitable for application under controllable conditions, unlike in a surveillance
setting. These results show that approach 1 is the best at serving the walking
pattern in a real-world scenario where data normalization is a challenge and
it is impossible to specify the starting point, which can enhance the system’s
flexibility.
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(a)

(b)

Figure 4.23: Accuracy of the matching after shifting the time with majority
vote on NM sub-dataset. (a) Result from employing 2D joints. (b) Result
from employing 3D joints.
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(a)

(b)

Figure 4.24: Accuracy of the matching after shifting the time with major-
ity vote on OUMVLP-Pose dataset. (a) Result from employing 2D joints
extracted by OpenPose. (b) Result from employing 2D joints extracted by
AlphaPose.
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4.7 Comparative results with prior studies

This section shows comparative results with existing studies. We select
each of the appearance-based and model-based approaches for comparison.
The appearance-based approach requires more complicated features than the
model-based approach, and it achieves an impressive result. Meanwhile, the
model-based approach requires a more complex model but employs simpler
features, such as joints from skeleton landmarks. It achieves a competitive
result but is still lower than the appearance-based approach. We then se-
lect both approaches for comparison to study the process and the differences
between them and ours. The CSTL [24] is a representative of the appearance-
based approach, and GaitGraph2 [50] is a representative of the model-based
approach, which is employed to analyze the gait with the same condition as
ours.

We let NM01 be the training set and NM02 be the test set. The gallery
and probe in the test set will have the same data as ours, as we do not
separate the test set into gallery and probe. Our method will match the data
in NM02 with the data in NM01 to select the matched person. We either
separate the number of subjects into 20, 49, and 118 subjects for both the
training and test sets. For the 20 subjects, we train 20 subjects of NM01 and
test with 20 subjects of NM02, and do the same with 49 and 118 subjects.
For the other parameters, we use the original values as described in their
papers and specified in the code, but we adjust the iteration to be 20,000
and 2,000 for CSTL and GaitGraph2, respectively. The original iteration for
CSTL was 100,000, and the GaitGraph2 iteration was 500. We selected the
result from approach 1 using the whole body joint angle feature (without
the back ankle) based on the 3D joints from MediaPipe for comparison, the
approach 2 uses the results based on 2D joints from MediaPipe. All results
from both approaches are the best case for each.

Table ?? shows the comparative results between CSTL, GaitGraph2, and
ours. It shows that our approach 1 performs better than CSTL on 49 and
118 subjects, and our approach 2 method achieves higher accuracy than
CSTL. It suggests that our method has higher recognition performance on
the smaller dataset. We need two sub-datasets to serve as a reference and tar-
get for matching, which are similar to the training and testing sets for CSTL.
Furthermore, accuracy dropped significantly when the number of subjects
changed. It indicates that CSTL requires more data and higher computa-
tional time to tune their model for consistency and impressive results, as
presented in their paper. Additionally, the appearance-based approach lacks
structural features and contains irrelevant gait features that may mislead the
model, making it unsuitable to apply in a real-world situation.
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When compared to our approach 1, GaitGraph2 achieves the highest
accuracy. However, the accuracy of 49 subjects from Approach 2 is slightly
higher than GaitGraph2. They utilized the multi-branches features, i.e.,
joints, motion, and bones, to recognize people, but we use the joint angles
feature for identification. This suggests a variation in the number of features,
and it excludes the process of feature learning. However, there is a slight gap
between ours and GaitGraphs2. Furthermore, our method provides more
flexibility to the users, especially when they wish to make changes to the
quantity in the database, such as deleting or adding people.

Additionally, tables 4.10 and 4.11 present the comparative results of Gait-
Graph2 and ours on the OUMVLP-Pose dataset. This dataset provides the
joint coordinates that were extracted by OpenPose and AlphaPose. The
results show that our method outperforms GaitGraph2 on this dataset, es-
pecially for Approach 2. Approach 1 achieves competitive results when em-
ploying the joints extracted by OpenPose, and it outperforms GaitGraph2
on 20 and 100 subjects when utilizing the joints extracted by AlphaPose.
In fact, this dataset only allows us to calculate six angles, i.e., the elbow,
hip, and knee on the left and right sides, because it lacks a foot landmark.
Thus, we lost the one piece of information that is crucial for walking pat-
terns, making identification from three parts of the body more challenging.
However, the result shows our method has great potential for application in
surveillance scenes.

