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Abstract

Soft-bodied robots with a sense of touch and multimodal sensing capabilities hold

promise for the realization of fully autonomous, social, and human-friendly robotic

systems. However, seamlessly integrating multimodal sensing functionalities into

soft artificial skins remains a challenge due to compatibility issues between soft

materials and conventional electronics. While vision-based tactile sensing has

enabled efficient robotic touch, there has been limited exploration of this technique

for intrinsic multimodal sensing in large-sized robot bodies. To address this gap,

this study introduces a novel vision-based soft sensing technique, named ProTac,

capable of operating either in tactile or proximity sensing modes, which relies on a

soft functional skin that can actively switch its optical properties between opaque

and transparent states. Compared to conventional sensing skins of various electronic

elements, our system provides large-area multimodal sensing with a simple setup

and minimal impact on the mechanical properties of the soft skin. Furthermore,

this study proposes a novel learning mechanism to facilitate tactile inference on

large-area robot bodies, alongside the development of a proximity sensing pipeline

and multimodal sensing strategies. The effectiveness of the soft sensing technology is

demonstrated through a soft ProTac link, which is integrated into newly constructed

or existing commercial robot arms. Based on this framework, this study also

explores the synergy between the robot’s softness and its tactile-proximity sensing

capabilities in facilitating task performance and enhancing safe interactions with

the environment. Results suggest that robots integrated with the soft ProTac link,

along with rigorous control formulation, are capable of mediating safe and purposeful

control actions, which enhance safe interactions and facilitate motion control tasks

that are challenging to achieve with conventional rigid robots.

Keywords: tactile sensing, multimodal perception, soft robotics, safety control,

human-robot interaction.
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Chapter 1

Introduction

1.1 Background

Nowadays, there is a growing demand for robots to operate beyond safety enclosure

zones, collaborating and working close to humans. These robots are anticipated

to become versatile service assistants, seamlessly integrating into various aspects

of our daily routines and industry sectors, including manufacturing, healthcare,

agriculture, and others. Given these envisioned applications, it is crucial for such

robots to exhibit adaptability to dynamic and unstructured environments, enabling

safe and purposeful interaction with humans and surroundings. To achieve this

objective, innovative robot structures employing soft materials, as in the so-called

soft robotics, emerge as a pivotal solution for safe and adaptable interaction with the

world, thanks to their inherently compliant nature. In addition, integrating multi-

modal sensing into robotic systems to enhance their awareness of surroundings and

interactions is a crucial factor for robots capable of engaging in purposeful human-

robot and environment-robot interaction scenarios (see Fig 1.1a).

Of sensing modalities, sense of touch is crucial for tasks involving physical

interactions, where it not only provides a diverse range of information such as inter-

active force, and texture but also is considered a non-verbal means of communication

in human-human or human-machine interaction. Skin, the largest organ of the

human body covering whole-limb or torso, possesses a tactile sensing system that

has been inspiring the robotics community towards the creation of fully autonomous

social and task-based machines with the sense of touch [20, 21]. However, large-

area robotics skin developed for years faced complexity in system integration and

data processing, since increasing the scale requires a great deal of embedded sensing
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elements [4,22,23]. Recently, vision-based tactile sensors have emerged as an effective

method for implementation of tactile sensing with reduced complexity in system

design [24–26], which primarily applied to small-sized robotic devices (e.g., robotic

fingers or hands).

In addition to the tactile sensation, robots with proximity perception could

further increase the safety of the robot. In fact, proximity sensing can avoid
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occlusions and blind spots in vision, and be a great complementary perception

to the tactile modality [4] (see Fig. 1.2). To date, proximity sensation has been

enabled through various transduction principles, such as resistance, capacitance,

inductance, electromagnetic field strength, and light density [20]. However, the

sensing performance in these technologies often behaves differently according to the

material properties of target objects, which may cause difficulties in calibration and

perception.

As a result, seamlessly integrating multiple sensing modalities into soft artificial

skins remains a challenge due to compatibility issues between soft materials and

conventional electronics. Therefore, this research aims to tackle this challenge by

focusing on the development of a novel soft sensing mechanism and associated

perception methodologies. Furthermore, it aims to demonstrate the potential

applications of this advancement in robot task performances. The positioning of

this research within the literature and its prospective applications are illustrated in

Figure 1.1b and Figure 1.2, respectively.

1.2 Research questions

While soft bodies and multi-modal sensing are crucial for next-generation robots,

seamlessly integrating tactile and proximity sensing, particularly into large-area soft

bodies, has been underexplored. This leads to the first research question:
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RQ1: What novel sensing mechanism can seamlessly facilitate tactile and prox-

imity sensing for soft bodies at different scales, especially for large-area sensing?

Additionally, while there has been significant interest in enabling tactile sensing

for robots, efficiently processing tactile information, particularly for large-sized soft

bodies, remains challenging. This brings up the second research question:

RQ2: What learning mechanism can facilitate interpretation of the artificial sense

of touch across a large robot body that is compatible with the proposed sensing

mechanism identified in Question 1?

Finally, concerning high-level applications, conventional robots often encounter

challenges in complex and safety-critical control tasks that involve close physical

interactions with the environment, particularly in unstructured settings or when

working closely with humans. These challenges, combined with the soft multi-modal

sensing proposed in Questions 1 and 2, give rise to other crucial research questions:

RQ3: Can the efficiency and success of robotic tasks be enhanced by collectively

leveraging the robot’s softness, and tactile-proximity sensing? Can a soft-bodied

robot equipped with active tactile sensing improve safety during interactions and

exploration?

1.3 Originality and contributions

To address the aforementioned research questions, the key contributions of this

dissertation are summarized as follows:

1. Design and fabrication of a soft proximity-tactile sensing device, named

ProTac, which allows for the selective activation of either proximity or tactile

sensing mode. This is made possible by utilizing vision-based sensing tech-

niques and a unique mechanism of skin transparency switching, wherein

a soft functional skin actively switches its optical properties between opaque

and transparent states.

2. Development of a simulation and learning platform for vision-based tactile

perception on large skin areas. In addition, the methodology for proximity

sensing and perception is also proposed.
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3. Showcase of ProTac-specific sensing strategies with two multimodal tasks,

which aim to enhance motion control in cluttered environments and facilitate

seamless human-robot interaction scenarios.

4. Integration of ProTac sensing for two safety control strategies, including

creating reflex behavior and proximity-based adaptive speed regulation. The

effectiveness is demonstrated using a ProTac-integrated robot arm.

5. Investigating the effectiveness of softness and tactile sensing in handling

physical collisions, which validates the benefits of embodied soft tactile sensing

in safety enhancement.

1.4 Significance

Softness and multimodal sensing are crucial for autonomous soft robots. However,

their seamless integration and their interplay in task performance remain largely

unexplored. This thesis attempts to explore whether softness and tactile-proximity

sensing can enhance the efficiency and safety of robotic tasks. This is achieved

through the novel design of a vision-based proximity-tactile sensing link with soft

artificial skin, along with proposed platforms for learning perceptions and rigorous

control frameworks. Additionally, this study aims to advance the field of sensing

in soft robotics and establish the groundwork for exploring further robotic tasks

that can be beneficial from softness and multimodal sensing. Lastly, the proposed

sensing technology is expected to address a wide range of use cases and sectors in

both industrial and service settings, which is challenging to achieve with sensorless

or single-modal robotic systems alone.

1.5 Dissertation organization

The current chapter introduces the emergent needs and challenges of integrating

tactile and multimodal perception for soft-bodied robots. Following this, research

questions are presented, along with contributions to address them. The remaining

chapters of this dissertation are organized as follows:

• Chapter 2 discusses existing techniques for implementing multimodal tactile
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robotic skins. Also, relevant learning mechanisms of tactile perception will be

discussed. Lastly, it outlines related applications of large-area robotic skins in

robot control.

• Chapter 3 details the basic working principle, design criteria, and fabrication

method for the proposed two-mode tactile and proximity sensing link, referred

to as ProTac link.

• Chapter 4 describes in detail the proposed simulation and learning platform

for large-area vision-based tactile sensing. The effectiveness of this method

is demonstrated with the proposed ProTac link and another tactile link of a

more complex shape.

• Chapter 5 presents a methodology for learning proximity perception specifi-

cally tailored for the ProTac link, followed by a performance evaluation.

• Chapter 6 explores the versatile use of the ProTac link in two different settings:

first, as soft sensing links for a newly constructed robot arm, and second, as an

extended link for a commercial robot arm. The integration aims to enhance

control tasks in environment-robot, and human-robot interaction scenarios,

leveraging the synergies of soft body and multimodal sensing.

• Chapter 7 addresses the question of whether a soft-bodied robot equipped with

active tactile sensing can improve safety, and facilitate task performances.

• Chapter 8 concludes my thesis, summarizes findings, as well as discusses

insights for future work.

1.6 Selected publications

A full list of my publications can be found in Google Scholar.

Journal publication:

[J1 ] Q. K. Luu, N. H. Nguyen and V. A. Ho, ”Simulation, Learning, and

Application of Vision-Based Tactile Sensing at Large Scale,” in IEEE Trans-

actions on Robotics, vol. 39, no. 3, pp. 2003-2019, June 2023, doi:

10.1109/TRO.2023.3245983.

[J2 ] S. T. Bui, Q. K. Luu, D. Q. Nguyen, N. D. M. Le, G. Loianno and V. A.

Ho, ”Tombo Propeller: Bioinspired Deformable Structure Toward Collision-

6

https://scholar.google.com/citations?user=cy6AlQMAAAAJ&hl=en


Accommodated Control for Drones,” in IEEE Transactions on Robotics,

vol. 39, no. 1, pp. 521-538, Feb. 2023, doi: 10.1109/TRO.2022.3198494.

IEEE Transactions on Robotics metrics: Impact Factor: 7.8, #2 journal in the

field of Robotics by Google Scholar.

Conference paper:

[C1 ] Q. K. Luu, A. Albini, P. Maiolino and V. A. Ho, ”TacLink-Integrated

Robot Arm toward Safe Human-Robot Interaction,” IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, UAE, 2024

(accepted).

[C2 ] T. T. Nguyen, Q. K. Luu et al., ”ConTac: Continuum-Emulated Soft Skinned

Arm with Vision-based Shape Sensing and Contact-aware Manipulation,”

Robotics: Science and Systems (RSS), Delft, Netherlands, 2024 (accepted).

[C3 ] Q. K. Luu, D. Q. Nguyen, N. H. Nguyen and V. A. Ho, ”Soft Robotic Link

with Controllable Transparency for Vision-based Tactile and Proximity Sens-

ing,” IEEE International Conference on Soft Robotics, Singapore, Singapore,

2023, doi: 10.1109/RoboSoft55895.2023.10122059.

[C4 ] Y. Osawa, Q. K. Luu, L. V. Nguyen and V. A. Ho, ”Integration of Soft Tactile

Sensing Skin with Controllable Thermal Display toward Pleasant Human-

Robot Interaction,” IEEE/SICE International Symposium on System Inte-

gration (SII), Ha Long, Vietnam, 2024, doi: 10.1109/SII58957.2024.10417383.

[C5 ] N. M. Dinh Le, Q. K. Luu et al., ”Integration of Web of Tactile Things for Soft

Vision-Based Tactile Sensor Toward Immersive Human-Robot Interaction,”

IEEE/SICE International Symposium on System Integration (SII), Ha Long,

Vietnam, 2024, doi: 10.1109/SII58957.2024.10417344.

[C6 ] Q. K. Luu, H. M. La and V. A. Ho, ”A 3-Dimensional Printing System

Using an Industrial Robotic Arm,” IEEE/SICE International Symposium on

System Integration (SII), Iwaki, Fukushima, Japan, 2021, pp. 443-448, doi:

10.1109/IEEECONF49454.2021.9382645.

[C7 ] P. Van Nguyen, Q. K. Luu, Y. Takamura and V. A. Ho, ”Wet Adhe-

sion of Micro-patterned Interfaces for Stable Grasping of Deformable Ob-

jects,” IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Las Vegas, NV, USA, 2020, doi: 10.1109/IROS45743.2020.9341095.

7



Under-review paper:

[UR1 ] Q. K. Luu, D. Q. Nguyen, N. H. Nguyen and V. A. Ho, ”Vision-based

Proximity and Tactile Sensing for Robot Arms: Design, Perception, and

Control,” under review for IEEE Transactions on Robotics, 2024 (revise

and resubmit).

1.7 Patent

[P1 ] Van A. Ho, Quan K. Luu, N. H. Nguyen, ”Contact-Proximity Detection De-

vice, and Contact-Proximity Detection Method”, Japanese Patent Application

No. 2022-118796.

1.8 Honors and awards

2024 JSPS Research Fellowship for Young Scientists (DC2)

2024 RSS Pioneer - RSS Pioneers brings together top Ph.D. students, postdocs,

and young industry members to foster creativity and collaborations surround-

ing challenges in all areas of robotics

2024 Finalist of Best Paper Award at 2024 IEEE/SICE International Symposium

on System Integration (SII)

2021 Best Graduate Student for outstanding academic performance (Master course)

2021 MEXT Scholarship for Ph.D. course

2019 MEXT Scholarship for Master course

1.9 Supplementary materials

• Video demonstration on proximity-tactile sensing device and its applications

(ProTac): https://youtu.be/5DhAhlTVxzg

• Video demonstration on simulation and learning platform for tactile sensing

(SimTacLS): https://youtu.be/NN2u8YBLITY

• GitHub repository (ProTac): https://github.com/Ho-lab-jaist/protac.git

• GitHub repository (SimTacLS): https://github.com/Ho-lab-jaist/SimTacLS.git

8

https://youtu.be/5DhAhlTVxzg
https://youtu.be/NN2u8YBLITY
https://github.com/Ho-lab-jaist/protac.git
https://github.com/Ho-lab-jaist/SimTacLS.git


Chapter 2

Related Work

2.1 Multimodal tactile sensor and sensing mechanism

2.1.1 Conventional technique

In the past decades, efforts to ensure safe human-robot interaction have primarily

centered on conventional sensing technologies. For instance, collision monitoring and

reactive strategies relying on proprioceptive sensors, such as force/torque sensors,

have seen progressive development [27–29]. While effective in certain safety-critical

and interactive scenarios [30, 31], these methods may prove inadequate in scenarios

involving multiple contacts or complex interactions across large sensing areas. An

alternative approach involves proactively avoiding collisions or planning collision-free

robot trajectories, typically utilizing exteroceptive sensing devices such as onboard

vision systems [32] or RGB-D/depth cameras [33, 34]. However, these methods are

constrained by limited or obstructed sensing ranges and lack the tactile feedback

necessary for close physical interactions and reliable collision detection.

2.1.2 Electronic skin

Tactile electronic skins, composed of arrays of distributed sensing elements em-

ploying diverse mechanotransduction principles (such as resistance, capacitance,

inductance, electromagnetic field strength, and light density), have recently garnered

significant attention [20]. This attention stems from their surface adaptability and

scalability, enabling integration across various robotic components, ranging from

small-scale robotic hands to larger body areas such as limbs or torsos [4, 35–38].

Notably, an integrated electronic skin constructed from networks of rigid hexag-

onal printed circuit boards has demonstrated the capability to provide sensory
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feedback across multiple modalities, including proximity, vibration, temperature,

and light touch [39]. This has proven beneficial in various control frameworks and

applications [3, 5, 40, 41]. However, the spatially distributed nature of such sensor

networks, integrating numerous sensors and electronic components, poses challenges

in fabrication. Moreover, not only are the acquisition and processing of data from

these sensor networks highly intricate, but also some existing proximity sensing

mechanisms depend heavily on the material properties of the target objects, leading

to further challenges in calibration and perception. Additionally, the durability of

these rigid electronic sensors is another concern when exposed to frequent physical

contact. Lastly, seamlessly integrating such sensors into soft bodies also presents

a significant challenge due to the incompatible interface of soft-rigid materials.

Figure 2.1 highlights exemplary technologies for implementing robotic skins.

2.1.3 Vision-based sensing skin

Vision-based sensing technology, the so-called vision-based tactile (ViTac) sensor,

has emerged as a viable approach for facilitating robotic touch perception with
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minimal wiring and electronics, providing high spatial resolution at a reduced

cost [24] (see Fig. 2.1). This method entails utilizing cameras to capture the

deformation of artificial soft skin as a result of physical tactile stimuli, by exploiting

visual features like reflective membranes or markers. These visual cues can be

translated into tactile information, encompassing details such as contact location,

force, vibration, object texture, and more (refer to [25] for a more thorough

review). For instance, a family of GelSight sensors can accurately detect the detailed

surface texture of a touched object, by processing tactile images documenting the

deformation of a reflective membrane under RGB illumination, typically using

photometric stereo algorithms [1, 6–8, 42–46]. On the other hand, GelForce sensors

track reflective markers embedded inside elastomeric layers to infer traction fields or

force distribution, which necessitates a learning or calibration process to establish

the correlation between applied force and marker movements [47, 48]. Similarly,

TacTip family [2], typically in a hemispherical shape, primarily relies on changes in

the positions of printed markers and vision techniques to enable the sense of touch.

In addition to tactile sensing, Hogan et al. [9] introduced a novel concept of a

visuotactile sensor capable of visualizing objects through the skin. Building upon

this research, Jessica et al. [10, 49] proposed another iteration of a multimodal

visuotactile sensor integrating RGB and Time-of-Flight (ToF) cameras. This sensor

delivers both tactile feedback and proximity depth data by employing a selectively

transmissive soft membrane. Additionally, recent advancements have led to the

development of visuotactile sensors with various activation mechanisms, enabling

multimodal tactile sensing and close-contact detection for robotic fingers [11,50–52].

However, the aforementioned vision-based sensors were predominantly intended

for small-scale devices with flat or curved sensing surfaces, typically deployed in

robotic fingers for manipulation tasks. On the other hand, Lac et al. [12] introduced

TacLink, a vision-based tactile link with highly soft skin and a large sensing area,

where contact force can be inferred from skin deformation tracked through markers

attached to the inner skin and two internal cameras.

Although TacLink holds promise of whole-arm tactile perception, there has been

insufficient exploration of employing this vision-based method to enable multi-modal
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sensing for large-scale soft robot bodies. Addressing this gap, we present the ProTac

link, a vision-based two-mode robot link capable of seamlessly transitioning between

proximity and tactile sensing modes. This functionality is facilitated by a soft

functional skin with controllable transparency. Figure 2.2 highlights exemplary

vision-based sensing devices categorized by their scale, applications, and the number

of sensing modes, indicating this study’s focus on the development of a large-area,

multi-modal soft sensing skin.

2.2 Simulation and learning of vision-based tactile sensing

While recent advancements in vision-based tactile sensing and associated learning

methods show promise for an efficient robotic sense of touch, training perception

models for such tactile devices necessitates extensive tactile training datasets,
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thereby adding complexity to the data collection process. Thus, there has been

a surge in the development of simulation tools aimed at mitigating the need for

laborious and time-consuming experimental setups to collect training data in tactile

learning frameworks.

2.2.1 Tactile sensor simulation

The ViTac sensors can be broadly categorized into two groups: those leveraging

reflective light and those depending on the positions of visual markers to interpret

tactile information, exemplified by GelSight [1] and TacTip [2] sensors, respectively

(see Section 2.1.3 for more detail).

With respect to the former, Agarwal, et al. [53] and Gomes, et al. [54] employed

physics-based models to simulate the optical responses of GelSight sensors upon

contact with object surfaces. Similarly, Wang et al. introduced TACTO [55], an

open-source simulation framework that integrates the PyBullet physics engine and

Pyrender rendering engine, which was validated with two commonly used finger-sized

ViTac sensors, namely OmniTact [43] and DIGIT [7]. Alternatively, Tacxim [56]

simulates GelSight sensors using example-based photometric stereo in a data-driven

manner, incorporating the inherent noise characteristic of real sensors. Furthermore,

recent research efforts [57, 58] have aimed to enhance the performance of GelSight

sensor simulations, as well as extend the simulation capabilities for sensors of

round sensing surfaces. However, the previously mentioned simulators primarily

concentrate on simulating the optical responses of GelSight sensors, neglecting

the realistic reproduction of elastomeric skin deformation. Consequently, their

contributions are not directly applicable to sensors that utilize marker-based tactile

sensing with significant skin deformation like TacTip [2] or larger-scale ones like

TacLink [12]. Figure 2.3a provides a brief review of optical simulators for light-

based ViTac sensors.

Concerning marker-based ViTac sensors, which are more directly comparable to

this study, a challenge arises in accurately replicating the deformation of soft skin

with resultant markers’ movements the movement in response to physical stimuli.

