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Abstract

Current image generation methods involve users inputting textual informa-
tion as prompt, which serves as a text-based conditional control input to
guide the image generation process. This text-based approach may have
difficulty meet the user’s requirements and initial design intentions in the
generated image. In common cases, the users shall either regenerate the
image from scratch or manually modify the generated image using their
drawing skills. These design processes are normally time-consuming and
labor-intensive, and it requires a certain level of drawing skills and experi-
ences from the users. Recently, deep learning-based image generation models
have demonstrated remarkable success in generating high quality images.
Generating coherent image sequences is essential for applications such as
manga, animation, and other visual storytelling mediums, where maintaining
consistency across multiple frames is critical to preserving narrative flow and
visual continuity. However, the state-of-the-art image generation current
models still face challenges in generating coherent image sequences, such as
insufficient consistency in image features, including character appearance,
background elements, and object positions across frames. Generating high-
quality and consistent image sequences is crucial for storytelling and visual
effects in video game development, virtual reality experiences, and film
production. Traditional image generation methods often fail to meet the
requirements of maintaining feature consistency across sequential images,
necessitating the development of new methods to enhance image generation
quality and consistency.

This thesis proposes a two-stage image generation model designed to
generate multiple sequential images based on a series of coherent text
prompts. In the first stage, the model generates a set of sketches based
on the user’s textual input. Users can modify these sketches and arrange
them according to their design intentions. In the second stage, the model
utilizes the revised sketches from first stage to generate a series of images with
consistent image features. In this work, we propose the Multi-Aggregation
Attention (MAGA) mechanism in the second stage, which can significantly
enhance feature aggregation and refinement, thereby improving image consis-
tency. The MAGA mechanism incorporates an external memory component
during the image generation process, storing conditioning information from
previous network layers and establishing connections between the current
text, sketches, and spatial features, and all historical inputs including prior



text and sketch information, thereby effectively increasing consistency across
sequential images.

To enhance user flexibility, we proposed a sketch selection workflow,
offering two more options. First, users can manually input their own
sketches, which allows for highly customized and precise visual elements
that reflect specific user intentions. Alternatively, users can select sketches
from a high-quality, pre-constructed database designed to support the image
generation process. This sketch database, called SketchXL, includes about
1,500 coherent storylines of continuous sketches, thus addressing the lack of
sequential consistency found in existing datasets.

Through a series of quantitative and qualitative experiments, we verified
that our model can demonstrate outstanding performance in image quality,
consistency, and fidelity of the generated images from the input sketches
and text prompts. Firstly, the proposed two-stage model demonstrated an
advantage over single-stage generation models by allowing users to adjust
the final output by editing the sketches generated in Stage 1, rather than the
final generated images. This approach can not only simplify the drawing
process but also enhance the quality of the generated images. In our
experiments, we compared the proposed model against several state-of-the-
art models under the same input conditions. We evaluated the generated
images for consistency and detail preservation to the input sketches and
text prompts. The experimental results show that the proposed model has
significant advantages in generating continuous image sequences, maintaining
consistency in character features and background images while preserving
details. Additionally, we quantified image quality using the NIMA score,
with the proposed model achieving an overall image quality score of 6.04, out-
performing other state-of-the-art models (5.84 for Stable Diffusion v1.0, 5.99
for Stable Diffusion X1, 4.95 for ControlNet). Overall, our method provides
an efficient and high-quality image generation solution for the applications
of animation and comic creations, with broad potential applications.

Keywords: Latent Diffusion Model, Attention Mechanism, Consistent
Images Generation.
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Chapter 1

Introduction

Image generation represents a significant research direction in the fields of
computer graphics, artificial intelligence and computer vision [3] [1]. The
primary goals of image generation include enhancing the quality, diversity,
and controllability of generated images while exploring broader application
domains. Current applications encompass areas such as facial recognition
[4] [5] [6], image reconstruction [7] [8], style transfer [9] [10], and the
creation of artistic works [11] [12]. In addition, image generation has become
increasingly important in industry applications, including anime and manga
production [13] [14], fashion design for generating creative concepts [15] [16],
and advertising, where high-quality and visually appealing images are needed
to engage consumers. These applications highlight the growing impact of
image generation technologies in both creative and commercial domains.

Currently, diffusion models have emerged as cutting-edge models in the
field of image generation, achieving state-of-the-art performance in various
areas such as image generation and multimodal conditional control. Promi-
nent large models that utilize diffusion models as their backbone, including
Stable Diffusion and DALL-E [2], not only lead research directions in the
scientific community but have also gained widespread recognition among Al
enthusiasts and artists [17] [18]. The extensive user community has fostered
the development of diverse pre-trained diffusion models and the creation of
a vast array of artistic works using these models.

Sequential images are a series of interconnected visual elements that
maintain coherence in terms of style, content, and structure, much like the
four-panel comic strip as shown in Figure 1.2. Each panel contributes to
the progression of the narrative, with each subsequent image building upon
the previous one to advance the storyline. The consistency of visual elements
such as character appearance, expressions, backgrounds, and stylistic features
plays a crucial role in maintaining the flow of the story. Sequential image gen-
eration is a significant research direction in the fields of computer vision and
image generation, aiming to produce coherent sequences of images. These
image sequences should maintain consistency in content, style, and structure,
and are widely applied in animation production [19], video generation [20],
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Figure 1.1: The comparison of image generation results from different
models when processing consistent text prompts. The proposed model that
introduced in this paper performs the best in terms of consistency. The
visual discrepancies between images generated by this model are minimal,
indicating that it better maintains image consistency and feature continuity
when generating images from sequential text prompts. In contrast, Stable
Diffusion 1.0 and Stable Diffusion XL exhibit poorer consistency, while
DALL-E 3 and Stable Diffusion 1 with ControlNet perform at an intermediate
level.
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Figure 1.2: Sequential images generated by our method. Image consists of
a four-panel comic strip featuring two anime-style characters engaging in a
conversation. Across the panels, the characters maintain consistent features,
such as their hairstyles and clothing.

and storyboard design [21].

Compared to generation of single image, consistent image generation
imposes higher demands on models regarding temporal consistency and
feature preservation. Image generation models need to meet a series of
specific consistency requirements. Consistency is one of the core requirements
in this domain. Models need to consider the temporal dependencies between
consecutive images to ensure that the entire image sequence remains coherent
in terms of content. Additionally, image generation models should preserve
key features consistently throughout the generation process, such as character
features, poses, and background elements of characters. Lastly, the generated
images must maintain high quality and diversity to accommodate various
application scenarios, such as animation production, manga and comics, and
video game cutscenes etc.

Despite significant advancements in single-image generation tasks, cur-
rent image generation models exhibit several shortcomings when generating
consistent image sequences, failing to fully meet the demands of this task [22].
Present image generation models primarily focus on producing high-quality
individual images rather than consistent sequences [23] [24]. Although they
perform well in generating single images, they lack the necessary mechanisms
to ensure consistency across successive images [25]. This deficiency results in
issues such as feature drift and inconsistencies in character attributes, poses,



Image 1 Image 2 Image 3 Image 4

A man stood o jifted weights  Then, he did  After that, he
on the ground spinning did bench press

Figure 1.3: The comparative results show two rows of images: the upper row
illustrates images generated by Stable Diffusion 1.0 with ControlNet, and
the lower row showcases the output from our proposed model. The upper
row highlights inconsistencies in the character’s appearance and posture
across different sports activities, while the lower row demonstrates how our
model maintains consistent character features and postures, ensuring greater
continuity and stability throughout the sequence.

and background elements between consecutive images.

For example, as shown in Figure 1.3, when using the Stable Diffusion 1
with ControlNet [26] (Controlnet), the character’s features vary significantly
between different prompts, failing to maintain a cohesive visual identity.
Additionally, each activity introduces new postures and equipment, but the
transitions are not smooth, and the changes are too abrupt, further breaking
the continuity. The overall style, including background and character details,
fluctuates across images, undermining the stability and consistency of the
character depiction.

In summary, current sequential image generation task exhibits several
shortcomings, include: 1) The process of generating images directly from
textual information often results in errors in the generated images, and these
images are challenging for users to modify. These errors typically involve
inaccuracies in spatial relationships, character actions, or object positioning,

6



Input: Input:
Sketches Sketches

selected from g
atier input by users

(Optional) (Optional)

Stable Diffusion XL

Input
P: afarm,

many cows in front,
they gathered together,
eating gras;

Figure 1.4: The proposed pipeline includes the preparation of sketches, the
generation process, and the reasoning result. Since the model is a tuning-free
method, no more training is necessitated.

where the generated images fail to reflect the intended descriptions from the
text prompts. 2) Existing models fail to ensure temporal consistency and
feature preservation across multiple frames, which are crucial for creating
sequential images. These results in issues like feature drift and inconsistencies
in character attributes, poses, and background elements between consecutive
frames.

To address the aforementioned challenges, this paper proposes a two-stage
architecture for sequential image generation. This method involves several
key stages and innovations aimed at enabling users to modify the final output
images during the generation process and overcoming the deficiencies of ex-
isting models in maintaining temporal consistency and feature preservation.

Our approach divides the text-to-image generation process into two
distinct stages. In the first stage, sketches are generated based on the
user’s text prompt, allowing users the flexibility to adjust and arrange these
sketches.

This research also provides a sketch dataset for users to select and input
into the network for the second stage. Additionally, for users with advanced
drawing skills, the system permits the upload of their own sketches. Users can
then arrange these sketches in the desired sequence, laying the groundwork

7



for their image narrative.

In the second stage, the sketches and textual prompts are encoded and
used as conditions in our proposed sequential images generation model. This
model focuses on maintaining temporal consistency and feature preservation
across multiple images, ensuring that character features, poses, and back-
ground elements remain consistent throughout the generated sequence.

This thesis includes the following main contributions:

e First, we introduce a two-stage image generation process. In the first
stage, corresponding sketches are generated based on textual descrip-
tions, allowing users to modify, adjust, and arrange these sketches. In
the second stage, both the sketches and the text are used as condi-
tional inputs to the proposed model, guiding the generation process to
produce a coherent sequence of images.

e Second, we propose a new model specifically designed for consistent
image generation. This model is capable of generating multiple im-
ages while maintaining consistency in character features, poses, and
background elements. By addressing the key limitations of existing
models, our approach ensures that the generated images are coherent
and visually consistent, even across multiple frames.



