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Abstract 

Visual Speech Recognition (VSR) is a technology that recognizes and interprets 

spoken language by analyzing facial and lip movements in video. Its primary goal is 

to decode language content using visual cues, which is particularly valuable when 

audio information is limited or absent. VSR has made significant progress, with the 

current mainstream approach focusing on extracting lip features and using deep 

learning to enable the model to understand a speaker's content from video alone. 

However, one might question whether visual language recognition is synonymous 

with lipreading. Can we extract additional information beyond lip movements to 

improve model performance? In this study, by developing the Lip-Face-Surrounding 

model to comprehensively extract information from videos. This model supports 

three input channels, utilizes 3DCNN for feature extraction, and applies a CTC layer 

to align the extracted features with the text sequence. 3D Convolutional Neural 

Networks (3DCNN) excel at extracting spatial and temporal features, making them 

well-suited for visual speech recognition tasks. By employing 3DCNN, the model 

captures dynamic changes across facial, lip, and surrounding cues within video 

sequences. The Connectionist Temporal Classification (CTC) layer effectively 

addresses alignment, allowing extracted features to align with the target text 

sequence without requiring predefined alignment, thus enhancing the model's 

capability to handle variable-length input. The findings show that direct information 

beyond the lips—such as eye corner movements, jaw movements, nostril movements, 

throat movements, and shoulder movements—are captured by the model and serve 

as discriminative features for visual speech recognition. This direct information is 

also applicable to handcrafted datasets. Additionally, indirect information such as 

the speaker's body language and interactions with the surrounding can impact model 



performance. Sometimes, this information provides extra context that enhances 

performance, while other times, it introduces noise that affects model convergence. 

This model achieved promising results on the CN-CELEB and GRID datasets, with 

a 5% absolute performance improvement over the lip-only approach. 
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I. INTRODUCTION 
1.1  Background 

This section primarily introduces the background of Visual Speech Recognition 

(VSR) and the existing challenges in the field. A detailed description of current 

research approaches will be provided in the related work section. 

1.1.1 Visual Speech Recognition 

The primary goal of Visual Speech Recognition (VSR) is to recognize language 

based on visual cues, particularly those extracted from the speaker’s facial 

movements. These cues include lip movements, facial expressions, and occasionally 

even head or neck movements. VSR models typically use only video signals as input, 

but some multimodal language recognition studies incorporate both clean and noisy 

audio along with video signals to verify the role of visual information in enhancing 

audio recognition [1]. Unlike traditional lip reading, which focuses solely on 

interpreting spoken words through lip movements, VSR encompasses a broader 

range of visual cues, including facial expressions, eye movements, and other 

contextual elements that aid in understanding speech. This broader focus allows 

VSR to capture more comprehensive visual information, enhancing the accuracy and 

robustness of the recognition process. 

For humans, language communication is inherently multimodal, as we often rely 

on visual information to comprehend spoken language. VSR models simulate this 

multimodal process by incorporating visual cues into language recognition, which 

significantly enhances the robustness of recognition, especially in high-noise 

environments. VSR also provides an essential tool for understanding spoken content 

without sound, benefiting people with hearing impairments and demonstrating its 

potential application in diverse scenarios. By integrating multimodal information, 
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VSR not only improves recognition accuracy but also contributes to the diversified 

development of language recognition technology. 

1.1.2 Visual Speech Recognition and Lip-reading 

Lip reading is a technique used to understand spoken language by observing the 

movements of the speaker's lips. Human lip reading primarily relies on noticing lip 

shapes, mouth openings, and facial expressions to assist in understanding speech, 

especially in situations where hearing is impaired or audio quality is poor. Lip 

reading compensates for auditory limitations and serves as an essential form of non-

verbal communication. 

In the field of computer vision research, distinctions between visual language 

recognition and lip reading are not always clearly defined. The primary difference 

between Visual Speech Recognition (VSR) and traditional lip reading lies in the 

range of visual information utilized. Lip reading typically focuses exclusively on lip 

movements to interpret spoken words, while VSR extends beyond lip movements to 

incorporate additional visual cues, such as facial expressions, eye movements, and 

other contextual signals. This broader scope allows VSR to capture more 

comprehensive visual information, enhancing the accuracy and robustness of 

recognition models. However, this expansion also adds complexity to model 

development, as it necessitates sophisticated techniques for effectively extracting 

and integrating diverse visual cues [2]. 

1.1.3 Auto Visual Speech Recognition 

HMM-Based Automatic Lip Reading: The earliest computerized lip-reading 

technologies relied on Hidden Markov Models (HMM), using statistical methods to 

analyze the relationship between lip movements and phonemes. While HMM-based 

approaches performed well in small-scale, controlled scenarios, they suffered from 
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poor scalability, making it challenging to adapt to diverse speakers, complex 

language environments, and real-world applications [3]. 

