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Abstract

Smart buildings play a critical role in advancing the smartness of cities. With
the continuous development of technology, the application of technologies such as
automated control, smart sensors and communication networks in smart buildings
is becoming increasingly complex. Smart buildings realize efficient management of
equipment in buildings by integrating advanced automation control systems. At
the same time, the application of smart sensors, elevators, robots and other devices
enable buildings to respond to environmental changes in real time, optimize energy,
reduce resource waste and bring much convenience to peopleŠs lives. However, in
order to ensure the effectiveness and reliability of these technologies, continuous
testing and system upgrades are required.

Testing and evaluating these technologies using real building environments of-
ten faces a number of challenges, such as the accompanying high testing costs, the
risk of system crashes, limited resources, and lack of adaptability. In addition,
the communication network, as the nerve center of smart buildings, ensures the
control and information exchange between devices. However, along with the devel-
opment of cyberattack techniques and the acceleration of digital transformation,
the security threats to networks in smart buildings are increasing. Cyber attacks
against smart buildings may threaten the data security and privacy of users, as
well as cause damage to physical equipment in the building leading to disruption
of operational services. These threats not only cause economic losses to building
operators, but also have an impact on corporate reputation.

To address these challenges, we created the Smart Building Control System
Emulator (SBCSE). SBCSE is a platform that emulates smart building control
systems and was designed and developed based on real smart building log data.
SBCSE simulates control systems and the movement of IoT devices such as robots
and elevators, and uses an implementation of actual communication protocols,
thus enabling emulation testing and evaluation of control systems and information
interactions between devices in smart buildings. SBCSE also supports the emu-
lation of various security scenarios, and analyzes and proposes countermeasures
against potential threats, and veriĄes the effectiveness of the security measures.

Through this research, we aim to propose an innovative solution to the short-
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comings of the current simulation platform for smart building control systems. By
developing an smart building emulator, it provides an effective tool for testing and
evaluating smart building systems. The simulator can not only provide users with
an intuitive user interface and simplify the operation process, but also better help
users conduct tests in different scenarios and help improve the reliability and per-
formance of smart building systems. In this way, we attempt to solve the problem
of the current lack of control system simulation platform for smart buildings. At
the same time, for the network security problems existing in smart buildings, this
study has specially designed a security test module, which can emulate a variety of
attack scenarios and conduct a comprehensive security test. The module helps to
identify potential security vulnerabilities in the smart building system and timely
detect risks that may lead to system crash or data leakage. We have also analyzed
relevant security measures that can be used to cope with the risks, which can pro-
vide effective protection solutions for the system. Through these simulations and
tests, we can help designers and developers to identify and Ąx the security risks in
the system, so as to avoid unnecessary losses in practical applications.

SBCSE not only improves the efficiency and security of smart building system
testing, but also signiĄcantly reduces testing costs and provides powerful support
for system design, optimization and maintenance. In addition, by emulating vari-
ous cybersecurity attack scenarios, our security model helps to test and develop ef-
fective countermeasures against potential risks in smart building systems. SBCSE
is a versatile and cost-effective tool for improving the reliability and security of
smart buildings that facilitates the testing and application of new technologies in
the growing Ąeld of smart cities.

Keywords: smart building, control system, security testing, emulation, simu-
lation, MQTT.
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Chapter 1

Introduction

This chapter provides an overview of the research context, motivations, signiĄ-
cance, and structure of this thesis. Section 1.1 discusses the background of this
research and highlighting its importance and potential challenges. Section 1.2 out-
lines the research questions we intend to address in order to deĄne the objectives
of the study. In Section 1.3, we summarize the signiĄcance and importance of this
research. Finally, Section 1.4 describes the organization of the thesis.

1.1 Background

According to the report by the Association for Smarter Homes & Buildings (ASHB)
on smart building technologies and market trends, the smart building industry
is expected to continue growing in the coming years, primarily driven by IoT,
automation systems, and environmental sustainability goals [1]. With the rapid
development of the IoT technology, the concepts of smart city and smart home
have emerged one after another. Smart buildings, as an important part of the
smart city, have a pivotal role in the Ąeld of infrastructure in the future city. The
functions and application equipment of smart buildings are also expanding at this
stage.