Approach 2 of our method appears to have higher accuracy than Ap-
proach 1, but its consistency is lower. Consequently, increasing the number
of subjects significantly reduces the accuracy, in contrast to approach 1,
which effectively handles this variation. It implies that approach 2 is more
sensitive to outliers and noises than approach 1. Moreover, approach 1 can
better handle the walking speed variation than approach 2. By the way,
these results prove that pattern matching has an impressive ability to per-
form gait analysis for identification, especially when a small amount of data
is available. In addition, it necessitates a non-complex environmental condi-
tion to perform this task, unlike DNNs. It suggests that pattern matching is
an affordable alternative method for accessing the identification task.
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Table 4.9: Comparative rank-1 accuracy on NM sub-dataset of the CASIA-B
from CSTL [24], GaitGraph2 [50], and ours.

Number of subjects

20 49 118

CSTL 86.09% 72.38% 65.09%
GaitGraph2 91.17% 87.18% 82.00%
Ours (Approach 1) 80.00% 74.00% 69.00%
Ours (Approach 2) 90.00% 88.00% 74.00%

Table 4.10: Comparative rank-1 accuracy on OUMVLP-Pose (OpenPose)
from GaitGraph2 [50] and ours.

Number of subjects

20 50 100

GaitGraph2 59.04% 52.21% 46.87%
Ours (Approach 1) 55.00% 52.00% 47.00%
Ours (Approach 2) 80.00% 64.00% 47.00%

Table 4.11: Comparative rank-1 accuracy on OUMVLP-Pose (AlphaPose)
from GaitGraph2 [50] and ours.

Number of subjects

20 50 100

GaitGraph2 62.68% 62.15% 52.61%
Ours (Approach 1) 65.00% 62.00% 53.00%
Ours (Approach 2) 75.00% 70.00% 60.00%
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Chapter 5

Conclusion & Future works

5.1 Contributions

Gait is an individual walking pattern that is established by the changing of
body joints over a period of time. When each joint changes its position, the
posture is noticeable. We all have different postures while walking, depend-
ing on individual walking speed, arm swing, foot placement, weight transfer,
and so on. It is related to the neurological control that expresses our walk-
ing trait. Basically, gait presents transportation information, e.g., walking
direction and predicted destination. On top of that, gait represents insight
into individual information, such as age, gender, activity, emotion, health
condition, personality, and identity.

Vision-based gait analysis is a system that analyzes the gait based on
images or videos. It requires no contact with walkers, making it a distance
analysis system. Both single-view and multi-view gait analyses extensively
use the camera as a tool to access gait information due to its simplicity, scala-
bility, flexibility, and cost-effectiveness. However, it encounters various chal-
lenges, such as sensitivity to environmental factors, dynamic backgrounds,
occlusions, and view variation, especially in a multiple surveillance camera
environment. For the identification task, view variation affects misidentifi-
cation that is caused by changes in camera perspectives.

This study presents multi-view gait recognition that aims to integrate
the data from multiple cameras by a majority vote based on the features
of human body parts. Our purpose is different from the existing studies as
we aim to identify the known person from multiple perspectives, and DNNs
are unnecessary for this task. Hence, only the pattern matching that is
supervised by the reference data in the database is sufficient.

We test the experiment on the CASIA-B and OUMVLP-Pose datasets.
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The CASIA-B dataset is representative of the eye-level scenario, which is
a situation when cameras are equipped at the same level as human eyes.
Meanwhile, the OUMVLP-Pose dataset provides scenes from a higher posi-
tion, similar to a surveillance scene.

We analyze the gait by determining joint angles and their correlation,
which represents the motion of walking in the sequences. There are two
correlation features, i.e., time-dependent correlation and time-independent
correlation. Additionally, we propose two approaches according to the fea-
tures to study the human gait with and without time information. Approach
1 utilizes DTW with joint angles and time-dependent correlation features,
and Approach 2 applies EU with the time-independent correlation feature.

We divide features into three parts, i.e., whole, upper, and lower body, to
study the impact of different body parts on gait analysis. Additionally, we
removed each joint one by one to study its importance to the gait analysis.
Then, employ these features to match people in separate multiple cameras.
Finally, apply a majority vote to integrate the separated data to improve
accuracy. Furthermore, we divide the number of subjects into 20, 50, and
118 subjects for the CASIA-B dataset and 20, 50, and 100 subjects for the
OUMVLP-Pose dataset to observe the trend of the matching accuracy when
the number of subjects is varied.

According to the findings, integrating the view variations by majority
voting can improve the view-variation of multi-view gait analysis. We found
that the upper body part of the joint angles feature is essential for the eye-
level scenario in addition to the lower body. Without upper body feature,
leads to decrement of accuracy. Notably, the back ankle angles that includes
in a feature vector of eye-level scenario should be treated as a noise. The
results indicate that remove it can increase the accuracy of either approach
1 and approach 3. However, the joint angles feature related to the lower
body are sufficient for identifying people in the surveillance scenario when
OpenPose is applied. For the case of AlphaPose, whole body feature is the
best. Unfortunately, the approach 2 that used time-dependent correlation
fails to identify people due to insufficient data variations.