Neural Network-Based Automatic Lip Reading: With advancements in deep 

learning, neural networks—especially Convolutional Neural Networks (CNN) and 

Recurrent Neural Networks (RNN)—became widely used in the field of automatic 

lip reading. This approach allowed for reading simple sentences in controlled 

environments, achieving higher recognition accuracy than HMM-based methods. 

However, it still had significant limitations. The speaker must maintain a certain 

posture, and the spoken content is usually restricted to specific phrases or words, 

presenting challenges for real-world applications [4]. 

Automatic Lip Reading Using “Wild” Datasets: In recent years, progress in 

VSR has been supported by large-scale, labeled datasets collected from natural, 

unstructured environments ("wild" datasets). While these datasets have enabled 

significant improvements in model performance, creating such complex datasets is 

resource-intensive and costly, limiting the scalability of these approaches. Moreover, 

research indicates that error-prone words in audio-visual datasets often follow 

certain patterns, suggesting a need for alternative methods to capture nuanced 

information present at the edges of samples [5] [6] [7]. Current models generally 

focus on extracting the speaker's lip movements from videos, often with limited 

attention to other critical regions of interest. Most studies directly use pre-cropped 

images of the lips, omitting broader visual contexts that could improve recognition 

accuracy. This lip-centric approach can lead to ambiguities, particularly with 

homophones or similarly articulated words. Integrating broader contextual 

information, such as facial expressions and head movements, may help disambiguate 

these cases, though doing so introduces further challenges in feature extraction and 

fusion. 
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1.1.4 VSR from an Anthropological Perspective 

The process of "speaking" in humans is not limited to lip movements alone; it 

involves a coordinated effort among multiple muscle groups, including those in the 

jaw, throat, and tongue. Zhang et al. [8] demonstrated that capturing the entire face, 

instead of just the lips, substantially improves model recognition accuracy. Building 

on this insight, further inquiries is: could visual information beyond the face—such 

as the surrounding environment, the speaker’s attire, emotions, and body 

movements—enhance the effectiveness of recognition models? If so, capturing more 

comprehensive visual information might contribute to higher accuracy. 

Relevant psychological research also aligns with this perspective. Liu et al. [9] 

found that language choice varies by context; formal reports often use more 

academic language, while casual conversations are typically more colloquial. 

Mohammad et al. [10] noted that a speaker’s emotional state is closely linked to their 

speech patterns. By integrating as much directly or indirectly relevant visual 

information as possible, enhance model performance, leveraging these nuances to 

more effectively interpret spoken language. 

1.2  Problem / Objectives / Contributions / Research Significance 

Problem Statement: Despite advancements in VSR, the field faces several 

significant challenges. First, variability in speakers’ facial features, expressions, and 

movements creates substantial obstacles to achieving consistent recognition 

accuracy. This variability is further complicated by external factors such as lighting 

conditions, camera angles, and ambient noise. Additionally, even when speaking the 

same word, lip movements differ widely between individuals, making it difficult for 

models to generalize across various speakers. Furthermore, occlusions, such as 

hands or objects covering the face, and rapid head movements can lead to the loss 
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of critical visual information, hindering the model's ability to accurately interpret 

speech. 

Objectives: The most important task in this study is to develop a four-channel 

input network that separates inputs into four categories: lips, face, surrounding 

environment, and voice. By comparing the model's performance with individual 

inputs and various combinations, assess the impact of each input on the VSR system. 

The goal is to improve the accuracy of visual speech recognition models by 

integrating additional visual information beyond just the lips. 

Contributions: By developing a lip-face-surrounding model to capture 

information from different video regions, including the speaker’s lip movements, 

facial expressions, and the surrounding environment. This approach enables the 

model to utilize multiple visual cues, enhancing overall performance. Validated the 

model's effectiveness on two datasets: GRID [11] (a clean, controlled environment 

dataset) and CN-CELEB [5] (a complex, real-world dataset). Results demonstrate 

that incorporating face and environmental context positively impacts visual 

language recognition. Specifically, on the GRID dataset, the configuration with lips 

+ face + surrounding achieved a word error rate (WER) that was 1% lower than with 

lips alone, with an absolute WER of 2.3%. On the CN-CELEB dataset, although the 

introduction of surrounding information reduced model stability, it improved overall 

performance. The average character error rate (CER) for single-speaker tasks was 

37.04%, a 5% improvement over the lip-only baseline, while multi-speaker tasks 

saw an average CER of 49.31%, a 3% improvement. 

By evaluating the impact of each input on the VSR system, provide insights into 

selecting key regions of interest (RoI) for visual language recognition tasks. 