In regard with smart buildings, the application of Building Automation Sys-
tems (BAS) [2], Building Management Systems (BMS) [3], smart sensors, and IoT
devices is becoming increasingly complex. These technologies enable buildings to
improve their operational efficiency by enabling device management and informa-
tion integration through digital platforms. This not only helps building operators
to efficiently integrate and analyze data within the building, but also to efficiently
control the equipment in the building (e.g., elevators, robots, etc.) using automa-
tion systems. This integration not only optimizes the management of building
equipment and improves operation and maintenance efficiency, but also saves en-
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ergy to accelerate digital transformation and sustainable development, bringing
convenience to peopleŠs production and life.

However, the effectiveness and reliability of these technologies and control sys-
tems depend on continuous improvement and testing. In contrast, evaluating these
technologies in real-world building environments faces numerous challenges, includ-
ing high costs, signiĄcant risks, limited resources, and insufficient adaptability. In
this context, simulation tools and platforms offer a more Ćexible, cost-effective,
and efficient solution, providing a reliable testing environment for technology de-
velopment and validation.

In addition, with the acceleration of digital transformation, the need for com-
munication and data interaction through networks has increased, and more and
more devices are connected to networks,. However, the development of network
technology is also accompanied by an increase in network vulnerabilities and cyber
attacks. IoT devices and control systems in smart buildings are also becoming a
key target for cyber attacks. These systems may face a variety of cybersecurity
risks including data leakage, malicious activities, eavesdropping, and sabotage of
IoT devices. According to a report by Kaspersky in the Ąrst half of 2019, 37.8% of
computer systems used to control smart buildings suffered some form of malicious
attack [4], which highlights the severity of this problem.

For operators of smart buildings, the security and privacy protection of build-
ings have become crucial issues that cannot be overlooked. The cybersecurity
challenges faced by smart buildings are immense, making it particularly impor-
tant to conduct comprehensive security testing and countermeasure analysis for
smart buildings.

1.2 Objectives

This research aims to address the current lack of control system emulation platform
for smart buildings and the cyber security challenges faced by smart buildings. The
main objectives include:

• Design and implement a emulator for smart building control systems that
integrates management systems. We will focus on two components: the
network communication module and the device motion module. The IoT
devices to be utilized include robots and elevators. This emulator will serve
as a testing platform for smart buildings, facilitating conĄguration, informa-
tion sharing, and management among various intelligent systems within the
building.

• Add a security module to emulate attack scenarios. This module will emulate
attack scenarios targeting the risks faced by the current components and
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analyze the impact of these attacks to propose effective solutions.

1.3 SigniĄcance and Contributions

We propose an innovative solution to the shortcomings of the existing smart build-
ing control system simulation platforms. By developing the smart building control
system emulator, we Ąll the gap of controllable emulation platform in the Ąeld of
smart buildings. The emulator simpliĄes operation through an intuitive interface
and supports multi-scenario testing, providing a powerful tool for smart building
system testing and evaluation. In addition, with the rapid development of smart
building technology, network security has become a major challenge facing intel-
ligent buildings. The security testing module designed in this study can emulate
multiple attack scenarios, identify security risks as well as visualize the impact
through simulated data, and provide effective security measures against attacks.

The main contributions of this thesis are as follows. We have developed a
smart building emulator that can emulate the network communication within
smart building systems, as well as emulate the smart building control systems, and
simulate the behavior of robots and elevators under various operating conditions.
This tool provides an effective platform for testing and evaluating smart building
systems, and helps to verify the performance and reliability of the system prior to
actual deployment. At the same time, by providing an intuitive user interface and
simpliĄed operational processes, our emulator makes it easy for non-specialized
users to test and evaluate smart building systems, thereby lowering the technical
barrier and expanding the scope of smart building technology applications.

Moreover, in response to the growing cybersecurity threats to smart building
systems, the emulator is able to emulate a number of different attack scenarios, en-
abling users to test the performance of intelligent building systems under different
conditions in a secure environment, which is critical for system design optimization
and performance enhancement. We not only design and implement attack scenar-
ios for potential security risks, but also provide countermeasures for the risks and
test the effectiveness to enhance the security of smart building systems. Testing
in a emulator reduces the risk of system crashes and data leakage that security
testing in real building systems may face.

Our emulator facilitates collaboration across multiple disciplines in architec-
ture, IoT, network communications, cybersecurity, and other areas for the devel-
opment of smart building control systems. It can also be used as an educational
and training tool to help students and those preparing to enter the Ąeld to bet-
ter understand the complexity of smart building systems. Meanwhile, in the Ąeld
of cyber security for smart buildings, researchers can customize our emulator to
add multiple cyber attack scenarios for testing and simulate the proposed security
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countermeasures against the countermeasure table. It provides an effective testing
tool for security management and maintenance of intelligent buildings.

