JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title goooooo

Author(s) oo, 00

Citation

Issue Date 2006-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl . handle.net/ 101119/ 1969
Rights

Description Supervisor: ggooo, oooooono, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Loop-invariant hoisting in strict functional language
with lazy evaluation

Okuya Kenichi (410027)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 9, 2006

Keywords: loop-invariant, lazy evaluation, compiler, optimization,
lambda calculas.

Loop-invariant elimination is one of the optimization executed by many
imperative function compilers. It is a conversion which substitute a cal-
culation without change of the value in a loop with a value which binds
the caluculation out of a loop. A processing time of a program can be
reduced by reducing number of operations in a loop. Purpose in this study
is Improvement of speed by implement this optimization in a functional
language.

A loop is expressed with a recursive function in a functional language.
Branch called a pattern match is used often by the functional language,
and branch takes place complexity. As a premise of optimization, the
meaning of the program before and behind optimization is not allowed
to change. Therefore, in simple conversion, the loop-invariant elimination
without change the execution order of a program is unrealizable. Although
simple loop-invariant elimination is realized by using middle expression
called CPS, however, application of this method is difficult when branch
takes place complexity. In order to solve this problem by simple conversion,
lazy evaluation is introduced in this study.

A functional language can be divided into a strict and non-strict about
an evaluation order. In strict languages, such as Standard ML, After an
argument is evaluated first, the value is binded and a function is evaluated.

Copyright © 2006 by Okuya Kenichi



This is called strict evaluation. In non-strict languages, such as Haskell,
evaluation of an argument is delayed and the pointer to an argument is
passed to a function, and it is evaluated when needed. This is called lazy
evaluation.

When binding a loop-invariant expression out of a loop using this lazy
evaluation, at that time, it binds by delaying evaluation of a expression,
without evaluating a expression. And I thought that loop-invariant elim-
ination was realizable by simple conversion, controlling useless operation
by evaluating, when actually using a value. And I thought that the loop-
invariant elimination which controlled useless operation by simple conver-
sion was realizable by evaluating when actually using value.

However, in order to introduce lazy evaluation into a strict functional
language, it is necessary to add the evaluation mechanism for judging that
the delayed expression is not evaluated yet or whether it is evaluated.
Therefore, I thought that some overheads exist in evaluation of the delayed
expression.

In this study, the loop-invariant elimination algorithm using the lazy
evaluation based on the above theory was built. Using this algorithm
in a strict functional language, the loop-invariant elimination by simple
conversion is realizable. And loop-invariant elimination optimization based
on this algorithm, I imprement of this optimization to SMLsharp compiler,
which is an extension of Standard ML and Ohori and others developed.
Lazy evaluation was realized by using a Data type, Closure, and Ref type.
And it evaluated using a created test program by improvement compiler.

In the result, loop-invariant elimination was able to be applied by using
lazy evaluation in case of a loop-invariant expression was in branch in the
loop difficult in a[] conventional method. Although it resulted in becoming
late rather compared with the case where optimization is not applied when
eliminate light expression, such as primitive operation. However, when to
some extent heavy expression, such as recursive funcion, could be elimi-
nation as a loop-invariant expression, it has confirmed that optimization
worked effectively.

I thought cause of becoming slow is by mechanism of lazy evaluation. In
this study, it is Closure generation and evaluation overhead.

As a future subject, First, judgng the weight of processing of a loop-



invariant expression beforehand, even if it takes an overhead into consider-
ation, application loop-invariant elimination only about the case of being
effective is mentioned. Although it can consider as the optimization which
becomes early certainly if such processing is performed, I thought that it is
difficult to judge the weight of processing correctly in the stage of compiling
a program.

Second, Reducing an overhead includes a lazy evaluation mechanism in
a processor is mentioned. Although the mechanism of lazy evaluation was
realized by implimenting as a function in this study, Therefore, whenever it
processes, the overhead of functional application was generated. The speed
of lazy evaluation is improved by supporting this native by the abstract
machine, and I thought possible to consider as more practical optimization.