We found that approach 3, which applies EU with the time-independent
correlation feature that calculates the correlation between joint angles of the
entire sequences, requires features from the whole body part. Basically, cor-
relation needs variations of data in order to specify the relationship between
them. As a result, the whole body feature, which includes both the upper
and lower body, is the best feature for representing the walking pattern using
the time-independent correlation. The weakness of approach 3 is that it is
unsuitable to apply with time series data, such as a walking pattern of the
same person with different speeds. This causes a change in the calculated
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correlation value and leads to a misidentification. It makes approach 3 un-
suitable for applying to an uncontrollable environment, such as a surveillance
scenario, in contrast to approach 1. Moreover, approach 1 is flexible with a
non-normalized data, which makes it more practical to apply with real-world
scenarios that challenges on data normalization issue.

The experimental results suggest that the proposed method is suitable for
identifying identities with a small quantity of databases, not only the people
quantity but the sequences. Since we employ two sub-datasets per each of
the CASIA-B and OUMVLP-Pose datasets, We achieve a competitive result
when compared to state-of-the-art methods. Our method is more flexible
when changing the number of databases due to a non-training method, e.g.,
when adding or deleting people. Additionally, the availability of data visual-
ization enables one-by-one detailed analyses, which will be advantageous for
the expansion of our future tasks. Furthermore, it can be executed on the
CPU according to its non-training state. Thus, the GPU and complicated
environment are unnecessary, leading to reductions in both cost and time.

5.2 Addressing the research questions

• RQ1: How to analyze human motion from a multi-view gait image for
human behavior analysis based on their walking pattern?

We propose a pattern matching method based on temporal geometric features
of human body parts.

• RQ2: How to improve human gait analysis method from the multi-
view gait image sequences for person identification under surveillance
scenarios?

We improve the view-variation issue of human gait analysis method by ap-
plying majority vote to integrate the analysis from multiple perspectives
together.

• RQ3: How to explore the optimal feature to estimate the human gait?

We conduct a comparative study between the different joint features.

5.3 Limitations & Future works

5.3.1 Short-range plans

• Improve the matching algorithm
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The measured DTW distance shows that the shortest distance between pat-
terns can be different, resulting in a mismatch and reducing accuracy. In
the case of mismatch, we observe that there is mostly a slight difference in
the distance between true-matched (an identity that should be selected) and
false-matched (the person that mismatches with the true label) identities.
Thus, modifying the matching algorithm can improve matching accuracy.
Furthermore, it can improve the matching algorithm by handling a larger
number of subjects, which is a significant issue that reduces accuracy.

• Improve the occlusions problem

Mostly, the model-based gait analysis relies on the pose estimation method.
In fact, the existing algorithms can handle the occlusion problem, but they
may be inaccurate. This makes the gait analysis system produce inaccurate
results, especially when most of the body is occluded. This problem is an-
other challenge for the vision-based gait analysis that requires improvement.

• Estimate the gait cycle based on a walking pattern

Since each walking pattern contains many gait cycles, this cycle holds es-
sential individual information. It can be an effective feature for identifying
the identity and handling the unequal walking speed and length of the same
person’s sequences, which affects the mismatch in time-series data. Even if
the DTW distance can handle these issues, the starting point needs to be
identical. It indicates that the captured sequences require the same start-
ing point with an identical movement pattern of joints for the most efficient
matching based on DTW. However, this situation is impossible in real-world
situations because we cannot control the starting point and movement of
walkers. Hence, the gait cycle from the walking pattern is a key to improv-
ing matching based on DTW.

• Extension the gait analysis tasks

As discussed in Chapter 1, gait serves a variety of purposes, including activ-
ity, clinical, and emotion analysis. To achieve these objectives, we need to
analyze the gait using a classification method. Then, DNN plays a significant
role in achieving it because only pattern matching is insufficient to analyze
and obtain such information.
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5.3.2 Long-term visions

• View-free gait analysis

In a real-world situation, we cannot specify the direction in which people
walk because they can walk randomly from anywhere, unlike in a laboratory
environment, where we can control every variable and parameter as required.
In fact, multi-view may not be sufficiently practical to address every situation
in a real-world setting. In this case, view-free gait analysis is key to handling
real-world situations. We expect the view-free gait analysis to function as a
3D model of human gait, applicable to all perspectives. To achieve this, it
consumes money and time, and it needs more data to study the gait.