Although incorporating environmental context can, in some cases, reduce model 

stability, it generally improves overall performance. Also conducted an initial 
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investigation into the causes of reduced stability, laying a foundation for future 

research in this area. 

Research Significance: VSR systems can be applied in various scenarios where 

high-quality audio is challenging to capture, such as identifying athletes' speech 

during sporting events, enhancing broadcast quality. Additionally, this research 

seeks to identify the most critical aspects of human communication beyond language, 

providing guidance for training programs for individuals with hearing impairments 

and fostering better communication within this community. 

1.3  Structure 

This thesis is organized into five chapters. Chapter 1 provides an overview of the 

background of visual language recognition and a summary of this work. Chapter 2 

covers related work, including datasets, models, and research on regions of interest 

(RoI) in VSR. Analyzed some of the unexplored issues in these studies and their 

relevance to this research. Chapter 3 details this model, including feature extraction, 

feature analysis, and methods for multimodal alignment. Chapter 4 presents these 

experiments and results, comparing outcomes under various input conditions and 

focusing on the influence of environmental information on results. Chapter 5 

summarizes the experiment, offers recommendations on leveraging environmental 

information to improve model accuracy, highlights the limitations of this study, and 

provides an outline of potential directions for future research. 
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II. RELATED WORK 

2.1  Dataset 

This study will introduction begin with datasets, as all research in automatic visual 

speech recognition (AVSR) is directly dependent on the dataset used. For instance, 

a model that performs well on the GRID dataset, which consists of simple sentences, 

may not achieve similar results on the LRS dataset (a complex English sentence 

dataset, discussed later). Researchers often adjust models according to the focus of 

their tasks, demonstrating that the structure of a dataset and the quality of labeled 

data directly influence the quality of the entire research study. 

Firstly, certain datasets used in previous studies are no longer valuable for modern 

VSR research. For example, the Tulips dataset [10] includes only one speaker who 

randomly utters numbers between 0 and 4 in English; the JR dataset [3] contains a 

single speaker saying one of ten random Japanese subway station names; and the 

CUAVE dataset [12] includes one speaker randomly reciting a series of phone 

numbers in English. These datasets are characterized by their simplicity and limited 

data volume, making them insufficient for complex AVSR tasks today. 

Next, will introduce two relatively complex datasets created in controlled lab 

environments. These datasets are characterized by simple sentence structures and 

well-annotated content. They are typically seen as transitional datasets from simple 

lip-reading tasks to more complex ones. Sometimes, they are also used as pre-

training datasets or as evaluation sets to assess model performance. 

GRID: This dataset includes 32,746 usable videos from 34 speakers, featuring a 

fixed sentence structure that comprises commands (4 types), colors (4 types), 

prepositions (4 types), letters (25 types), digits (10 types), and adverbs (4 types). The 

sentence structure follows this format: command (e.g., bin, lay, place, set) + color 
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(e.g., blue, green, red, white) + preposition (e.g., at, by, in, with) + letter (e.g., a, b, 

c, ..., z excluding w) + digit (0, 1, 2, ..., 9) + adverb (e.g., please, soon, now, again). 

For example, a sample sentence in GRID could be, “bin blue at f2 please.” In this 

study, finally selected GRID as the evaluation set. 

OuluVS2 [13]: This dataset features input from multiple angles, making it a 

valuable resource for research into optimal lip-reading angles. Researchers use 

OuluVS2 to explore the impact of different visual perspectives on lip-reading 

accuracy. 

Finally, will introduce modern VSR datasets. Modern visual speech recognition 

datasets feature more complex sentences and scenes, typically collected from 

various online platforms. These videos include interactions between speakers and 

audiences, diverse facial expressions (e.g., silence, confusion, happiness), and non-

frontal facial orientations, offering a richer range of visual cues. 

CN-CELEB: Fan et al. developed CN-CELEB, a large audiovisual dataset 

specifically focused on Chinese. This dataset is currently the largest Chinese field 

dataset, containing over 130,000 utterances with a total duration exceeding 240 

hours. CN-CELEB is categorized into “news” and “speech” sections and is fully 

annotated manually to ensure high quality. The utterances in CN-CELEB do not 

follow a fixed format and are sourced from platforms such as Bilibili. For example, 

an utterance from CN-CELEB could be, “ta jiu shi zhe me yi ge sui xing de ren.” In 

this experiment, primarily used CN-CELEB for training, tuning, and evaluating the 

model. 

Studies based on this dataset have shown that previously well-performing models 

experience a decrease in performance on more complex datasets, highlighting the 

need to enhance the robustness of audiovisual language recognition models [5]. 
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2.2  Automated Visual Speech Recognition 

In the early days, many lipreading models were based on Hidden Markov Models 

(HMM). These models typically relied on small datasets, had limited task 

capabilities, and suffered from poor scalability. For instance, Movellan's [10] model 

could only recognize five digits (0-4), Sugahara et al.'s [3] model recognized ten 

subway station names, and Dupont et al.'s [12] model recognized phone numbers. 