This necessitates a thorough modeling of contact mechanics and material properties.
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Study in [59] endeavored to address this challenge by constructing and simulating

the elastic behavior of the TacTip skin using the Unity physics engine. However,

they employed a custom linear elastic model to approximate the skin’s elastic

properties. Another framework, named Tactile Gym, was proposed to generate

virtual representations of physical contacts through depth imprints using a rigid

contact model [60, 61], which was validated using finger-sized TacTip sensors of

either hemispherical or rectangular shapes. Conversely, simulators that acquire

ground-truth tactile data based on commercial Finite Element Method (FEM)

simulators (e.g., Abaqus) offer a systematic approach to tackle the challenge by

discretizing the soft body into numerous sub-elements, which are then dynamically

analyzed using hyper-elastic material models [62, 63]. However, the prohibitive
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computational expenses and the limited interface of commercial FEM simulators

constrain the practical application of these methods in real-time scenarios. Also, a

notable limitation was the inadequate rendering of cases involving significant skin

deformation upon contact with the environment, a critical issue in complex contact

scenarios, compromising the accuracy of the sim2real transfer process. Lastly,

Figure 2.3b highlights a couple of simulators for marker-based ViTac sensors and

the contribution of this study to the simulation of large-area markered-based ViTac

sensors with realistic physical properties.

2.2.2 Simulation-to-reality learning

Vision-based deep neural networks, trained on virtual or synthetic images, often

exhibit suboptimal performance when evaluated with real-world visual inputs [64].

Discrepancies between simulated and real images, including unrealistic texture,

color, and lighting conditions, are inevitable. To mitigate this sim2real (simulation-

to-reality) gap, previous studies have implemented domain randomization to intro-

duce variability in visual attributes within simulation environments, a strategy that

has proven successful in various vision-based robotic applications [65] as well as

small-scaled tactile sensors [54, 59]. On the other hand, some studies have adopted

image-level domain adaptation techniques to enhance sim2real learning tailored for

small-sized marker-based tactile sensors. For instance, [61] utilized a generative

adversarial network to convert real marker-based tactile images into depth-based

simulation images. However, the significant discrepancy between the two domains

may lead to inaccurate reproduction of artificial skins under complex deformation

states, especially those with intricate morphologies. Moreover, domain adaptation

methods have been explored for GelSight sensors, focusing primarily on the optical

properties of the sensors [66, 67], which is less relevant to marker-based sensors

characterized by highly deformable skin like TacTip and TacLink/ProTac sensors.
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2.3 Multimodal sensing for robot control

On one hand, the ViTac sensors have demonstrated utility in small-scale manipula-

tion tasks involving robotic hands or fingers [46,68–70]. On the other hand, the uti-

lization of conventional robot arms equipped with force/torque sensors [13,31,34], or

electronic tactile skins [3,15,17,18,71] for physical human-robot interaction (pHRI)

scenarios has also been extensively investigated in the past decade. Furthermore,

whole-arm tactile sensing often finds applications in robotic links/arms where tactile

information is beneficial for contact-rich manipulation tasks. For instance, systems

have been developed to control a robot arm manipulating in cluttered environments

where contact with surroundings is inevitable [14, 72]. Additionally, dual robot

arms equipped with whole-body tactile sensing have also been showcased with

manipulation of large-sized objects [16]. In the context of utilizing soft tactile

skins for safe collision responses, the combined effect of a passive soft layer and

active collision detection of an electronic tactile skin on eliminating impact forces

has been thoroughly examined [73]. Nevertheless, the impact of softness and

multimodal sensing of large-sized robot skins on robot task performances remains

largely unexplored. Figure 2.4 reviews a handful of robot controls based on whole-

arm tactile sensing and the aim of this study toward ProTac-driven control tasks.
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Chapter 3

Soft Robotic Skin with Vision-based Tac-

tile and Proximity Sensing: a Case Study

on Robotic Links

This chapter explores a novel sensing mechanism that facilitates tactile and proximity

sensing for large-sized soft robot bodies. Revisiting prior research on a compliant

tactile sensing link (referred to as TacLink) with a dark skin [12], this device embeds

cameras inside a soft skin to monitor its deformation by tracking the movement of

markers upon contact with the environment. This study brought up the idea for the

development of a novel two-mode sensing technology with a question:

“What if the transparency of the sensor skin could be actively controlled, then the

inside cameras may select to see the markers for tactile sensing mode, or observe

the surrounding conditions for proximity sensing mode?”

This chapter presents the design, underlying principle, and fabrication approach

for a novel soft robotic skin, named ProTac, featuring vision-based proximity-tactile

sensing. These capabilities are achieved by a soft functional skin that can actively

switch its optical properties between opaque (not able to be seen through) for the

tactile sensing mode and transparent (able to be seen through) for the proximity

sensing mode. While ProTac sensing technology exhibits potential for robot bodies

of diverse shapes and sizes, this thesis focuses on its application in a large-scale

sensor design resembling a cylindrical skin shape, referred to as the ProTac link.

This design choice mirrors the structure of lightweight industrial robot arms, making

it practical for evaluating sensing algorithms, control strategies, and applications.

The conceptual illustration of the ProTac technology is depicted in Figure 3.1.
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Figure 3.1: The conceptual overview of the vision-based ProTac sensing technology.
ProTac can actively switch between proximity and tactile sensing modes, relying on
input images captured by inner cameras and a soft functional skin with controllable
transparency.

3.1 Design and working principle of ProTac

Figure 3.2a outlines the configuration of a ProTac link. The switchable proximity-

tactile sensing functionality is achieved through internal cameras positioned at both

ends and a soft functional skin capable of switching between opaque and transparent

states. To realize this capability, the soft skin is structured with layers, comprising

an outer transparent silicone layer and an inner flexible polymer-dispersed liquid

crystal (PDLC) film, on which arrays of reflective markers are attached. The outer

layer is designed to be soft and transparent to enhance the tactile experience and

enable the see-through function of the ProTac skin. The inner PDLC film can

actively transition between opaque and transparent states by applying an external

voltage, with a rapid transition time of approximately 0.3 seconds. Consequently,

the basic working principle of ProTac link is as follows (refer to Fig. 3.2b):
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• Tactile mode: When the soft PDLC skin is in the opaque state, the camera

can observe the movement of the markers so that the tactile information can

be estimated without external light interference (refer to Chapter 4).

• Proximity mode: When the PDLC skin switches to the transparent state, the

internal cameras can see through the skin so that the proximity information

of nearby obstacles can be extracted from image views (see Chapter 5).
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(b) Illustration of ProTac’s basic working principle

Figure 3.2: Design and working principle of the ProTac link.
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In order to improve markers’ visibility during tactile mode, a set of LEDs is

positioned in a circular pattern inside the camera housing. These LEDs are switched

off when the system operates in proximity mode to enhance the see-through effect.

Additionally, mechanical housings and braces are employed to secure the cameras,

as well as to shape the cylindrical skin.

Step 1 Step 2 Step 3

Step 4Step 5Step 6

A

B
C

Figure 3.3: Fabrication process of the ProTac link. Step 1 - Preparing parts (A - Part
was fabricated by laser cutting. B - Part was fabricated by machining cutting. C - Part
was fabricated by 3D printing technique). Step 2 - Reflective markers arrangement onto a
PDLC film. Step 3 - Shaping the PDLC film. Step 4 - Molding assembly. Step 5 - Pouring
deformable and transparent silicone. Step 6 - Releasing mold for a finished ProTac sensor.

3.2 Fabrication of ProTac link

The entire fabrication process is illustrated in Figure 3.3. The proposed fabrication

process aims for the desired durability and payload capacity of the soft ProTac link.
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Here, structural analysis ensures its robustness under loads below 15N. Additionally,

transparency, soft skin uniformity, and marker reflectivity are crucial specifications

affecting see-through ability and contact detection in proximity and tactile modes.

To ensure high transparency, a commercial acrylic tube with a smooth surface

finish is used for the outer mold, enhancing the efficiency of the see-through effect.

Additionally, markers with a 3mm diameter made from reflexive tape (R25 WHI,

3M Company) are employed to ensure performance in tactile mode. With these

specifications in mind, we propose a fabrication process that involves six main steps

(refer to Fig. 3.3). At first, laser cutting is used to form the outer mold (part A) into

two halves, facilitating easier release upon separation. In step two, reinforcing braces

(part B) are machined from steel, while other parts (C) are 3D-printed with PLA

material. Subsequently, the marker matrix is adhered to the PDLC film (LC Magic,

TOPAN Inc., Japan), forming a cylindrical skeleton with camera housing at both

ends. The outer soft skin is constructed by filling the mold with transparent silicone

liquid (Zoukei-mura, Japan) and curing it for a minimum of 24 hours. Finally, all

mold components are removed and cameras are assembled to obtain a complete

ProTac link.

ProTac is implemented with fish-eye cameras (ELP, 180◦ lens, 30Hz), and a PC

(Intel(R) i9-12900K 3.19 GHz, 64GB RAM, NVIDIA RTX 3090 GPU). The control

for switching the skin transparency is regulated by the PC, which connects to the

power control unit (LP1, TOPAN Inc., Japan) of the PDLC film through an RS232

serial port.

3.3 Structural analysis of ProTac link

In this section, we examine the structural robustness of the designed ProTac link.

The structural analysis is conducted using FEM simulation in Abaqus1, where

the ProTac link is tested under compression, bending, and twisting loads (see

Section 3.3.1). Lastly, the true failure points of the ProTac link are also verified

through experimental loading tests in Section 3.3.2.

1Finite Element Analysis Software: https://www.3ds.com/products/simulia/abaqus
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Table 3.1: The properties of materials used for ProTac’s structural simulation.

Reinforcing brace PDLC skin
Material Stainless steel (SUS304) PET plastic
Young modulus 210000MPa 2164.8MPa
Poisson ratio 0.30 0.35
Density 7930 kg/m3 1345 kg/m3

3.3.1 Simulation

Settings

In the simulation, the model of the ProTac link is simplified to two core structural

components: the reinforcing brace made from stainless steel (SUS304) and the

PDLC skin modeled as a thin PET plastic sheet. The properties of the materials

used for the structural simulation are summarized in Table 3.1. The simulations

are conducted under three different static loading scenarios, including compressive,

bending, and twisting loads. The loads are applied at one end of the ProTac link

while the other end is fixed. The simulations are designed to gradually increase the

respective loads, and the displacements of a selected point on the reinforcing brace

are recorded to observe the ProTac link’s deformation behavior.

Results

Figure 3.4 highlights the simulation results of the ProTac link’s structural behaviors

under compressive, twisting, and bending loads. Based on the load-displacement

curves, the failure points of the ProTac structure can be determined for each

type of applied load, indicating the load at which the soft ProTac skin begins to

buckle. It can be seen that while the ProTac link exhibits strong robustness under

compressive and twisting loads, it demonstrates structural weakness under bending

load conditions, where the skin shows a high potential to buckle at the edge of the

ProTac skin. This observation is confirmed by the experimental evaluation presented

in the following section.
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Figure 3.4: Simulation results of the ProTac link’s structural behaviors under compressive,
twisting, and bending loads. The failure point indicates the load at which the soft ProTac
skin begins to buckle.

3.3.2 Experiment

The experiment aims to verify the deformation behaviors and failure points of the

ProTac link under critical bending loads. It should be noted that due to the

limitations in the loading capacities of the experimental system, it is difficult to

confirm the failure points for compressive and twisting loads, which demonstrated

high capacity through the simulations. Therefore, given that the ProTac’s structure

is much weaker under bending loads, it is still reasonable to focus solely on verifying

the ProTac’s flexural strength.
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Figure 3.5: Experimental setup and measurements of the ProTac link’s structural robust-
ness under compressive and twisting loads.

The experimental setup is depicted in Figure 3.5. In this setup, the bottom end

of the ProTac link was fixed to the table, while the other end was attached to a

6-degree-of-freedom force/torque sensor (Robotiq FT 300), which was motorized to

apply forces using the UR5 robot arm. While it is infeasible to measure the ProTac’s

failure points under compressive and twisting loads with the current experimental

setup, Figure 3.5 shows that the ProTac is able to withstand compressive and

twisting loads of 95N and 5Nm, respectively.
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Normal state Buckling state

𝐹! 𝐹! 𝐹!

Figure 3.6: Measurement of the ProTac link’s structural robustness under bending load,
demonstrating its yield strength of around 40N.

In terms of the bending load, Figure 3.6 shows that the ProTac link begins to

buckle at the edge of the soft PDLC skin when the force applied along the x-axis

exceeds 40N. This indicates that the ProTac link’s failure point under bending load
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is approximately 40N.

It should be noted that while the results confirm the weakest point in the ProTac

structure under bending loads, and demonstrate satisfactory robustness under

compressive and twisting loads, the observed failure points are inconsistent with

the simulation results. This inconsistency can be attributed to imperfections in the

experimental setup that cause measurement errors, particularly where all the degrees

of freedom of the ProTac link cannot be completely fixed in bending experiments.

However, since the ProTac link is still in its early stage of development, these

preliminary results could sufficiently provide a glimpse into its structural weakness,

which is valuable to guide further structural improvements. Upon improvements,

a more comprehensive structural analysis will be necessary to advance the ProTac

link towards commercialization and industrial-grade products.
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Chapter 4

Simulation, Learning of Vision-based Tac-

tile Sensing

This chapter quests for a learning mechanism to facilitate the interpretation of the

sense of touch on large-area artificial skins enabled by the vision-based tactile sensing

principle. In recent years, vision-based tactile (ViTac) sensors have emerged as an

efficient approach for implementing tactile sensing due to their simple design [24–26].

These sensors rely on the detection of soft artificial skin deformation upon contact

with objects, achieved through optical tracking of visual features such as markers or

reflective membranes. This information is then translated into tactile data, including

contact location, force, vibration, and object texture.

Previously, we explored both analytical [12, 74] and supervised learning tech-

niques [75,76] for the vision-based tactile link (TacLink) to extract contact informa-

tion from tactile images. While the former approach, involving model analysis and

calibration, can achieve high sensing performance, its complexity in modeling and

processing makes it less desirable. Conversely, data-driven methods, like the latter

approach, require extensive data for labeling visual representations, necessitating a

labor-intensive experimental data acquisition process [75]. This challenge becomes

more profound in scenarios with larger skin areas and more intricate contact

scenarios. Consequently, there is a growing need for a framework that enables

simulation-based learning while accurately representing the physics of interactive

contact in vision-based tactile sensing systems.

In this study, we introduce a novel platform, named SimTacLS, to simulate and

learn vision-based tactile sensing for large-area marker-embedded compliant skin (see

Fig. 4.1a). This platform leverages the SOFA physics engine to model the physical

interactions of deformable tactile skins using the finite element method (FEM),
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Figure 4.1: SimTacLS overview. (a) A simulation pipeline, comprised of physics engines
SOFA and Gazebo; was constructed to collect a labeled simulation dataset to train the
TacNet model, including the information of tactile skin deformation (output) and virtual
images (input); and a scheme of sim2real transfer learning was done through a generative
network (R2S-GN) of real images into simulation ones. (b) Expected applications of
SimTacLS to vision-based tactile sensors of diverse shapes and sizes.

while a plugin in the Gazebo environment facilitates the generation of virtual tactile

images through the modeled skin geometries produced from the SOFA environment.

The simulated images and corresponding skin deformation are employed as training

input and output (labels) for a deep neural network named TacNet. Furthermore, to

extend the TacNet model’s efficacy to real-world tactile images, a couple of sim2real

learning techniques are deployed. First, we introduce a real-to-simulation generative

network (R2S-GN). This network employs a generative adversarial network (GAN)

architecture to learn the transformation process from real to simulation domains

of tactile images (Fig. 4.1a). Second, the domain randomization technique to
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diversify perspectives of simulation tactile images is also examined to enable zero-

shot learning of the TacNet model. Such a platform is envisioned as an easily

implementable approach for diverse robotic systems of varying scales to attain tactile

perception capabilities (see Fig. 4.1b).

The chapter presents the proposed platform in detail, starting with Finite

Element (FE) modeling of the soft skin, particularly focusing on deriving a rep-

resentation for multi-layered ProTac skin (refer to Section 4.1). Subsequently,

the process of data collection and generation for labeled simulated tactile images

along with corresponding global skin deformation is explained (see Section 4.2).

Following this, the learning of skin deformation based on the simulation dataset

and sim2real learning techniques are described in Section 4.3 and Section 4.4,

respectively. Section 4.5 presents a methodology for extracting multi-point local

contact information from the prediction of global skin deformation. The chapter

concludes with the validation of this learning mechanism for the tactile sensing

mode of the ProTac skin (see Section 4.6), as well as demonstrating its capability of

learning tactile perception for a more complex-shaped soft tactile skin (Section 4.7).

4.1 Soft multi-layered skin modeling

This study employs a Finite Element (FE) algorithm through the SOFA simula-

tion framework1 for modeling the ProTac skin represented as a soft multi-layered

structure. The key challenge lies in simulating the mechanical responses of the soft

multi-layered skin to physical stimuli while ensuring a balance between accuracy

and computational cost. Additionally, modeling the mechanical coupling between

the PDLC film and the outer elastomeric layer is of significance. This section will

elaborate on the proposed modeling strategy and the model’s integration for physical

interactions within the SOFA framework.

1https://www.sofa-framework.org/
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4.1.1 Elastomeric skin modeling

The softness of an elastomeric skin presents a significant challenge in mechanical

modeling due to the intrinsically nonlinear nature of soft materials. While hyper-

elastic material models available in standard simulation platforms offer viable solu-

tions [63, 77], accurately determining all required parameters through experimental

means demands substantial effort. Furthermore, given our aim to implement

the proposed platform in real-time robotic applications, computational efficiency

is paramount. This study considers an FE modeling where connectivity among

vertices of non-overlapping tetrahedron elements follows a linear constitutive rela-

tionship, characterized by Young’s modulus E and Poisson’s ratio ν. Experimental

determination set E at 0.1N/mm2 and ν at 0.49 [78]. To address potential

unrealistic simulation outcomes stemming from this linear assumption, especially

under significant deformations encompassing both large displacements and rigid

rotations, a co-rotational FEM formulation is employed (for detailed elucidation,

refer to [79]). This approach enables realistic simulations capturing the geometric

nonlinearity of hyper-elastic materials, where small stresses result in large strains,

in a computationally efficient manner.

At a given simulation time, the current geometrical state of a deformable

elastomeric body can be obtained by solving the following dynamic equation:

M(q)q̈ = Fext(t)− Fint(q, q̇) + JTλ, (4.1)

where q ∈ Rn represents the 3D position of element nodes (N degrees of freedom),

M(q) denotes the mass matrix, Fext(t) signifies external forces (e.g., gravity) at

each time step t, and Fint(q, q̇) embodies internal forces acting on the system

state. Equation 4.1 is integrated over a time interval [t1, t2] using a backward

Euler integration scheme [80]:

M(q̇2 − q̇1) = dt
(
Fext(t2)− Fint(q2, q̇2) + JTλ

)
. (4.2)

By substituting the linearization of internal forces Fint(q2, q̇2) using Taylor series
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expansion with a first-order approximation and employing two relations q̇ = q2 −

q1 = dtq̇2 and q̈ = q̇2 − q̇1 into Equation 4.2, we obtain:

(
M+ dt2K+ dtC

)︸ ︷︷ ︸
A

q̈︸︷︷︸
x

= −dt2Kq̇1 + dt
(
Fext

2 − Fint
1

)︸ ︷︷ ︸
b

+dtJTλ, (4.3)

where Fext
2 denotes the external force at the subsequent time step, K = ∂Fint

∂q
,

and C = ∂Fint

∂q̇
represent stiffness and damping matrices, respectively. The only

unknown factor is JTλ, which signifies the contribution of tactile interaction in

the form of constraints. The Jacobian matrix J(q) = ∂ξ
∂q

incorporates the normal

and tangential constraint directions of λ (i.e., contact forces) - equivalent to the

magnitude of contact forces projected to the mapped degrees of freedom. Here, the

contact responses adhere to a combination of Signorini’s frictionless contact law [81]

and Coulomb’s frictional law [82], further details into this specific procedure can be

found in Appendix A.

To solve the linear equations presented in Equation 4.3, the SOFA framework

offers several methods. We opted for the sparse LDLT factorization technique [81]

to decompose matrix A, where D represents a diagonal matrix and L denotes

the sparse lower-triangular portion of matrix A. Although this approach incurs

considerable computational costs, it guarantees the reliability of the simulated

mechanical behavior of the soft body, namely the tactile skin.

4.1.2 PDLC film modeling

The mechanical coupling between the PDLC film and the outer elastomer layer

must be achieved while maintaining computational efficiency. Here, we simplify the

PDLC film, which inherits characteristics from PET films, as a stiffening substrate

that constrains the deformation of the outer elastomeric (soft) layer from its original

representation. This contribution is modeled by incorporating virtual elastic springs,

which connect all paired nodes of the soft layer’s mechanical model individually, as

depicted in Figure 4.2, where the soft layer is characterized by Young’s modulus

E and viscosity η, while the mechanical effects of the PDLC film are characterized

by virtual springs with stiffness kvs. This model operates under the assumption
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Figure 4.2: Modeling scheme of the two-layered ProTac’s skin.

that the PDLC film will not exceed its elastic limit point (i.e., undergo plastic

deformation). Any deviation from this assumption would lead to inaccuracies in

the representation of soft multi-layered structures like the ProTac skin, resulting in

the generation of unrealistic simulated tactile images. At an equilibrium deforming

state t, the virtual springs generate internal forces f spring, which are proportional to

the nodal displacement δ := q(t)− q(0), where q(t) and q(0) represent the current

and rest positions, respectively. Consequently, the motion equation (4.3) for the

entire lumped system of a soft multi-layered skin is updated accordingly.