1.4 Organization

The remainder of this thesis is organized as follows:

• Chapter 2: Related Work and Background
This chapter focuses on the research related to simulators for smart buildings
and analyzes their limitations. Additionally, we review previous studies in
the Ąeld of network security to provide theoretical support for this research.
Relevant related theories used in this study is also introduced.

• Chapter 3: Proposed System
This chapter provides a detailed description of the basic architecture and
design background of the smart building control emulator developed in this
study. We systematically explain the design principles and methods used in
the development of the architecture. Furthermore, the chapter includes an
in-depth analysis of each functional module.

• Chapter 4: SBCSE Assessment
This chapter evaluates the proposed system, with a focus on the evaluation
methods and approaches. It also includes a detailed analysis and comparison
of the data collected from the systemŠs logs to verify its effectiveness and
performance.

• Chapter 5: Attack Scenarios and Proposed Security Measures
This chapter will provide a detailed introduction to the security testing sce-
narios designed in the emulator environment, as well as the measures taken to
ensure the security of the testing. This includes conducting security analysis
of system components, designing potential attack scenarios, and formulating
security measures tailored to the risks identiĄed within the components.

• Chapter 6: Experiment Results
This chapter will conduct experiments on the designed security scenarios
and analyze the experimental results. We will mainly discuss MITM, DDoS,
and BAC attacks. We will select corresponding security measures for each
attack, apply these measures on the emulator, and then conduct attack tests
again to verify the effectiveness of these security measures.

• Chapter 7: Conclusion
This chapter summarizes the main conclusions of this study. It also identiĄes
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the limitations of the research and proposes potential improvements and
directions for future work, offering insights for further exploration.
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Chapter 2

Related Work and Background

In this chapter we will Ąrst introduce the prior studies relevant to this study and
explore the limitations of these studies. At the same time, we will outline the
background knowledge related to this study. In Section 2.1, we will introduce
existing simulators and research related to network security. In Section 2.2, we
will present the background knowledge and associated theories of this study.

2.1 Related Work

2.1.1 Simulators

There have been a number of simulator-related projects proposed and widely used
in education, infrastructure, industrial production and other Ąelds. Compared with
testing in real systems, simulators can conduct experiments and validations with
lower cost, higher efficiency and greater Ćexibility. Researchers can use simulators
to validate new algorithms and models in a controlled environment, and predict
system performance to support further optimization and improvement.

With the development of smart buildings, simulators have become an indis-
pensable tool in this Ąeld. However, existing research has mainly focused on smart
home scenarios. These simulators are usually used to collect and analyze indoor
environmental data, such as temperature, humidity, and light, to optimize the
living environment. For instance, Open-SBS [5] is a cross-platform open-source
smart building simulator that simulates complex indoor environments, collects and
representative datasets, and provides the ability to save and share experimental
models. However, the research of this simulator mainly focuses on data collection
and analysis of the scenarios of smart homes, and the data collection from sensors
is unidirectional, and does not delve into the simulation of the interaction between
smart building operating systems and IoT devices.
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Apart from the smart home domain, simulation studies on other aspects of
smart buildings include: integrated simulation frameworks for smart grid systems,
such as GridLAB-D [6] and HVAC simulations [7]. These simulators primarily
focus on energy management and system performance optimization, aiming to
simulate and optimize power and energy management systems. Additionally, IoT-
related simulators, such as MobIoTSim [8], assist developers in examining the
behavior of IoT systems and enabling more efficient development and evaluation
of IoT applications.

As shown in Table 2.1, we have compared the functionality of these simula-
tors with SBCSE. And the parts marked with an asterisk (*) mainly represent
contributions from my lab collaborators. The comparison reveals that different
simulators have their own features and advantages in terms of functionality and
performance. Open-SBS is simulated based on a semantic rule engine, and the
building control system here mainly targets the interaction between sensors in a
smart home. The closest system to ours is MobIoTSim, but the control system
here is mainly for IoT devices. SBCSE not only involves the simulation of IoT
devices, but also focuses on the interaction of smart building control systems and
robot elevators, and has been tested for safety. SpeciĄcally, SBCSE is able to
simulate the interaction of various devices and sensors in a smart building control
system, as well as the operation and scheduling of a robotic elevator. In terms
of safety, our simulator tests and proposes countermeasures for a variety of safety
scenarios.