While these HMM-based models often achieved near-perfect accuracy for their 

specific tasks, their applicability was limited to narrowly defined scenarios, 

rendering them inadequate for the demands of modern, complex visual language 

recognition. 

Modern research in visual language recognition primarily focuses on the 

following aspects to enhance model performance: 

1) Building more complex datasets for model training: Chung et al. developed 

three outdoor lip-reading datasets—LRW [14], LRS [15], and LRS2 [16]—

specifically designed to train visual language recognition models. Ma et al. 

generated new datasets by augmenting old datasets, resulting in a substantial 

increase in data volume. These efforts have been validated, showing that the 

inclusion of additional training data indeed enhances model performance. 

2) Developing more complex networks to handle increasingly complex 

datasets: Assael et al. [4] developed LipNet, a network using a 3D CNN [21] 

to extract lip movement features, followed by a fully connected layer processed 

by CTC to handle alignment issues. LipNet achieved a 5% word error rate 

(WER) on the GRID dataset, a significant improvement over earlier HMM-

based VSR models for GRID, which had error rates close to 50%. Chung et al. 

developed a multimodal language recognition model that emphasizes the 
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impact of visual signals on multimodal language recognition in noisy 

environments. Their model extracts feature separately from the lips and audio 

using CNNs, then processes these features with a transformer. This model 

achieved a 13.9% word error rate (WER) on the LRS dataset. With video input 

alone (lips only), the WER rose to 50.2%, compared to a WER of 73.8% for 

human experts. However, their model underperformed compared to the 

CTC/Attention model by Ma et al. [17], which achieved a WER of 15.2% on 

LRS. The CTC/Attention model is more advanced, combining the strengths of 

CTC for handling audio-text alignment with attention for multimodal 

alignment. This model eliminates the LSTM network, which is less effective 

with long sequences, and leverages additional training data. It is worth noting, 

however, that all of these studies have focused solely on cropped images of the 

lips. 

While collecting large and complex datasets has proven an effective method for 

enhancing VSR capabilities, this approach has notable drawbacks: it is time-

consuming, resource-intensive, and costly. Furthermore, as FAN et al. [5] 

observed, even with extensive datasets, certain challenging words maintain high 

error rates, suggesting unresolved edge cases in current models. This indicates 

that simply expanding datasets may yield diminishing returns in accuracy, 

especially for easily confused words. Therefore, exploring alternative feature 

extraction methods to address these challenges more effectively is necessary. 

Although HMM-based models excelled in specific tasks, their limited 

applicability in broader, more complex scenarios reduces their relevance to 

modern visual language recognition needs [18]. 
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2.3  Regions of Interest (RoI) 

In the fields of psychology and medicine, related research has shown that when 

performing audiovisual language recognition, humans do not limit their focus to 

the lips. Bateson et al. [15] also demonstrated that the movement of the jaw and 

eye muscles positively impacts visual speech recognition. Furthermore, perceivers 

tend to focus on the speaker's lips, eyes, and body movements, and this tendency 

becomes more pronounced in noisy environments. Cvejic et al. [16] studied the 

movement patterns of all relevant head muscles during speech, emphasizing that 

eyebrow raises are often synchronized with changes in speech prosody. This 

rhythmic consistency is particularly important for visual language recognition 

tasks. 

Research on regions of interest (ROIs) in the field of visual recognition remains 

relatively limited. Intuitively, neural networks could possess a capacity similar to 

that of humans for capturing information from facial expressions, body language, 

and environmental context. In other words, isolating only lip movement data may 

overlook the speaker's expressions and surrounding contextual cues. Currently, 

the size of the cropping frame is often determined by researchers' intuition or 

experience. Zhang et al. [8] demonstrated that movements of the jaw and eye 

muscles also positively impact visual speech recognition. By cropping the entire 

face, they achieved an absolute improvement of 2% over the baseline system on 

the GRID dataset. They also noted that while additional information can boost 

performance, it may also introduce noise. Therefore, it is crucial to carefully 

incorporate useful information while preserving clean data (lip movement), 

meaning that any new information should prompt a corresponding model update. 

Chung et al. [16] explored the feasibility of side-view lipreading, using the 

OuluVS2 dataset, which captures speakers from multiple angles, enabling training 
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across various viewpoints. They showed that lipreading from a slightly off-center 

frontal angle yields the best results; however, this difference is minimal and is 

unlikely to revolutionize current visual language models. 
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III. ARCHITECTURE 

In this chapter, models will be provided with a detailed description of the lip-face-

surrounding model. First, will introduce the overall structure of the model. Next, will 

discuss each component in sequence: the 3D CNN used for feature extraction, the 

fully connected layers, and the CTC for handling features. Additionally, will explain 

this approach for cropping the lip, face, and surrounding regions to standardize the 

selection of regions of interest. 