(
MΣ + dt2K̄+ dtC

)
q̈ = −dt2K̄q̇1 + dt

(
Fext − F̄int

)
+ dtJTλ (4.4)

where MΣ(q) = diag[· · · , Ms+Mf

N
, · · · ] ∈ RN×N with Mf is total mass of the PDLC

film, K̄ = ∂F̄int

∂q
and F̄int = Fint − f spring, in which f spring = kvs × δ.

4.2 Simulated training data collection

In the SOFA framework, the mechanical representation of the soft skin consists

of two distinct models: the bare skin and the markers, which are subsequently

integrated within the simulation setup (see Figure 4.3). To manage multiple meshes

efficiently, a discretization strategy is implemented: the mesh for the bare skin,
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Figure 4.3: (a) Hardware architecture of a typical tactile skin. (b) cylinder markers
attached to the tactile skin will be decomposed into two parts: marker bases and bodies.
(c) Each tactile skin element will be imported to SOFA as a topological map of (c)
tetrahedron elements for mechanical models and (d) triangular cells for visual models.
Notice that, while the high-quality of the skin mesh remains in this mode, the meshes for
markers in the visual model are refined significantly.

serving both mechanical analysis and visualization, employs a finer discretization

(with a skin size element of 12 mm), while a coarser discretization (with a marker

size element of 1.5 mm) is applied to reduce the computational complexity for the

markers. Subsequently, the spatial coordinates of each degree of freedom in the

visual models are synchronized with those in the mechanical models using a mapping

function denoted as ξm before exporting the deformation states of the modeled skin

to the Gazebo module for generating corresponding virtual tactile images.
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4.2.1 Skin deformation labeling

We utilize the above soft skin model to generate a dataset capturing the reality-

like skin deformation across the entire skin (i.e., global skin deformation), denoted

as {DFEM}. This dataset, along with corresponding virtual tactile images (see

Section 4.2.2), enables the learning of a deep neural network for estimating the

global skin deformation, as discussed in Section 4.3. To streamline computational

resources, we define the initial shape of the skin in its undeformed state as

X0 := [X0,i ∈ R3 | X0,i = qi(0),∀i ∈ N ], whereN represents the node indices on the

skin surface (|N | = No). Upon physical contact, the skin undergoes deformation,

transitioning the original state X0 to a new deformed state X ∈ RNo×3. This de-

formation adheres to the dynamics outlined in the preceding section. Consequently,

the skin deformation DFEM = [DFEM
i ∈ R3, ∀i ∈ N ] is delineated by the nodal

displacement vectors:

DFEM
i := Xi −X0,i , ∀i ∈ N . (4.5)

4.2.2 Virtual tactile image acquisition

Unlike a previous study that synthesized virtual images based on the mathematical

derivation of a pinhole model for wide-angle lens cameras [63], in this paper, the

entire process for generation and acquisition of virtual (simulated) tactile images is

performed using the combination of Gazebo simulator and Robot Operating System

(ROS) [83]. Gazebo is preferable in this process as it supports the extension of an

RGB camera with a fish-eye lens resembling that used in the TacLink device, and

Gazebo can be integrated with ROS, which facilitates the use of this simulation

sensing framework for high-level robot perception, planning and control. Since only

virtual RGB cameras with fisheye lens extensions are used in our approach, other

simulators that offer similar functions, such as Unity and PyBullet 2 can also be

utlized for our platform.

In the Gazebo environment, TacLink sensor is modeled as a robotic link using

2https://pybullet.org/wordpress/
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Figure 4.4: The workflow for the generation and acquisition of virtual tactile images is as
follows: The Gazebo environment is set up according to the description of the TacLink
sensor’s URDF, including the relative camera positions and Gazebo plugins. Following this
setup, the topological meshes of the skin and markers (.STL) are consecutively updated
via SDFormat for image generation using the sensor plugin. The stream of image data
published on the ROS topic can then be acquired and saved in the desired format for
building the training dataset.

Unified Robot Description Format (URDF) 3, in which the geometric relations

between sensor parts, such as housings and cameras, are defined precisely as the

design of a real device. From the URDF description of TacLink sensor, Gazebo sensor

plugin providing the camera type of Wide Angle Camera Sensor is installed to

enable virtual cameras to render images of the artificial skin (tactile images). We also

attempt to reproduce the image distortion effect caused by the projection through

3URDF is an XML format used by ROS to describe a robotics system.
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a wide-angle fisheye lens to better describe the actual sensor behavior, which might

improve the overall performance of sim-to-real transfer. To this end, the Gazebo

sensor plugin is specified to accept a mapping function of a specific lens model.

This specification enables automatic generation of the distortion effect in the virtual

tactile images. Among the mapping functions proposed, the stereographic projection

is considered to be suitable to our circular fisheye lens cameras, as described [84].

The stereographic mapping function of the lens is defined as r = 2f tan θ
2
[84]; where

θ is the polar angle of a given point in the real world forming with the optical axis,

r the radial position of such point on the image plane, and f the focal length of the

lens; and this equation can be easily encoded and interfaced with the Gazebo plugin

via URDF specification.

For every updated topological status of the meshes of the sensor’s deformable

skin and marker generated at each time step of the SOFA simulation, we utilize

Simulation Description Format (SDF) 4 as a means to communicate them to Gazebo

through the gazebo/spawn_sdf_model ROS service. An SDF file defines a detailed

visualization of the artificial skin and embedded markers by specifying 1) geometry

linked to the STL topological meshes for the realistic skin shape display; and 2)

material which assigns colors to the skin and markers using a Blinn-Phong shading

model [85]. The virtual cameras periodically capture images of the artificial skin,

which are sequentially loaded into Gazebo environment via the sensor skin SDF

specification, which facilitates generation of photorealistic tactile images. In addi-

tion, from the TacLink URDF, the libgazebo_ros_camera Gazebo plugin is enabled

to establish communication between Gazebo and ROS via the camera/image_raw

ROS topic, over which tactile images are published by Gazebo server under Image

ROS messages. For image acquisition, a ROS client node is set up to subscribe the

stream of tactile images which could then be processed and collected. The entire

process of the generation and acquisition of virtual tactile images is encapsulated in

Fig. 4.4. Detailed descriptions (XML file format) of the SDF and URDF including

the virtual sensor specification (e.g., optical frame, camera lens mapping function),

sensor parts, and their geometric relations are included in the enclosed codebase.

4http://sdformat.org/
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Figure 4.5: TacNet concept and architecture. It maps a pair of virtual tactile images Isim
to the displacements of free nodes Dest from which the deformation of artificial skin could
be estimated. The soft skin is represented by a topological mesh consisting of fixed nodes
(denoted by pink dots) and free ones (the other vertices of triangular cells).

4.3 TacNet-based skin deformation sensing

TacNet is designed to estimate the global deformation of soft skin under contacts by

processing input tactile images. Existing methodologies, such as image processing

techniques [12] and data-driven algorithms [75], typically translate tactile images

into spatial changes among markers within a mesh representing deformable skin. In

contrast to the conventional analytical approach, which operates at approximately

10Hz [12], we opted for a deep learning strategy [75] to implement TacNet, targeting

computational speeds of up to 100Hz through GPU computing resources. Unlike

prior methods that computed marker deviations for shape inference, our approach

captures changes in artificial skin by monitoring the displacement of mesh nodes via

visual cues of markers’ movements imprinted on the tactile images. This approach

eliminates the need for redesigning the network upon changes in marker design,

aiming to facilitate transfer learning across tactile images with diverse marker

distributions.

4.3.1 Problem description

Let us define a set of nodes N = {1, . . . , N}, |N | = N belonging to the mesh

of the skin outer surface that comprises two subsets (N = B ∪ M): the fixed
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nodes B are a collection of unmoved nodes under external stimuli within areas

20mm away from two ends of the skin mesh which are deemed less interesting for

tactile sensation; whereas the free/active nodesM; the number of whose changes in

position are observed to reconstruct the entire skin shape. Hence, this vision-based

reconstruction problem can be formulated as a multi-output regression task (see

Fig. 4.5): given input marker-featured tactile images I, a network is designed to

estimate the displacement vectors of each free node

Dest
i := Xi −X0,i , ∀i ∈M, (4.6)

where Xi ∈ R3 is the 3-D position vector of one active/free node i ∈M, and X0,i ∈

R3 is the coordinates of the respective node under the original or non-deformed

state of the artificial skin. Thus, from the estimated displacement vectors Dest and

original nodal positions X0, the skin shape can be reconstructed as X = Dest +X0,

with the positions of all fixed nodes always unchanged Xi = X0,i , ∀i ∈ B.

4.3.2 TacNet architecture

The architecture of TacNet derives its framework from the well-established Unet

convolution networks [86]. Essentially, TacNet comprises a contracted convolutional

pathway linked with an inverse up-convolutional pathway via skip connections,

succeeded by two fully connected (FC) layers (refer to Fig. 4.5). The output

signal, activated by the final two FC layers, is characterized by a dense single layer

comprising 3n neurons, representing the estimated displacement vectors Dest, where

each set of 3 adjacent neurons corresponds to a displacement vector.

4.3.3 TacNet training and loss function

The training of TacNet is exclusively conducted on a simulated dataset, utilizing

input data Isim (images captured from simulated TacLink cameras) and correspond-

ing output labels DFEM (ground-truth displacement vectors), generated respectively

within the Gazebo/ROS and SOFA environments (refer to Sections 4.2.2 and 4.2.1).

The objective function employed is Mean Squared Error (MSE) loss, aiming to
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minimize disparities between the ground-truth and estimated displacement vectors

(DFEM,Dest), thereby optimizing the weights of TacNet Tθ:

θ∗ = argmin
θ
LMSE[D

FEM,Tθ(Isim)], (4.7)

where Dest = Tθ(Isim) and LMSE(·) is MSE loss, given by:

LMSE(D
FEM,Dest) =

1

3n

∑
i∈N

∑
j∈{x,y,z}

(djFEM,i − djestimated,i)
2, (4.8)

In (4.8), dji , ∀j ∈ {x, y, z} denote the components of displacement vector Di at

the respective skin node i ∈ M along the x, y, and z axes. Notably, the MSE

loss encourages learning of both intensity and direction of displacement vectors by

computing the difference in every vector component (or output neurons). For the

optimization process (4.7), iterative Stochastic Gradient Descent (SGD) optimizer is

employed, utilizing a learning rate of 0.015, which has been experimentally selected.

4.4 Sim-to-real transfer learning

4.4.1 Real-to-simulation generative network

The primary objective of the real2sim generative network (R2S-GN) lies in trans-

fering real tactile images (Ireal) into transformed images (Itf) that closely resemble

the visual domain of the simulation dataset (Isim). These simulation-like images

are then utilized as inputs for TacNet, ensuring the preservation of TacNet-based

deformation sensing performance during real-world implementation (see Fig. 4.6).

To achieve this goal, R2S-GN is trained in adversarial manner, functioning as a

generator within a traditional GAN framework. In this setup, it competes against

a discriminator to optimize its performance in the transformation task.

4.4.1.1 Problem description

Given simulation images Isim ∈ Isim, and its real/actual counterparts Ireal ∈ Ireal,

the sim2real gap refers to the difference in simulation-trained TacNet model’s

39



TacNet
R2S-TN

Real tactile images

TacNetGround truth

bad
inference

good
inference

Displacement (mm)

-10.0 -3.75 2.50 8.75 15.0

Figure 4.6: Tactile sensing sim2real problem and solution. Due to misalignment between
real and simulation images, the performance of TacNet-based deformation sensing (T) is
degraded (bad inference) as evaluated on real image samples (Ireal). R2S-GN tries to
replicate as close simulation (virtual) images (Itf) as possible from the real ones in order
to retain the TacNet performance (good inference) in the real data domain.

prediction Tθ(Isim) ̸= Tθ(Ireal), that is caused by the discrepancies between

simulation and real images Isim ̸= Ireal in terms of visual color and geometric

perspective. R2S-GN, Gϕ, learns a mapping from real images Ireal to transformed

ones Itf = Gϕ(Ireal) such that TacNet performance could be preserved for the

real-world dataset T(Isim) ≈ T(Itf) = T(G(Ireal)). Toward this goal, the R2S-

GN Gϕ is trained in an adversarial manner to generate transformed images that

cannot be distinguished from simulation ones, Itf ≈ Isim, by competing against an

adversarial trained discriminator, Dψ, which on the other hand learns to do its best

at discriminating the real simulation images Isim with the fake transformed ones

Itf. Here, the real images refer to the image type that the R2S-GN generator tries

to replicate, and should be distinguished from the actual images which indicate the
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ones captured from the real-world sensing device.

4.4.1.2 Network architectures

We exploit the adapted version of U-Net convolutional network and PatchGAN

model, as described in [87], for the architecture of R2S-GN generator (Gϕ) and

discriminator (Dψ), respectively. The Gϕ takes as input the downsampled real

images (Ireal, 256 × 256 × 3) on a encoder path and outputs the transformed

counterparts (Itf) on a reverse decoder path. Meanwhile the discriminator (Dψ)

receives a 256 × 256 × 3 pixel input image and the network classifies whether the

images inputted is real or fake. Details of the network parameters for Gϕ and Dψ

architectures can be found in [87].

4.4.1.3 R2S-GN Loss Function

We introduce a hybrid loss function LR2S-GN for training the R2S-GN generative

network (Gϕ). This loss function consists of three components: the conditional

generative adversarial network (cGAN) adversarial objective, ℓ1 distance, and

Structural Similarity Index (SSIM) loss.

Image appearance loss: Drawing inspiration from [88], we propose an ap-

pearance loss that combines ℓ1 distance with the SSIM metric [89] for assessing

image quality. This loss function, evaluated pixel by pixel, aims to align the

appearance of the generated ”fake” images Itf with the ”real” simulation images

Isim while preserving structural similarity. This alignment is crucial to ensure that

the generated images maintain the same geometric characteristics as the simulation

images, thus preserving the capabilities of the simulation-trained TacNet. Therefore,

for a given batch of training samples, this loss is defined as:

Limg = α ∥Gϕ(Ireal)− Isim∥1 + β
1− SSIM(Gϕ(Ireal), Isim)

2
, (4.9)

where we employ an 11× 11 Gaussian kernel for SSIM computation.

Adversarial loss: Alongside the appearance loss, we incorporate the conditional

Generative Adversarial Network (cGAN) objective [87] as an adversarial loss term.
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For a given real tactile image Ireal, the adversarial loss for the R2S-GN network Gϕ

is represented as:

Ladv = log
(
1−Dψ

(
Ireal,Gϕ(Ireal)

))
, (4.10)

where Dψ evaluates both the transformed tactile image Itf = Gϕ(Ireal) and is

conditioned on the input of Gϕ, specifically Ireal. This conditional discriminator

has demonstrated enhanced performance in various image translation tasks [87],

motivating its application in our real2sim network. Essentially, the R2S-GN Gϕ aims

to minimize this objective function by generating transformed images that deceive

the adversarial discriminator Dψ into classifying them as ”real” simulation images.

Consequently, the overall loss objective for R2S-GN Gϕ combines the appearance

loss with the conditional GAN criteria:

LR2S-GN = Limg︸︷︷︸
Appearance loss

+ γ · Ladv︸ ︷︷ ︸
Adversarial loss

, (4.11)

where we set the hyperparameters α = 100, β = 200, γ = 1, which are adjusted

through empirical tuning.

Finally, to train the adversarial discriminator Dψ, we employ the conditional

Generative Adversarial Network (cGAN) objective outlined in [87]. For a single

training sample, the discriminator loss is formulated as:

LG = log
(
1−Dψ(Ireal, Isim)

)
+ logDψ

(
Ireal,Gϕ(Ireal)

)
. (4.12)

The second term expresses the adversarial training behavior, where the discriminator

aims to maximize the adversarial objective of the R2S-GN (Eq. 4.10), while the R2S-

GN endeavors to minimize it. The comprehensive loss function (Eq. 4.12) indicates

that the discriminator strives to effectively differentiate between the transformed

images Itf and the simulation ones Isim, thereby penalizing the R2S-GN to generate

Itf that closely resemble the appearance of Isim.
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Figure 4.7: The training scheme for R2S-GN model, mostly following the procedure
described in [19]; however with the modification for inclusion of R2S-GN loss.

4.4.1.4 R2S-GN Training

We adopt the typical adversarial Generative Adversarial Network (GAN) training

procedure [19] to optimize the parameters of the R2S-GN Gϕ network (see Fig.

4.7). Specifically, during discriminator training, we assign a positive class label

(real) when the input is a simulation image, and a negative class label (fake)

when the input is a transformed image. Meanwhile, for the R2S-GN network,

alongside computing the Limg loss, we set the output label of Dψ to the positive

class (real) to facilitate the adversarial Ladv loss [87]. For optimization, we utilize

the Adam optimizer with linear learning rate scheduling [90], initialized at 0.0002,

and scheduled to decay at the 100th iteration out of a total of 200 training steps.

4.4.2 Domain randomization

This section introduces a more straightforward approach to address the sim2real

gaps of real and simulated tactile-image domains, in which the collection of real

tactile images is not required. For this purpose, in the training phase of the TacNet

model, we employ the domain randomization technique applied to the binary version

of tactile images {Ītac}sim, while the training procedure and loss function presented

in Section 4.3 remains unchanged. The domain randomization involves performing

affine transformations during the training process to diversify the perspective of

tactile binary images, including translation, rotation, and scaling. This technique,
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Figure 4.8: Illustration of tactile processing pipeline. TacNet model is trained using
datasets comprising simulation tactile images and skin deformation states collected in
the simulation platform (Unity-SOFA). To address the sim2real gap, the perspectives of
simulation tactile images in binary format are randomized during the training process,
facilitating the direct transfer of the TacNet model to real-world counterparts.

along with the high-fidelity physical modeling of the soft skin, facilitates zero-

shot sim2real transfer, eliminating the need for real data or an additional network

to mitigate the sim2real gap. The visual conceptualization of this approach is

illustrated in Figure 4.8.

4.5 Large-area tactile perception

Large-scale vision-based tactile sensors offer opportunities for multi-point physical

interactions, distinguishing them from their smaller counterparts like tactile fin-

gertips. These sensors enable the extraction of various information from external

stimuli, including the identification of contact intensities and contact locations on

artificial skin surfaces. This capability holds significance in robotics applications,

such as collision handling frameworks [27]. In addition to a contact event detection

method (Section 4.5.1), we develop an algorithm for identifying multi-point contact

intensities and locations across large-area skin surfaces (Section 4.5.2). This local

contact information is inferred from the TacNet-based global deformation sensing.
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4.5.1 Contact event detection

Detection of touch/contact events is fundamental in ensuring the safety of robotic

systems [27]. Here, we introduce a method to extract signals indicating contact

detection based on the prediction of global soft skin deformation.

The contact detection task can be framed as a binary classification problem,

where given the displacement vectors Dest obtained from TacNet (4.5), we assign a

contact detection signal. This signal is assigned a value of 0 for data indicating no

contact and 1 for data indicating contact. Therefore, the contact detection signal

can be expressed as:

CD =

1, if ∃i : ∥Dest
i ∥ ≥ ϵc

0, otherwise.

. (4.13)

In essence, a contact detection threshold ϵc is set on the estimated displacement

magnitude of free skin nodes ∥Dest
i ∥ , ∀i ∈M, where ϵc is primarily determined by

the accuracy of TacNet estimation, impacting detection sensitivity and accuracy.

This threshold is calibrated to achieve a balance between precision and recall, which

are standard metrics of a binary classifier’s performance. We utilize the simulation

dataset to establish the detection threshold, with the expectation of its effectiveness

in real-world data.

4.5.2 Multi-point contact sensing and localization

Identifying the precise location of a physical contact on a robot body (e.g., a link

of a manipulator) is crucial for robot response [27]. Contact localization aims to

determine the specific positions on the robot body where contacts occur. In our

efforts to integrate the ProTac link for a robot arm, we devise an algorithm capable

of identifying contact positions and their intensities at multiple points across the

sensing link.

This identification approach operates under the assumption that any contacts

between the sensor skin and external objects are point contacts, an assumption

deemed reasonable in practical contexts [27]. The algorithm utilizes the principles

of graph theory-based connected-component labeling [91] to isolate contact regions, a
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process termed contact region labeling (CRL), from which the local contact positions

are determined. Here, we conceptualize the mesh representation of the artificial skin

as an undirected graph, denoted as G = (V , E), where the vertices represent the mesh

nodes (|V| = |N | = N) and encapsulate information regarding the displacement

vectors estimated by TacNet (Dest ∈ R3N). Furthermore, each graph node contains

data regarding a fixed radial vector pointing toward the central axis of the skin to

ascertain nodes deflected inward. Therefore, the radial vector at each node is defined

as follows:

Ni :=
[
0 0 xz0,i

]⊤
−X⊤

0,i , ∀i ∈ N , (4.14)

where xz0 represents the z-component of nodal positions X0 in the undeformed state.

To execute CRL for extracting distinct contact regions, the first step to identify

which nodes of the skin are likely to be experiencing contact. Thus, we introduce an

N-tuple of binary nodal contact signals s = (s1, . . . , sN) ∈ ZN2 , where each si takes

a binary value si ∈ {0, 1} such that si = 1 indicates that node i ∈ N is in contact

and is part of a contact region, while si = 0 signifies that the node remains intact.