• All-in-one gait analysis system

After completely addressing the gait analysis for every task, we can aggregate
them into one system, whose result depends on the specified purpose. It will
have a great positive impact and benefit us by serving a complete system
that can improve clinical, psychological, security, and more.
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Appendix A

Table 5.1: Accuracy of the matching by using joint angles as a feature on
NM sub-dataset. These results are from employing 2D joints extracted by
MediaPipe.

Whole Upper Lower

20 49 118 20 49 118 20 49 118

0◦ 0.1 0.06 0.10 0.3 0.24 0.19 0.1 0.06 0.05

18◦ 0.1 0.12 0.17 0.25 0.20 0.20 0.1 0.08 0.14

36◦ 0.2 0.22 0.18 0.25 0.33 0.20 0.25 0.22 0.18

54◦ 0.4 0.24 0.25 0.35 0.37 0.31 0.35 0.12 0.14

72◦ 0.45 0.31 0.20 0.55 0.35 0.29 0.25 0.12 0.16

90◦ 0.45 0.31 0.25 0.25 0.24 0.19 0.35 0.22 0.20

108◦ 0.35 0.27 0.25 0.3 0.20 0.14 0.4 0.27 0.20

126◦ 0.5 0.33 0.29 0.4 0.27 0.21 0.45 0.27 0.22

144◦ 0.5 0.45 0.31 0.45 0.27 0.15 0.45 0.27 0.24

162◦ 0.55 0.39 0.26 0.45 0.24 0.12 0.6 0.31 0.25

180◦ 0.45 0.16 0.14 0.4 0.20 0.09 0.25 0.12 0.09

Max 0.55 0.45 0.31 0.55 0.37 0.31 0.6 0.31 0.25

Voting 0.6 0.55 0.48 0.65 0.59 0.48 0.5 0.41 0.4
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Table 5.2: Accuracy of the matching by using time-dependent correlation as
a feature on NM sub-dataset. These results are from employing 2D joints
extracted by MediaPipe.

Whole Upper Lower

20 49 118 20 49 118 20 49 118

0◦ 0.15 0.14 0.14 0.00 0.00 0.00 0.10 0.10 0.09

18◦ 0.25 0.20 0.17 0.00 0.00 0.00 0.20 0.10 0.08

36◦ 0.35 0.33 0.21 0.00 0.00 0.00 0.20 0.20 0.10

54◦ 0.25 0.16 0.14 0.00 0.00 0.00 0.15 0.08 0.08

72◦ 0.30 0.20 0.08 0.00 0.00 0.00 0.25 0.10 0.08

90◦ 0.15 0.16 0.08 0.00 0.00 0.00 0.30 0.20 0.08

108◦ 0.15 0.14 0.09 0.00 0.00 0.00 0.10 0.06 0.03

126◦ 0.10 0.08 0.09 0.00 0.00 0.00 0.15 0.08 0.09

144◦ 0.20 0.14 0.07 0.00 0.00 0.00 0.20 0.10 0.05

162◦ 0.30 0.18 0.07 0.00 0.00 0.00 0.30 0.12 0.07

180◦ 0.20 0.08 0.03 0.00 0.00 0.00 0.20 0.04 0.01

Max 0.35 0.33 0.21 0.00 0.00 0.00 0.30 0.20 0.10

Voting 0.35 0.37 0.28 0.00 0.00 0.00 0.30 0.27 0.20
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Table 5.3: Accuracy of the matching by using joint angles and time-
dependent correlation as features on NM sub-dataset. These results are from
employing 2D joints extracted by MediaPipe.

Whole Upper Lower

20 49 118 20 49 118 20 49 118

0◦ 0.05 0.08 0.01 - - - 0.00 0.06 0.00

18◦ 0.20 0.06 0.04 - - - 0.15 0.06 0.03

36◦ 0.00 0.02 0.04 - - - 0.00 0.00 0.03

54◦ 0.00 0.06 0.02 - - - 0.00 0.00 0.02

72◦ 0.30 0.10 0.05 - - - 0.30 0.06 0.03

90◦ 0.10 0.00 0.03 - - - 0.05 0.00 0.03

108◦ 0.00 0.06 0.01 - - - 0.10 0.04 0.01

126◦ 0.10 0.04 0.03 - - - 0.10 0.06 0.02

144◦ 0.10 0.04 0.01 - - - 0.10 0.06 0.03

162◦ 0.20 0.04 0.03 - - - 0.20 0.08 0.02

180◦ 0.20 0.04 0.00 - - - 0.00 0.04 0.00

Max 0.30 0.10 0.05 - - - 0.30 0.08 0.03

Voting 0.15 0.12 0.03 - - - 0.15 0.08 0.03
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Table 5.4: Accuracy of the matching by using time-independent correlation
as a feature on NM sub-dataset. These results are from employing 2D joints
extracted by MediaPipe.