Chapter 2

Related works

2.1 Image Generation

In recent years, diffusion models have become a focal point of research in
image generation field because of their robustness, stability during training,
and ability to produce high-quality images. Unlike Generative Adversarial
Networks [27] (GANs), which often suffer from training instability and mode
collapse, diffusion models offer a more stable and reliable approach [3]. Their
iterative denoising process allows for fine-grained control over the image
generation, leading to superior results in terms of both fidelity and diversity.

During the early stages of image generation development, most methods
relied on manual feature extraction or statistical models. Researchers
initially modeled the input images and then utilized these models to generate
new images [28] [29]. However, with the advancement of deep learning,
deep learning based image generation models have demonstrated significant
advantages. Among these advancements, Generative Adversarial Networks
(GANSs) have particularly stood out, representing a major breakthrough in
image generation technology.

GANSs consist of a generator and a discriminator. During the training
process, the generator is responsible for producing images that closely
resemble those in the training set, while the discriminator’s role is to
distinguish whether an image originates from the dataset or is generated
by the generator. This adversarial training process ultimately enables the
generator to produce images with a distribution that closely approximates
that of real images.

Additionally, conditional generation models allow users to incorporate
conditions to enhance control over the image generation process. [30] [31]The
conditions that users can provide include textual information, hand-drawn
sketches, etc.

Despite the significant success of GANs in the field of image genera-
tion, several critical drawbacks pose considerable challenges for practical
applications. The adversarial training process between the generator and



the discriminator can lead to non-convergence issues [32]. Additionally,
mode collapse is a common and severe problem in GAN training, where
the generator only learns a limited subset of the data distribution [33].
This limitation prevents GANs from generating images that fully reflect the
diversity of the real data distribution, resulting in a lack of variety in the
generated images.

In recent years, diffusion models have rapidly advanced, making signifi-
cant contributions to computer vision and image generation field. diffusion
models are known for generating high-quality images with substantial di-
versity. Denoising Diffusion Probabilistic Models (DDPM) are generative
models based on a gradual denoising process [19]. The core idea of DDPM
is to simulate the image generation process by progressively denoising to a
clear image. This generative process can be divided into two stages: the
forward diffusion process and the reverse denoising process. During the
forward diffusion process, noise is gradually added to the input image until
it becomes pure noise. This process is achieved through a series of steps,
each adding noise according to a predefined noise distribution. In the reverse
denoising process, the model starts from random noise and generates an
image by progressively removing the noise. Each denoising step is performed
by a deep neural network that learns to reverse the forward process. However,
DDPM requires a large number of denoising steps to generate high-quality
images. Each step in this process involves a detailed transformation, which
cumulatively results in longer generation times and higher computational
costs. Therefore, aiming to further enhance generation efficiency and image
quality, Denoising Diffusion Implicit Models (DDIM) significantly reduces the
time required for image generation through an improved sampling process
[34]. Latent Diffusion Models are designed to perform diffusion processes
in the latent space of a pre-trained autoencoder, rather than directly on the
high-dimensional pixel space [17]. This approach leverages the dimensionality
reduction and feature extraction capabilities of autoencoders, resulting in
more efficient and scalable image generation than DDIM.

Diffusion models operate based on a two-phase process: a forward
diffusion process that adds noise to the data, and a inference process that
denoises the data to generate new samples [35] [36].

As shown in Figure 2.1 ,The forward diffusion process is a method
used to gradually add noise to an initial data sample over time steps,
transforming it into pure noise by the final step. Imagine starting with a
clear photograph, and progressively adding layers of static noise until the
image is fully obscured. This transformation happens through incremental
steps, with each step adding a small amount of noise, making the image less
recognizable as it progresses.

10



Figure 2.1: The forward diffusion process of a diffusion model

For a data point, sampled from the real data distribution ¢(x), the forward
diffusion process is modeled by adding Gaussian noise at each step of a
Markov chain. Specifically, at each step t, Gaussian noise with variance
is added to the previous state, generating a new latent variable with the
distribution. This process is illustrated as the gradual transition of an image
from its original state to an entirely noisy representation.

The inference process aims to recover the original data from the noisy
sample produced at the end of the forward process. This is achieved by
learning a model that can reverse the noise addition, step by step. The
inference process is like peeling away the layers of noise that were added
during the forward process. Starting from the highly noisy image, the
model iteratively removes noise, gradually refining the image back towards
its original state.

To train the model, the process involves guiding it to accurately predict
the noise that was added at each step of the diffusion process. By learning
to reverse the effects of this added noise, the model gradually becomes more
adept at reconstructing the original image. This training is conducted using
a large dataset where both the original images and their noisy versions are
provided, allowing the model to improve as it encounters more examples.

Once the model is trained, generating a new image involves starting with a
random noise image and applying the learned denoising steps in reverse order.
This iterative process starts with a completely noisy image and, through
successive steps, refines it into a coherent and high-quality image. Each step
slightly reduces the noise, progressively revealing more details of the final
image. By the end of the process, the model produces an image that closely
resembles the type of images it was trained on.

Diffusion models laid the groundwork for understanding and developing
more advanced and conditional variants. These models highlighted the

11



potential of using iterative refinement and probabilistic modeling to achieve
high-quality image generation, establishing a robust foundation for future re-
search in the field. However, diffusion models also possess several limitations.
First, the iterative nature of the denoising process means that generating a
single image can be computationally expensive and time-consuming. Each
step in the process requires significant computation, making it less efficient
compared to some other image generation methods. Second, due to the
numerous steps required in both the forward and reverse processes, the time
taken to generate an image is relatively long. This slow sampling speed can
be a bottleneck in applications requiring real-time or near-real-time image
generation. Most importantly, early diffusion models do not incorporate
conditional inputs, limiting their ability to generate images based on specific
conditions or attributes. This restricts their applicability in scenarios where
controlled and specific image generation is required.

This section has outlined the key principles of diffusion models in image
generation, emphasizing their strengths and limitations. While diffusion
models offer high-quality image generation through iterative denoising, they
suffer from computational inefficiency and slow sampling speeds due to the
multiple steps involved. Furthermore, early diffusion models lack conditional
control, limiting their applicability in scenarios that require specific, user-
defined outputs.

This paper builds upon these foundational models by introducing a two-
step generation process that integrates the Multi-Aggregation Attention
(MAGA) mechanism. This innovation not only improves consistency across
sequential images but also introduces conditional inputs, allowing for greater
user control. In doing so, our work addresses the existing limitations of
diffusion models and extends their applicability to generating coherent and
sequential images efficiently.

2.2 Conditional Image Generation

Conditional image generation refers to the process of generating images based
on specific conditions or inputs. These conditions can take various forms,
such as sketches, textual descriptions, or other images. By incorporating
these conditions, models can produce images that align closely with the
given inputs, providing a higher degree of control over the generated con-
tent. Conditional image generation provides a wide aspects of applications,
including Medical Imaging [37] [38], style transfer [39] [40], and real image
editing [41] [42].

Traditional conditional image generation primarily relies on Generative

12
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Figure 2.2: Architecture of Conditional Generative Adversarial Networks

Adversarial Networks [27] (GANs). Conditional GANs [31] (cGANSs) is one
of the most influential works in conditional image generation. This model
adapts the basic GAN framework to condition the generation process on
auxiliary information, enabling a wide range of image-to-image translation
tasks.

Conditional Generative Adversarial Networks (¢cGANs), shown in Figure
2.2 are a type of GAN. The generator takes both the input image and the
condition as inputs and generates an output image that aims to satisfy the
given condition. The discriminator receives both the input condition and the
generated (or real) image and predicts whether the image is real (from the
training dataset) or fake (from the generator). The architecture typically
includes convolutional layers, batch normalization, and activation functions,
focusing on distinguishing real images from fake ones conditioned on the
input.

The ¢cGAN framework [30] has been applied to various image-to-image
translation tasks, demonstrating its versatility and effectiveness. Some
notable applications include sketch-to-photo translation, style transfer and
super-resolution. These applications highlight the model’s ability to handle
diverse tasks by leveraging the conditional information provided during
generation.

Recent developments in the field of conditional image generation have
seen a shift from GAN-based approaches to diffusion models. Unlike GANSs,
diffusion models, on the other hand, offer a more stable and robust framework
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for image generation. They provide finer control over the generation process
through iterative denoising, leading to superior image quality.

Chen proposes a novel method that combines reference images and
sketches using a structure-aware diffusion model [43]. The key innovation
of this work lies in its ability to effectively integrate structural information
from sketches and stylistic details from reference images. The structure-
aware diffusion model ensures that the generated images align closely with
the provided sketches while maintaining the style and texture of the ref-
erence images. This dual conditioning mechanism allows for the creation of
highly detailed and contextually appropriate images, addressing the common
challenge of balancing structural integrity with stylistic coherence.

Zhang et al. introduces a framework called ControlNet that enhances
pre-trained diffusion models with additional conditional controls [26]. The
primary innovation of ControlNet is its ability to integrate diverse conditional
inputs, such as edge maps, depth maps, or textual descriptions, into the
image generation process. By adding a conditional control branch to the pre-
trained diffusion model, ControlNet allows for more precise and flexible gen-
eration of images based on multiple conditions. This capability significantly
extends the utility of diffusion models, enabling them to handle complex
image generation tasks that require adherence to multiple constraints. The
authors highlight the versatility of ControlNet in various applications, includ-
ing guided image synthesis and enhanced image editing, demonstrating its
effectiveness in generating contextually appropriate and high-quality images.

Compared to traditional unconditional image generation, conditional
image generation offers the significant benefit of guiding the generation
process using specific inputs, such as text descriptions, sketches, or reference
images. This results in outputs that are more relevant and aligned with user
intentions. However, the introduction of conditions also brings about greater
challenges. One of the significant challenges is ensuring that the generated
images faithfully adhere to the provided conditions while maintaining high
quality. Additionally, conditional models often face increased computational
complexity and require extensive training data that covers a wide range of
conditions. Emnsuring coherence in the generated images, especially when
multiple conditions are involved, is another critical challenge that researchers
must address.