Specifically, the nodal contact signal for each node i ∈ N is computed as:

si =

1, if ∥Dest
i ∥ ≥ ϵd ∧ dsim(D

est
i ,Ni) > 0

0, otherwise,

(4.15)

where,

dsim(D
est
i ,Ni) =

Dest
i ·Ni

∥Dest
i ∥ ∥Ni∥

. (4.16)

In other words, a node is deemed to belong to a contact region if its nodal

displacement exceeds a predetermined threshold ϵd and the direction of the dis-

placement vector points towards the skin’s central axis. The latter condition, that

is dsim(·) > 0, helps confine contact regions to contain nodes deflecting inwards.

Here, dsim(·) ∈ [−1, 1] computes directional similarity (Eq. 4.16), quantifying cosφi,

where φi denotes the angle between the vectors Dest
i and Ni.

Given the skin graph G and nodal contact signals s, the CRL procedure is

conducted to extract potential multiple distinct contact regions (refer to Algorithm
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1: CRL function). This algorithm employs depth-first search (DFS) to traverse the

vertices V of graph G containing the nodal information of s. Along the search

path, it assigns a contact region label l ∈ {1, . . . , L} (L denotes the number of

contact regions) to each node with the signal si = 1, thereby labeling clusters of

contacted nodes (or contact regions) separated by un-deformed nodes (si = 0) with

the same region label l. Consequently, a set of labels y = (y1, . . . , yN) ∈ ZNL+1 is

obtained, where each yi ∈ {0, 1, . . . , L} represents the region label of node i ∈ N ,

and yi = 0 denotes nodes within the undeformed region. From y, contact regions

can be extracted using the node indexes. Hence, for a given contact region Rl with

the region label l:

Rl = {i ∈ N | yi = l} , ∀l ∈ {1, . . . , L}. (4.17)

Finally, within a contact region Rl, the node i∗l ∈ Rl at which the displacement

magnitude is maximum is identified as the contact location:

i∗l = argmax
i∈Rl

∥∥Dest
i

∥∥ , ∀l ∈ {1, . . . , L}. (4.18)

From that, contact positions {x̂c1, x̂c2, . . . , x̂cL} ∈ R3L can be identified from the

extracted contact regions, which are assumed to be the positions at which the skin

is deformed most, or at the positions with the largest contact intensities:

x̂cl := X0,i∗l
, ∀l ∈ {1, . . . , L}, (4.19)

Also, the vectors of contact intensities {d̂cl} at corresponding contact locations {x̂cl}

can be derived as:

d̂cl = Dest
i∗l

, ∀l ∈ {1, . . . , L}. (4.20)

Thus, the magnitude of the contact intensity vector is referred to as the contact

depth, that is ∥d̂cl∥. For brevity, we utilize ∥d̂c∥ and x̂c to denote a single-point

contact depth and location without the subscript index throughout the paper.

The sequential procedure for multi-point contact sensing is detailed in Algorithm

1, with its complexity primarily depending on the size of the skin graph, denoted by
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Algorithm 1 Multiple-point Contact Localization

Input: G: skin graph defined by (V , E); X0: initial nodal positions; D
est: estimated

nodal displacement vectors; N: nodal radial inward vectors
Output: Xc: multiple contact positions (xc1, . . . ,x

c
L)

1: Initialize: ϵc ▷ contact threshold
2: s← new List

3: for each node vi in V do
4: if ∥Dest

i ∥ ≥ ϵc and dsim(D
est
i ,Ni) > 0 then si ← 1 ▷ assign nodal contact

signals (4.15)
5: else si ← 0
6: end if
7: end for
8: y← CRL(V , E , s) ▷ obtain a list of contact region labels
9: (R1, . . . ,RL)← sortContactRegions(y) ▷ see (4.17)

10: (i∗1, . . . , i
∗
L)← searchContactNodes(R,Dest) ▷ (see 4.18)

11: xcl ← X0,i∗l
for all l ∈ {1, . . . , L}

12: return list of contact positions (xc1, . . . ,x
c
L)

13: function CRL(V , E , s) ▷ contact region labeling
14: l← 1 ▷ initialize contact region label
15: y← new List

16: for each node vi in V do
17: if si = 1 and yi = ∅ then
18: y← DFS(l, vi, E , s,y)
19: l← l + 1
20: else if si = 0 then yi ← 0
21: end if
22: end for
23: return list of contact labels y
24: end function
25: function DFS(l, vi, E , s, y) ▷ depth first search
26: if si = 0 or yi not ∅ then return y
27: end if
28: yi ← l
29: for each neighbour node vj of vi in E(vi) do
30: y← DFS(l, vj, E , s,y)
31: end for
32: end function

O(|V|+ |E|). Furthermore, the spatial resolution is determined by the fineness of the

constructed skin mesh, introducing a trade-off between resolution and computational

overhead; heightened resolution increases computational demands. Additionally, the

assumption of point contact can be relaxed in scenarios where contacts result in

concave deformations of the skin surface, leading the detector to approximate the
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contact position at the most deeply displaced node; however, detection precision

diminishes as the contact plane expands. Finally, instances of overlapping contact

regions, such as when two discrete contact points are close to each other, may lead

the detector to perceive distinct regions as a singular large contact area. This sensing

behavior, influenced by the distance between contact points and the selection of

threshold ϵd, as well as its impact on localization accuracy, is discussed in Section 4.7.

4.6 Performance evaluation: ProTac link

To assess the effectiveness of the SimTacLS framework, tactile perception experi-

ments were carried out for the ProTac link in tactile mode and a barrel-shaped

tactile link, TacLink (this section, and Section 4.7, respectively). Additionally, for

sim2real learning, we validated the domain randomization and R2S-GN adversarial

domain adaptation techniques with the ProTac link and TacLink, respectively.

Model training and inference were performed on a desktop PC equipped with an

AMD Ryzen™ Threadripper™ 3970X Processor, utilizing GPU acceleration (RTX

8000, NVIDIA). In this study, we utilized the Unet-based TacNet configuration

(k = 2048) as a means for skin deformation sensing. The rationale behind selecting

this TacNet configuration and its performance compared to various TacNet models

are thoroughly discussed in Appendix B

4.6.1 Setups

The TacNet model was trained using 80% of the simulation dataset, comprising a

total of 11025 data pairs. The remaining 20% was reserved for validation during

the training process. Here, the quantity of output neurons is 1863, three times

the number of mesh nodes representing the skin surface (i.e., No = 621). For the

evaluation, we collected a set of unseen real images by pressing an obstacle into the

ProTac skin in its opaque state. The capability of ProTac to estimate contact depth

and identify contact location was tested across various positions on the ProTac skin,

defined by 2D cylindrical coordinates spanning a height range of [70, 170]mm and

an angular range of [−90, 90]◦. At each contact position, data was captured as
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(a) Est. contact depth accuracy (b) Est. depth accuracy on the whole skin

Figure 4.9: ProTac’s tactile mode evaluation. The results highlight the contact sensing
capability of ProTac link, characterized by contact depth estimation and contact localiza-
tion over the entire skin area (a)-(b)

the obstacle’s penetration increased incrementally from 0 to 10mm, with intervals

of 2mm. Notably, by adopting the domain randomization technique (described in

Section 4.4.2), later referred to as enhanced sim2real, the tactile sensing data were

acquired by TacNet trained solely on the simulation dataset without the need for

fine-tuning using real data, underscoring the zero-shot learning capability of our

approach.

4.6.2 Results

Figure 4.9a depicts the evaluation of contact depth estimation and the associated

detection error in contact location (assessed via the l2-norm) against increasing true

contact depth (indentation). The findings reveal that ProTac consistently provides

responsive sensing signals when the indentation surpasses 4mm within the 10mm

range. Specifically, contact depth estimation exhibits a linear correlation (Fig. 4.9a-

1), while the detection error in contact location remains below 5mm (Fig. 4.9a-2).
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Figure 4.10: Demonstration ProTac’s ability to identify multi-point contact.

Furthermore, the results demonstrate that the incorporation of data augmentation

via randomizing input image perspectives significantly enhances the sim2real trans-

fer, resulting in significant improvements in tactile sensing performance.

Figure 4.9b illustrates the detection errors in contact depth and location across

the entire large-area skin. Discrepancies in sensing accuracy across contact regions

are attributed to the complex structures of the soft skin, which are not fully captured

by the proposed skin model. Nevertheless, the observed accuracy levels are believed

to remain satisfactory for large-area whole-arm tactile sensing and broader robotics

applications [92].

Lastly, Figure 4.10 showcases a scenario involving two-point contact detection,

where the estimation of skin deformationDest facilitates the determination of contact

depths {d̂c1, d̂c2} at distinct contact locations, given the input tactile image Itac.
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4.7 Performance evaluation: Barrel-shaped tactile link

This section validates the effectiveness of the proposed learning platform for the

tactile perception of a large-area barrel-shaped tactile link (TacLink). In addition,

we justify the efficiency of the R2S-GN adversarial domain adaptation technique

(described in Section 4.4.1) in reducing the sim2real tactile sensing gap on the real

sensing device.

4.7.1 Setups

We collected multiple datasets from both simulated and real-world domains to train

and evaluate the feasibility of SimTacLS for the TacLink device. Details are provided

in Table 4.1. Indentation locations were specifically designated among free nodes

M, resulting in a total of 585 sampled points for the ”single-contact” dataset. To

enable two-point contact sensing capability and evaluate the generalization of the

adversarial sim2real learning technique with limited prior knowledge, we generated

500 contact pairs comprising two arbitrary points within M to form the ”double-

contact” dataset.

Table 4.1: Datasets used for model training and evaluation

Subject Tactile data Simulation Real
TacNet Images + Info single + double −
R2S-GN Images single single

Evaluation Images + Info single + double single + double*

*This dataset only contains some special scenarios used to evaluate SimTacLS and
multi-contact localization accuracy.

An experimental setup was established for real tactile image collection (see

Fig. 4.11). This setup included three motorized linear stages (Suruga Seiki Co.,

Japan), a rotating motor (Dynamixel XH430-W350-R, ROBOTIS, Inc., USA), and

a stepping motor controller (DS102, Suruga Seiki Co., Ltd., Japan), all mounted on

a testbed. The X-axis stage (PG750-L05AG-UA) operated a spherical-head indentor

(12 mm diameter) designed to apply pressure to individual nodes, adjusting them

to the desired contact depth on the skin. Movement of the indentor across the skin’s

outer surface and rotation of the TacLink sensor were achieved through horizontal
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Figure 4.11: Setups for data collection in (a) simulation and (b) real-world.

motion facilitated by a Z-axis linear carrier (KZS18300) and rotation of the Z-

axis motor, respectively. Meanwhile, the Y-axis stage was pre-positioned to ensure

alignment of the indentor’s nominal axis with the Z-axis of the reference coordinate

system (i.e., the centerline of the TacLink sensor).

4.7.2 Image transformation evaluation with R2S-GN loss

The evaluation of R2S-GN performance centered on assessing the similarity between

transformed and simulation images through spatial image structure. This involved

measuring the structural similarity index (SSIM) and the complement of per-pixel

root mean square error (pixRMSE = 1−pixRMSE) across pairs of transformed and

baseline simulation images. Furthermore, we compared the performance of R2S-

GN models trained using different loss functions, including the R2S-GN training

loss LR2S-GN (Eq. 4.11), solely adversarial loss Ladv, and adversarial loss combined

with ℓ1-distance loss Ladv-L1 := Ladv + LL1. The training involved 18640 pairs of

single-contact actual-simulation images, while the evaluation was conducted with

4780 pairs of both single (4660 pairs) and double contacts (120 pairs).

Figure 4.12a depicts the structural similarity between tested simulation images

and real images transformed by three R2S-GN network variants, each trained with

a different loss function. It illustrates the evolution of sim-real similarity with
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Figure 4.12: R2S-GN model evaluation with various training losses. (a) The spatial
similarity between the transformed and real simulation images are measured by per-
pixel SSIM and pixRMSE metrics (the higher the values the more similarity between
the compared pairs of images). The graphs present the better performance of R2S-GN
as trained with the proposed LR2S-GN loss compared to the other two variants of losses.
(b) Visualization of transformed images in the scenarios of single- and double-contact
(dc = 15mm).

increasing contact depth. Notably, the LR2S-GN-based R2S-GN network yields

images more akin to the simulation baselines, boasting an average SSIM of 0.96

and an average pixRMSE of 0.95 at 20mm contact depth, compared to 0.91 and

0.90 of the Ladv-based model. While the former experiences a marginal drop of

around 3.5% in both SSIM and pixRMSE metrics across the observed range of

contact depth dc ∈ [1, 20], the latter endures a more significant (7%) decline in

structural similarity.

For qualitative visualization of the similarity, Figure 4.12b showcases sample

single- and double-contact tactile images with a 15mm contact depth, demonstrating
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Figure 4.13: Evaluation of contact depth accuracy and its sim2real transferability, using
the proposed sim2real method.

the R2S-GN’s ability to generalize and generate unseen tactile images effectively,

even in scenarios not encountered during training. This confirms the efficacy of the

proposed R2S-GN loss. In the subsequent subsection, we evaluate the efficacy of

variant RS2-TN models in addressing the sim2real gaps.

4.7.3 Evaluation of contact depth accuracy

While it is impractical to directly verify the accuracy of global skin deformation

estimated by the TacNet model, the performance of the contact sensing can be

accessed by the measurement error of local contact depths ∥d̂c∥. We evaluated the

sensing accuracy on both simulated and real datasets to justify the effectiveness of
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the adversarial sim2real learning technique. Here, TacNet was trained entirely on

the simulation dataset, comprising both single- and double-contact images (a total

of 28055 pairs of virtual tactile images), with 20% of each contact type data held

out as a test fold for validation. To assess sim2real transferability, we conducted

experiments on a subset of real double-contact images and a complete set of real

single-contact images corresponding to the simulation test fold (refer to Table 4.1).

The experimental findings revealed an increase in measurement errors with true

contact depth (dc) in both simulation and LR2S-GN-based translated visual inputs,

while pure real inputs, bypassing the R2S-GN model, exhibited significant errors,

maintaining unchanged estimated values (refer to Figs. 4.13a). At dc = 20mm,

the absolute errors were below 2 mm and 4 mm, approximately corresponding to

full-scale errors of 10% and 20% (with FS 20mm) for simulation and translated

inputs, respectively. Moreover, Figure 4.13b demonstrated that the LR2S-GN-based

R2S-GN model outperformed the other two variants trained by Ladv and Ladv-L1,

reducing full-scale errors by approximately 25% and 10%, respectively, at dc =

20mm. Additionally, we present the skin shape reconstruction visualization for

two representative scenarios of single- and double-point contact with a depth of

dc = 15mm (see Fig. 4.14). A similar sensing pattern between simulation and

real (via LR2S-GN-based R2S-GN) samples was observed for single-contact, with an

absolute error of approximately 1.5mm. In the case of double-contact, the mean

absolute errors at the two contact patches were 1.31± 0.65mm and 2.92± 0.50mm

for the virtual and translated real input, respectively. The discrepancy between

simulation and real data was more pronounced in double-contact scenarios because

the R2S-GN had not been trained on double-touch data, likely resulting in greater

dissimilarity in image structure, especially at large contact depths.

Importantly, the accuracy of contact depth estimation varies across different

regions of the skin. To investigate this, we conducted an experiment where contact

was initiated at ten locations along a longitudinal line of the skin, each with contact

indentations of 5mm and 10mm. The obtained data, comparing contact depth val-

ues inferred from real images processed through the LR2S-GN-based R2S-GN, and the

ground truths are illustrated in Fig. 4.15. The results indicate decreased sensitivity
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(a) Skin reconstruction with single contact (dc = 15mm)

(b) Skin reconstruction with double contact (dc = 15mm)

Figure 4.14: The visualization of TacNet-based 3D skin shape reconstruction in the
scenarios of single- and double contacts with true contact depth at 15 mm.

in the equatorial area of the skin. Nevertheless, the accuracy reported in this study

can be enhanced through deliberate calibration, where parameters are identified

differently for distinct contact regions. Notably, while contact depth accuracy varies
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Figure 4.15: Evaluation of contact depth estimation at different contact regions on the
tactile skin. (Estimated on real images via LR2S-GN-based R2S-GN)

across skin regions, this issue is not witnessed with the contact localization task,

as demonstrated in Section 4.7.5, where the variations of localization errors are

insignificant across the entire sensing skin.

Overall, in the context of sim2real learning of soft vision-based tactile sensing on

large body, the obtained results in this study, as far as we are aware, can establish

a benchmark for future advancements. The sensing errors fall within an acceptable

range when compared to prior studies [12,75].

4.7.4 Evaluation of contact event detection

This section evaluates the performance of contact event detection using our proposed

method with domain adaptation via the R2S-GN model. Initially, we identified an

optimal contact detection threshold ϵ∗c that maximizes detection capability using

the simulation image dataset. The selection process was based on analyzing the

precision-recall trade-off [90] of the touch classifier over a finite range of decision

thresholds ϵc. As shown in the precision/recall plot (see Fig. 4.16a), we chose a

contact threshold value of 0.6mm for evaluation since it maximized contact sensing

performance with 100% recall and precision.

The accuracy of contact detection, evaluated using the test simulation dataset
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(b) The accuracy of contact classifier on different types of input images, with
the decision threshold 0.6.

Figure 4.16: Evaluation of contact sensing task.

and corresponding real images, is presented in Table 4.16b. All pure real images

capturing non-deformed skin were mistakenly classified as contact events, resulting

in 95% precision. However, the results (Table 4.16b) indicate that this sim2real

problem can be mitigated with the R2S-GNmodel. When real images were processed

through the R2S-GN model, the threshold learned from the simulation could be

successfully applied to the real images, maintaining the best precision and recall

values (i.e., 100%).

4.7.5 Evaluation of two-point contact localization

This section evaluates the accuracy and sim2real transferability of the contact

localization task in double-contact scenarios. We conducted experiments with three

distinct contact groups (I, II, III), differentiated by the vertical distance between

the contact points (180, 140, 100mm, respectively, as depicted in Fig. 4.17a).

For each contact group i ∈ {1, 2, 3}, we determined the range of contact depth

[l, ui], i ∈ {1, 2, 3} for which the two separate contact regions could be identified

59



4 6 8 10 12 14

Threshold (mm)

5

10

15

20

C
o

n
ta

c
t 
d

e
p

th
(m

m
)

Lower detection 
bound

Upper detection bound

Group I Group II Group III

𝜀d = 9 mm

𝑢1 = 20 mm

𝑢3 = 14 mm

𝑢2 = 18 mm

𝑙 = 9 mm

1
8
0
 m

m

1
4
0
 m

m

1
0
0
 m

m

Group I Group II Group III

(a) The range of contact depth permitting successful two-
point detection versus decision threshold (ϵd), evaluated on
SOFA ground-truth data (DFEM)

10

12

14

16

18

20

R
a

n
g

e
 o

f 
c
o

n
ta

c
t 
d

e
p

th
 (

m
m

) Ground-truth Simulation Real (R2S-GN)

N
o

t 
P

e
rc

e
iv

a
b

le

N
o

t 
P

e
rc

e
iv

a
b

le

11

16 16

13

18

14

12

10

(b) Sim2real comparison of contact depth range
inside which the two-point contacts can be discrim-
inated versus contact groups. (ϵd = 9mm)

Figure 4.17: The study of sim2real transferability of two-point contact localization.

based on the threshold ϵd (Eq. 4.15) from SOFA simulation data (DFEM). Outside

of the range [l, ui], the two contact points were mistakenly identified as one single
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contact. Figure 4.17a demonstrates that Group I exhibited the widest detectable

range, followed by Group II, and this range expanded with increasing threshold

values ϵd. Moreover, Figure 4.17b compares these outcomes with the estimated

displacement data (Dest) derived from virtual and real tactile images at ϵd = 9mm,

which yielded the highest successful rate for two-point detection. Except for Group

I, which remained acceptable in both scenarios, Group II experienced a notable

decrease in detectable range, while all the two-point contacts in Group III (with

a relatively close two-point distance) were inaccurately identified as a single large

contact area. This limitation can be accounted for by the fact that our method

estimates node displacements not only from the actual contact sites but also from

the surrounding regions. Additionally, occlusion is more likely to occur when two

points are closely situated. Situations, where two points share the same height or

are vertically aligned, are anticipated to be less problematic than the tested cases

due to the parallel alignment of every horizontal cross-section of the TacLink skin

with image planes, thereby providing clearer visibility of the contact areas with less

occlusion.

Table 4.18a illustrates the average localization errors between estimated and

actual contact positions using simulation and transformed real tactile images for

Groups I and II, while Figure 4.18b provides a visual representation of the local-

ization task at dc = 15mm. Overall, the results demonstrate the feasibility of

sim2real transfer for multi-point contact localization. However, certain gaps persist

in the sim2real transition due to TacNet being trained predominantly with a limited

double-touch dataset and R2S-GN lacking relevant prior knowledge to manage such

intricate interactions.