Table 2.1: Simulator functionality comparison
Function Simulator Open-SBS GridLAB-D HVAC simulations MobIoTSim SBCSE
Environment
& Resource
Simulation

Physical Environment (Temperature, Hu-
midity, Lighting, Wind Speed, etc.)

✓ ✓ ✓

Energy Control System (Electricity, Air Con-
ditioning, Power Grid, etc.)

✓ ✓ ✓

Behavior &
Interaction
Simulation

Human Behavior ✓ ✓

Time Simulation ✓ ✓ ✓ ✓ ✓

Network Communication Simulation/Emu-
lation

✓ ✓ ✓

Sensors / IoT Devices ✓ ✓ ✓ ✓ ✓

Device Behavior Interaction ✓ ✓ ✓ ✓ ✓

Building Control System ✓ ✓

Technical &
Operational
Support

Protocol Support ✓ ✓

Multi-instance Support ✓ ✓ ✓

User Interface Support ✓ ✓ ✓

Data Analysis / Visualization ✓ ✓ ✓ ✓ ✓

Security Testing ✓

Security Measures ✓

*Fuzz testing [9] ✓

*Protocol Formal VeriĄcation [9] ✓

Although there are numerous research results, the current smart building sim-
ulators are still in the primary development stage, facing with many issues and
challenges. For example, the existing simulators are deĄcient in integration with
IoT devices and their operating systems, and cannot fully meet the complex needs
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of smart building systems. Especially in terms of data interaction with smart
building operating systems and IoT devices, real-time, and scalability. This study
proposes an intelligent building control system simulator platform to address this
aspect, which will provide more effective support for the design, veriĄcation, and
optimization of smart building systems.

2.1.2 Security Frameworks

As a crucial aspect of smart city development, smart buildings offer enhanced com-
fort, security, and convenience to occupants. However, the proliferation of smart
buildings has introduced new cybersecurity risks and challenges. The integration
of numerous automated systems and IoT devices, while improving efficiency and
bring convenience, also exposes more vulnerabilities, making smart buildings po-
tential targets for cyberattacks. As the cyber threat to smart buildings is complex.
Cyberattacks have been used to exploit smart building controls and breach corpo-
rate networks, cause critical building system failures [10]. Attacks against smart
buildings are also increasing year after year globally.

To address these security challenges, researchers have proposed various cyber-
security frameworks and models. For instance, IoT security framework for smart
cyber infrastructures [11] and an ontology-based cybersecurity framework for IoT
[12] has been proposed. Despite these efforts, research on cybersecurity testing
models speciĄcally tailored for smart buildings remains relatively limited. The
complexity and diversity of smart buildings necessitate a more comprehensive se-
curity strategy that encompasses not only the network layer but also the physical
layer and the protection of data privacy. Therefore, further research and develop-
ment of cybersecurity models suitable for smart buildings are crucial. This will
not only enhance the security of smart buildings but also provide robust support
for the security and stability of smart city infrastructure.

2.2 Background and Related Concepts

2.2.1 Smart Buildings

Smart buildings are modern structures that integrate Information and Communi-
cation Technology, enabling them to add intelligence to various facilities within the
building, such as electrical equipment, air conditioning systems, meeting rooms,
restrooms, smoking areas, and other architectural facilities, all of which can be
equipped with the IoT and managed and coordinated centrally on a system [13].
Smart buildings consolidate data resources and application systems to provide peo-
ple with a more intelligent and efficient lifestyle. In smart buildings, BACS (Build-
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ing Automation and Control System) plays a central role. The Smart Building
System Architecture Guideline [14] deĄnes BACS as a system that integrates mon-
itoring and control of electrical power, lighting, heating, air conditioning, drainage,
sanitation, disaster prevention, and crime prevention equipment within a building.
The purpose of such a system is to ensure the efficient and safe management and
operation of equipment.

2.2.2 Simulation and Emulation

In this study, we primarily discuss the control systems for communication be-
tween devices and mobile operations within buildings. When discussing the con-
trol systems of smart buildings, we differentiate between simulation and emulation
technologies. Simulation refers to the process of creating a model to imitate the
behavior of a system or process, focusing primarily on the systemŠs functions and
outputs rather than the speciĄc implementation of its internal structure. Emu-
lation, is distinct in that it not only relies on models of the real world, but also
replicates the systemŠs state, behavior, and outcomes, emulating its actual opera-
tion and implementation [15].