2.3 Sketch-based Image Generation

A sketch is a simplified, often monochromatic drawing that captures the
essential contours and shapes of an object or scene. Therefore, using sketches
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as conditions for image generation offers several distinct advantages. Sketches
provide a clear and precise representation of the structural layout of the
desired image. This structural clarity makes it easier for the generative model
to understand the fundamental shapes and spatial relationships within the
scene, leading to more accurate and coherent outputs.

Auto-painter propose a method for generating cartoon images from
sketches using ¢cGANs [44]. In this context, the generator produces images
based on a given sketch, while the discriminator evaluates the correspondence
between the generated image and the input condition, ensuring the output
aligns with the provided sketch [30]. The key innovation in this work lies
in its ability to transform simple sketches into fully colored and detailed
cartoon images. The notable strengths of this approach are its ability to
produce visually appealing and stylistically consistent cartoon images that
closely adhere to the provided sketches.

Sketch2Color also explores the use of cGANs to generate color images
from sketches [45]. By training the cGAN on paired datasets of sketches and
corresponding color images, the model learns to translate the monochromatic
sketches into richly colored images, maintaining the original structure and
adding realistic textures. However, while the model excels at generating
detailed color images from clear sketches, it may not perform as well with
complex scenes or intricate details that are not well-defined in the sketches.

SketchyCOCO [46], raised by Gao et al, presents an innovative approach
to generating images from freehand sketches using a large-scale dataset.
One of the primary innovations is the creation and utilization of the
SketchyCOCO dataset, which contains paired data of freehand sketches and
corresponding images. This dataset is specifically designed to address the
variability and ambiguity inherent in freehand sketches, providing a rich
source of training data for the model. The introduced model, which is called
EdgeGAN, have the ability to handle the inherent noise and imprecision of
freehand sketches. The authors employ advanced preprocessing techniques
and robust training methodologies to ensure that the model can accurately
interpret and generate images from sketches that may vary widely in quality
and detail.

With the development of conditional diffusion models, sketch has been
widely used for guiding the inference process of diffusion models. Andrey
et al first combines sketches with textual descriptions to guide the image
generation process using diffusion models [47]. By using sketches, the model
gains explicit structural information, while textual descriptions provide
additional context and details that enhance the richness of the generated
images. However, integrating dual inputs increases the complexity of the
model, which can result in higher computational requirements and longer
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training times.

DiffSketching focuses on providing users with the ability to control the
image synthesis process through sketches, enhancing the precision and rele-
vance of the generated images [48]. DiffSketching allows users to manipulate
the structure and content of the generated images through sketches. This
mechanism ensures that the generated images closely follow the outlines and
structural hints provided by the sketches, offering a high degree of control
over the final output.

It is worth noting that all the models mentioned above may require
high-quality sketches with clear and precise lines to generate accurate and
coherent images [47] [48] [44] [45] [46]. The quality and clarity of the input
sketch directly impact the output, as ambiguous, incomplete, or poorly
drawn sketches can lead to suboptimal results. This requirement limits
the accessibility and usability of these models for a broader range of users,
particularly those without advanced sketching skills.

The studies presented in this section discuss various approaches to
sketch-conditioned image generation, primarily using Conditional Generative
Adversarial Networks (¢cGANs) and diffusion models. These works highlight
the effectiveness of sketches in providing structural information for image
generation and demonstrate that models such as Auto-painter, Sketch2Color,
and SketchyCOCO can transform simple sketches into detailed and coherent
images. However, many of these approaches require high-quality sketches
with precise outlines to produce satisfactory results, limiting accessibility for
users without advanced sketching skills.

This section explores sketch-guided image generation. The method pro-
posed in this thesis builds upon these existing methods but seeks to address
the limitations of requiring high-quality sketches. By introducing a novel
two-step image generation framework that allows users to modify and refine
sketches during the generation process, our method offers greater flexibility
and accessibility. This approach not only ensures that the generated images
align more closely with user intent but also lowers the barrier for users who
may not have professional sketching abilities. Thus, the research discussed in
this section provides foundational insights, while our work aims to enhance
and expand upon these concepts to offer a more user-friendly and flexible
solution for sketch-based image generation.

2.4 Two-Stage Images Generation

Two-Stage Image Generation is a method that decomposes the image creation
process into two distinct phases. This approach offers enhanced control and
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Figure 2.3: The controllable image generation process of a TCIG architecture

refinement, leading to higher quality and more accurate results compared to
single-stage methods. In the two-stage image generation process, the first
stage typically involves generating a rough sketch or outline of the desired
image based on an initial input, such as a text prompt. This intermediate
output provides a foundational structure that captures the key elements and
layout of the final image. In the second stage, the initial sketch is refined
and detailed, incorporating additional inputs and adjustments to produce
the final high-quality image.

Zhang et al. introduces a novel two-stage framework for automatic sketch
colorization [49]. The first stage involves generating an initial colorization
of the sketch using a coarse-to-fine approach, where the initial colors are
predicted based on the sketch. The second stage refines these colors to
produce high-quality, natural results. The method effectively divides the
complex task of colorization into two simpler tasks, improving the learning
process and the final colorization quality. This work demonstrated the
effectiveness of this approach through various experiments and comparisons
with existing methods, showing superior performance in terms of color
accuracy and visual appeal. The initial stage relies heavily on predicting
colors from the sketch, which can sometimes be inaccurate, especially for
sketches with ambiguous or incomplete details. This can lead to initial
colorization that require significant refinement in the second stage.

The TCIG framework also proposed a two-stage approach for controlled
image generation [50]. The first stage generates an initial image based on
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input sketches and text descriptions, guided by pre-trained segmentation
models. As shown in Figure 2.3, the initial input consists of a random vector,
which is passed through a VQGAN decoder to produce a generated example.
During this process, the framework compares the generated image with target
text and segmentation maps by calculating CLIP similarity and segmentation
similarity, respectively. These comparisons serve as key components of the
loss function, helping the model iteratively improve the image generation
by aligning it with the textual and segmentation conditions. The second
stage employs a pre-trained diffusion model to enhance and refine the image’s
quality.

This method effectively combines the strengths of segmentation guidance
and diffusion models, enabling the generation of high-quality, controllable
images without extensive fine-tuning. The approach is flexible, allowing for
the use of various diffusion methods, and significantly improves the generated
images’ realism and detail. However, the quality of the final image heavily
relies on the accuracy of the initial segmentation. Errors or inaccuracies in
the segmentation stage can propagate through to the final image, affecting
overall quality.

TexControl is a two-stage model specifically designed for fashion image
generation from sketches [51]. In the first stage, the model uses ControlNet
to generate outline previews from input sketches. The second stage refines
these previews using an image-to-image model to add detailed textures and
specified materials, completing the fashion design process. This method
enables precise control over the generated textures and materials, making
it highly suitable for fashion design applications. The paper shows that
TexControl can generate more accurate and complex materials compared
to other models, providing a significant improvement in the quality and
usability of generated fashion images. However, while TexControl can
generate detailed textures and materials, it may struggle with very complex
or unconventional textures that were not well-represented in the training
data. Besides, ensuring consistency in the generated textures and materials
across different parts of the garment can be challenging, especially when
dealing with complex designs that require precise and consistent detailing.

The studies discussed in this section explore various two-stage approaches
for image generation, with a focus on controlling and refining outputs by
breaking down the task into distinct phases. Zhang et al. introduces a
method for sketch colorization, where the initial rough colorization is gener-
ated first, followed by a refinement stage to improve the quality. The TCIG
framework follows a similar approach, combining segmentation guidance and
diffusion models to refine images over two stages. TexControl applies a two-
step process to generate detailed fashion images from sketches, with the
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Figure 2.4: The pipeline of ComicGAN.

first stage generating an outline and the second stage refining textures and
materials.

These two-stage frameworks relate directly to the theme of this paper,
as our proposed model also adopts a two-stage approach. In our case, the
first stage generates sketches based on text prompts, providing users with
the ability to modify and arrange these sketches. In the second stage, the
model refines the modified sketches to generate high-quality, coherent image
sequences. By utilizing this two-step process, similar to the frameworks
discussed, our model ensures higher control over the image generation process
and produces more accurate results that align with user input, addressing
the limitations of single-stage models.

2.5 Consistent Images Generation

Consistent images refer to a series of images that maintain consistency in
terms of content, style, and features across multiple frames or instances.
Consistent images are essential for maintaining viewer immersion and ensur-
ing the clarity of the narrative or visual message. Inconsistency can lead
to distracting artifacts that break the viewer’s engagement and undermine
the storytelling. Consistent image generation has significant applications in
various fields, including animation [52] [53], video production [54] [55] and
gaming [56] [57].

2.5.1 ComicGAN

ComicGAN presents an innovative approach to generating manga-style im-
ages from ordinary photographs [58]. The model utilizes a GAN-based archi-
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tecture to capture the unique artistic style of manga and applies it to convert
real-world images into manga-style illustrations. However, this method is
highly dependent on high-quality images as input, which limits its flexibility
in more imaginative or abstract contexts where real-life photographs are
unavailable.

As shown in Figure 2.4, the ComicGAN framework includes multiple
components: a text description generator that generates descriptions and
transcriptions from comic panels and labels, followed by a Text-to-Comic
GAN that uses both CNN and text encoders to process input text and
images. The architecture allows the model to learn the textual and visual
relationships needed to generate accurate comic-style images based on both
input descriptions and example images. This two-stage process enables more
detailed control over the generation process, aligning the final outputs with
both visual and textual input data.

However, the model’s reliance on high-quality real-world images and a
large, curated dataset for training presents scalability challenges, especially
when users aim to create manga illustrations from abstract or nonexistent
scenes.

2.5.2 MangaGAN

MangaGAN introduces an innovative approach to generating manga-style
images from photographs without requiring paired training data [59]. Man-
gaGAN circumvents the requirement of a bunch of paired training data by
employing a CycleGAN architecture, which allows the model to learn the
mapping between photos and manga styles through unpaired image sets.
The introduced method significantly reduces the data preparation effort
and makes the model more versatile in various applications. Despite the
advancements, MangaGAN focus on specific manga styles, which limits its
generalizability. The model performs well with the manga style it was trained
on but may not effectively adapt to other artistic styles without significant
retraining.