4.7.5.1 Discussion on two-point touch discrimination

As demonstrated in Section 4.7.5, the tactile sensor could discriminate two contact

points minimally separated at a distance of 140mm. This minimum distance often

termed the two-point touch threshold, is indicative of human touch acuity. Typically,

for larger body parts like arms or torso, the two-point touch threshold for humans

is relatively low, usually around 45mm. Therefore, the performance observed in
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Contact Point
Localization error (mm)

Group I Group II
sim real sim real

xc1 6.81± 0. 7.19± 1.06 1.49± 0. 4.86± 4.64
xc2 6.81± 0. 7.18± 1.05 1.49± 0. 7.10± 4.64

(a) Double-point contact localization accuracy of simulation and
transformed real dataset

(b) The demonstration for double contact localization
with transformed real samples for Group I and II (dc =
15mm).

Figure 4.18: Evaluation of two-point contact localization accuracy.

this study, for a whole-arm ViTac system with highly compliant skin, is considered

satisfactory. In fact, the tactile device’s two-point touch threshold is adjustable by

modifying the skin’s morphology, such as altering the skin material or increasing the

air pressure within the enclosed skin. It is anticipated that a skin with higher stiffness

would result in a shorter detectable two-point distance due to fewer deflected nodes

under the same applied force (as described by Eq. 4.3). Additionally, aside from

a mechanical approach to adapt the sensing behavior, improving two-point spatial

acuity can be achieved by utilizing contact forces, represented by the Lagrange
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multipliers λ (as outlined in Eq. 4.1), as a basis for a contact region labeling

algorithm rather than relying solely on nodal displacements. Thus, by leveraging

the contact forces inferred by TacNet (trained on force labels obtained from the

SOFA kernel), contact regions could be refined to include only the nodes physically

in contact with the external stimuli.
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Chapter 5

Proximity Perception

This chapter provides a detailed methodology and performance assessment of the

ProTac’s proximity perception. While various methods for distance measurement

from off-the-shelf RGB-D cameras or binocular/multi-view vision have been exten-

sively studied in previous works [33,93], the utilization of a critical configuration of

opposing cameras, as seen in the ProTac link, has barely investigated. This study

proposes a methodology for estimating the distance between the ProTac skin and

the nearest obstacle or assessing collision risks with the surroundings by analyzing

the internal camera view of the ProTac when its soft PDLC skin is transparent

(see Fig. 5.1). Specifically, we employ a data-driven monocular depth estimation

approach based on a Deep Neural Network (DNN) [94] to generate a depth map

of the external space from the ProTac’s transparent view (Section 5.1), which

serves as the foundation for distance measurement (Section 5.2) and risk assessment

(Section 5.3). This approach allows for independent obstacle observation from

any direction using each of the two opposing cameras, thereby extending sensing

coverage and improving applicability to other sensor configurations. The fusion of

sensing information from multiple camera views to enhance sensing performance is

further discussed in Section 5.4. Lastly, the performance of the proximity sensing is

discussed in Section 5.5.

5.1 Monocular depth estimation

In this study, we establish the mapping between ProTac images and estimated

depth maps utilizing a DNN model trained via supervised learning. To accomplish

this, we fine-tune the pre-trained MiDas model [94] using the MannequinChallenge

dataset [95], which consists of video clips depicting motionless individuals resembling
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Figure 5.1: Illustration of proximity processing pipeline. The DepthNet model is fine-
tuned on augmented ProTac images sourced from open-access datasets. Estimation of
the distance to the ProTac skin n̂c relies on depth-map estimates Zest and a mask image
U extracted using image processing techniques. It’s important to note that while the
illustration depicts obstacle points oj and their projections pj , these may not accurately
reflect real data points, and not all points are presented.
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mannequins, publicly accessible on YouTube through Google AI. Initially, the image

dataset is synthesized to replicate the ProTac’s transparent views Iprox (see Fig.5.1)

by employing the alpha blending technique. Subsequently, the monocular depth

estimation network (DepthNet) is trained to correlate the augmented images with

corresponding depth images Zgt generated by the MVS pipeline proposed in [96],

which serve as ground-truths for model training.

5.1.1 Loss function

In the training phase, the depth estimation may exhibit varying scales. To

mitigate this issue, we implement a scale-invariant depth regression loss, following

the approach outlined in [94]. Additionally, we enhance the learning process by

disregarding uncertain depth pixels in the ground truth, particularly those within

occluded regions caused by mechanical components of ProTac, to refine learning

efficiency. Let Im = (Imj ∈ 0, 1,∀j ∈ {1, 2, · · · , a×b}) ∈ Za×b2 denote the mask of the

mechanical structures obstructing the transparent view Iprox ∈ Ra×b×3 of ProTac,

where Imj = 0 indicates an occluded pixel. We define a set of indices for occluded

pixels as K := {j | Imj = 0,∀j ∈ {1, 2, · · · , a × b}}. Given the raw estimated and

ground-truth depth maps Zest,Zgt ∈ Ra×b, the valid depth estimation and ground

truth are represented as zest := (Zest
k ,∀k ∈ K) and zgt := (Zgt

k ,∀k ∈ K), respectively.

Consequently, the scale-invariant regression loss is formulated as:

LDepthNet = Lssitrim(z
est, zgt) + αLgrad(z

est, zgt). (5.1)

Frist, the initial term Lssitrim penalizes the absolute disparity in depth values between

zest and zgt. Thus, the scale-invariant depth regression loss Lssitrim can be defined

as:

Lssitrim =
1

2|K|

Um∑
j=1

|z̄estj − z̄gtj |, (5.2)

where ¯zest, z̄gt represent the normalized depth prediction and ground-truth (i.e.,

zero mean and unit scale), and |K| denotes the number of valid pixels. To enhance

training robustness, the top 20% of the largest residuals of depth deviation are
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trimmed, ensuring that |z̄estj − z̄gtj | ≤ |z̄estj+1 − z̄gtj+1| and Um = 0.8|K| [94]. Second,

the multi-scale gradient term Lgrad promotes sharp depth discontinuities and smooth

gradient transitions by calculating the sum of absolute differences between predicted

depth derivatives and ground-truth depth derivatives (along the x and y directions)

at multiple scales (M = 4), where the image resolution is halved at each scale

level [97]:

Lgrad =
1

|K|

M∑
m=1

|K|∑
j=1

(|∇xR
m
j |+ |∇yR

m
j |), (5.3)

where Rm signifies the difference of depth maps at scale m, with Rj = z̄estj − z̄gtj .

Detailed derivations of normalized depth values and loss functions are available

in [94].

5.1.2 Network architecture and training

The DepthNet model, employed for monocular depth estimation, adopts a multi-

scale ResNet architecture [98]. We initialize the DepthNet with the model weights

specified in [94]. During the fine-tuning process, we utilize the Adam optimizer with

a learning rate initialized at 10−4, which linearly decays at the 50th iteration over a

total of 100 training steps. The hyperparameter α in the combined loss function (5.1)

is empirically set to 0.1. Detailed information regarding the network architecture

can be found in [98].

5.2 Distance estimation

Here, we describe a method to extrapolate the distance between an external obstacle

and the ProTac link based on the depth map estimate Zest derived from the fine-

tuned DepthNet model.

To accomplish this objective, we initially extract the mask image U ∈ Za×b2

of nearby obstacles from Zest through binary thresholding. This approach assumes

that obstacles in close proximity would exhibit discernible, brighter pixel intensities.

With a set of obstacle points denoting nearby obstacles on the mask image U,
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indexed by

O = {j |Uj ∧ Imj = 1, ∀j ∈ {1, 2, · · · , a× b}}, (5.4)

the 3D coordinates of the obstacle points O = [o⊺
j ,∀j ∈ O] ∈ R|O|×3 can be

calculated from their projections P = [p⊺
j ,∀j ∈ O] ∈ R|O|×3 on the depth image

Zest using the pinhole model of the ProTac’s inner camera.

Given the fisheye-lens camera of the ProTac sensor is modeled as a traditional

pinhole model, assuming that pixel sensors are square-shaped (i.e., equal focal

lengths f along the x- and y-axes: f = fx = fy), the spatial relationship between the

3D position of an obstacle point o = [ox, oy, oz]
⊺ ∈ R3 in the PCS (Protac Coordinate

System) and its projection p = [px, py, pd]
⊺ ∈ R3 in the depth space, with pd derived

from the estimated map Zest at a specific pixel location (u, v)⊺, can be deduced as

follows (for brevity, the subscript j for o and p is omitted):

px
py

 =
f

b+ oz

ox
ox

 , pd = oz (5.5)

with

px = u− cx, py = v − cy, (5.6)

where b denotes the position of PCS origin in the camera frame; (cx, cy) is the pixel

location of the image principal point on the pixel uv-coordinate. Thus, the obstacle

location in Cartesian space could be algebraically calculated as:

ox =
(u− cx)(b+ oz)

f
, oy =

(v − cy)(b+ oz)

f
, oz = pd. (5.7)

The calibration of model parameters {f, cx, cy, b} and the fisheye-lens correction were

conducted following the method proposed in [12].

The remaining problem involves determining the perpendicular distance from

each obstacle point o to the skin surface. To simplify calculations, the obstacle

point’s Cartesian coordinates were converted to cylindrical coordinates [Ro, φo, pd]
⊺

in 3D space, where Ro ∈ R>0 and φo ∈ (−π, π] represent the radial and angular
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coordinates of the PCS. This conversion can be mathematically expressed as:

Ro =
√
o2x + o2y, φo = arctan 2(oy, ox). (5.8)

Next, consider a specific point [Rs, φs, pd]
⊺ on the skin surface with the same angular

and axial coordinates as the obstacle point o (φs = φo). The normal distance vector

n̂ ∈ R3 between o and the skin surface can then be estimated as:

n̂ = (Ro −Rs)
r

∥r∥
. (5.9)

where r is the directional vector of the obstacle point o, perpendicular to the

cylindrical axis of Protac, defined as r := o⊺− [0, 0, pd]
⊺. Here, the radial coordinate

Rs remains constant for all control points on the skin surface, as the current Protac

design features a cylindrical skin shape with a radius R, ensuring Rs = R for all

(φs, pd).

Finally, given [n̂j,∀j ∈ O] determined for each obstacle point [oj,∀j ∈ O] (based

on Eq. 5.9), the distance vector n̂c from an obstacle to the Protac skin can be defined

as the closest obstacle points. Hence, we have:

n̂c := argmin
n̂j

∥n̂j∥ , ∀j ∈ O. (5.10)

Subsequently, the distance estimation can be determined as the magnitude of the

distance vector ∥n̂c∥.

5.3 Risk score

We introduce a risk score to assess the collision risks of nearby obstacles, offering an

alternative approach to measure proximity compared to the conventional distance

estimation ∥n̂c∥. Although the risk score doesn’t provide a direct measurement

of distance, it offers a more intuitive metric that increases as obstacles come

closer to the ProTac link. Moreover, it demonstrates a higher sensitivity and

maintains a consistent measurement range across different obstacles, unlike distance
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measurements that necessitate thorough calibration for each unique obstacle scenario

(as discussed in Sec. 5.5). Drawing from the observation that an obstacle’s area

expands as it approaches the ProTac link, we devise the risk score metric by

integrating the obstacle’s pixel area A ∈ R and the corresponding estimated distance

∥n̂c∥. Thus, while aligning with the direction of n̂c, the magnitude of the risk score

is computed as follows:

r =
A−∥n̂c∥A2

0

A0∥n̂c∥(η − A0)
, (5.11)

where A0 denotes the pixel area upon initial obstacle detection. Equation (5.11)

yields the raw risk score value A/A0∥n̂c∥, subsequently normalized within the range

[A0, η]. We set η = 5 across all tested obstacles. The assessment of the risk score,

accompanied by a comparison with the distance estimation ∥n̂c∥, is outlined in

Section 5.5.

5.4 Multi-camera fusion

While employing a single camera for extracting proximity information from ProTac

may widen the technology’s applicability to diverse sensor designs, the integration

of multiple camera perspectives could elevate the sensing efficacy, particularly in

scenarios where the observable or measurement range is restricted. This section

outlines a straightforward approach for fusing sensing data, encompassing either

the risk score r or direct distance measurement ∥n̂c∥, obtained from two cameras,

resembling the configuration of the current ProTac link. Denoting s1 and s2 as

the proximity information acquired from Camera-1 and Camera-2, respectively, the

fused sensing signal s at any given time instance can be calculated:

s = max(s1, s2) (5.12)

Here, the sensing signal s could represent either the risk score (s := r) or direct

distance measurement (s :=∥n̂c∥). The effectiveness of this fusion methodology in

improving ProTac proximity sensing capabilities is evaluated in Section 5.5.
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Figure 5.2: Experimental setup for the evaluation of proximity sensing performance.

5.5 Performance evaluation

This section demonstrates the ProTac’s capability in estimating the distance be-

tween the closest external obstacles and the ProTac skin ∥n̂c∥. Furthermore, we

evaluate the risk-score metric r, demonstrating its advantage over direct distance

measurement. The proximity sensing pipelines ran at approximately 22Hz.

5.5.1 Setups

The experimental configuration is depicted in Fig. 5.2. The ProTac link is affixed to

the end-effector of a UR5 robotic arm, which is directed linearly toward a stationary

obstacle along the ŷ-axis of the ProTac Coordinate System (PCS). Throughout this

motion, measurements of the distance ∥n̂c∥ and an equivalent risk score r were

logged. The actual distance from the obstacle to the ProTac skin was inferred

from the predetermined movements of the UR5, utilizing position feedback. To

evaluate the repeatability of ProTac, this measurement procedure was iterated

multiple times at various UR5 velocities ranging from 10mm/s to 20mm/s. The

assessment encompassed two obstacles of distinct shapes: a cylinder-shaped obstacle

and a phantom arm (refer to Fig. 5.3).

Furthermore, an additional experiment was conducted to explore how the

ProTac system, equipped with a pair of opposing cameras, could enhance sensing
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Figure 5.3: Samples of transparent ProTac views along with their processed images.

performance while adjusting the position of the obstacle along the z-axis (illustrated

schematically in Fig. 5.2). In this experiment, the cylindrical obstacle was

repeatedly displaced along the ẑ-axis of the PCS, ranging from 0 to 0.3m, at

varying speeds while maintaining a consistent distance from the ProTac skin. The

corresponding risk score values were logged (see Sec. 5.4), and the outcomes are

depicted in Figure 5.5.

5.5.2 Results

Figure 5.3 illustrates the extraction of depth and mask images for nearby obstacles

of interest using the ProTac view in the transparent state. The estimation of the

risk score r and the distance ∥n̂c∥ in relation to the true distance are presented in

Figures 5.4a and 5.4b, respectively. The results underscore the ProTac’s reliable

measurement range from 2 cm to 8 cm. Notably, within this range, the risk-score

estimation r displayed a linear trend, indicating a consistent measurement scale

and greater sensitivity compared to the raw distance measurement ∥n̂c∥ (Fig. 5.4b,

uncalibrated) for the two different obstacles. However, the ProTac’s direct distance

measurement ∥n̂c∥ remains applicable through calibration for each specific obstacle,

as evidenced in Figure 5.4b.

Regarding the performance of the two-camera fusion, as the obstacle moved

linearly along the PCS’s ẑ-axis, the ideal risk evaluation r should maintain a
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Figure 5.4: Performance of risk evaluation r and absolute distance estimation ∥n̂c∥
with respect to the true ProTac-obstacle distance for two different obstacles. Within a
measurement range from 2 cm to 8 cm, the risk score r exhibited a consistent linear trend
and maintained the same measurement scale for different obstacles, while calibration was
required for the estimated distance values ∥n̂c∥.

consistent value within the field of view (FOV) of the inner cameras. However,

when only one camera was utilized, the measurements of the risk score gradually

deteriorated as the obstacle approached the far end from the measurement camera,

whether it was Camera-1 or Camera-2 (see Fig. 5.5b). This degradation can

be attributed to the substantial decline in depth-map estimations at the distal

end from the respective camera, as illustrated in Figure 5.5a. Consequently,

collectively leveraging measurements from both cameras restored the sensing signal

over ProTac’s observable range (see Fig. 5.5b, red line). The combined estimation

enhanced the degraded signal from one camera by leveraging the complemented

measurement from the opposite one, underscoring the benefit of the current ProTac
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Figure 5.5: Demonstrating the benefit of combining two cameras for proximity sensing
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deteriorated with the obstacle moving to the far end along the principal ẑ-axis, either for
Camera-1 or Camera-2, the combination of the two opposite cameras (red line) restored
the sensing performance over the ProTac’s observable range within the field of view (FOV).

link’s design in improving sensing performance.

In Chapter 6, we demonstrate how either direct distance measurement ∥n̂c∥ or

the risk score metric r is utilized in various scenarios for safety control and tasks

driven by ProTac two-mode sensing.
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Chapter 6

ProTac-driven Control and Application

This chapter attempts to address the research question of whether ProTac with

softness and multimodal sensing can facilitate task performance. In addition, this

chapter demonstrates the applications of the ProTac link for integrating with newly

constructed or existing commercial robot arms in performing control tasks. We ex-

plore ProTac-driven robotic tasks leveraging the combined capabilities of proximity

and tactile perception, along with a unique flickering sensing mode and proposed

sensing strategies (see Section 6.1). The first use case aims to facilitate robot

motion and minimize potential damage to surroundings in cluttered environments

by employing obstacle awareness and contact anticipation (see Section 6.2). The

second use case aims to enhance a human-robot interaction scenario by leveraging

the unique flickering sensing mode of ProTac (see Section 6.3). Notably, while we

employ a distance-based mode-switching strategy to facilitate the first use case, the

second scenario is enabled by a sensing strategy where ProTac modes are activated

based on the intention of contacts.

Furthermore, we demonstrate the utilization of ProTac’s proximity sensing in

a couple of safety control strategies. We begin by providing a brief overview of

an admittance control framework that can be combined with distance estimation

in proximity for obstacle avoidance (see Section 6.4). Subsequently, we introduce

a simple strategy to adjust the robot’s speed according to the distance estimated

by the ProTac link, which relies on the adaptive time-scaling of a trajectory (see

Section 6.5).
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Figure 6.1: Illustration of strategies for ProTac mode switching. Strategy I: When
the distance is below 2 cm, ProTac switches from proximity to tactile mode for contact
anticipation. Strategy II: During flickering sensing mode, ProTac switches to tactile mode
if intentional contact is detected; otherwise, it returns to proximity mode when minimal
risk is observed. Flickering sensing mode is activated by constantly switching between the
proximity and tactile modes at a high frequency.

6.1 ProTac flickering sensing mode and sensing strategies

To facilitate the utilization of ProTac for multimodal tasks, this subsection intro-

duces an additional unique ProTac sensing mode named flickering sensing, along

with two different sensing strategies for ProTac mode switching.

6.1.1 Flickering sensing mode

The “flickering” sensing mode refers to a ProTac operational mode where proximity

and tactile sensing can be enabled nearly simultaneously. This mode is achieved by

constantly switching between the proximity and tactile modes at a high frequency

or at a certain switching period Ts. During the flickering mode, the last sample

value estimated in one mode is retained for one switching period Ts when switching

to the other mode, following the zero-order hold model.
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6.1.2 Sensing strategies

Figure 6.1 illustrates the two strategies for switching among ProTac sensing modes,

which are outlined as follows:

• Distance-based mode switching (Strategy I): ProTac begins in proximity mode.

When obstacles are detected at a close distance or when high-risk level is

observed, ProTac switches to tactile mode to anticipate contacts or collisions

in a pre-contact phase. This mode switch occurs when the proximity sensing

becomes unreliable, that is, below 2 cm.

• Intention-based mode switching (Strategy II): The ProTac initially operates

in proximity mode. When a proximal distance is detected, typically below

5 cm, ProTac switches to flickering mode. If intentional contact is detected,

ProTac switches to tactile mode; otherwise, it returns to proximity mode when

minimal risk is observed.

6.2 Motion control with contact and obstacle awareness

The navigation of robot arms through cluttered environments often poses challenges

to external perception and navigation systems, necessitating kinematic redundancy

to reach target locations while avoiding collisions. However, collisions may be

unavoidable in certain environments, such as densely wooded areas, making it

crucial to minimize damage to the surroundings while achieving task objectives.

Previous studies have predominantly focused on employing high-stiffness skin-based

tactile sensing, without considering the surrounding environment prior to contact,

to accomplish tasks [72]. In contrast, this study utilizes both soft skin-based tactile

sensing and proximity perception to enhance awareness of obstacles during the pre-

contact phase, thereby improving contact-constrained motion to mitigate impact

forces (see Section 6.2.2 for results).
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6.2.1 Problem formulation

We present a methodology for guiding robot motion towards a target location

in Cartesian space xG ∈ R3 that may be near or obstructed by obstacles while

minimizing physical impacts on these obstacles. This involves constraining the

estimated contact depth ∥d̂c∥ to remain below a specified threshold dmax ∈ R>0.