Whole Upper Lower

20 49 118 20 49 118 20 49 118

0◦ 0.4 0.43 0.36 0.05 0.06 0.03 0.25 0.20 0.19

18◦ 0.4 0.29 0.20 0.1 0.00 0.00 0.25 0.20 0.12

36◦ 0.6 0.37 0.35 0.15 0.02 0.01 0.4 0.20 0.23

54◦ 0.65 0.45 0.32 0.1 0.02 0.01 0.5 0.37 0.24

72◦ 0.55 0.33 0.23 0.15 0.02 0.03 0.3 0.20 0.14

90◦ 0.55 0.47 0.35 0.1 0.02 0.03 0.4 0.31 0.21

108◦ 0.45 0.35 0.27 0.15 0.04 0.02 0.25 0.16 0.15

126◦ 0.55 0.53 0.27 0.1 0.06 0.03 0.45 0.33 0.25

144◦ 0.75 0.59 0.46 0.05 0.04 0.01 0.6 0.41 0.30

162◦ 0.5 0.39 0.23 0.15 0.04 0.02 0.4 0.27 0.20

180◦ 0.4 0.27 0.08 0.2 0.04 0.02 0.35 0.20 0.11

Max 0.75 0.59 0.46 0.2 0.06 0.03 0.6 0.41 0.30

Voting 0.9 0.88 0.74 0.3 0.04 0.01 0.75 0.63 0.59
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Table 5.5: Accuracy of the matching by using joint angles as a feature on
NM sub-dataset. These results are from employing 3D joints extracted by
MediaPipe.

Whole Upper Lower

20 49 118 20 49 118 20 49 118

0◦ 0.60 0.47 0.34 0.45 0.24 0.12 0.50 0.35 0.29

18◦ 0.40 0.33 0.28 0.10 0.12 0.14 0.35 0.33 0.25

36◦ 0.45 0.35 0.30 0.20 0.14 0.10 0.40 0.37 0.30

54◦ 0.55 0.39 0.40 0.35 0.35 0.22 0.60 0.39 0.34

72◦ 0.55 0.39 0.37 0.55 0.35 0.24 0.50 0.41 0.33

90◦ 0.50 0.47 0.37 0.25 0.20 0.22 0.55 0.37 0.31

108◦ 0.60 0.37 0.37 0.25 0.20 0.24 0.60 0.37 0.31

126◦ 0.45 0.51 0.44 0.30 0.31 0.16 0.40 0.47 0.36

144◦ 0.55 0.45 0.42 0.35 0.31 0.17 0.55 0.39 0.36

162◦ 0.65 0.49 0.36 0.35 0.22 0.12 0.65 0.51 0.36

180◦ 0.65 0.47 0.31 0.30 0.16 0.13 0.65 0.45 0.29

Max 0.65 0.51 0.44 0.55 0.35 0.24 0.65 0.51 0.36

Voting 0.80 0.67 0.66 0.50 0.51 0.41 0.75 0.71 0.59
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Table 5.6: Accuracy of the matching by using time-independent correlation
as a feature on NM sub-dataset. These results are from employing 3D joints
extracted by MediaPipe.

Whole Upper Lower

20 49 118 20 49 118 20 49 118

0◦ 0.35 0.29 0.23 0.00 0.06 0.02 0.50 0.24 0.16

18◦ 0.25 0.27 0.16 0.05 0.00 0.01 0.25 0.29 0.16

36◦ 0.50 0.39 0.25 0.20 0.02 0.00 0.50 0.31 0.14

54◦ 0.40 0.24 0.21 0.15 0.02 0.01 0.30 0.18 0.11

72◦ 0.55 0.33 0.16 0.15 0.12 0.05 0.45 0.27 0.09

90◦ 0.35 0.27 0.19 0.15 0.04 0.04 0.15 0.10 0.08

108◦ 0.35 0.35 0.23 0.10 0.04 0.03 0.25 0.18 0.14

126◦ 0.60 0.27 0.24 0.10 0.04 0.02 0.40 0.20 0.17

144◦ 0.40 0.35 0.35 0.10 0.08 0.03 0.30 0.24 0.25

162◦ 0.60 0.39 0.26 0.30 0.02 0.00 0.50 0.37 0.26

180◦ 0.50 0.27 0.14 0.10 0.06 0.01 0.40 0.16 0.08

Max 0.60 0.39 0.35 0.30 0.12 0.05 0.50 0.37 0.26

Voting 0.85 0.74 0.67 0.20 0.06 0.04 0.85 0.63 0.50
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Table 5.7: Accuracy of the matching by using joint angles as a feature on
OUMVLP-Pose dataset. These results are from employing 2D joints ex-
tracted by OpenPose.