In recent years, researchers apply diffusion model to consistent image
generation task as well. Jeong et al. generates coherent storybooks from
plain text input [60]. The method combines Large Language Models (LLMs)
and text-conditioned Latent Diffusion Models (LDMs) to generate images
without additional training data. Another contribution is the injection of
iterative coherent identity. Face restoration models are applied to the initial
images to enhance quality and address facial feature mutations. However,
when the model faces complex or ambiguous text descriptions, it may
struggle with intricate or abstract descriptions that require deeper contextual
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understanding.

2.5.3 StoryLDM

Make-A-Story introduces a novel approach to generating coherent and con-
sistent visual narratives by leveraging a visual memory module [61]. This
method aims to produce a sequence of images that maintains consistency in
characters, backgrounds, and overall story elements throughout the generated
story. The key innovation is the integration of crucial visual information
across the sequence of images through a visual memory module. This module
ensures that visual elements, such as character appearances and background
details, remain consistent throughout the narrative. By referencing pre-
viously generated frames, the model maintains coherence and continuity
in the story. However, the complexity of the visual memory module can
lead to increased computational requirements and longer processing times.
Additionally, the model’s reliance on accurate memory retrieval can pose
challenges, especially in scenarios with highly dynamic or complex narratives,
where maintaining consistency becomes more difficult.

2.5.4 The Chosen One

The Chosen One addresses the challenge of maintaining character consistency
in text-to-image generation tasks [62]. Within the diffusion framework,
The Chosen One introduces a character consistency module designed to
track and preserve the distinct visual features of characters across multiple
generated images. The process begins by generating a large set of images
using a text-to-image model based on the input prompt. These images are
embedded into a high-dimensional feature space, and the embeddings are
clustered using the K-MEANS++ algorithm. Small clusters are filtered out,
and the most cohesive cluster, characterized by the least variance among
its members, is selected. This selection is followed by a personalization
process that updates the model’s weights and text embeddings to better
capture the consistent identity of the character. By embedding character-
specific attributes and enforcing consistency constraints during the diffusion
process, the model ensures that characters remain recognizable and stable
throughout the sequence. This approach effectively maintains character
identity, enhancing the coherence and continuity of the generated visual
narratives. One notable drawback of The Chosen One is its limitation to
maintaining the consistency of only the main character. While the primary
character’s appearance remains stable, other elements of the scene, such as
backgrounds and secondary characters, may still undergo significant changes.
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2.5.5 MasaCtrl

MasaCtrl introduces an innovative approach for enhancing consistency in
image editing tasks by mutual self-attention within image generation models
[63]. The method leverages a mutual self-attention mechanism, as shown in
Figure 2.5. One of MasaCtrl’s core contributions is its fine-grained control
within mutual self-attention layers, ensuring that key image features remain
consistent throughout the editing or generation process. This approach
is especially valuable in sequential image generation applications, such as
animation and comic storyboard creation, where preserving continuity across
frames is essential.

First, Masactrl performs a diffusion inference on a real image, capturing
and storing intermediate attention information from each layer as reference
data. During the subsequent image editing phase, the spatial transformer
layer’s mutual self-attention mechanism is guided by this previously stored
attention information, using it as a conditioning input. This setup allows
the model to treat the original attention data as a ”ground truth” condition,
guiding the new image generation to adhere closely to the visual character-
istics of the original image.

This tuning-free, dynamic approach makes MasaCtrl computationally
efficient and suitable for real-time applications. It addresses a significant
limitation in existing diffusion-based models, which often require substantial
re-training or parameter adjustments to achieve similar levels of consistency
across frames.

MasaCtrl, while offering valuable advancements in maintaining consis-
tency across image edits, has several limitations. Firstly, the image quality
produced by MasaCtrl tends to be relatively lower than other state-of-the-
art methods. This quality constraint can limit its usability in applications
that require high-fidelity visuals. Secondly, when applied to sequential
image generation tasks, MasaCtrl’s consistency mechanism primarily relies
on the previous frame in the sequence. This approach has a significant
drawback where any deviation or error in a single frame can propagate
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through the subsequent frames, leading to a cascade of inconsistencies across
the sequence.

Furthermore, MasaCtrl operates as a single-stage generation model. If
the generated image does not fully align with the user’s intentions, the
user must either modify or regenerate the entire sequence to correct the
discrepancy. This lack of intermediate control means users cannot make
adjustments within the generation process, which can be time-consuming
and inefficient, especially for lengthy sequences or complex visual narratives.
Consequently, MasaCtrl may be less suited for applications where iterative
refinement or user-directed adjustments are crucial for achieving the desired

To be notice that MasaCtrl’s approach to maintaining consistency differs
significantly from the method proposed in this research, although they might
appear similar at first glance. Firstly, while MasaCtrl is primarily designed
for real-image editing tasks, it can be adapted for image generation but does
not inherently focus on it. In contrast, the model presented in this research is
developed specifically for image generation tasks, where ensuring consistency
throughout a sequence of generated images is essential.

The methods for maintaining image consistency also differ fundamentally.
MasaCtrl depends on a mutual self-attention mechanism that leverages
information from the preceding image, meaning each image only considers
the immediately previous frame. This reliance can lead to issues when errors
or inconsistencies appear in any single frame, as they will likely propagate
through the entire sequence. However, the Multi Aggregation Attention
(MAGA) mechanism introduced in this research differs by maintaining
consistency across all preceding images in the sequence. This approach
significantly reduces the risk of cascading errors, addressing one of MasaCtrl’s
limitations.

Finally, the proposed method is built on a two-stage framework, allowing
users to make modifications to sketches as intermediate results. This offers
high flexibility and control, enabling users to adjust or modify freely within
the generation process itself. MasaCtrl, as a single-stage method, lacks this
level of iterative refinement, meaning that users would need to regenerate the
entire sequence if the output does not meet their expectations. This two-stage
method not only enhances user control but also addresses key drawbacks
observed in single-step models like MasaCtrl.

This section explores various research works focusing on consistent image
generation, particularly for applications in storytelling, manga creation, and
animation. Studies like MangaGAN and ComicGAN highlight the impor-
tance of consistency when generating manga-style illustrations, emphasizing
the challenges of maintaining visual coherence when transforming real-world
images into stylized artworks. Moreover, Make-A-Story and The Chosen One
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delve into generating coherent visual narratives by integrating visual memory
modules and character consistency mechanisms, ensuring that characters and
environments remain visually stable across sequences of images.

The common thread across these works is the need for consistency,
particularly when generating multiple frames or sequential images. This
is crucial for maintaining the integrity of the story or message conveyed
through visual media. In relation to our work, these studies underscore
the importance of feature consistency when generating a sequence of images
from text prompts or sketches. Our approach, which involves a two-stage
generation process, aims to further improve this consistency by allowing users
to modify and refine sketches during the generation process, ensuring better
coherence in the final output. This is particularly relevant when generating
comic or animation sequences, where consistency in character features, poses,
and background elements is critical for storytelling and visual engagement.

24



Chapter 3

Proposed Method

This chapter provides a comprehensive discussion of the proposed image
generation methodology. Firstly, in Section 3.1, we introduce the LDM
pipeline, which enables efficient and high-quality image generation by op-
erating within the latent space, thereby reducing computational complexity
without compromising output fidelity. We also explore the core mechanisms
of LDM, such as the forward diffusion process and reverse denoising, which
lay the groundwork for understanding the enhancements introduced in our
method. Section 3.2 presents an overview of the overall process of the
proposed method. Section 3.3 details the adjustment and modification of
intermediate results. Section 3.4 explains the sketch generation process
during the first stage. Finally, Section 3.5 details the proposed architecture
of the second stage.

3.1 Latent Diffusion Model

Our proposed model utilizes the Latent Diffusion Model (LDM) as its
backbone [17], making it essential to provide a detailed overview of LDM
in this chapter. LDM has proven to be a powerful framework for various
image generation tasks, offering robustness and flexibility critical for the
development of advanced generative models. In Section 3.1.1, we introduce
the pipeline of LDM. In Section 3.1.2, we discuss the attention mechanism
within LDM. In Section 3.1.3, we explore the U-Net backbone.

3.1.1 Network Structure

The Latent Diffusion Model (LDM) [17] operates by mapping input data
into a latent space where the diffusion process is performed. This approach
significantly reduces computational complexity compared to working directly
in the high-dimensional image space. The image generation process in LDM
can be broken down into several key steps: encoding the image into a
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Figure 3.1: The structure of latent diffusion model.

latent representation, applying the diffusion process, and decoding the latent
representation back into an image. In Figure 3.1, each step is detailed.

During a training process, the first step involves encoding the input image
r into a latent space representation Z,. This is typically achieved using an
encoder network:

Zy = E() (3.1)

The encoder network compresses the high-dimensional image x into a
lower-dimensional latent vector Zy, capturing essential features while reduc-
ing computational load.

At the same time, conditioning plays a crucial role in the LDM framework,
allowing the model to incorporate additional information to guide the gener-
ation process. Conditions can include various forms of auxiliary data, such as
text prompts, sketches, or other contextual information. This conditioning
is typically integrated into the model through concatenation or attention
mechanisms.

For instance, if a textual description ¢ is used as a condition, it can be
encoded into a latent vector Z. using a text encoder:

Z, = E(c) (3.2)



Figure 3.2: Photo-realistic images generated by Imagen [1].
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Once the image is encoded into the latent space, the diffusion process
begins. The diffusion model iteratively adds and removes noise to refine the
latent representation. This process can be described using a series of latent
variables Z, fort = 0,1,...,T, where T is the total number of diffusion steps.

The forward diffusion process, which adds noise ¢, can be defined as:

Zt = \/Oé_tzt_l + 1-— g€y, € N(O, 1) (33)

where «y is a variance schedule controlling the amount of noise added at
each step t.

The inference process, which denoises the latent representation, is param-
eterized by a U-Net Dy and is defined as:

Zt—l — D@ (Zt7 t, Zc) (34)

During training, the model learns to predict the noise €¢; added in the
forward process, enabling it to denoise the latent representation effectively:

7, — JouZ
€0 (Zy,t,Z2.) = t?atatl (3.5)
- t

The training objective is to minimize the following loss function, which
measures the difference between the predicted and actual noise:

L(0) =Bz, 2. [llec — o (Zo, t, Z:)||"] (3.6)

After the latent representation has been refined through the diffusion
process, it is decoded back into the image space using a decoder network D:

x =D (Zo,Z.) (3.7)

The decoder network transforms the latent vector Z, back into an
image X, ideally resembling the original input image x but with the desired
generative modifications, influenced by the conditional information.