The task is framed as a constrained Quadratic Programming (QP) problem aimed

at optimizing commanded joint velocities θ̇d ∈ Rn to minimize an objective function

J (θ̇d). This objective function J (θ̇d) is quadratic in nature and captures the target

location error, defined as:

J (θ̇d) :=
1

2
(
Kp

k
∆x− Jeθ̇d)

⊺(
Kp

k
∆x− Jeθ̇d), (6.1)

where ∆x ∈ R3 represents the directional vector towards the target location, defined

as ∆x := xG − x, Je ∈ R3×n is the Jacobian matrix, and Kp ∈ R3×3 is a positive-

definite diagonal proportional matrix. Notably, we incorporate the proximity effect,

accounting for potential obstacles before contact, directly into the optimization

problem by adjusting the proportional matrix Kp with the time-scaling factor k

(refer to Eq. 6.12). This adjustment means that the optimized velocity θ̇d obtained

from (6.1) is smaller when the robot is close to an obstacle (where k > 1), compared

to when the obstacle is distant, that is k = 1.

Moreover, once the robot encounters the obstacle, we enforce a motion restriction

C(θ̇d) on the contact, determined by d̂c, according to the following expression:

C(θ̇d) := (d̂c + βê⊺
cJcθ̇dêc)

⊺(d̂c + βê⊺
cJcθ̇dêc) ≤ d2max, (6.2)

where êc ∈ R3 represents the unit vector of the estimated contact direction, defined

as êc := d̂c/∥d̂c∥, β is a parameter controlling the smoothness of the constrained

motion, and Jc is the Jacobian matrix at the contact point xc. The derivation of

Jc from the end-effector Jacobian Je can be found in [99]. Hence, the commanded
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Algorithm 2 Motion control with contact and obs. awareness

Input: XG := [x1
G,x

2
G, · · · ]: a sequence of target locations

Output: θ̇d: commanded joint velocities
1: mode ← proximity ▷ activate proximity mode
2: for xG in XG do
3: while ∥∆x∥ > 10−3 do
4: r, n̂c, d̂c ← obtain sensing signals from ProTac
5: if r ≥ ϵd and csim(∆x, n̂c) > 0 then
6: mode ← tactile ▷ switch to tactile mode
7: end if
8: if ∥d̂c∥≥ ϵd then
9: θ̇d ← argminJ (θ̇d), s.t. C(θ̇d) ≤ d2max

10: else
11: θ̇d ← argminJ (θ̇d)
12: end if
13: end while
14: mode ← proximity ▷ get back to proximity mode
15: end for

velocity θ̇d is determined as follows:

θ̇d =

argminJ (θ̇d), if ∥d̂c∥≥ ϵd

argminJ (θ̇d), s.t. C(θ̇d) ≤ d2max, otherwise

, (6.3)

where the constraint is applied only when the robot makes contact, identified by

∥d̂c∥ exceeding a threshold ϵd.

Finally, Algorithm 2 details the procedure for instructing the robot to sequen-

tially reach multiple target locations, activating the respective sensing modes at

different phases based on the evaluation of the risk level (Strategy I). In this process,

ProTac transitions from proximity to tactile mode when the risk score r ≥ ϵp and

the obstacle obstructs the path to the target location, as determined by the cosine

similarity csim(∆x, n̂c) between ∆x and n̂c:

csim(∆x, n̂c) :=
∆x · n̂c

∥∆x∥∥n̂c∥
> 0. (6.4)
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Figure 6.2: Video stills of motion roll out and corresponding images of ProTac views
(obs. stands for obstacle). The red dots in the upper row’s pictures indicate the target
position for the end-effector. Refer to the supplementary video for a demonstration of
these experiments: https://youtu.be/5DhAhlTVxzg

6.2.2 Experiment and evaluation: Motion control

The efficiency of this task performance is validated with a 6-DoF UR5e robot arm,

equipped with the ProTac as an extended link attaching to the robot’s end-effector

(see Fig. 6.2). This setup demonstrates the utilization of ProTac for existing

commercial robot arms. Here, the commanded joint velocities θ̇d, derived from

the proposed control strategies based on ProTac feedback, were regulated by the

UR5’s low-level controller and coordinated via ROS. The parameter values of the

controllers are summarized in Table 6.1.

Table 6.1: Control parameters for ProTac-driven multimodal tasks

Parameter Value Unit
Diagonal proportional matrix Kp diag(0.3, 0.3, 0.3) -
Regularization factor β 0.5 -
Max. admissible contact depth dmax 7.0 mm
Contact threshold ϵd 2.0 mm
Critical risk threshold ϵp 0.45 -

6.2.2.1 Setup

The experiment illustrates the effectiveness of integrating ProTac with proximity-

tactile sensing modalities into the optimization controller, as detailed in Section 6.2.

The numerical solution of the QP optimization problem (6.3) was conducted using
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the CVXPY optimization library1. In this experiment, the ProTac-integrated robot

was instructed to sequentially reach two target locations x1
G and x2

G (indicated by

red circles in Fig. 6.2), while aiming to limit the contact depth magnitude ∥d̂c∥

below dmax to mitigate potential contact impacts. Both obstacles were strategically

positioned in close proximity to each other and the target locations, simulating a

cluttered environment (refer to Fig. 6.2). Additionally, obstacle-2 (on the right) was

equipped with a force gauge (ZTS50N, IMADA Inc., Japan) to measure the actual

impact force exerted on the ProTac link upon contact.

6.2.2.2 Result

Figure 6.2 depicts the performance of the robot’s task and the corresponding

views captured by ProTac in various sensing modes. The snapshots captured at

1CVXPY is a Python tool designed for solving convex optimization problems.
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approximately t ≈ 42 s and t ≈ 55 s illustrate how the controller utilized the

softness of ProTac skin to compensate for errors in reaching the goal. This ability

to adapt and gently conform to obstacles is challenging, if not impossible, to achieve

with a rigid link. From a quantitative perspective, Figure 6.3 presents the ProTac

measurements (Fig. 6.3a) and the evolution of positional error e := ∥∆x∥ relative to

the target locations (Fig. 6.3b) throughout the experimental scenario. It is evident

from Figure 6.3 that as the robot approached the target location, it slowed down its

speed based on the increasing risk score r and transitioned to the tactile mode once

r ≥ ϵp. Upon contact, the robot endeavored to maintain the contact depth around

the predetermined permissible threshold dmax. Remarkably, when the location error

e approached zero, the contact depth (or deformation) remained observable on the

soft ProTac link (refer to Fig. 6.3), indicating that achieving the target location

might not be feasible with a rigid link due to the inability to accommodate such

deformations.

𝑒	
[m
/s
]

0 5 10 15 20 25

0

-.05
speed 
reduction

w/o proximity w/ proximity

time [s]

(a) positional error rate

0 5 10 15 20 25

𝑓 !̅
[N
]

time [s]

0

5

10

15

Pr
e-

co
nt

ac
t desirable 

control impact

(b) measured contact force

Figure 6.5: The effect of proximity sensing on the impact reduction for contact-constrained
motion control.

Figure 6.4 presents the effect of contact-based control and obstacle awareness in

two scenarios, denoted as Exp-A and Exp-B, with and without an obstacle on the

right side (i.e., obs. 2). In Exp-A, the robot experienced a notable yaw rotation to

adapt to the obstacle contact (see Fig. 6.4a), while exhibiting slower convergence to

the target compared to Exp-B due to reduced speed mediated by obstacle awareness

via proximity sensing (see Fig. 6.4b). Furthermore, the integration of proximity

sensing into motion control effectively mitigated the impact of the ProTac link with
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an obstacle, as demonstrated in Figure 6.5. With proximity sensing, Figure 6.5b

shows that the actual impact force measured by the force gauge f̄c was suppressed

to the desired threshold, while a significant peak impact force was observed in the

scenario without proximity integration.

These outcomes confirm the efficacy of the soft ProTac skin, incorporating multi-

modal sensing and optimization control, in enhancing motion control that may

challenging with a conventional rigid link.

6.3 Human-robot interaction with flickering sensing

Human-robot interaction typically unfolds in two phases: a coexistence phase, where

robots operate alongside humans with safety measures like collision avoidance or

speed adjustments, and a physical interaction phase, where robots engage in direct

physical interaction with humans [34]. However, smoothly transitioning between

these phases or discerning human intent for physical interaction poses significant

challenges, necessitating advanced perception and learning techniques [31]. To tackle

this issue, we adopt the proposed intention-based mode switching (Strategy II),

incorporating the flickering sensing capability of ProTac. This enables the detection

of human-intended contacts, facilitating seamless transitions from coexistence to

physical interaction states for the robot.

6.3.1 Problem formulation

Imagine a situation where a robot equipped with ProTac initially operates in a

coexistence phase, moving at a base velocity θ̇d := θ̇0, while ProTac is in proximity

mode. During this phase, if a human presence is detected, the system switches to

flickering mode. In flickering mode, the controller adjusts the speed by updating the

reduced velocity θ̇d based on the factor k (see Sec. 6.5), or halts robot movement

(θ̇d = 0) when the risk score r surpasses a certain threshold ϵp. In summary,

the commanded joint velocity θ̇d is determined based on the following conditions
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Algorithm 3 Human-robot interaction with flickering sensing

Input: θ̇0: base joint velocities, Te: execution time
Output: θ̇d: commanded joint velocities
1: mode ← proximity ▷ get in coexistence state
2: θ̇d ← θ̇0 ▷ initialize normal operation
3: while t < Te do
4: r, d̂c ← obtain sensing signals from ProTac
5: if human detected then
6: mode ← flickering
7: θ̇d ← 0 if r ≥ ϵp else θ̇d ← θ̇0/k ▷ k, see (6.12)

8: if ∥d̂c∥≥ ϵd then
9: mode ← tactile ▷ get into interaction phase
10: while L < 2 do ▷ L denotes #contacts
11: θ̇d ← obtain from d̂c (refer to [92])
12: end while
13: end if
14: else
15: mode ← proximity ▷ return to coexistence phase
16: θ̇d ← θ̇0

17: end if
18: end while

(assuming ProTac is in flickering mode):

θ̇d =


θ̇0/k, if human detected and r < ϵp

0, else human detected and r ≥ ϵp

θ̇0, otherwise not human detected

, (6.5)

Moreover, if the human goes away, the robot speed returns to the base profile

θ̇0. However, the transition to the physical interaction phase occurs when human-

intended contact is detected, signaled by the estimated contact depth ∥d̂c∥ surpass-

ing a contact threshold ϵd.

Upon transitioning, ProTac switches to tactile mode to initiate the interaction

phase. During this phase, the commanded velocity θ̇d is determined by physical

interactions with humans. To guide robot motion in response to the contact depth

vector d̂c, we adopt the strategy proposed in [92] (further details of this strategy are

discussed in Chapter 7). Finally, recognition of human-intended two-point contact

can serve as a condition to terminate the interaction phase, enabling the robot to

resume normal operation. An overview of this scenario is provided in Algorithm 3.
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Figure 6.6: Demonstration of a human-robot interaction scenario (Scenario A): a human
passerby without any interaction intention.

6.3.2 Experiment and evaluation: HRI scenario

The efficiency of this task performance is validated with the same configuration

and control pipeline as in the previous task (demonstrated in Section 6.2.2), where
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Figure 6.7: Demonstration of a human-robot interaction scenario (Scenario B): ProTac
identifies human contact in flickering sensing mode, enabling tactile-based interaction
where the human guides the robot’s motion.

the ProTac is utilized as an extended link for the 6-DoF UR5e robot arm. The

parameter values of the controllers are summarized in Table 6.1.
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6.3.2.1 Setup

The experiment aims to demonstrate the efficacy of the unique ProTac sensing modes

in facilitating seamless human-robot interaction scenarios (see Section 6.3). We

employed the DEVA pipeline, an open-source tool [100], to detect and track potential

humans appearing in the ProTac’s see-through image view. Initially, the robot arm

moved at a nominal velocity profile in the joint space, denoted as θ̇0 = [θ̇1,05]
⊺
0.

Two scenarios were examined as follows:

• Scenario A: involved a human passerby without any intention of interaction,

who approached and then moved away from the robot (see Fig. 6.6).

• Scenario B: featured a human intending physical touch interaction, approach-

ing and touching the robot to initiate interaction (see Fig. 6.7).

6.3.2.2 Result

Figures 6.6a and 6.7a depict the experimental setups and ProTac views for various

sensing modes, showcasing Scenario A and Scenario B, respectively. Furthermore,

the robot’s behavior is determined through the commanded velocity profile of the

base joint θ̇d,1 illustrated in Figures 6.6c and 6.7c for Scenario A and Scenario B,

respectively. Specifically, as shown in Figures 6.6b and 6.7b, the approaching human

induced an increasing risk score r detected in the proximity mode. Once r exceeded

the critical risk threshold ϵp, the robot halted (θ̇d,1 = 0), activating the flickering

mode, evident from the alternating orange and blue-shaded strips in Figures 6.6b

and 6.7b. In the flickering mode, during Scenario A, no contact was detected (∥d̂c∥<

ϵp), and the human moved away (r < ϵp), as observed in Fig. 6.6b. Consequently,

the robot reverted to the nominal velocity profile θ̇d,1 := θ̇0,1 (Fig. 6.6c). Conversely,

in Scenario B, contact occurred, identified by ∥d̂c∥≥ ϵp, immediately triggering the

tactile mode and interaction phase (as shown in Fig. 6.7b). Consequently, the robot

responded to the human’s touch-based interaction (see Fig. 6.7c).

The obtained results demonstrate the effectiveness of the multimodal ProTac

sensing and the flickering mode in facilitating seamless transitions between the prox-

imity and tactile modalities for different human-robot interaction phases, potentially
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enhancing human-robot interaction scenarios.

6.4 Admittance-based reactive control

This section presents a robot arm system driven by ProTac with reflex behavior,

allowing the robot to react to nearby obstacles. This behavior can be utilized for

safety applications, such as spontaneous collision avoidance or collision reaction.

6.4.1 Problem formulation

Toward the goal, we employ an admittance controller [30], which treats the robot

as a mass-spring-damper system, formulated as:

Mvẍd +Dvẋ+Kvx = fext, (6.6)

where Mv ∈ R3×3 is the virtual positive-definite inertia matrix, Dv ∈ R3×3

is the virtual positive-definite diagonal damping matrix, and Kv ∈ R3×3 is the

virtual positive-definite diagonal stiffness matrix. Here, x = [xx, xy, xz]
⊺ ∈ R3 and

ẋ = [ẋx, ẋy, ẋz]
⊺ ∈ R3 represent the position and velocity states of the robot end-

effector, and ẍd is the desired end-effector acceleration. Thus, the Cartesian-space

admittance control law is derived as:

ẍd = M−1
v (fext −Dvẋ−Kvx). (6.7)

Here, fext := fv represents the virtual repulsive force fv, which is linked to the

distance vector from the obstacle estimated by ProTac, denoted as n̂. The mapping

function is defined as:

fv = fv
n̂c

∥n̂c∥
, (6.8)

having the same direction as n̂ but with a magnitude given by:

fv =
fmax
v

1 + e(∥n̂c∥(2/ρ)−1)γ
. (6.9)
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This choice of mapping function is aimed at ensuring the smoothness of the robot’s

reactive response [33], where fmax
v denotes the maximum magnitude of the resultant

virtual force, and γ represents a shape factor. As an obstacle approaches the ProTac

skin, the repulsive vector’s magnitude fv increases, reaching its maximum value fmax
v

when the estimated distance ∥n̂c∥ approaches zero. The virtual force gradually

decreases as the distance to the obstacle approaches or extends beyond the value ρ,

that is ∥n̂c∥≥ ρ.

Given the resultant virtual force fv and the control law (6.7), the desired joint

accelerations θ̈d ∈ Rn (where n is the number of robot joints) can be obtained as

per [99]:

θ̈d = J †
e (ẍd − J̇eθ̇) (6.10)

where J †
e ∈ Rn×3 denotes the Moore-Penrose pseudoinverse of the end-effector

Jacobian, defined by ẋd = Jeθ̇d. Subsequently, the commanded joint velocities

can be computed as θ̇d =
∫
θ̈d.

In this study, our primary investigation focuses on reflex behavior within 3D

linear space, omitting considerations for rotational components to simplify imple-

mentation processes. Additionally, it’s noteworthy that while this study specifically

assesses the framework for proximity-based sensing signals, the control law (6.7) can

also integrate the contact depth vector d̂c by defining fext := d̂c to foster robot-safe

behavior in response to contacts (details about this behaviour are elaborated in

Chapter 7).

6.4.2 Experiment and evaluation: Obstacle avoidance

To assess the efficacy of integrating the ProTac link for inducing safe responses in

robot arms with environmental awareness, we employed a bespoke 4-DOF (degree-

of-freedom) robot arm, featuring two ProTac links serving as the upper arm and

forearm components (referred to as the ProTac-integrated robot, as depicted in Fig.

6.8a). This setup aims to illustrate an additional application of ProTac for newly

developed robot arms, complementing its deployment in existing commercial robots

as demonstrated in previous tasks. It’s noteworthy that, in this study, only the
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Table 6.2: Control parameters for ProTac-driven safety controllers

Parameter Value Unit
Virtual inertia matrix Mv diag(1.0, 1.0, 1.0) -
Virtual damping matrix Dv diag(1.5, 1.5, 1.5) -
Virtual stiffness matrix Kv diag(2.0, 2.0, 2.0) -
Max. virtual force fmax

v 0.45 N
Shape factor γ 6.0 -
Proximal threshold ρ 0.065 m
Max. time-scaling value kmax 2.0 -
Time-scaling shape factor γ′ 20.0 -

forearm was active for showcasing the demonstrations of the ProTac-driven control

strategies. The ProTac links were interconnected via revolute joints actuated by

electric motors (Dynamixel-P series, Robotis). In this system, coordination among

control strategies, the ProTac sensing interface, and motor control were facilitated

through ROS (robot operating system). The commanded joint velocities θ̇d, derived

from the control laws, were regulated by the embedded motors’ built-in motion

controller. The parameters of the utilized controllers are detailed in Table 6.2.

6.4.2.1 Setup

This experiment showcases how the ProTac link effectively facilitates the robot’s

reflexive response for obstacle avoidance, as outlined in Section 6.4. A phantom

arm was moved back and forth in relation to the forearm ProTac link, prompting

the movement of the ProTac-integrated robot in reaction to the estimated distance

between the link and the phantom arm ∥n̂c∥ (refer to Fig. 6.8a).

6.4.2.2 Result

Figure 6.8b shows that the distance estimation ∥n̂c∥ led to variations in the virtual

force fv. Consequently, these variations influenced the robot’s displacement along

the ŷ-axis, as depicted in Fig. 6.8c, based on the admittance control law in Eq.

(6.7). For example, as the phantom arm gradually approached the robot between

t ≈ 4 s and t ≈ 10 s, the magnitude of the virtual force fv steadily increased,

reaching approximately fmax
v = 0.45N. Consequently, the robot transitioned from

its initial position xy = 0 to a position approximately 0.4m away from the obstacle,
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(c) Robot displacement in response to the virtual force.

Figure 6.8: Demonstration of ProTac-driven reactive control. This scheme allows the
avoidance of an approaching obstacle (c), which relies on the virtual repulsive force resul-
tant from the ProTac-based distance estimation (b). The demonstration was performed
using a custom-build robot integrated with ProTac links (a).

as observed in Figs. 6.8a and 6.8b. In contrast, around t ≈ 15 s, when the phantom

arm retreated from the robot, the virtual force diminished (fv ≈ 0), allowing the

robot to revert to its initial resting position.
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6.5 Distance-based speed regulation

In this section, we present a time-scaling approach aimed at proactively modifying

the robot’s velocity in real-time, which relies on the magnitude of the estimated

distance provided by ProTac, thereby facilitating effective speed adaptation without

requiring a complete re-planning of a predetermined trajectory.

6.5.1 Problem formulation

Given a desired trajectory in Cartesian space xd(s), where s(τ) : [0, 1] 7→ [0, 1] is a

time-scaling function parameterized by τ = t/T , with t ∈ [0, T ] representing time

and T denoting the base motion time of the trajectory, we compute the robot’s

velocity profile ẋd = [ẋdx, ẋ
d
y, ẋ

d
z]

⊺ ∈ R3. This velocity scales linearly with the base

motion time T as:

ẋd =
dxd
ds
· ds
dτ
· 1

kT
. (6.11)

Here, the time-scaling factor k ≥ 1 ∈ R is introduced to adjust the robot velocity

ẋd by scaling the motion time kT . To dynamically adjust the robot speed based on

the estimated distance ∥n̂c∥, we compute the factor k from ∥n̂c∥ as:

k =
kmax − 1

1 + e(∥n̂c∥(2/ρ)−1)γ′
+ 1. (6.12)

This mapping function, akin to (6.8), aims to ensure motion smoothness in the

presence of sensing noise, with a different shape factor γ′ and an interval [1, kmax].

The robot moves at the base speed over the duration T if the estimated distance to

an obstacle ∥n̂c∥ exceeds ρ (i.e., ∥n̂c∥≥ ρ), corresponding to k = 1. As the obstacle

approaches, the speed gradually decreases with the increasing scale factor k, reaching

kmax as ∥n̂c∥ approaches 0. Finally, with the desired Cartesian-space velocity ẋd

computed using the resulting scale factor k in Eq. (6.11), the commanded joint

velocities are computed via the pseudoinverse of the robot Jacobian as θ̇d = J †
e ẋd.