Whole Upper Lower

20 50 100 20 50 100 20 50 100

0◦ 0.35 0.14 0.12 0.25 0.10 0.08 0.30 0.12 0.07

15◦ 0.40 0.24 0.22 0.10 0.14 0.08 0.25 0.18 0.16

30◦ 0.25 0.24 0.20 0.30 0.18 0.14 0.30 0.28 0.21

45◦ 0.30 0.12 0.09 0.40 0.16 0.09 0.20 0.10 0.12

60◦ 0.20 0.14 0.12 0.15 0.08 0.04 0.20 0.20 0.16

75◦ 0.30 0.22 0.11 0.10 0.10 0.06 0.30 0.36 0.28

90◦ 0.30 0.16 0.15 0.20 0.16 0.11 0.30 0.26 0.21

180◦ 0.30 0.22 0.18 0.25 0.16 0.13 0.20 0.18 0.11

195◦ 0.20 0.12 0.11 0.20 0.14 0.09 0.25 0.20 0.19

210◦ 0.40 0.20 0.13 0.30 0.14 0.06 0.25 0.24 0.14

225◦ 0.10 0.04 0.07 0.05 0.00 0.06 0.20 0.14 0.17

240◦ 0.20 0.10 0.11 0.15 0.08 0.07 0.35 0.14 0.15

255◦ 0.20 0.04 0.07 0.15 0.00 0.05 0.35 0.16 0.15

270◦ 0.30 0.16 0.12 0.15 0.06 0.05 0.40 0.20 0.17

Max 0.40 0.24 0.22 0.40 0.18 0.14 0.40 0.36 0.28

Voting 0.65 0.42 0.36 0.55 0.30 0.21 0.55 0.52 0.47
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Table 5.8: Accuracy of the matching by using joint angles as a feature on
OUMVLP-Pose dataset. These results are from employing 2D joints ex-
tracted by AlphaPose.

Whole Upper Lower

20 50 100 20 50 100 20 50 100

0◦ 0.55 0.26 0.12 0.30 0.12 0.08 0.45 0.26 0.07

15◦ 0.40 0.34 0.22 0.25 0.14 0.08 0.30 0.28 0.16

30◦ 0.40 0.22 0.20 0.25 0.14 0.14 0.25 0.22 0.21

45◦ 0.30 0.22 0.09 0.25 0.20 0.09 0.20 0.16 0.12

60◦ 0.20 0.24 0.12 0.20 0.20 0.04 0.20 0.24 0.16

75◦ 0.25 0.32 0.11 0.20 0.22 0.06 0.20 0.32 0.28

90◦ 0.25 0.32 0.15 0.25 0.22 0.11 0.30 0.24 0.21

180◦ 0.30 0.26 0.18 0.25 0.20 0.13 0.15 0.20 0.11

195◦ 0.30 0.18 0.11 0.20 0.14 0.09 0.30 0.20 0.19

210◦ 0.40 0.20 0.13 0.25 0.14 0.06 0.35 0.22 0.14

225◦ 0.25 0.16 0.07 0.35 0.14 0.06 0.30 0.16 0.17

240◦ 0.30 0.20 0.11 0.35 0.10 0.07 0.30 0.18 0.15

255◦ 0.35 0.14 0.07 0.30 0.12 0.05 0.45 0.16 0.15

270◦ 0.25 0.16 0.12 0.25 0.08 0.05 0.20 0.10 0.17

Max 0.55 0.34 0.22 0.35 0.22 0.14 0.45 0.32 0.28

Voting 0.65 0.48 0.53 0.50 0.46 0.21 0.60 0.54 0.47
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Table 5.9: Accuracy of the matching by using time-dependent correlation as
a feature on OUMVLP-Pose dataset. These results are from employing 2D
joints extracted by OpenPose.