After the training is done, the model is able to inference image. The
first step involves preparing the conditional vector Z.. For instance, a text
description ¢ is encoded into Z. using the text encoder F,. as Formula 3.2.

At the same time, A latent vector Zp is sampled from a Gaussian
distribution:
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Zy ~ N(0,1) (3.8)

Then, the latent vector 7, is iteratively refined as Formula 3.5 At each
step t, the model predicts the noise and refines the latent vector using the
conditional information.

At last, the refined latent vector Zj is decoded into the image space using
the decoder network D under the instruction of Formula 3.7.

By utilizing a trained LDM, high-quality images can be generated with
or without conditions. Examples of the results are shown in Figure 3.2

3.1.2 Attention

Attention mechanisms play a crucial role in LDM by allowing the model to
selectively focus on different parts of the input data [64]. This selective focus
enhances the model’s ability to capture relevant features and dependencies,
thereby improving the quality and coherence of the generated images. In
LDM, attention mechanisms are particularly effective when combined with
conditional inputs, as they enable precise control during generation process.

Attention mechanisms play a crucial role in LDM by allowing the model
to selectively focus on different parts of the input data. This selective focus
enhances the model’s ability to capture relevant features and dependencies,
thereby improving the quality and coherence of the generated images. In
LDM, the integration of attention mechanisms within U-Net helps to en-
sure that the conditional information is effectively utilized throughout the
network.

Attention mechanism can be categorized into self-attention and cross-
attention.  Self-Attention allows the model to weigh the importance of
different parts of the same latent representation. While Cross-Attention
allows the model to gain the information of the condition relative to the
latent representation.

Let Q, K, and V represent the query, key, and value matrices, respec-
tively. These matrices are derived from the input features and the conditional
input. The attention mechanism computes the attention weights and applies
them to the values to produce the output:

Attention(Q, K, V) = soft (QKT) v (3.9)
ention(Q, K, V) = softmax .
Vi

where dy, is the dimension of the key vectors, used to scale the dot product
for numerical stability.
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To incorporate conditional information, cross-attention mechanism is
modified to handle both the latent representation and the conditional input.
Suppose Z is the latent representation and Z. is the conditional vector. The
cross-attention mechanism integrates these inputs as follows:

Q=W 2, K=W 2, V=W 2 (3.10)

Notably, in i layer, Wg ), WC(; ) and Wg) represent learnable matrices.

3.1.3 U-Net

The LDM uses the U-Net architecture as its backbone due to its effectiveness
in capturing both local and global features through its encoder-decoder
structure with skip connections [65]. U-Net is a convolutional neural network
(CNN), designed for image segmentation but has been adapted for various
image generation tasks due to its powerful feature extraction capabilities.

U-Net is an Encoder-Decoder network, which consist of two main parts.
Encoder captures the context of the input image by progressively reducing
its spatial dimensions while increasing the number of feature channels,
while Decoder reconstructs the image by progressively increasing its spatial
dimensions while combining low-level features from the encoder through skip
connections.
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As illustrated in Figure 3.3, the encoder down-samples the input image
and extracts high-level features. Convolutional Layers are used for applying
convolution operations to extract features from the input image. Max
Pooling layers reduce the spatial dimensions by taking the maximum value
over a sliding window, effectively down-sampling the input. The decoder is
designed for up-sampling the features back to the original image resolution.
Convolutional Layers process the concatenated features to refine the image,
while Transposed Convolutional Layers perform up-sampling, increasing the
spatial dimensions of the feature maps.

Shortcut connections play a crucial role in U-Net by connecting corre-
sponding layers. Shortcut connections allow the model to combine low-level
and high-level features, ensuring that the final output retains fine details
while incorporating contextual information, which is essential for generating
high-quality images that maintain both local and global consistency

Spatial Transformer layers (Cross-Attention layers) are typically inserted
between the convolutional layers within both the encoder and decoder.
Cross-attention layer first takes the latent representation from the previous
convolutional layer and the conditional vector. The query matrix is formed
from the latent representation, while the key and value matrices are derived
from the conditional vector. Next, the attention weights, which determine
the importance of different parts of the conditional information is computed.
These weights are then used to integrate the conditional information into
the latent representation, ensuring that the generated images adhere to the
specified conditions while maintaining high quality and coherence.

3.2 Two-stage Image Generation

Current One-step text-to-image generation models do not allow users to
modify images during the generation process [58] [59] [44] [45] [31] [30]
[43] [27] [32], resulting in final images that often fail to meet the users’
expectations. Besides, as noted in Chapter 2.3, current sketch-based image
generation models require high-quality sketches with clear and precise lines to
produce accurate and coherent images [47] [48] [44] [45] [46] [66]. The quality
and clarity of the input sketches may directly affect the generated output.
Ambiguous, incomplete, or poorly drawn sketches can lead to sub-optimal
results. Additionally, users often face issues like a lack of flexibility in input
modification, inconsistencies in generated details, and even computational
challenges, which complicate the generation process. Furthermore, common
problems like mode collapse or difficulties in handling intricate designs can
arise, leading to reduced diversity in outputs and unintended deviations from
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the intended structure. These limitations collectively hinder the accessibility
and practicality of current models, particularly for non-expert users or those
working with complex or imperfect inputs.

To address these limitations, we propose a method that introduces a
flexible, two-stage generation process, enabling users to make modifications
during the image generation process. By providing these options, we lower
the barrier to entry and make the technology accessible to a wider audience.
The proposed method involves several key Stage, as illustrated in Figure 3.4.

In the Sketch Generation Stage (Stage 1), users begin by inputting several
text prompts to initiate the process. These text prompts are encoded using
the Contrastive Language-Image Pre-Training (CLIP) model [67]. Users
provide descriptive text prompts that detail the elements and characteristics.
After that, text prompts are encoded using the CLIP model’s encoder. CLIP
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is designed to understand and map textual descriptions into a latent space
that is compatible with image features. This encoding process generates
textual feature representations that align with the sketch features encoded
by Canny and VAE. Based on the encoded textual descriptions, the model
generates corresponding sketches, providing an initial visual representation
guided by the user’s input.

3.3 Condition Extraction

In the Condition Extraction stage, text prompts provided by the user are
encoded to guide the image generation process. As depicted in Figure 3.4,
after the user inputs text descriptions, these text prompts are processed
using the CLIP model (Contrastive Language-Image Pretraining). The CLIP
model is specifically designed to understand and map textual descriptions
into a latent space that is compatible with image features. In this way, the
encoded text prompts serve as a condition to inform the sketch generation
and refinement processes.

3.3.1 Condition Selection and Integration

Once the text prompts are encoded, they are combined with other conditions
like sketches from Stage 1, pre-existing sketches from the dataset, or user-
provided hand-drawn sketches, to create a comprehensive condition for the
final image generation in Stage 2. The encoded text conditions are input into
the latent diffusion model, which utilizes these features during the iterative
denoising process. In this process, the text encoding interacts with the visual
features through a cross-attention mechanism in the U-Net architecture,
ensuring that the final images are aligned with the user’s textual descriptions
and maintain consistency throughout the sequence. This approach allows for
a flexible and powerful mechanism to generate images that closely match user
intent, as informed by both textual and visual inputs.

Figure 3.5 illustrated the process where users choose sketches to proceed.
Users have three options for selecting sketches to form the foundation of
their final image sequence. Firstly, users may use the sketches generated in
Stage 1, based on text prompts they provided. If they are unsatisfied with
these sketches, they can modify the text input and regenerate sketches until
the desired output is achieved. Secondly, the system offers a curated sketch
dataset with pre-made still-life and character sketches, which users can select
to include in the sequence. Lastly, for users with artistic skills, there is an
option to integrate their own hand-drawn sketches directly into the sequence.
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Figure 3.5: Sketch selection process in condition extraction stage, where users
can choose between sketches generated in Stage 1, pre-existing sketches from
a dataset, or their own hand-drawn sketches.
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Figure 3.6: Canny edge detection, used to extract features from the sketches,
arc then encoded to guide the image generation process.

Once selected, users can further adjust and arrange the sketches in the desired
order to ensure consistency and coherence in the final generated sequence in
Stage 2.

3.3.2 Condition Extraction by Canny

Once the user modifications and ordering of the sketches are completed, the
Canny edge detection model, inspired by ControlNet [26], is employed to
extract key features from the sketches [68], as shown in Figure 3.6. Canny
extracts the prominent edges and outlines of the sketches, capturing the
essential structural elements. These extracted edge features are then encoded
using a Variational Autoencoder (VAE) [69], which captures the latent
representations of the sketch features. This ensures that the representations
effectively guide the subsequent stages of image generation.

The sketch features and text features encoded in Stage 1 are used as
conditions input into the proposed latent diffusion-based model, Stage 2, en-
suring that the output images adhere closely to the user’s specifications. The
model starts with an initial noisy image Zr and iteratively refines it. At each
step, the previously generated image is reintroduced into the process, along
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with new sketch features and text inputs. The cross-attention mechanism
within the U-Net uses the encoded sketch and text features to guide the
denoising process, ensuring that the generated layout maintains coherence
and accurately represents the input conditions. The Multi Aggregation
Attention mechanism within the U-Net ensures consistency in character
features and other elements across the sequence of images. This iterative
approach, denoted by the transition to Zj, produces a sequence of coherent
and high-quality images that reflects the user’s intent.

3.3.3 Dataset: SketchXL

Current sketch datasets [46] share a common limitation: they consist of
individual sketches without consistency across a series of sketches. This lack
of sequential consistency limits their applicability for tasks that require a
coherent series of sketches. Therefore, this research recognizes the necessity
to create a new dataset, SketchXL, which will support the development of
models that can generate and handle sequences of sketches. By allowing users
to select and order sketches from these consistent sketch groups, SketchXL
will directly support the development and implementation of the advanced
image generation workflow outlined in this paper.

The SketchXL dataset consists of two main parts: the Story Group and
the Sundry Group, both of which contain sketches generated using Stable
Diffusion XL to ensure consistent quality and style across all samples. This is
important for enabling both users and models to handle a coherent sequence
of sketches in their workflows.