It’s worth noting that while the estimated distance ∥n̂c∥ is utilized for problem

formulations in this section, the risk score metric r can be employed in these formulas

as well. This can be achieved by substituting ∥n̂c∥ with 1/r and adjusting predefined
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Figure 6.9: Demonstration of ProTac-driven speed regulation. The reduced robot speed is
enabled based on the distance estimated between the ProTac link and approaching human.

parameters (such as γ, γ′, ρ), ensuring the overall functionality of the proposed

controllers remains intact.

6.5.2 Experiment and evaluation: Adaptive speed control

The efficiency of this task performance is validated with the same configuration and

control pipeline as demonstrated in Section 6.4.2, where the ProTac-integrated robot

arm is employed. The parameter values of the controllers are presented in Table 6.2.

6.5.2.1 Setup

This experiment demonstrates the efficacy of regulating robot speed based on the

estimated distance ∥n̂c∥ provided by ProTac (see Section 6.5). In this scenario, a

human approached the robot integrated with ProTac, which was moved back and

forth periodically along a predetermined trajectory linearly aligned with the ŷ-axis.

95



Fig. 6.9a illustrates the depth images captured by ProTac, revealing the human

approaching with their raising hand. Within these images, the green-shaded region

highlights obstacle points with distance below the predefined threshold ρ.

6.5.2.2 Result

As depicted in Fig. 6.9b, around t ≈ 10 s and t ≈ 25 s, the planned velocity ẋdy of the

robot along the ŷ-axis was proportionally scaled by approximately kmax times (here,

kmax = 2), reaching a peak of approximately 0.025m/s, coinciding with the approach

of the human hand or when the estimated distance ∥n̂c∥ neared the forearm ProTac

link. Conversely, when the human remained beyond the predefined distance ρ, the

robot reverted to its initial speed, peaking at approximately 0.05m/s, as illustrated

in Fig. 6.9b.

Thus, the system not only underscores the effectiveness of integrating the ProTac

link for safety controls but also highlights the viability of a next-generation robot

arm equipped with soft proximity-tactile sensing. Such integration holds promise

for enhancing safety in human-robot interaction scenarios.
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Chapter 7

Tactile-driven Control Task

This chapter clarifies the safety mechanism employing embodied soft tactile sensing

and discusses potential applications of the large-area sensor for tactile-driven tasks.

In Section 7.1, we validate the effectiveness of the soft tactile link (TacLink)

in mitigating physical impacts and facilitating reactive controls to handle unex-

pected collisions. Additionally, we demonstrate the utilization of tactile sensing

for two contact-based tasks, namely whole-arm nonprehensile manipulation (see

Section 7.2), and intuitive motion guidance (Section 7.3), where the TacLink is

integrated with a custom-built robot arm. The evaluation of the proposed strategies

is presented in the respective sections.

7.1 Safety mechanism with soft tactile sensing

Assessing the efficacy of embodied soft tactile sensing in mitigating impacts of

unforeseen collisions, particularly through reactive responses, has the potential to

enhance safety in human-robot interaction scenarios. Therefore, building upon the

developed soft TacLink platform, this section aims to clarify the following points:

• Examining the performance of the TacLink in facilitating reactive responses

to physical collisions, characterized by response time and peak impact force.

The obtained results can establish a benchmark for assessing the effectiveness

of soft tactile-sensitive skins in collision-handling tasks.

• Conducting a comparative analysis to demonstrate how the softness of the

TacLink impacts reactive control and other collision responses, in comparison

to those observed with a traditional rigid robot link. The outcomes are

anticipated to inform the development of new safety standards for soft skin-

based collaborative robots in human-robot interaction environments.
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Figure 7.1: A kinematics control scheme allowing a robot with tactile sensing link to
respond to a physical impact safely.

7.1.1 Collision response strategy

Problem: The goal is to address situations where a robot equipped with TacLink

collides with an unexpected obstacle at a certain velocity, as illustrated in Fig. 7.1.

Thus, the objective is to enable the robot to be aware of the collision and respond to

that collision by reversing its velocity direction to escape from the collision area.

To meet our control objectives, we implement a kinematics admittance controller

[101], which models the robot system as a mass-spring-damper system (refer to

Fig. 7.1a) with virtual inertia, damping, and stiffness components. Specifically,

this reactive controller aims to accelerate the robot in a manner that enables it

to respond effectively to the contact force detected by the TacLink sensor. Thus,

considering a 6-degree-of-freedom (DOF) robot arm with joint positions represented
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by q ∈ R6, the admittance control law can be formulated as:

q̈d = M−1(τ̂c −Cq̇−Kq), (7.1)

where M ∈ R6×6 denotes the positive-definite diagonal virtual inertia matrix, C ∈

R6×6 is the positive-definite diagonal virtual damping matrix, and K ∈ R6×6 is the

positive-definite diagonal virtual rotational stiffness matrix. Also, τ̂c represents the

resulting external torque, computed as:

τ̂c = JT
c F̂c. (7.2)

Here, Jc ∈ R6×6 denotes the Jacobian matrix at the contact point xc ∈ R3, while

F̂c ∈ R6 signifies the generalized external contact force relative to a coordinate

system {C} (refer to Fig. 7.2).

7.1.2 System integration and implementation

While the described control scheme for handling collisions can be adapted for various

tactile sensing skins, our specific implementation focuses on a robot system that

utilizes the soft TacLink as an extended sensorized link for a commercial robot arm

(see Figure 7.2 for the setup); thus, our examination is restricted to scenarios where

contacts occur on the extended link.

As the TacLink sensor predominantly measures the contact depth d̂c := ∥d̂c∥ in

the direction normal to the skin surface (refer to Eq. 4.20), the resultant generalized

contact force simplifies to F̂c = [0, 0, f̂c, 0, 0, 0]
T, where f̂c signifies the estimated

contact force along the z axis. Furthermore, the mapping of contact depth to the

equivalent contact force f̂c is necessary to enable the reactive control law (see Eq.

7.1). This conversion is achieved by modeling the soft skin at the contact point as

an elastic spring element αf

f̂c = αf · d̂c. (7.3)

The calibration process for the stiffness constant αf and the accuracy of calibrated

contact forces across different TacLink regions are detailed in Appendix C.
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Furthermore, the system operates in two distinct phases: the before and after

collision states, as illustrated in Figure 7.1b. Before a collision event, the robot’s

motion is regulated based on a predefined joint velocity reference q̇c. Upon collision

detection, the system transitions to a collision-reactive control scheme, initiating

the robot’s response through the computation of the control law q̈d (Equation 7.1),

yielding reactive joint velocities q̇d via temporal integration. Consequently, the

overall control system can be expressed as:

q̇d =


∫ t
t0
q̈d dt+ q̇c(t0), if f̂c ≥ ϵc

q̇c, otherwise,

(7.4)

where t0 denotes the instance of collision occurrence, signified by the estimated

contact force f̂c surpassing a predefined threshold ϵc. This threshold is determined

based on the hysteresis property of the TacLink sensor (refer to Appendix C).

Ultimately, the resultant joint velocity q̇d is governed by the robot’s low-level

controller. Here, the controllers have access to the robot’s positional and velocity

joint states (q, q̇) via the built-in controller. A comprehensive evaluation of the

system’s efficacy and the controller’s performance in collision handling is reported

in Section 7.1.3.

TacLink

force gauge 
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Figure 7.2: System integration of the vision-based tactile link and UR5e robot arm and
setup schemes for the sensing and collision experiments.
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Figure 7.3: Visualization of tactile sensing, by which the skin shape under deformation
can be constructed from the input image.

7.1.3 Experiment: Characterization of collision responses

The experimental setup employed to assess the effectiveness of the proposed control

system is depicted in Figure 7.2. Operating on a Ubuntu PC with GPU acceleration,

the system facilitated low-latency vision-based tactile sensing, achieving a frequency

of approximately 100Hz. The operation of the TacLink sensor is illustrated in Fig.

7.3. Furthermore, the control infrastructure was established using ROS (Robot

Operating System), leveraging the ros-control framework for the implementation

of low-level velocity regulation. In order to establish communication with the UR5

robot, an official driver package tailored for the UR5 controller interface was utilized.

7.1.3.1 Settings

This section demonstrates the effectiveness of the robot integrated with the TacLink

sensor in responding to unforeseen collisions, employing the reactive control strategy

described in Section 7.1.1. The assessment of the controller’s performance was con-

ducted across various control parameters and initial robot velocities θ̇0. To simplify

the analysis, experiments were conducted on the movement of the robot’s base joint
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Figure 7.4: The robot’s behavior with different control parameters of the proposed reactive
controller.

(joint 1), with the robot’s configuration defined as shown in Figure 7.2. Notably,

the moment arm of the contact force at the fixture was set to lf = 0.5m, and the

matrices of controller parameters were set toM = diag(0.15, [0]T5 ), C = diag(c, [0]T5 ),

with intentional assignment of zeros to K to eliminate the necessity of specifying a

reference resting position. Evaluation of the robot response’s performance centered

on the determination of the peak impact force during the collision, recovery duration

from collision onset until complete dissipation of contact force, and reactive duration

measured from collision onset to the initiation of controller response. Smaller

values in these metrics denote better controller performance. Here, we limit the
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Figure 7.5: The behavior of robot with the application of collision reaction strategy over
time.

maximum linear velocity of the robot at the contact point to 0.2m/s, which complies

with ISO/TS 15066 standard [102] to guarantee safe human-robot collaborative

operations in the Power and Force Limiting setting.
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7.1.3.2 Results

The investigation into the robot’s response to collisions under various controller

parameters is highlighted in Figure 7.4. As depicted in Figure 7.4a, both the peak

impact force and recovery duration exhibited a reduction with an increase in the

rotational damping coefficient c, given a constant initial speed of θ̇0 = 0.2 rad/s.

This observation can be explained by the fact that a higher damping coefficient

generates a more substantial resistant force opposing the robot’s collision direction,

thereby mitigating both the peak contact force and recovery duration. Figure

7.4b illustrates the robot’s responses to collisions at various pre-collision speeds

θ̇0, with a fixed damping coefficient of c = 5. Additionally, Figure 7.5 presents

the robot’s motion and behavior across three phases: 1) pre-collision, 2) collision,

and 3) recovery/reactive phase. Indeed, the correspondence between the estimated

contact force and true force values (refer to Figure 7.5b) validates the efficacy of

the integrated soft sensing system for safety control tasks, despite some observed

hysteresis in the sensing signal, particularly for minor skin deformations, as discussed

in Appendix C. Furthermore, Figure 7.5c illustrates the commanded base joint

velocity derived from the desired joint acceleration q̈d computed via the proposed

control law, demonstrating the controller’s attempts to move the robot away from

the collision region by reversing its direction of motion.

Init. speed
(rad/s)

Reactive time
(ms)

Recovery time
(ms)

Peak impact force
(N)

θ̇0 = 0.1 62.0± 16.2 820.0± 40.0 1.00± 0.09

θ̇0 = 0.2 54.0± 29.9 860.0± 49.0 1.14± 0.16

θ̇0 = 0.3 72.0± 21.4 780.0± 40.0 1.42± 0.26

θ̇0 = 0.4 64.8± 17.3 640.0± 49.0 1.66± 0.54

Table 7.1: Characterization of soft reactive response: response times and peak impact
force

Table 7.1 presents the characterization of the soft reactive response for different

initial velocities (with c = 5). The findings underscore a reactive duration, recovery

duration, and peak impact force of less than 80ms, 900ms, and 2.5N, respectively,

for initial velocities up to 0.4 rad/s; which is equivalent to an impact linear velocity of

0.2m/s. The delay in reactive time can be ascribed to the hysteresis of the TacLink
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sensor.

In short, the findings suggest that the TacLink-integrated robot can responsively

move away from the collision area within a timeframe of roughly 900ms, while

containing the maximum contact force below 2.5N, even under an impact velocity of

0.2m/s. Notably, this level of contact force falls well below the hazardous threshold

for humans [101]. Lastly, this characterization serves as a benchmark for evaluating

the efficacy of other soft tactile-sensitive skins in handling collisions with reactive

control.

7.1.4 Comparative study

7.1.4.1 Settings

This section aims to validate the efficacy of the soft tactile link in mitigating

significant impact forces in comparison to a rigid link. The rigid link, made from

an acrylic pipe, was affixed to the end-effector of the UR5, matching the soft

TacLink in size and weight. Additionally, the rigid link was encased in a silicone

rubber pad (refer to Figure 7.6a) to protect it from severe collision impacts. To

estimate the external contact torque in the scenarios of stiff-link collisions which lack

direct feedback from the tactile sensor, we employed the τ̂ -observer method [101].

This method relies on simplified joint-space dynamics of the robot base, along

with inherent joint torque feedback provided by the UR5’s low-level controller.

Subsequently, collision experiments were conducted to compare the peak impact

force and the robot’s response between the rigid link and the soft tactile link, by

employing two collision handling strategies:

1. (Stiff/Soft) Control stop: immediately stops the robot’s motion upon contact

detection.

2. (Stiff/Soft) Reactive control: the method described in Section 7.1.1.

The (stiff/soft) prefix denotes the type of link with which the controller is tested.

These collision experiments were conducted at various pre-contact speeds θ̇0, with

five trials executed for each velocity.

105



Rigid link 
(wrapped by a 
silicon layer)

Force 
gauge

UR5

(a) Stiff collision setup

Pr
ot

ec
tiv

e 
st

op
Pr

ot
ec

tiv
e 

st
op

0.61.0 0.91.1 1.21.4 1.51.7

stiff control stop
stiff reaction
soft control stop
soft reaction

0

20

40

60

80

Pe
ak

 im
pa

ct
 fo

rc
e 

[N
]

0.1 0.2 0.3 0.4
Velocity 𝜃̇! [rad/s]

(b) Comparison of peak impact force

0

1

2

3

60

20

40

0
0.0 0.5 2.01.0 1.5 2.5 3.0

(S
tif

f) 
co

nt
ac

t f
or

ce
 [N

] (Soft) contact force [N
]

stiff control stop
stiff reactive control
soft control stop
soft reactive control

Time [s]

(c) Comparison of transient responses (θ̇0 = 0.2 rad/s)

Figure 7.6: Comparison of collision handling performance between a stiff and tactile-
enabled soft link with two different control strategies. The results displayed in (b)-(c)
demonstrate the effectiveness of leveraging the soft mechanism with tactile sensing to
facilitate reactive control and contact responses. It is observed that the utilization of the
soft TacLink significantly mitigates peak impact forces. At θ̇0 = 0.4 rad/s (b), the UR5’s
built-in controller triggers the protective stop signal in the trials of stiff collisions to halt
the robot’s motion (the observed peak impact forces are not reported for this case).

7.1.4.2 Results

Figure 7.6 provides an overview of the collision response outcomes. As illustrated

in Figure 7.6b, collisions involving the stiff link exhibited significantly higher peak

impact forces compared to those involving the soft TacLink, irrespective of the

applied control strategies. Notably, at θ̇0 = 0.4 rad/s, the UR5’s built-in controller

activated the protective stop signal in response to extreme impact forces detected in

stiff link collisions, while the soft link consistently maintained lower impact forces,
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more or less 2N, across varying velocities (refer to Figure 7.6b). Furthermore,

although the stiff reactive control showcased comparable transient responses to its

soft counterpart, dissipating contact forces over time, it yielded notably higher peak

forces compared to the soft reactive control (see Fig. 7.6c). For instance, at θ̇0 =

0.2 rad/s, the average peak impact force induced by the soft reactive control was

approximately 1.1N, nearly 54 times smaller than that caused by the stiff reactive

controller.

These findings confirm the efficacy of employing TacLink in mitigating peak

impact forces, particularly with reactive control. This suggests the potential for the

development of safer robotic arms constructed entirely from soft tactile links.

7.2 Nonprehensile manipulation by whole-arm pushing

7.2.1 Method

This section demonstrates the utilization of a robot arm system equipped with the

TacLink to manipulate an object towards a goal by pushing, where the contact

information provided by the TacLink is exploited to guide the robot’s motion. To

simplify the task, we confined the object manipulation to a ŷs− ẑs plan of the frame

{s}. Here, the system received feedback on the 3D position of the pushed object

xobject ∈ R3 detected through contact with TacLink. This information is utilized

to compute the desired spatial velocity cVd ∈ R6 relative to the contact frame

{c}, guiding the object towards the predefined goal, based on the typical impedance

strategy. The contact frame {c}, represented by the rotation matrix Rc, was defined

with its origin at the contact location x̂c (derived from Eq. 4.19), with its ŷc- and

ẑc-axes aligned along the outward normal of the contact plane and the z-axis of

the TacLink frame, respectively, while the x̂c-axis completed the right-hand rule.

By considering the object position (xobject ≡ x̂c) and the goal location xgoal ∈ R3,

the pushing task was executed to ensure that the pushing direction npush remained

perpendicular to the contact plane (ŷc ≡ npush)

npush :=
xgoal − xobject

∥xgoal − xobject∥
. (7.5)
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Hence, the required angular velocity ωd ∈ R3 to align the robot arm with the desired

pushing direction can be determined as

ωd = kωω̂dθ̄, (7.6)

where kω > 0 represents the proportional gain of angular velocity, and ω̂dθ̄ ∈ R3

signifies the exponential coordinates of a rotation matrix R̄ := Rot(ω̂d, θ̄) =

RpushR
T
c ∈ SO(3); whereRpush := [x̂s, npush, x̂s×npush], rotating the contact frame

{c} towards the pushing direction. Furthermore, for pushing toward the target goal,

the commanded linear velocity is determined as

vd = kv(xgoal − xobject), (7.7)

In addition, adhering to a typical safe human-robot interaction scenario, we imposed

a condition on the proposed pushing control to halt robot motion in case an

unintended external contact occurred, that is, a contact different from the one

established with the pushed object. Thus, assuming a contact always exists with

the target object,

cVd =

[0]6×1, if L ≥ 2

RT
c [ωd, vd]

T, otherwise.

(7.8)

Ultimately, the desired twist cVd was converted to commanded joint velocity θ̇ ∈ R3

through the Jacobian cJ ∈ R6×3 at the contact point.

7.2.2 Experiment

The resultant behaviors of the proposed contact-based pushing strategy are depicted

in Figure 7.7, with the designated goal position set at xgoal = [−0.01, −0.17, 0.73]T,

and the proportional gains calibrated experimentally as kv = 0.12 and kw = 0.35.

Throughout the pushing trial, the primary contact with the object (a water-filled

bottle) maintained a relatively consistent contact intensity of approximately 14mm,

except when an unplanned contact occurred (see Fig. 7.7b). Upon a sudden

human touch triggering a secondary (external) contact phase, all robot motion
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(a) Video stills of contact-based object pushing experiment with the possible
occurrence of two-point contact.
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(b) Time-log of contact depth and positional error
of the contacted object w.r.t the goal location.
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(c) Time-log of the contacted object position measured along y- and z - axes of the
space frame {s}. Goal lines indicate the positional references.

Figure 7.7: The experiment of contact-based object pushing. An object, whose position
is identified through contact with the TacLink, is guided to a goal location xgoal =
[−0.01,−0.17, 0.73]T on a y-z plane of a table via pushing. When unexpected contacts
(external contacts) occurred, the robot motion was temporarily halted, then resumed after
the external contact broke. The observations of the external contacts are green-shaded.
The demonstration can be found in the video https://youtu.be/NN2u8YBLITY.

stopped, leading to the object position remained unchanged (see Fig 7.7c). As

time progressed, the pushed object gradually approached the preset goal, a process

spanning approximately 60 s in total. However, a minor degree of settling error along

the z-direction persisted, resulting in a goal error of roughly 0.05m. Addressing this

may require further improvements with a more advanced control policy.
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Table 7.2: Control parameters for pushing and intuitive motion controllers

Parameter Value Unit
P-gain (angular velocity) kω 0.35 s−1

P-gain (linear velocity) kv 0.12 s−1

Goal location xgoal [−0.01, −0.17, 0.73]T m
Virtual pivot point brc [0, 0, −0.13]T m
Linear velocity scale kvd 1.20 s−1

Angular velocity scale kωd 0.15 s−1

Stroke distance threshold ϵs 8 mm

7.3 Tactile-driven intuitive motion guidance

7.3.1 Method

This section showcases the deployment of TacLink as a haptic interface device for

intuitively guiding the motion of the robot arm (see Fig. 7.8). Here, we strategically

translate different tactile actions, encompassing single/multi-point push and stroke,

into a desired robot twist bVd ∈ R6. For single-point push actions occurring at the

contact location xc (Eq. 4.19), we encode the estimated contact depth vector d̂c1

(Eq. 4.20) and the normal direction n(x̂c1) := Ni∗1
(Eq. 4.14) to the spatial velocity

on the x̂b − ŷb plane of the end-effector frame {b} as

[vx, vy, vz]
T = kvd∥d̂c1∥n(x̂c1), (7.9)

where kvd is a constant used to appropriately scale the resulting linear velocity.