3.1  Lip-Face-Surrounding Architecture 

This work is based on LipNet, which employs a 3D Convolutional Neural 

Network (3DCNN) combined with CTC [19] to extract and process features. To 

enable the model to capture more information from the video (rather than limiting it 

to the lip area alone), extended the original LipNet to support three inputs: lip, face, 

and surrounding. This design serves two purposes: first, to retain the cleanest 

information (the lip region), as simply expanding the cropped area would 

significantly increase computational load, and do not want to compromise the 

original lip performance. Second, by changing inputs and observing the resulting 

performance, can validate which specific input proves most effective, thereby 

gaining insights into the areas the model should focus on.  chose 3D CNN over 

LSTM or Transformer for the following two reasons: 

1) Sentences in modern lipreading datasets can be particularly long, which would 

lead to a significant drop in LSTM's computational efficiency. Due to its 

recursive structure, LSTM requires step-by-step information transmission, 

and as the sequence length increases, training time can extend considerably. 

In contrast, CNN typically has higher computational efficiency because 

convolution operations are parallelized rather than performed recursively. 
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2) Based on real-time requirements, prefer that the model doesn’t always wait to 

view the entire sentence before making a judgment. Instead of prioritizing the 

full sequence, emphasize local information, which made us opt not to use 

Transformer. Although this may somewhat affect model performance, 3D 

CNN is sufficient for this study’s needs. 

This model has three input channels of size 120×120×3 each, designated for LIP, 

FACE, and Surrounding information, respectively. The goal of standardizing the 

input size across these three image channels is to reduce the influence of the LIP 

region on the FACE and Surrounding layers. By resizing the FACE and Surrounding 

layers, the LIP becomes blurred in these two layers, which aligns with this intended 

focus. Specifically, the FACE layer should emphasize facial expressions, moods, 

and emotions, while the Surrounding layer should prioritize body language and the 

surrounding context. 

For feature extraction, employ three layers of 3D CNNs with max-pooling. This 

network is not particularly deep; selected this structure to avoid overfitting and to 

balance efficiency and performance. After several trials, determined that a three-

layer configuration was a relatively optimal choice. 

In the feature processing step, the extracted features are flattened into a 1D vector 

and passed through a fully connected layer. This layer provides an initial output that 

has not yet addressed alignment, which is then inputted to the CTC layer to produce 

the final text output with the most likely alignment. Figure 1 illustrates the 

architecture of this model, Figure 2 shows the workflow, and Table 1 provides a 

detailed breakdown of this model's structure. 
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Fig 1 Architecture of Lip-Face-Surrounding Model 

Table 1 Lip-Face-Surrounding Model details 
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Fig 2 Work of Lip-Face-Surrounding Model 

 

3.2  RoI Cropping 

The regions of interest (ROIs) are a focal point of this study. In this section, will 

detail the elements included in each ROI. 

First, for the initial video input that does not contain audio signals, crop it into 256 

× 256, 3-channel images, organized into a sequence of images at a frame rate of 25 

frames per second. (The reason for not directly cropping to 120×120 is that will later 

enlarge the lip layer while simultaneously reducing the face and surrounding layers 
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to minimize the influence of the lip region in both the face and surrounding layers.) 

For the Surrounding layer, directly resize it to a 120×120 image sequence. This layer 

includes a somewhat unclear image of the lips, a slightly clearer image of the face, 

and the surrounding environment.  aim for the Surrounding layer to focus on the 

subject's body language and the surrounding context. 

In another branch, the original image sequence is processed through the FAN 

detector, which is a pretrained model based on ResNet50 that extracts 68 facial 

features. Among these, the first 27 points represent the boundary information of the 

face.  use the 𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 , and 𝑦𝑚𝑖𝑛  of these 27 points as reference 

boundaries, extending outward by 2 pixels to define the final boundaries of the Face 

layer. This layer is then normalized into a 120×120 image sequence, which includes 

a relatively unclear image of the lips along with the entire face.  want the model to 

focus on the deformation occurring in the facial muscles. 