The Story Group contains a collection of 50 distinct stories sketches
and their text prompts. Each story is divided into four sequential parts,
and each part contains 80 sketches, resulting in a total of 16,000 sketches.
This group emphasizes narrative and thematic consistency, ensuring that the
transitions between frames are smooth and logical, as shown in Figure 3.7.
These sketches are particularly useful for applications that require coherent
storytelling, where maintaining consistency in characters, backgrounds, and
other elements across multiple frames is vital.

In contrast, the Sundry Group provides a set of 1,000 sketches of com-
monly used objects, as depicted in Figure 3.8. Unlike the Story Group, the
Sundry Group does not focus on maintaining consistency across sketches.
Instead, it offers a variety of standalone sketches, representing diverse
everyday items, making this group useful for users who may need individual
objects to complement or enhance their sequences. The sketches in the
Sundry Group can also serve as placeholders or additional visual elements in
broader narratives or complex visual compositions.
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Figure 3.7: Story group in SketchXL dataset.
into 4 scenarios, each containing 80 sketches for users to choose.
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Children were at play in their play-ground one
day, when a herald rode through the town, blowing a trumpet, and crying
aloud, “The King! the King passes by this road to-day. Make ready for the

King!"

The children stopped their play, and looked at one another.

“Did you hear that?" they said. “The King is coming. He may look over the
wall and see our playground; who knows? We must put it in order.”

The playground was sadly dirty, and in the comers were scraps of paper
and broken toys, for these were careless children. But now, one brought a
hoe, and another a rake, and a third ran to fetch the wheelbarrow from
behind the garden gate. They labored hard, till at length all was clean and
tidy.

“Now it is clean!” they said; “but we must make it pretty, too, btkhgsm
used to fine things; maybe he would not notice mere cleanness, for he
may have it all the time.”

Then one brought sweet rushes and strewed them on the ground; and
others made garlands of oak leaves and pine tassels and hung them on
the walls; and the littlest one pulled marigold buds and threw them all
about the playground, “to look like gold,” he said.

When all was done the playground was so beautiful that the children
stood and looked at it, and clapped their hands with pleasure.

“Let us keep it always like this!" said the littlest one; andmooth.neﬁod
“Yes! yes! that is what we will do.”

They waited all day for the coming of the King, but he never came; only,
towards sunset, a man with travel-wom clothes, and a kind, tired face
passed along the road, and stopped to look over the wall.

“What a pleasant place!” said the man. “May | come in and rest, dear
children?"

The children brought him in gladly, and set him on the seat that they had
rmade out of an old cask. They had covered it with the old red cloak to
make it look like a throne, and it made a very good one.

“It is our playground!” they said. 'Wcmipmtyhnh-m but he did
not come, and now we mean to keep it so for ourselves.”

“That is good!" said the man.
'ammmmmmnmaomhmmwwmw said

'Thalnbmr"‘nklmom

“And for tired people to rest in!” said the littlest one.

“That is best of all'" said the man.

He sat and rested, and looked at the children with such kind eyes that
they came about him, and told him all they knew; about the five puppies in
the barn, and the thrush's nest with four blue eggs, and the shore where
the gold shells grew; and the man nodded and understood all about it.

By and by he asked for a cup of water, and they brought it to him in the
best cup, with the gold sprigs on it: then he thanked the children, and rose
and went on his way: but before he went he laid his hand on their heads
for a moment, and the touch went warm to their hearts.

The children stood by the wall and watched the man as he went slowly
along. The sun was setting, and the light fell in long slanting rays across
the road.

“He looks so tired!" said one of the children.

“But he was so kind!" said another.

“See!" said the littlest one. “How the sun shines on his hair! it looks like a
crown of gold.”

One single story is separated
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Figure 3.8: Sundry group in SketchXL dataset. 1,600 sketches are available
for users to choose.

The high-quality sketches in SketchXL, generated using Stable Diffusion
XL, are characterized by fine detail and clear lines, making them suitable
for use as both rough drafts and final renderings. The structured nature
of the Story Group, combined with the flexibility of the Sundry Group,
makes the dataset highly versatile. This dataset provides a foundation that
enables users to set out their sketches with precision and confidence, directly
supporting the advanced two-stage image generation process proposed in
this research. By allowing users to select and order sketches from coherent
story-driven groups or diverse individual sketches, SketchXL enhances the
accessibility and usability of image generation systems, empowering both
novice and professional users to create detailed and consistent visual outputs
efficiently.

3.4 Sketches Generation

In Stage 1 of our two-stage image generation process, we leverage the
advancements of Stable Diffusion XL (SDXL) to enhance the efficiency
and quality of sketch generation based on textual descriptions [70]. SDXL
significantly enhances our ability to generate high-quality sketches from text
prompts.

As Table 3.1 illustrated, SDXL offers significant improvements and ad-
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Model | SDXL Stable Diffusion v1.0

z-shape 2048 x 2048 x 4 768 X 768 x 4
Numbers of UNet Parameters 2.6B 860M
Channels 128 64

Table 3.1: Hyperparameters in Stable Diffusion XL compare with Stable
Diffusion v1.0. z-shape represents the dimension of latent space.

vantages, compare to Stable Diffusion v1.0, particularly in the realm of image
generation tasks. Firstly, SDXL features a larger parameter scale, enabling
it to handle more complex and high-precision image generation tasks. Its
enhanced architecture, incorporating more neurons and layers, results in
superior image detail and overall consistency. This approach not only
enhances the quality of the images but also increases the model’s applicability
across various scenarios. Despite requiring higher computational resources,
SDXL’s ability to produce detailed and high-quality images makes it an
ideal choice for professional applications. In summary, SDXL demonstrates
significant advancements in the field of image generation.

Our choice of SDXL for Stage 1, the text-to-sketch generation process,
is driven by its unparalleled ability to produce detailed and high-quality
sketches from textual descriptions. SDXL’s increased parameter scale allows
it to capture intricate details, which are crucial for generating accurate
and coherent sketches. This capability ensures that the sketches generated
in Stage 1 serve as a robust foundation for subsequent image refinement.
Furthermore, SDXL’s iterative denoising process in the latent space preserves
the clarity and structural integrity of the sketches, facilitating seamless
transitions into the next stages of image generation. By leveraging SDXL, we
optimize the initial sketch generation process, ensuring high-quality outputs
that enhance the overall effectiveness of our two-stage image generation
method.

3.5 Image Generation

In the final image generation phase, the process begins with an initial noisy
latent representation Zr , which is progressively refined through a series of
denoising steps using a U-Net architecture. The core of this process relies
on the previously extracted conditions from the Condition Extraction phase,
where both text and sketch features have been encoded. These encoded
conditions are continually reintroduced throughout the denoising steps to
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guide the model toward producing coherent and high-quality images.

As the denoising process unfolds, the latent representation is transformed
iteratively. At each step, the model uses a cross-attention mechanism to focus
on the relevant parts of the input sketches and text conditions, ensuring
that the generated images reflect the user’s input accurately. This attention
mechanism helps the model to maintain the structural integrity and style
of the sketches while incorporating the specific details provided in the text
prompt.

In addition to the cross-attention, the model employs the Multi-Aggregation
Attention (MAGA) Module, which plays a critical role in maintaining con-
sistency across the image sequence. MAGA introduces an external memory
component that aggregates information from the current and previous steps,
comparing them with the input conditions. This ensures that key visual
elements, such as character features and poses, remain consistent through-
out the sequence of images, addressing potential issues of feature drift or
inconsistency.

The denoising process continues iteratively, reducing the noise from Zr to
Zy, the final latent representation. Once this process is complete, the model’s
decoder converts the latent variables back into pixel-space, generating the
final sequence of images. This approach, which integrates both sketch and
text conditions throughout the denoising process, results in a series of images
that not only adhere to the user’s initial design intentions but also maintain
visual consistency and coherence across multiple frames.
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Chapter 4

Multi Aggregation Attention Mod-
ule

In this chapter, we introduce the Multi Aggregation Attention (MAGA)
module, which plays a crucial role in addressing one of the fundamental
challenges in image generation, particularly for sequential images, such as
those used in comics, animation, and other visual storytelling tasks. Section
4.1 discussed the motivation for introducing MAGA into the proposed
model, particularly its ability to ensure coherence across multiple frames
by referencing information from earlier stages of the generation process.
Next, in Section 4.2 explored the background and theoretical foundations
of the MAGA mechanism, highlighting how it builds upon existing attention
mechanisms and extends them by introducing memory aggregation. The
technical implementation of MAGA is discussed in Section , covering its
selective application within the denoising process and its role in maintaining
image quality. Finally, Section concludes with a discussion of the optimal
hyperparameter selection for MAGA and its potential for future research
and experimentation.

4.1 Introduction

Maintaining temporal consistency is vital for creating coherent sequences
where the key elements like character features, backgrounds, and other visual
details remain consistent across multiple frames. Without such consistency,
the viewer’s experience can be disrupted, leading to a lack of immersion and
narrative flow. While existing image generation models have made strides
in generating high-quality images, many still struggle with maintaining
coherence between sequential frames, often leading to visual inconsistencies.
In the context of this work, the MAGA mechanism is essential due to the high
demand for consistency across multiple frames in sequential image generation
tasks. Traditional cross-attention mechanisms [64] used in latent diffusion
models focus solely on the current input, making it difficult to maintain the
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necessary coherence when generating a sequence of images.

For example, in visual storytelling, such as comic generation, the position
of characters, their features, and the environment in which they are placed
must remain consistent across a series of panels. Failing to maintain this
consistency could lead to distracting discrepancies that affect the visual flow.
While a standard cross-attention mechanism can ensure a certain level of
feature fidelity for individual images, it does not account for the relationships
between consecutive images in a sequence. This is where the MAGA module
comes in, offering a method to reference previous frames, combining historical
information with current inputs, and ensuring that the generated sequence
remains coherent.

4.2 Background

The Multi Aggregation Attention (MAGA) mechanism is an attention-based
technique designed to enhance the temporal consistency of image sequences
by aggregating information across multiple stages of the image generation
process. In a standard cross-attention block, the Query (Q), Key (K), and
Value (V) are computed based on the current input and the corresponding
conditions, such as a text prompt or sketch, to guide the generation of the
image at each layer. However, this approach only considers the information
within the current frame, limiting its ability to maintain coherence across
multiple frames.