Whole Upper Lower

20 50 100 20 50 100 20 50 100

0◦ 0.15 0.06 0.03 0.00 0.00 0.00 0.15 0.00 0.00

15◦ 0.05 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00

30◦ 0.10 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

45◦ 0.15 0.06 0.01 0.00 0.00 0.00 0.05 0.04 0.02

60◦ 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.01

75◦ 0.05 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.01

90◦ 0.05 0.04 0.05 0.00 0.00 0.00 0.05 0.02 0.01

180◦ 0.10 0.08 0.01 0.00 0.00 0.00 0.05 0.02 0.01

195◦ 0.15 0.06 0.05 0.00 0.00 0.00 0.15 0.04 0.02

210◦ 0.15 0.04 0.02 0.00 0.00 0.00 0.00 0.02 0.01

225◦ 0.25 0.08 0.05 0.00 0.00 0.00 0.05 0.02 0.01

240◦ 0.30 0.10 0.06 0.00 0.00 0.00 0.05 0.04 0.03

255◦ 0.10 0.04 0.02 0.00 0.00 0.00 0.05 0.02 0.01

270◦ 0.25 0.10 0.04 0.00 0.00 0.00 0.10 0.00 0.00

Max 0.30 0.10 0.06 0.00 0.00 0.00 0.15 0.04 0.03

Voting 0.20 0.14 0.08 0.00 0.00 0.00 0.00 0.00 0.00
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Table 5.10: Accuracy of the matching by using time-dependent correlation
as a feature on OUMVLP-Pose dataset. These results are from employing
2D joints extracted by AlphaPose.

Whole Upper Lower

20 50 100 20 50 100 20 50 100

0◦ 0.05 0.02 0.02 0.00 0.00 0.00 0.05 0.00 0.00

15◦ 0.20 0.06 0.04 0.00 0.00 0.00 0.15 0.06 0.03

30◦ 0.20 0.08 0.06 0.00 0.00 0.00 0.05 0.02 0.00

45◦ 0.15 0.14 0.10 0.00 0.00 0.00 0.05 0.02 0.01

60◦ 0.25 0.12 0.08 0.00 0.00 0.00 0.10 0.04 0.03

75◦ 0.15 0.06 0.03 0.00 0.00 0.00 0.05 0.02 0.01

90◦ 0.05 0.12 0.07 0.00 0.00 0.00 0.00 0.00 0.00

180◦ 0.05 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00

195◦ 0.15 0.12 0.07 0.00 0.00 0.00 0.05 0.02 0.01

210◦ 0.35 0.18 0.09 0.00 0.00 0.00 0.15 0.06 0.05

225◦ 0.15 0.10 0.06 0.00 0.00 0.00 0.10 0.02 0.02

240◦ 0.10 0.04 0.04 0.00 0.00 0.00 0.15 0.04 0.02

255◦ 0.10 0.04 0.06 0.00 0.00 0.00 0.00 0.00 0.00

270◦ 0.05 0.04 0.03 0.00 0.00 0.00 0.10 0.00 0.00

Max 0.35 0.18 0.10 0.00 0.00 0.00 0.15 0.06 0.05

Voting 0.30 0.18 0.13 0.00 0.00 0.00 0.15 0.04 0.01
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Table 5.11: Accuracy of the matching by using joint angles and time-
dependent correlation as features on OUMVLP-Pose dataset. These results
are from employing 2D joints extracted by OpenPose.

Whole Upper Lower

20 50 100 20 50 100 20 50 100

0◦ 0.25 0.12 0.04 - - - 0.20 0.04 0.02

15◦ 0.25 0.08 0.05 - - - 0.10 0.06 0.01

30◦ 0.15 0.08 0.08 - - - 0.15 0.08 0.05

45◦ 0.05 0.02 0.01 - - - 0.05 0.08 0.03

60◦ 0.05 0.04 0.04 - - - 0.10 0.06 0.03

75◦ 0.20 0.10 0.04 - - - 0.00 0.06 0.03

90◦ 0.05 0.10 0.10 - - - 0.05 0.12 0.08

180◦ 0.10 0.06 0.04 - - - 0.05 0.00 0.00

195◦ 0.00 0.08 0.02 - - - 0.00 0.06 0.04

210◦ 0.00 0.04 0.02 - - - 0.10 0.08 0.06

225◦ 0.10 0.00 0.02 - - - 0.10 0.02 0.04

240◦ 0.15 0.06 0.06 - - - 0.10 0.02 0.05

255◦ 0.10 0.04 0.03 - - - 0.10 0.02 0.02

270◦ 0.20 0.06 0.04 - - - 0.05 0.04 0.04

Max 0.25 0.12 0.10 - - - 0.20 0.12 0.08

Voting 0.25 0.18 0.14 - - - 0.15 0.14 0.11
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Table 5.12: Accuracy of the matching by using joint angles and time-
dependent correlation as features on OUMVLP-Pose dataset. These results
are from employing 2D joints extracted by AlphaPose.