Finally, the Lip layer is determined by the 49th to 60th points outputted by the 

FAN detector. Similarly, take the 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥, and 𝑦𝑚𝑖𝑛 of these 11 points 

as reference boundaries and extend outward by 2 pixels to establish the final 

boundaries of the Lip layer. This layer is then normalized into a 120×120 image 

sequence (which typically involves enlargement, though in rare cases it may involve 

reduction). This layer includes only the image of the lips, serving as the benchmark 

for assessing the impact of the other two inputs on model performance. Figure 3 

illustrates the process of cropping the RoIs. 
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Fig 3 the process of cropping the RoIs. 
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IV. EXPERIMENTS AND RESULTS 

This section provides a detailed overview of the training details and results of the 

Lip-Face-Surrounding model, including the training process setup, parameters used, 

and the model's performance across different datasets.  have evaluated the model's 

performance under various inputs, including single-input comparisons of lip only, 

face only, and surrounding only. Additionally, compare multi-input performance 

using lip only as a baseline against combinations such as lip + face, lip + surrounding, 

and lip + face + surrounding.  also present a performance comparison of this model 

on the GRID dataset with other datasets. Results indicate that this model outperforms 

the majority of existing lipreading models and even surpasses many models that 

utilize additional training data. 

4.1  Training 

This network was trained on two datasets, GRID and CN-CELEB, with the 

objective of comparing model performance in controlled (laboratory) and field 

environments, as well as exploring the potential for cross-linguistic visual language 

recognition. The network was implemented using PyTorch and trained on a single 

NVIDIA GeForce RTX 3080 GPU with 12GB of VRAM. In the fully connected 

layer, set the learning rate to 0.002, weights to 0.03, and biases to zero. No data 

augmentation or additional training data was used. 

For the CN-CELEB dataset, evaluated the model’s Character Error Rate (CER) 

with single-input configurations: lip only, face only, and surrounding only.  

selected Ma et al.’s [17] results as a baseline, as it is a multimodal network that 

includes audio input and has a similar structure to these with lip-only input, making 

it suitable for assessing this model’s overall performance.  also evaluated CER 

across four different input configurations: lip only, lip + face, lip + surrounding, and 
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lip + face + surrounding. Nine models were trained using cross-validation, with 

average CER, standard deviation, and the best CER achieved in these experiments 

reported. 

For the GRID dataset, followed the same procedure, evaluating Word Error Rate 

(WER) under single-input configurations as well as composite-input configurations. 

As a baseline, chose Assael et al.’s [4] results, which is a network that supports only 

lip image sequence input and provides useful reference for single-input structure 

comparisons. 

Training on the CN-CELEB dataset took 19 days, while training on the GRID 

dataset took one night. WER and CER are defined as follows: 

𝑊𝐸𝑅 =
𝑊insertions + 𝑊substitutions + 𝑊deletions

𝑊total words
× 100% 

𝐶𝐸𝑅 =
𝐶insertions + 𝐶substitutions + 𝐶deletions

𝐶total characters
× 100% 

 

4.2  Result 

Table 2 and Table 3 show composite-input and single-input results for the LFS 

model on the CN-CELEB dataset, respectively. Table 4 and Table 5 show 

composite-input and single-input results for the LFS model on the GRID dataset. 

Table 6 presents a comparison of this model with state-of-the-art VSR research on 

the GRID dataset. 

Figures 4 and 5 illustrate the convergence of the LFS model on the CN-CELEB 

dataset for single-input and multi-input settings, respectively. Figures 6 and 7 

illustrate the convergence of the LFS model on the GRID dataset for single-input 

and composite-input settings, respectively. 
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Table 2: multi-input Results on CN-CELEB. "Average CER in Test Set" represents 

the average CER and the corresponding standard deviation from 9 tests. "Best CER 

in Test Set" indicates the lowest (best) CER. "L" stands for "Lip," "F" stands for 

"Face," and "S" stands for "Surround." 

Region Average CER in 

Test Set 

Best CER in Test 

Set 

CER in Evaluation 

Set 

Lip only 44.5±0.7 43.8 43.7 

L + F 39.1±0.3 38.9 39.3 

L + S 40.4±1.1 38.8 40.3 

L + F + S 37.0±1.1 36.5 36.5 

Baseline N/A 41.2 39.6 

 

Table 3: Single-input Results on CN-CELEB. 

Region Average CER in 

Test Set 

Best CER in 

Test Set 

CER in Evaluation 

Set 

Lip only 44.5±0.7 43.8 43.7 

Face only 40.2±0.3 38.9 39.6 

Surrounding  40.4±2.6 38.8 40.3 

Baseline N/A 41.2 39.6 

 

On the CN-CELEB dataset, observe an instability in prediction results introduced 

by the surrounding input. In the surrounding-only input mode, fluctuations reach 

±2.6%, which is significantly higher than in other input modes.  will discuss the 

potential causes of this phenomenon in the following analysis. 
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Fig 4 Training process in CN-CELEB(Multi-input) 

 

 

Fig 5 Training process in CN-CELEB(Single-input) 
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In the CN-CELEB dataset, while this performance in the lip only mode does not 

surpass that of the baseline system, several multi-input configurations do outperform 

the baseline. This supports this first conclusion: information beyond the lip region 

aids VSR systems in interpreting language. Furthermore, the best performance is 

achieved with the lip-face-surrounding input configuration, aligning with these 

expectations. Compared to the face layer alone, the surrounding layer captures 

additional cues, such as throat movements, which contribute to the model’s decision-

making. 