The MAGA mechanism extends this by introducing an external memory
component that stores the QKV from previous stages of the image generation
process. This memory allows the model to access and reuse relevant historical
information when generating new frames, ensuring that the generated images
align with both the current input and the information from earlier frames.
This results in a much more coherent and temporally consistent output, which
is crucial for tasks such as animation, where changes in character appearance
or background inconsistencies can severely disrupt the viewing experience.

MAGA is inspired by similar concepts in story-driven diffusion models,
such as storyLDM, which also addresses the need for consistency in narrative-
driven image sequences [61]. However, MAGA takes this concept further by
introducing selective memory aggregation, ensuring that it is applied only at
critical stages of the generation process, as discussed in the technical sections
that follow.
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Figure 4.1: Information transfer between MAGAs during each generation
process when generating multiple consistent images.

4.3 Mechanism

Cross-attention blocks in latent diffusion models typically process informa-
tion from the current input. In each layer, the spatial feature output by the
previous layer is used as the Query (Q), while the conditions at the same
level are input as Key (K) and Value (V) as Formula 3.10. This mechanism
ensures that the model attends to the relevant parts of the input conditions
for each layer, thereby facilitating accurate and coherent image generation.
The Multi Aggregation Attention module (MAGA) introduces an external
memory component that stores Query, Key, and Value (QKV) from the
corresponding image generation process at the same position in previous
levels of the network as illustrated in Figure 4.1. This allows MAGA to focus
on the relationship between the current input and the information stored in
memory, enabling the model to reason by combining historical context.
Specifically in Figure 4.2, cross-attention receives spatial feature from
the previous layer is used as the Query (Q). The conditions corresponding
to the current image n serve as both the Key (K) and Value (V). The cross-
attention mechanism uses the Query to attend to the relevant parts of the
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Figure 4.2: Information transfer inside one Spatial Transformer specifically
during the generation process of one single image.

conditions (Key and Value) for the current image. In MAGA, The conditions
corresponding to the current image n are again used as the Query (Q) as
formula:

Qumaca = Wq - f(S™) (4.1)

All conditions corresponding to previous images are used as the Key (K)
as formula:

Kyaca = Wy - f(S<n) (4.2)

The spatial feature from the previous layer is used as the Value (V) as
formula:

Vataca = Wy - £(2Z7) (4.3)

MAGA enhances temporal consistency by storing Keys (K) from previous
generation process.

However, as shown in Figure 3.4, in the early stages of the denoising
process, the target image layout has not yet been fully formed. Introducing
memory-attention control at these premature steps could disrupt the for-
mation of the spatial layout of the target image. Early implementation of
MAM can cause the model to overly rely on the historical context before the
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overall structure of the image is established, resulting in an output that may
not align with the intended design. In premature steps, the target image
layout has not yet been formed, and performing MAGA control can disrupt
the layout formation of the target image.

Thus, MAGAs are not implemented throughout the entire denoising
process but is specifically introduced from the s'* denoising step to the final
step. Additionally, within each denoising step, MAGAs are implemented
only from the i*" spatial transformer block to the last one. This selective
implementation strategy is crucial for maintaining the integrity and quality
of the generated images.

Determining the optimal value of the hyperparameter s and 4, which indi-
cates the starting point for implementing MAGA, remains a topic for future
research. Related ablation experiments will be illustrated and discussed in
Section .

4.4 Ablation study

We introduced two critical hyperparameters for the network described in
this paper: the specific layer at which the Multi-Aggregation Attention
(MAGA) mechanism is incorporated and the number of inference steps.
These hyperparameters are crucial for determining the optimal timing for
introducing the MAGA mechanism into the inference process. Specifically,
introducing MAGA too early can disrupt the formation of the spatial layout
of the target image, leading to an overly reliance on historical context before
the overall structure is established. This can result in outputs that do not
align with the intended design. On the other hand, introducing the MAGA
mechanism too late can result in insufficient information transfer between
images, leading to a loss of consistency. To ascertain the optimal values for
these parameters, we conducted a series of ablation studies. The results of
these studies are presented in Figure 4.3, revealing that our network achieves
the best performance when the MAGA mechanism is introduced at layer 8,
inference step 24.

It is important to note that all result images that generated by our
proposed model utilized these specific parameter settings to ensure optimal
outcomes. This configuration provides a good trade-off between image
quality and computational efficiency. The ablation studies confirmed that
introducing MAGA in the mid-layers allows for effective feature aggregation
and refinement, enhancing the overall quality of the generated images.
Similarly, an inference step configuration of S steps provides a good trade-off
between image quality and computational efficiency.
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Given that our model uses both text and sketch as conditional inputs, it
is crucial to isolate the effects of the sketch input and the MAGA mechanism.
To this end, we conducted an additional ablation study using only text
prompts as input. For this experiment, we selected one of the current state-of-
the-art pretrained models, Stable Diffusion XL (SDXL) [70], as the baseline.
The experiments were conducted under identical conditions, ensuring a fair
comparison. Specifically, we used the same CLIP encoder to extract text
features for both our model and the baseline.

The results of this experiment are shown in Figure Z. These results
highlight the performance differences when relying solely on text input,
providing further insights into the contribution of the MAGA mechanism
and sketch inputs.

From Figure 4.4, it is evident that our model maintains a higher level of
consistency in generated images, even without the sketch input. The images
generated by our model also retain more detailed features derived from the
text prompts compared to the baseline. Moreover, the output of our model
adheres more closely to the desired artistic style.

By isolating the text input, we have demonstrated that the consistency
in our generated images is not solely attributable to the sketch input but is
also significantly influenced by the MAGA mechanism.

46



Layers/16

Figure 4.3: Generated images with different timing for introduce MAGA
mechanism. Columns represent the introduction of MAGA at different layers
for the same step, while rows represent the introduction of MAGA at different
steps for the same layer. Text input: 1. A young wizard stands in a lush
forest, holding a magical staff.”, 2. "The wizard finds a blue high tall hat
and put it on.”, 3. " The wizard encounters a mystical creature. They engage
in a friendly conversation.”, 4. 7 As the wizard touches the mystical creature,
he turns into crystal.”
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Figure 4.4: The generated images from two models. The first row presents
the output images from our model without sketch guidance. The second
row shows the text prompts used as conditional inputs, and the third row
presents the output images from the Stable Diffusion XL model.
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Chapter 5
Experiments

In this chapter, we employ both qualitative and quantitative experiments to
evaluate our results. The experiments are designed to assess the effectiveness
and performance of the proposed sketch-guided image generation method.
In Section 5.1, the details of experiments are introduced. The results are
presented in Section 5.2, while the quantitative results are shown in Section

2.3.

5.1 Experiments Details

Our experiments were conducted on a high-performance computing setup on
Windows 11 system. Computing device contains a AMD Ryzen 9 5950X
16-Core Processor at 3.40 GHz, a 128 GB RAM, and a NVIDIA RTX 3090
GPU with 24GB VRAM.

This research used the pre-trained Latent Diffusion Model (LDM) v1.5.
This model is designed for high-resolution image synthesis by operating in
the latent space of a pre-trained autoencoder. Below in Table 5.1, we detail
the key architectural parameters and the pretraining dataset used for LDM
v1.5.

LDM v1.5 was initially pretrained on the large-scale LAION-5B dataset,
which comprises billions of image-text pairs. Specific subsets used for pre-
training included LAION-2B (en) and high-resolution images from LAION-
5B with resolutions greater than or equal to 1024x1024. Following this

Hyperparameter Scale
z-shape 64 x 64 x 4
T 50
Channels 128

Table 5.1: Hyperparameters in the pre-trained Latent Diffusion Model V1.5.
z-shape represents the dimension of latent space, T is the inference steps.

49



Figure 5.1: 100 random sample images from the 512px subset of Dan-
booru2021 in a 10x10 grid.



initial pretraining, the model was further finetuned on an additional dataset
consisting of 2.6 million anime images collected from Danbooru2021 dataset
[71], random 100 images from dataset is shown in Figure 5.1.

This finetuning process involved additional training epochs to adjust
the model weights specifically for the characteristics of anime-style images,
enabling the model to capture the unique features and artistic styles prevalent
in this domain.

5.2 Qualitative Comparisons

To demonstrate the advantages of our model in generating consistent images,
we conducted comparative experiments using Stable Diffusion v1.0 combined
with ControlNet as the baseline. Both our model and the baseline were eval-
uated using the same text prompts and sketches to ensure a fair comparison.
Both models utilized the same CLIP encoder to process the text prompts.
Also, Sketches were processed using the same Canny edge detection and VAE
for both models.

5.2.1 Generated Images

The results of the experiments are illustrated in Figure 5.2. The generated
images from both models were compared based on several qualitative criteria,
including consistency, detail preservation, and adherence to the input sketch
and text prompts. Our model exhibited superior consistency in generating
sequential images, maintaining coherent character features and backgrounds
across frames. The images produced by our model retained finer details from
the input sketches and text prompts, providing a more faithful representation
of the original input. Additionally, due to pretraining on a large dataset of
manga images, our model generates images with a style that is closer to
traditional manga, making it particularly suitable for applications in manga
and anime art.

5.2.2 Comparison of One-Stage and Two-Stage Image
Generation Methods

In Chapter 1, one of the primary objective of this research is to implement a
two-stage generation process, enabling users to modify intermediate results
during the generation process to enhance the quality of the final output.
To demonstrate the effectiveness of our two-stage generation process, we
conducted an experiment to compare the effectiveness of two different image
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Figure 5.2: The generated images from two models. The first row displays the
sketches used as conditional inputs; these sketches were selected and arranged
from our SketchXL dataset. The second row presents the output images from
the Stable Diffusion v1.0 + ControlNet model. The third row shows the text
prompts used as conditional inputs, and the fourth row presents the output
images from our model.
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a little girl sitting
next to a table

Step 1

Step 2

Delete the window :Iﬂdt_j\ <

Figure 5.3: The comparison between our method and the traditional one-
stage text-to-image generation model [2]. The top row displays the images
generated using the single-stage text-to-image generation method with the
DALL-E 3 model, while the bottom row demonstrates the two-stage gener-
ation process proposed in this study, including the user editing phase.

generation methods: a one-stage text-to-image generation method and a two-
stage image generation method. The goal is to evaluate whether the two-
stage method provides superior image quality and user control compared to
the traditional one-stage approach.