Whole Upper Lower

20 50 100 20 50 100 20 50 100

0◦ 0.15 0.04 0.03 - - - 0.05 0.04 0.02

15◦ 0.20 0.08 0.04 - - - 0.15 0.04 0.01

30◦ 0.20 0.08 0.03 - - - 0.15 0.08 0.03

45◦ 0.05 0.08 0.06 - - - 0.05 0.04 0.05

60◦ 0.20 0.10 0.06 - - - 0.20 0.16 0.05

75◦ 0.05 0.12 0.05 - - - 0.10 0.04 0.04

90◦ 0.20 0.12 0.08 - - - 0.15 0.08 0.08

180◦ 0.05 0.06 0.03 - - - 0.05 0.04 0.06

195◦ 0.10 0.08 0.04 - - - 0.10 0.06 0.05

210◦ 0.30 0.12 0.05 - - - 0.25 0.08 0.01

225◦ 0.10 0.06 0.05 - - - 0.15 0.10 0.02

240◦ 0.15 0.04 0.06 - - - 0.05 0.04 0.03

255◦ 0.20 0.10 0.06 - - - 0.00 0.04 0.02

270◦ 0.10 0.08 0.06 - - - 0.20 0.08 0.04

Max 0.30 0.12 0.08 - - - 0.25 0.16 0.08

Voting 0.35 0.22 0.15 - - - 0.10 0.14 0.08
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Table 5.13: Accuracy of the matching by using time-independent correlation
as a feature on OUMVLP-Pose dataset. These results are from employing
2D joints extracted by OpenPose.

Whole Upper Lower

20 50 100 20 50 100 20 50 100

0◦ 0.15 0.10 0.07 0.00 0.00 0.01 0.10 0.02 0.02

15◦ 0.30 0.10 0.10 0.10 0.00 0.00 0.10 0.08 0.04

30◦ 0.25 0.18 0.16 0.15 0.02 0.01 0.10 0.04 0.07

45◦ 0.45 0.18 0.16 0.05 0.02 0.01 0.25 0.08 0.06

60◦ 0.40 0.30 0.25 0.15 0.10 0.05 0.20 0.10 0.11

75◦ 0.40 0.22 0.19 0.05 0.04 0.02 0.30 0.18 0.12

90◦ 0.35 0.24 0.16 0.05 0.02 0.01 0.40 0.14 0.05

180◦ 0.20 0.18 0.09 0.15 0.08 0.03 0.15 0.04 0.04

195◦ 0.30 0.12 0.07 0.10 0.06 0.03 0.15 0.08 0.00

210◦ 0.45 0.30 0.15 0.25 0.08 0.01 0.20 0.06 0.04

225◦ 0.60 0.28 0.20 0.15 0.10 0.04 0.40 0.18 0.08

240◦ 0.40 0.28 0.22 0.10 0.02 0.01 0.35 0.16 0.11

255◦ 0.35 0.28 0.18 0.10 0.02 0.00 0.25 0.18 0.08

270◦ 0.50 0.28 0.13 0.00 0.00 0.00 0.35 0.18 0.10

Max 0.60 0.30 0.25 0.25 0.10 0.05 0.40 0.18 0.12

Voting 0.80 0.64 0.47 0.20 0.04 0.01 0.60 0.34 0.17
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Table 5.14: Accuracy of the matching by using time-independent correlation
as a feature on OUMVLP-Pose dataset. These results are from employing
2D joints extracted by AlphaPose.

Whole Upper Lower

20 50 100 20 50 100 20 50 100

0◦ 0.35 0.26 0.13 0.15 0.02 0.00 0.40 0.10 0.09

15◦ 0.55 0.38 0.20 0.05 0.02 0.00 0.50 0.16 0.13

30◦ 0.30 0.24 0.21 0.15 0.04 0.01 0.35 0.16 0.13

45◦ 0.40 0.22 0.10 0.20 0.06 0.02 0.45 0.20 0.10

60◦ 0.40 0.38 0.31 0.10 0.06 0.02 0.50 0.18 0.18

75◦ 0.25 0.24 0.23 0.00 0.00 0.00 0.35 0.30 0.16

90◦ 0.50 0.34 0.24 0.10 0.04 0.02 0.30 0.20 0.12

180◦ 0.30 0.20 0.17 0.15 0.04 0.03 0.15 0.10 0.07

195◦ 0.35 0.20 0.11 0.15 0.10 0.04 0.25 0.12 0.05

210◦ 0.30 0.20 0.14 0.10 0.00 0.01 0.25 0.18 0.07

225◦ 0.60 0.36 0.25 0.05 0.02 0.00 0.35 0.16 0.09

240◦ 0.45 0.30 0.20 0.20 0.02 0.02 0.35 0.26 0.15

255◦ 0.50 0.20 0.20 0.00 0.02 0.01 0.25 0.12 0.11

270◦ 0.35 0.26 0.21 0.05 0.00 0.00 0.25 0.10 0.08

Max 0.60 0.38 0.31 0.20 0.10 0.04 0.50 0.30 0.18

Voting 0.75 0.70 0.60 0.25 0.02 0.01 0.60 0.44 0.33

112