When comparing face only and surrounding only modes, the final performance 

after convergence is similar. However, the surrounding only mode exhibits less 

stability during training than face only.  believe this is because, while the 

surrounding information generally aids model training, it also introduces a variety 

of elements, which can sometimes act as noise—especially with speakers who use 

frequent gestures or are in complex environments. In these cases, the extra details 

from the surrounding layer can disrupt convergence. Overall, while the surrounding 

layer is effective, its stability is lower than that of the face layer alone. Finally, both 

face only and surrounding configurations outperform the baseline system, further 

reinforcing that information beyond the lip region is beneficial for VSR accuracy. 

 

Table 4: multi-input Results on GRID 

Region Average WER in 

Test Set 

Best WER in 

Test Set 

WER in Evaluation 

Set 

Lip only 5.2±0.4 4.9 5.4 

L + F 3.8±0.3 3.5 3.9 

L + S 3.9±0.2 3.7 3.7 

L + F + S 3.5±0.2 3.4 3.2 

Baseline N/A 4.6 N/A 



24 

 

Table 5: single-input Results on GRID 

Region Average WER in 

Test Set 

Best WER in 

Test Set 

WER in Evaluation 

Set 

Lip only 5.2±0.4 4.9 5.4 

Face only 3.8±0.4 3.4 3.5 

Surrounding 

only 

3.9±0.5 3.5 4.0 

Baseline N/A 4.6 N/A 

 

 

Fig 6 Training process in GRID(Multi-input) 
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Fig 7 Training process in GRID(Single-input) 

 

GRID is a dataset recorded in a controlled laboratory environment, without 

gestures or environmental variations. This purpose in using this dataset is to verify 

this hypothesis in reverse: in a dataset lacking surrounding information, including 

the surrounding layer should not impact model accuracy. According to the results, 

while the lip only mode underperforms relative to the baseline, this model achieves 

performance gains when either face or surrounding information is included. 

Throughout the training process, the surrounding input introduced minimal 

fluctuations and converged with high stability. 

Table 6 summarizes a performance comparison between this model and other 

state-of-the-art VSR models, with data sourced from Paper with Code. Since some 

experiments utilized additional training data,  have marked this variable for clarity 

and fairness. As shown, this model achieves performance on par with the top-tier 

models in the field. 
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Table 6: Comparison of Results on GRID with Other Models 

Method Year Extra Training Data Best WER 

LipNet 2016 × 4.6 

LFS(Ours) 2024 × 3.2 

WAS 2016 √ 3.0 

LipNet-face 2020 × 2.9 

LCANET 2018 × 2.9 

CTC/Attention 2022 √ 1.2 

 

Here is a comparison of this model's performance on CN-CELEB and GRID datasets, 

revealing some interesting insights: 

1. On CN-CELEB, the model's stability was lowest when only the surrounding 

input was used, with a slight improvement in the lip-surrounding 

configuration. This suggests that the information provided by the lip input is 

relatively clean, facilitating model convergence. 

2. The surrounding input, which caused fluctuations on CN-CELEB, did not 

introduce similar instability on GRID. On one hand, this is due to GRID’s 

controlled lab setting, which lacks environmental and body language cues. On 

the other hand, it indicates that this model attempts to extract meaningful 

information from surrounding cues. However, in the absence of robust labels, 

this did not yield the anticipated improvements. 

3. A key point on GRID is that although the surrounding input lacks 

environmental and body language information, it captures details missed by 

the face input alone—specifically, throat movement.  were pleased to 

observe that this contributed positively to model accuracy. This suggests that 

even a full-face crop may not encompass all relevant “lipreading” cues, 
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indicating that there is still much to explore regarding optimal Regions of 

Interest (RoIs) in visual speech recognition research. 

 

4.3  Visualization of Model Attention Areas 

 conducted occlusion experiments to verify the regions the model focuses on, 

which in turn guides the selection of Regions of Interest (RoI). This approach is 

based on the method described in [20], with a key difference: instead of manually 

selecting occlusion areas, allow the occlusion to sequentially traverse the entire 

image. Since are working with image sequences, calculate the relative performance 

drop for each time step's image. The issue of positional shifts due to the speaker's 

movement or camera movement was disregarded in this study. For the cropped 

image sequences, a black square mask was used to cover portions of the image, and 

the relative drop in model performance was calculated. This process generates a 

saliency map, which is then superimposed on the corresponding image. The 

occlusion size was set to 8x8 with a stride of 4. 

 conducted occlusion experiments on selected data from both the GRID and CN-

CELEB datasets. Due to technical limitations, dynamic tracking of the occluded 

region (e.g., keeping the occlusion fixed on the eyes as the subject moves) is 

currently not possible. Therefore, opted for a fixed occlusion area in this experiment. 