As shown in Figure 5.3, the experiment is structured into two distinct
parts. In the one-stage method, users enter a prompt like ”a little girl sitting
next to a table,” and the model directly generates the final colored image.
If the result includes unwanted elements, such as a window, users must edit
the final image, which can be challenging.

In contrast, our two-stage method offers an intermediate sketch step.
Here, users can easily remove the unwanted window from the sketch before
final generation. As a result, the two-stage approach produces an image
without the window. The adjustment ensures that the final image aligns
more closely with user intentions,

This experiment demonstrates the advantages of the two-stage image
generation method over the one-stage method in terms of image quality and
user control. By allowing users to modify the initial sketch, the two-stage
method provides greater control over the image generation process, leading
to more accurate and detailed final images. This approach offers a robust
solution for applications requiring high-precision and customized image gen-
eration, significantly improving the effectiveness of image generation and user
satisfaction.
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5.3 Quantitative Comparisons

We compared our model against several baseline models to highlight its
performance advantages. In this paper, our image generation tasks do not
have ground truth images for direct comparison. Therefore, traditional image
quality assessment methods that rely on reference images, such as Fréchet
Inception Distance (FID) or Peak Signal-to-Noise Ratio (PSNR) [72] [73],
are not applicable.

PSNR (Peak Signal-to-Noise Ratio) is a widely used metric for measuring
the quality of reconstruction, particularly in image processing [73]. It is used
to quantify the difference between the original and the reconstructed image
by measuring the ratio between the maximum possible power of a signal and
the power of the noise affecting the fidelity of its representation. PSNR is
expressed in decibels (dB), and a higher PSNR value generally indicates a
higher image quality, as it implies less distortion or noise in the generated
image.

Neural Image Assessment (NIMA) is introduced as a deep learning-based
method for evaluating the quality of images [74]. Unlike traditional image
quality assessment methods, NIMA provides a no-reference assessment of
image quality. For experiments, we employed a pre-trained NIMA model
based on the InceptionV3 architecture. The model was fine-tuned to pre-
dict aesthetic quality scores for images. The preprocessing steps included
resizing images to 299x299 pixels and normalizing them to match the input
requirements of the InceptionV3 model. The NIMA model then outputs
a probability distribution over scores from 1 to 10, and the mean of this
distribution is taken as the final quality score.

In this paper, we evaluate the generated images from two dimensions:
PSNR and NIMA. PSNR will provide insight into image quality when ground
truth images are available, while NIMA will offer a no-reference aesthetic
assessment of the image quality. By combining these two metrics, we aim to
comprehensively evaluate the performance of our image generation model.

In our experimental setup, we rigorously evaluated the performance of
various image generation models by computing the Peak Signal-to-Noise
Ratio (PSNR) of images generated by these models against a composite
baseline image. This baseline image was derived by averaging randomly
selected 400 pictures from the ImageNet dataset, providing a robust and
consistent comparison across all models. The PSNR values reported in
the second column of Table 5.2 represent the average of these comparisons,
highlighting the fidelity of the generated images relative to typical ImageNet
content.
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Image Source PSNR (1) Average NIMA Score (1)

Stable diffusion v1.0 14.94 5.84

Stable diffusion XL 18.77 5.99
DALL-E 3 19.66 6.46

Stable diffusion v1.0 + ControlNet 18.43 4.95
Ours 19.13 6.04

Table 5.2: PSNR and NIMA Scores Across Different Image Generation
Models. This table showcases the performance of various models, as assessed
by PSNR (the second column) and NIMA (the third column) scores, respec-
tively.

The analysis of the PSNR results shows that our model performs excep-
tionally well, yielding a PSNR of 19.13, which is only slightly below that of
the latest model, DALL-E 3, which scores 19.66. This performance places
our model ahead of earlier versions of Stable Diffusion, including both the
original v1.0 and the enhanced version with ControlNet, which achieved
PSNR values of 14.94 and 18.43, respectively. The high PSNR attained
by our model underscores its capability to produce images that maintain
significant fidelity and detail, closely mirroring the high-quality standards
seen in real-world images from the ImageNet collection. These results not
only affirm the effectiveness of our model in generating visually appealing
and accurate images but also position it as a competitive alternative to the
most advanced models currently available, such as DALL-E 3.

Since NIMA is a deep learning-based method, the scores can vary with
each calculation. To ensure the robustness of our results, we calculated the
NIMA scores using the average score from all generated images, which is
about 20 images sequences. This study aims to provide a more stable and
reliable assessment of image quality. We applied the NIMA model to evaluate
the quality of images generated by our model and compare them with baseline
models. The results are summarized in the third column of Table 5.2.

The NIMA scores indicate that our model performs competitively com-
pared to other state-of-the-art models. Our model achieved a NIMA score of
6.04, demonstrating its ability to generate high-quality images. This score is
higher than both the Stable Diffusion models and is competitive with DALL-
E 3.
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Chapter 6

Conclusion and Limitations

6.1 Conclusion

This paper primarily aims to maintain the image consistency maintenance
in image generation using sketch-guided diffusion models through attention
mechanisms in a two-stage method. We proposed a two-stage workflow that
allows users to reorder and adjust the sketches, as intermediate results to
control the output. Users can also manually input their own sketches or
select from a curated sketch dataset. The dataset, SketchXL offers high-
quality sketches with fine details and clear lines, making them suitable for
use as rough drafts in various creative processes.

During the image generation process, the introduced architecture incorpo-
rates the Multi-Aggregation Attention (MAGA) mechanism into the diffusion
process. The MAGA mechanism introduces an external memory component
that stores Query, Key, and Value (QKV) from the corresponding image
generation process at the same position in previous levels of the network.
This allows the model to reason by combining historical context, thereby
enhancing temporal consistency. We explored the influence of two critical
hyperparameters, L (the layer at which MAGA is introduced) and S (the
timing step for introducing MAGA). Through extensive ablation studies,
we confirmed that the timing of introducing MAGA significantly affects the
quality of the generated images.

To demonstrate the advantages of our model in generating consistent
images, we conducted comparative experiments using multiple State-of-
the-art models as baselines. The results highlight our model’s superior
consistency in generating sequential consistent images. To validate that our
two-stage generation model offers greater control compared to the single-
step generation model, we conducted comparative experiments. The results
demonstrated that the two-stage generation process significantly enhances
the quality of the final generated images. We also compared our model
against several baselines using Neural Image Assessment (NIMA), a no-
reference image quality evaluation method. As a result, our model achieved
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Figure 6.1: Time required to generate image sequences of varying lengths.
The x-axis represents the length of the image sequence, and the y-axis
represents the inference time needed. The experimental data are the av-
erages obtained from 10 repeated experiments conducted in the environment
described in Section 5.1.

PSNR of 19.13, and NIMA score of 6.04, outperforming both Stable Diffusion
models and being competitive with DALL-E 3. As a result, the robustness
and versatility of our model in generating high-quality images shows the
ability for consistent images generation applications.

6.2 Limitations and Future Works

To verify the improvements in image consistency and style adherence, we
conducted a series of comparative experiments between our model and
other State-Of-The-Art models. The evaluation focused on consistency
across frames in a generated image sequence and the alignment with the
desired style. Our model demonstrated superior consistency in maintaining
character features, such as facial expressions and body poses, throughout
multiple frames, whereas both Stable Diffusion v1.0 and Stable Diffusion
XL, exhibited variability in these features across the sequence. These findings
confirm the improvements in both image consistency and style adherence in
our model, while acknowledging that DALL-E 3 retains an edge in generating
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1. The brave explorer Emily stood at the edge of a
dense jungle.

. She looked up, the giant canopy of trees blocked

the sky, and sunlight filtered through the leaves,

casting dappled shadows,

Emily took a deep breath and stepped into the

jungle, her heart filled with anticipation for the

unknown,

Deep in the jungle, she found a path covered in

vines, seemingly untouched for a long time

. As she followed the path, Emily encountered a
friendly monkey that jumped on her shoulder,

. Soon, she arrived at a cave hidden behind a
waterfall, the entrance faintly glowing with golden
light

. Emily carefully walked into the cave and
discovered the legendary treasure—a chest full of
gleaming gold and silver jewels

. She excitedly picked up a gem, her heart filled

5 6 T 8 with a sense of achievement and a longing for

future adventures, knowing she was about to

become a legendary explorer,

N

w

>

(3]

o

~

@

Figure 6.2: The generation of a sequence of 8 consistent images using our
proposed model. As the sequence progresses, the generated images gradually
collapse, making it difficult to distinguish between the background and
characters.

higher fidelity and more detailed individual images.

Moreover, as the length of the image sequence increases, the compu-
tational time required for generation also increases. This can become a
bottleneck when generating long sequences, affecting the overall efficiency
of the process.

As illustrated in Figure 6.1, the computational time required for generat-
ing image sequences increases exponentially with the sequence length. When
the sequence length reaches eight images, the generation time can approach
an hour. In images generation tasks, users often need to create a sequence
of dozens of images at a time, using our model could significantly limit their
creative speed. To address the issues, one of the possible future solutions is to
introduce a dropout layer or incorporate an LSTM’s Forget Gate Mechanism
before the MAGA module [75]. As the image sequence grows, this mechanism
would discard or forget a certain amount of historical information, thereby
speeding up the inference process.

Another issue is that as the image sequence lengthens, it becomes increas-
ingly difficult to distinguish between the characters and the background. As
illustrated in Figure 6.2, this problem is particularly evident in the 4th, 6th,
and 8th images, where the main character Emily’s generation is significantly
influenced by the forest or sky background. This occurs because the cross-
attention and MAGA mechanisms within the spatial transformer do not
differentiate between conditional information pertaining to characters and
background. Consequently, as the image sequence grows, the accumulation of
historical information causes the model to confuse the foreground characters
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with the background.

In recent years, an increasing number of researches used masks and other
techniques to separate the foreground and background, generating them
individually [76] [77]. Therefore, we believe that distinguishing between the
conditional inputs for the foreground and background, and then applying
the cross-attention and MAGA mechanisms separately to guide image gen-
eration, could be a potential solution for future work.
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