Furthermore, we employ distinguishable two-point contact as an interface for

directing rotational motion, where a virtual pivot point brc is positioned at the

center of TacLink. Consequently, the rotational motion around the axes of the {b}

frame can be mediated by

[wx, wy, wz]
T = kvd[

brc × ∥d̂c1∥n(xc1) +b rc × ∥d̂c2∥n(xc2)]. (7.10)

Since we restricted the push direction to the normal of a contact plane for simplicity,

we disregarded rotation/twist around the z-axis (wz = 0), as well as linear motion

(vz = 0). However, linear velocity along the z-direction could be induced by
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Figure 7.8: Conceptual illustration for tactile-based motion guidance.

detecting the stroke action. To ensure robust stroke detection, we introduced a fixed

time window Tw = W.∆t (whereW is the window size), during which possible sliding

motion on the skin surface is evaluated at a determined interval ∆t. Therefore, at

each time step ∆t in the time window Tw, we measured the distance between the

current contact position xck∆t and the previous one xc(k−1)∆t as

∆xk =∥ xck∆t − xc(k−1)∆t ∥, ∀k ∈ {1, 2, · · · ,W}. (7.11)

Let us denote X = {∆xk}, where |X | is the number of its elements, and K =

{∆xk | ∆xk ≥ ϵs},∀k ∈ {1, 2, · · · ,W}; with ϵs serving as a distance threshold to

ensure stroke classification accuracy (see Table 4.18a). Thus, the stroke action (SA)

along the z-axis is identified by

SA =

1, if |K| ≥ η|X |

0, otherwise (classified as push action)

, (7.12)

where η is a classification ratio experimentally set to 0.3. When a stroke occurs at

t ≥ Tw, the linear velocity along the z-axis is determined by

vz = sgn(xc,zt+∆t − xc,zt )kωd

∥∥xct+∆t − xct
∥∥

∆t
, (7.13)

where xc,zt+∆t and xc,zt denote the z-coordinates of xct+∆t and xct , respectively, and kωd is

a constant scaling factor for the angular velocity. Finally, the resulting desired twist

bVd = [vx, vy, vz, wx, wy, 0]T is mapped to commanded joint velocity θ̇ through
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Figure 7.9: Time-log of contact depth and resulted robot linear velocity with respect to
push and stroke contact action (shaded green and blue, respectively).

Table 7.3: Logs of estimated contact locations in the interaction experiments

Action Time [s]
Contact location xc [mm]

x1 y1 z1 x2 y2 z2
Push 28.00 -41 34 -127 - - -
Stroke 37.00 -22 -48 -154 - - -
Stroke 37.06 -20 -48 -174 - - -

Two-point 25.00 -2 -45 -224 3 45 -49
Two-point 85.00 -42 -3 -196 34 2 -64

*The time of two-point actions is referred to Fig. 7.10, while that of the other ones
respecting to Fig. 7.9. (The contact position is expressed in the {b} frame)

the end-effector Jacobian bJ.

7.3.2 Experiment

We conducted several experiments to validate the proposed motion guidance scheme,

covering various contact actions and scenarios, with the controller’s parameters

detailed in Table 7.2. In the initial demonstration involving push and stroke

actions, these actions were distinguished by unique patterns of contact depth, as

depicted in Figure 7.9. Notably, strokes, typically executed by a human digit,
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Figure 7.10: Time-log of contact depth and robot angular velocity resulted from two-point
contact action at different contact locations.

induced sharp changes in the contact depth profile, whereas a push action exhibited

stable intensity. The linear velocity along the z-axis resulting from stroke actions

was directly proportional to the rate of contact positions over the time interval

∆t = 0.03 s. Conversely, robot motion along the other two axes was initiated by push

actions, with the velocity resulting from the estimated contact depth and location

(refer to Table 7.3 for the logs of estimated contact location). It is worth noting

that the push/stroke classification, requiring a window size of W = 8, introduces

a delay in the robot’s response of at least 0.24 s, equivalent to the time window

Tw. Furthermore, the delay may increase due to misclassifications between single

and two-point contact scenarios. While this delay could be mitigated with more

sophisticated classification algorithms (e.g., machine learning techniques), it can

allow users to feel safer during the interaction phases. Moreover, under the two-

point contact scenario, as illustrated in Figure 7.10 and the corresponding pairs of

contact positions (see Table 7.3), the robot exhibited rotation around either the x̂b

or ŷb axes.

The demonstrated task performance, facilitated by our large-scale tactile device,
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is anticipated to offer preliminary insights into the development of more comprehen-

sive and efficient motion guidance strategies for robot learning and teaching. For

video demonstrations of robot motion guidance and other applications of TacLink,

please refer to the video available at the following link1.

1https://youtu.be/NN2u8YBLITY
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Chapter 8

Discussion and Conclusion

8.1 Discussion

8.1.1 ProTac design and fabrication

The ProTac link distinguishes itself from other large-scale vision-based tactile

sensors by seamlessly integrating both proximity/visual perception and tactile

sensing capabilities with a soft body. This functionality is enabled by the soft PDLC

skin. In our design approach, the PDLC skin is shaped into cylindrical structures,

using a multi-layered brace made from steel, and polylactic acid (PLA). While this

configuration can enhance the link’s payload capacity, it introduces a trade-off in

the form of a ”blind” spot corresponding to the area of the brace. Additionally, the

relatively high stiffness imparted by the flexible PDLC film compromises the sensor’s

sensitivity compared to counterparts like TacLink [12]. Mitigating this drawback

may necessitate the customization of PDLC films made from silicon material directly,

rather than utilizing polyethylene terephthalate (PET) as in existing commercial

products.

Moreover, the fabrication methodology proposed for the ProTac link, which

relies on molding techniques, is anticipated to enable the production of links in

various sizes and shapes. This can be achieved through customization of the outer

molds and PDLC film. Consequently, the proposed process retains its versatility and

effectiveness in fabricating a wide range of soft robot bodies equipped with ProTac

sensing technology.
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8.1.2 Tactile perception

In this dissertation, the contact intensity is assessed through the quantity of skin

deformation because such information can reveal features of tactile perception

(contact location, size of contact area, vibration, etc.) on large-sized tactile skin.

Human mechanoreceptors cannot convey in detail how much force is acting on the

skin. In addition, large-scale sensing is usually aimed at human-robot interactions

rather than task-based ones, where information of force is deemed redundant. On top

of that, toward a simulation framework for interactive robotics systems, TacNet was

designed to be easily adaptable for different physical attributes, especially contact

forces, other than the prediction of nodal displacements (skin deformation). In the

future, for the physical formulation of interactive control problems, we aim to replace

the current output signals of TacNet with nodal forces (which can be extracted from

SOFA-based simulation), from which multi-contact forces and locations at a large-

scale skin can be effectively inferred. In fact, contact force information (λ in Eq. 4.1)

modeled from the SOFA kernel could be targeted to train TacNet models in which

the same proposed sensing methods can be applied to extract high-level perception.

8.1.3 Proximity perception

The proximity perception of ProTac is facilitated by the core of a monocular depth-

map estimation, given single image inputs in the transparent skin state. This

methodology enhances the versatility of the ProTac sensing technology, making

it applicable to various sensor configurations and designs, including those with

single or multiple camera setups, with minimal adjustments required for fine-tuning

and calibration. However, the transparency of the skin and the see-through effect

still have impacts on the sensing performance and measurement range of ProTac.

Therefore, refining the fine-tuning process, advancing DNN-based depth estimation,

or integrating data from two cameras could potentially expand the measurement

range of ProTac. Moreover, as illustrated in Section 6.3, human detection and

segmentation can be accomplished using a commercially available DEVA model with

ProTac perspectives, indicating the potential of ProTac for other visual perceptions

116



beyond distance measurement and risk assessment.

Last but not least, the flickering sensing mode suggests the possibility of

simultaneous proximity-tactile sensing through advancements in signal processing

or data-driven techniques, which leaves room for further developments in future

works.

8.2 Conclusion

This dissertation presents a novel vision-based proximity-tactile sensing technology

for soft robotic systems, named ProTac, accomplished by actively controlling

the skin’s transparency. The technology is demonstrated with a soft robotic link

featuring proximity-tactile sensing capabilities. Compared to conventional tactile

sensors of various electronic elements, our system provides large-area multimodal

sensing with a simple setup and minimal impact on the mechanical properties of

the soft skin (no embedded sensing elements), as well as offering no interference

between the two modalities. The realization of the ProTac link with the desirable

operational modes has successfully addressed Research Question 1 (RQ1).

The soft ProTac link offers the flexibility to operate independently in tactile or

proximity modes, or concurrently in flickering mode. Perception capabilities are

realized through sim-to-real learning techniques for tactile mode and monocular

depth-map estimation for proximity mode. Notably, this study introduces SimTa-

cLS, a pipeline tailored for simulating and training a vision-based tactile sensor,

integrating soft contact mechanics of the skin. This pipeline serves as a valuable

tool for generating tactile training data, and learning tactile perception in simulated

environments, alleviating the need for labor-intensive experimental setups. Thus,

in addressing RQ2, the findings demonstrate that tactile perceptions of physical

devices, including contact depth and localization, can achieve satisfactory perfor-

mance levels through the application of domain adaptation or domain randomization

techniques at a reduced cost of experimental setups.

Additionally, in addressing RQ3, the dissertation presents the utilization of the

multi-modal ProTac link with either a custom-built ProTac robot or a commercial
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industrial robot arm to facilitate various robotic tasks involving safe human-robot

interaction and motion control. Specifically, the incorporation of soft skin-based

multimodal sensing with optimization control facilitates robot motion in cluttered

environments, while limiting impact forces, the performance challenging to achieve

with high-stiffness robot skins or rigid links. Moreover, ProTac enables seamless

operation throughout different phases of a safe and efficient human-robot interaction

scenario, alongside control strategies integrated with ProTac for distance-based

collision avoidance and speed regulation. These findings substantiate the benefits of

integrating softness and multimodal sensing to enhance robotic task performances.

Finally, the last chapter illustrates the efficacy of employing soft skin and

vision-based tactile sensing for mitigating unexpected collisions, by minimizing

peak impacts and recovering from contacts, particularly through a reactive control

mechanism. The findings indicate that the robot integrated with TacLink can

responsively move away from the impact zone within a duration of approximately

900ms, while constraining the maximum contact force to below 2.5N, even when

subjected to an impact velocity of 0.2m/s. This level of contact force falls well

below the safety threshold for human interaction [101]. Moreover, the comparative

analysis underscores the advantages of the highly soft sensing skin in mitigating

significant impacts resulting from collisions and enabling controls that may pose

challenges with rigid robot structures (RQ3).

8.3 Future work

My future work first focuses on the integration of the developed soft multi-modal

sensing with thermal display technology [103]. This integration aims to equip whole-

body and whole-arm robots with the capability to engage in affectionate and safe

interactions with humans. Importantly, I aim to develop a novel perception and

control framework centered on Large Language Models (LLMs). This framework

leverages the contextual understanding of LLMs to discern the semantics of inter-

active actions through tactile perception and to identify potential risks based on

proximity awareness, from which safe actions or haptic feedback can be coordinated
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Figure 8.1: Illustration of a perception and control framework leveraging LLMs (large
language models), built on our multi-modal soft sensing technology.

accordingly (see Fig. 8.1). For instance, a comfortable thermal sensation or

affectionate actions can be presented based on the tactile actions perceived from

humans. Additionally, I am exploring the use of LLMs to enable novel perception

techniques, such as emotion detection driven by tactile feedback, leveraging our

multi-modal soft sensing technology.

Another research avenue involves further exploration of novel embodied control

strategies that harness the unique capabilities of our soft multi-modal sensing

solutions. These strategies aim to facilitate control tasks that are difficult to achieve

with rigid bodies. Furthermore, I aim to establish control strategies, along with new

safety standards for our soft sensing devices in safety-critical scenarios.

Furthermore, my further research endeavors include studying neuromorphic

processing for tactile perception, aiming to enhance sensing efficiency across various

parts of robot bodies. The immediate objective is to establish a platform for

large-scale robotic skins capable of conveying event-based signals, with event-based

cameras serving as the foundation. This platform will facilitate further investigation

into spatial-temporal encoding and processing techniques for diverse tactile stimuli

and modalities.

Lastly, I foresee the use of our developed soft sensing technologies to enhance

distant human-machine interaction. For example, doctors and medical robots can

greatly benefit from such technologies during teleoperation, where the connection
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between soft tactile sensing and haptic feedback is crucial. Such a connection

may also find applications in AR systems, allowing users to explore and interact

with surroundings via their tactile-driven avatars. In this regard, our proposed

WoTT framework [104, 105] could serve as an enabler to facilitate haptic data

communication over the Internet.
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Appendix A

Contact model

A collision detection protocol [106] is implemented in SOFA to supervise physical

contacts among simulated objects. Once a collision is well-detected, it is necessary

to apply the corresponding contact responses to update the current state, such as

the positions of the nodes. In SOFA, the collision consequences generally adhere to

a combination of Signorini’s frictionless contact law [81] and Coulomb’s frictional

law [82]. This is mathematically expressed by the complementary condition below:

 In contact: ∆n = 0⇒ λn > 0

No contact: ∆n > 0⇒ λn = 0
(A.1)

where ∆n and λn are the gap between two contact opponents and the contact force

measured along normal direction n, respectively. This relation defines the contact

occasion whenever ∆n = 0 and λn > 0 and vice versa. With regard to this law,

friction force λt observed along tangential direction t is imposed to the friction cone

which is dependent on friction coefficient µ and normal force ∆n: Stick: δ̇t = 0⇒ ∥λt∥ < µ ∥λn∥

Slip: δ̇t ̸= 0⇒ λt = −µ ∥λn∥ δ̇t

∥δ̇t∥
, (A.2)

where δ̇ is the tangential velocity. In this regard, the term JTλ can be divided into

normal contact element Jn
Tλn and tangential (frictional) element Jt

Tλt. In order

to describe the system state within the contact phase between points i and j for

instance, the following process will be performed:

• Step 1: The dynamic equation of each object (Eq. 4.3) should be re-written

as below:

Ai,j

(
xfreei,j + xcori,j

)
= bi,j + dtJTi,jλ, (A.3)
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in which, xfreei,j (or q̈freei,j ) is free − constrained motions of object i and j

with the assumption of no contact between them (i.e., λ = 0). Solving

independently their motion equations yields q̈freei,j as well as corresponding

positions qi and qj which will then be utilized to calculate the gap ∆free and

its derivative in time ∆̇free:

∆free = ξ(qi
free)− ξ(qi

free)

⇒ ∆̇free = Jiq̇
free
i − Jjq̇

free
j

(A.4)

• Step 2: Whereas xcori,j (or dq̇cori,j ) represents correction motions which are

responsible for minimizing the interpenetration resulting from free motions

indicated in the previous step. By doing that, colliding objects (or contact

nodes) are enforced to respect constraint laws (static contact and friction laws).

In this regard, during the time interval of the contact phase, dynamic change

of the actual deviation ∆ is expressed using the following linearization:

∆̇ = ∆̇free + Jiq̈
cor
i + Jjq̈

cor
j (A.5)

in which, q̈cori,j are obtained by solving Eq. 4.3 with bi,j = 0, then Eq. A.5

becomes:

∆̇ = ∆̇free + dt
[
JiA

−1
i JTi + JjA

−1
j JTj

]︸ ︷︷ ︸
W

λ, (A.6)

where W is compliance matrix homogeneous to system matrix A. Thanks to

this operator, mechanical behaviors of two sets of contact points in response

to their physical interaction (or constraint laws) are mutually dependent on

geometrical as well as material properties of each object stored in system

matrix A. Hence, in the case of multi-contact, we can use this mechanical

coupling to describe the effect of one contact on each other and vice versa.

• Step 3: Equation A.6 combined with Signorini’s law (shown in A.1) and

Coulomb’s law (shown in A.2) exposes a nonlinear complementarity problem

(NCP) [107]. Solving this problem for each detected collision one by one

using optimization-based Gauss-Seidel algorithm [108] provides the value of
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Lagrange multipliers λ.

• Step 4: Once λ (whether single- or multi-contact case) are converged, we

can apply the corrective motion into the dynamic equation A.3 to rectify the

positions of object i and j so they fulfill the contact and friction laws:

qi,j(t+ dt) = qi,j
free + q̈cori,j

where q̈cori,j = Ai,j
−1Ji,j

Tλ
(A.7)
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Appendix B

TacNet configuration evaluation

To determine the TacNet architecture most suited to our problem, we conducted a

preliminary evaluation of TacNet performance with Unet, ResNet, and three variant

VGG configurations [109] (i.e, VGG-11, -13 and -16) and each model with varying

number of neurons per the last two FC layers k = {2n|n ∈ Z : 8 ≤ n ≤ 14}. The

model performance was measured by 5-fold cross validation, based on the average

RMSE of output neurons, with 20% of the simulation data withheld as test fold.

As shown in Fig. B.1a, Unet-based TacNet significantly outperformed the

ResNet-based architecture and three variants of VGG architectures in terms of

RMSE metric. We attribute this to the high model complexity of VGG models [109]

that are prone to the overfitting problem, leading to worse generalization compared

to the Unet configuration. Moreover, the number of neurons per the last two hidden

FC layers k influence validation accuracy. Specifically, regarding the Unet-based

model, the model performance is substantially improved as the hidden layers are

extended, which is confirmed by a drop in RMSE of around 60%. Considering

memory efficiency and computational speed, however, it is reasonable to choose

the Unet model followed by two 2048-neuron FC layers as a standard TacNet

configuration (see Fig. B.1b). At this TacNet configuration (k = 2048), its average

RMSE stands at 0.55mm compared to 0.42mm of the model with k = 16384, but

it saves 1215MB in memory usage and can boost the processing speed to around

200Hz (GPU is required), which enables the use of TacNet-based sensing in mobile

robotics systems (e.g., drones, mobile manipulators).
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(a) TacNet performance by configurations

k Memory usage (MB) Inference time (ms)

512 17 4.76± 2.49
1024 28 4.72± 2.50
2048 54 4.82± 2.49
4096 132 4.99± 2.49
8192 382 5.45± 2.14
16384 1269 6.96± 2.66

(b) Specifications of Unet-based TacNet with
various number of neurons k

Figure B.1: TacNet performance by various network configurations. (a) 5-fold cross
validation accuracy (RMSE metric) of TacNet by varying number of neurons k per the
last two FC layers and backbone network architectures (Unet and VGG). Under the same
training conditions, Unet-based TacNet achieves better performance compared to that of
VGG counterparts (smaller RMSE value is better). Based on the specifications (b), it is
reasonable to adopt 2048 neurons for the last two FC layers of Unet-based TacNet, which
strikes a balance between accuracy, memory usage and inference time.
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Appendix C

Force calibration

In order to determine the elastic spring constant αf required for the force mapping

(Eq. 7.3), the TacLink was pressed against a fixture affixed to a force gauge (Imada,

ZTA), aligned perpendicularly to the skin surface (refer to Figure 7.2). By gradually

increasing the depth of contact in 1mm intervals, we recorded both the estimated

contact depths provided by the TacLink and the corresponding true force values.

The relationship between the true contact depths and the estimated values, along

with the correlation between contact depth and true contact force, is depicted in

Figure C.1a.

The result shows that the contact depth signal displayed a hysteresis trait, only

discernible in response to local contact depths exceeding 5mm, thus establishing a

minimum detectable contact force threshold of approximately 0.4N for the TacLink.

Additionally, the presence of the internal acrylic bone limited the upper range of

force sensing to approximately 1.5N. Utilizing the observed correlation between

contact depth and force illustrated in Figure C.1a, the quasi-static linear elastic

model yielded a stiffness constant of αf = 54.3N/m to characterize the force-

displacement relationship.

Figure C.1b reports the accuracy of calibrated contact forces estimated by the

TacLink at three different locations on the sensing skin, along its vertical axis: i)

at the center region, ii) 50mm to the left, and iii) 50mm to the right of the center

location. The results showed a consistent sensing pattern among the different contact

regions, with the estimated values positively correlated with the true ones. However,

there were moderate differences in accuracy between the contact locations. These

discrepancies can be attributed to the varying skin stiffness in different regions due

to its specific morphology. While we applied a single stiffness constant of a simple
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Figure C.1: The quantitative evaluation of tactile sensing performance with regard to the
contact depth and calibrated contact force.

linear model to calibrate force values for the entire skin, it may not fully capture

the regional variations. Moreover, the maximum deviation of approximately 17%

in contact force between the three regions was observed when the skin experienced

a large contact depth of 25mm. This can be accounted for by the limitations of

a linear elastic model in accurately representing large deformations. Nevertheless,

considering the observed sensing accuracy and the alignment of measured values with

actual ones, the TacLink sensor remains effective for various robotics applications,

while leaving room for further improvements.

Figure C.1b illustrates the accuracy of calibrated contact forces estimated by the

TacLink at three distinct locations along the vertical axis of the sensing skin: i) at the

central region, ii) 50mm to the left, and iii) 50mm to the right of the central position.
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The findings revealed a consistent sensing trend across different contact regions, with

estimated values exhibiting a positive correlation with true ones. However, moderate

disparities in accuracy were observed among the contact locations, attributable

to variations in skin stiffness owing to its specific morphological characteristics.

Hence, a single stiffness constant αf applied to calibrate force values across the

entire skin might not comprehensively address regional differences. Furthermore, a

maximum deviation of approximately 17% in contact force among the three regions

was noted under conditions of substantial skin deformation (25mm), highlighting

the limitations of a linear elastic model in accurately capturing large deformations.

Nonetheless, considering the reasonable alignment of measured values with true

ones and high elasticity, the TacLink sensor proves potential for effective collision

handling, albeit with potential avenues for enhancement.
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