While this method has certain limitations, it still provides valuable preliminary data 

to help understand the importance of different regions in visual language recognition 

tasks. Additionally, given the computational intensity of this method, selected a 

small number of objects of interest for experimentation. Specifically, these include 

some outdoor speech videos from the CN-CELEB dataset and videos from the GRID 

dataset. 
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The GRID dataset's primary advantage is the relatively consistent positioning of 

individuals within the frame, which allows for the estimation of the specific regions 

impacting the model's performance even when occlusion does not move in sync with 

the speaker. The results indicated that lip movements had the most significant effect 

on model performance, particularly for words like "please" and "lay," which involve 

substantial lip movement. Conversely, for words like "soon" and "two," which 

involve minimal lip movement, the model increased the feature weights for nasal 

and throat movements. Additionally, observed that the model occasionally captured 

shoulder movements, despite their lower weight, suggesting that the model may be 

picking up on specific speaker habits. This could potentially lead to overfitting but 

also demonstrates the model's ability to capture and effectively utilize information 

beyond just facial features. 

On the CN-CELEB dataset, the model responded to both the speaker's body 

language and environmental changes.  hypothesize that the use of multi-head 

attention mechanisms mitigated the impact of redundant information, preventing 

significant fluctuations in model performance. For a relatively simple dataset like 

GRID, the model can converge quickly, but for a more complex dataset like CN-

CELEB, less epoch of training might be insufficient. Furthermore, issues such as 

occlusion not moving with the speaker and camera movements exacerbated the 

difficulty of convergence in the surrounding layer. It can be concluded that the 

regions receiving the highest attention are the lips, followed by the corners of the 

eyes, the wings of the nose, the throat, and the shoulders. Notably, the corners of the 

eyes and the wings of the nose cannot be captured in the lip layer, while the throat 

and shoulders are beyond the reach of the face layer. 
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Figure 8(a), (b), (c) shows examples of the occlusion experiment's results on the 

GRID datasets. From top to bottom, the words being spoken by the speaker are 

"please," "soon," "lay," and "two". 

 

Fig 8(a) Example of the effects of occlusion in the GRID dataset (SOON) 

 

 

Fig 9(b) Example of the effects of occlusion in the GRID dataset (LAY) 
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Fig 10(c) Example of the effects of occlusion in the GRID dataset (TWO) 
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V. CONCLUSION 

In this study, this primary contribution is demonstrating the effectiveness of 

incorporating information beyond just lip movements in visual language recognition 

tasks. By utilizing the Lip-Face-Surrounding model, achieved a 5% absolute 

improvement in performance over the baseline system. This result underscores the 

value of including facial expressions and surrounding context alongside lip 

movements. 

Regarding the selection of RoI in visual language recognition, these experiments 

confirm that the lips are the most critical area. Additionally, movements around the 

corners of the eyes, the wings of the nose, the throat, and the shoulders also provide 

valuable information for recognition. Overall, the key information is primarily 

concentrated on the speaker's body. Therefore, recommend cropping the entire 

speaker and focusing particularly on the lips, as this approach can significantly 

enhance the performance of visual language recognition models. 

Further analysis of the impact of surrounding factors on the performance of visual 

language recognition models reveals some intriguing findings. In the CN-CELEB 

dataset, the model indeed captured various surrounding cues, such as the speaker's 

body movements and the surrounding crowd's reactions. While anticipated that these 

elements would influence the recognition process, there were instances where they 

actually led to a decline in model performance.  hypothesize that the model 

sometimes picked up additional contextual clues, which may enhance performance, 

but in other cases, the introduction of noise disrupted the model's convergence, 

resulting in reduced accuracy. Although cannot fully elucidate the underlying logic 

at this point, it is clear that visual language recognition models are sensitive to 
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surrounding information. The challenge moving forward will be determining how to 

effectively gather and apply this data in complex real-world scenarios. 

Considerations on the application and ethical aspects of visual language 

recognition technology. One technology related to visual language recognition is 

generating realistic lip movements during speech. This research indicates that, in 

addition to lip movements, speaking also involves changes in the throat and facial 

muscles. The resulting micro-expressions are not perfectly generated, and this 

research can guide studies related to speech generation by improving the realism of 

generated expressions. On the other hand, technologies that can identify a speaker's 

content from video alone may lead to privacy infringements and generating more 

realistic speech animations could result in the misuse of technology in ways that 

violate laws. 
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