In the system we designed, network communication and attack scenarios are
achieved through emulation technology. We have emulated the communication
interactions between devices through an actual network environment to test and
verify the systemŠs performance under real conditions. However, the movement of
the robot and the elevator is done using simulation techniques. In this part, we
focus more on the performance and output of the movement behavior rather than
the details of its internal implementation. By combining simulation and emula-
tion technologies, we can Ćexibly apply the technologies in different application
scenarios to effectively test and optimize the control systems of smart buildings.

2.2.3 Protocol

In the Ąeld of communication for smart buildings, traditional communication pro-
tocols such as BACnet [16], which are used for communication between controllers
and integrated gateways within the building, may have some shortcomings. For
example, they may have limited device support, cause signiĄcant network load, or
make system integration difficult.

Our system employs the MQTT protocol. MQTT is a protocol designed for
many-to-many communications, transmitting messages among multiple devices
through a central broker [17]. The message Publish/Subscribe process, as shown
in Figure 2.1, is based on the publish/subscribe model and provides three levels of
Quality of Service (QoS) to ensure the reliability of message delivery. Considering
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Figure 2.1: Publish/subscribe process utilized by MQTT [17].

devices with limited memory and processing capabilities, MQTT is highly suit-
able for Machine-to-Machine and IoT environments. It is considered one of the
most effective protocols for achieving efficient connectivity and communication,
particularly suitable for applications requiring low bandwidth and high reliability.
Through the Broker, the MQTT protocol can achieve efficient communication be-
tween devices, maintaining stable message delivery even under unstable network
conditions or when device resources are limited.
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Chapter 3

Proposed System

This chapter provides detailed information about the proposed system. Section 3.1
explains the systemŠs main components. Section 3.2 presents a brief introduction to
the systemŠs overall architecture. Section 3.3 describes the different modules within
the systemŠs basic framework and their respective functions. Finally, a comparison
between SBCSE and the original building system is conducted in Section 3.4.

3.1 System Components

SBCSE was designed based on a smart building prototype from a certain construc-
tion company. Figure 3.1 shows the main components of the system: (i) Elevators
(ELV); (ii) Building Operating System (BOS); (iii) Robot Platform (RPF); (iv)
Robots (ROB); (v) MQTT-Broker.

BOS represents the building Şoperating systemŤ that facilitates the collabo-
ration among building equipment, IoT devices, and various applications. RPF
is a robot control platform that enables remote robot control and collaborative
work among multiple robots. MQTT-Broker acts as a middleware agent enabling
communication between different devices and services via the MQTT protocol.

SpeciĄcally, in our system, BOS serves as the buildingŠs operating system, re-
sponsible for message forwarding and centralized management of equipment in the
building. The currently connected device is the elevator. BOS handles the for-
warding of messages exchanged between RPF and the elevator. The main function
of RPF is to control and initiate task commands, acting as an external server to
remotely control the robot. In our system, the communication protocol used is
MQTT, which was introduced in Section 2.2. Message transmission and reception
are achieved through subscription and publishing mechanisms.

The communication relationships among each components are shown in Fig-
ure 3.1. The black double-headed solid arrows represent the publish and subscribe
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Figure 3.1: Component communication in the target smart building system.

connections established between each component and the Broker. The dashed lines
indicate the communication relationships among the components and the Ćow of
messages on various topics. Taking the message forwarded by BOS to ELV as an
example, we can see the orange dotted line with ŞD2EŤ as the topic in the Ągure
passes from BOS publish message to Broker, ELV passes subscribe the topic, Bro-
ker will forward this message to ELV, which completes one communication between
BOS and ELV. The communication relationship for other messages is similar.

For a better view of how components subscribe to message topics, check out
Figures 3.2 and 3.3. The upper half of Figure 3.2 illustrates the message topic
subscriptions between RPF, BOS, and ELV. From top to bottom, this Ągure shows
how messages are forwarded among different processes for the same command. The
lower half of Figure 3.2 focuses on the message topic subscriptions between RPF
and ROB.

In our system, there is also data related to the state of device. SpeciĄcally, the
robot continuously sends its position and status data to RPF. Additionally, the
elevator sends its status data to all components. Figure 3.3 displays the sequence
of message forwarding processes. The Ąrst half of Figure 3.3 shows the forward-
ing process of the elevatorŠs dt data, while the second half shows the forwarding
process of the robotŠs dt data. By examining these Ągures, we can gain a clearer
understanding of the message interactions between the components.

Meanwhile, the network topology of the components in our system is shown in
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Figure 3.2: Command message subscriptions between components.

Figure 3.3: Data message subscriptions between components.
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Figure 3.4: Network topology of the target system components.

Figure 3.4. The Ągure shows the distribution of each component in the system at
the network level. The boundaries between in-building devices and out-of-building
devices are clearly shown in the Ągure. the RPF server provides remote access and
control of the ROB over the Internet. All components have a Publish/Subscribe
relationship with the MQTT broker, which means that all messages are forwarded
through the MQTT broker. The yellow dashed portion represents the communica-
tion relationship established between components. The RPF communicates with
the BOS and ROB, and the RPF does not have a direct communication relation-
ship with the ELV, and the message tasks need to be forwarded through the BOS.
By gaining a comprehensive understanding of the functions of the components and
the connection relationships between them. It is convenient for us to design for
the subsequent test scenarios.

3.2 System Architecture

Based on an in-depth analysis of real building component communication logs and
robot movement logs provided by the construction company, we have designed and
developed an smart building control system emulation platform. The architecture
of this platform is shown in Figure 3.5 and primarily consists of the following
modules: a network communication module, a device motion module (the symbol
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Ś*Š is used to indicate this module was mainly developed by collaborators), an
RPF control protocol module, and other supporting modules. These core modules
provide the foundational simulation framework for each component. The simulator
modules are responsible for simulating the components, while a central manager
oversees the integration and management of all simulators.

Figure 3.5: Overview of the SBCSE architecture.

After simulation ends, the generated log data is saved to a database. Addi-
tionally, we have integrated a cybersecurity attack simulation module to conduct
security testing on the components. To enhance user convenience, we have also
developed a user interface for the platform.

3.3 Fundamental Framework

This section will provide a detailed introduction to the Fundamental Framework
of SBCSE. The modules of the emulator are mainly developed based on Python.

3.3.1 Network Communication Module

This module emulates the communication of real buildings. We use the MQTT
protocol as the foundation and extend it to build our communication module. This
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module is responsible for managing communication protocols, processing related
data, and ensuring smooth communication throughout the system. SpeciĄcally, it
includes components for deĄning and managing communication logic, data mod-
els, and structures. Additionally, the module handles messages between various
components within the system. We have chosen the local Mosquitto broker to
provide efficient and reliable message delivery services.

3.3.2 Device Motion Module

This module, primarily developed by collaborators, is used to deĄne and conĄgure
the motion behaviors of robots and elevators. It supports the creation and man-
agement of instances for these devices. It includes deĄning the motion patterns
and behaviors of robots and elevators, such as robot navigation routes and elevator
movement between Ćoors.

3.3.3 RPF Control Protocol

This module is responsible for controlling the communication protocol of RPF,
which is designed based on the principles of automata theory. In our program,
whenever a task instruction is issued, the completion of that task will follow a
predetermined communication process.

Taking an example where RPF issues a command for the robot to go to the Ąfth
Ćoor for cleaning, the overall communication process of the system is as depicted
in Figure 3.6. Initially, the system sends a command for the robot to wait in front
of the elevator. Once the robot completes this action, RPF sends an ŞinterlockŤ
command to the elevator. The ŞinterlockŤ command serves to switch the elevator
to AGV mode, a dedicated mode that prevents external factors and human inter-
ference, ensuring the safe operation of door opening/closing and Ćoor selection by
the operating system. Through this command, the elevator can smoothly switch
to AGV mode. Since our communication module is controlled by a state machine,
the sequence of command execution is Ąxed, and the system can only proceed to
the next command after the current commandŠs task is completed. That is, only
after the elevator completes the mode switch and returns an Şinterlock successŤ
signal to RPF, will RPF send the next command ŞopenŤ. In this process, BOS is
responsible for forwarding the communication data between the elevator and RPF.

In our system, the RPF control protocolŠs automaton tasks are executed in the
following sequence: GoToElv, GoToElv success, Calling, Calling success, interlock,
interlock success, call, call accept, call arrive, open, open success, GettingOn,
GettingOn success, close, close success, go, go accept, go arrive, open, open success,
GettingOff, GettingOff success, close, close success, interlock, interlock success,
Schedule Work, Schedule Work success. The meanings of these commands are
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Figure 3.6: Communication process of command execution and response.
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shown in Table 3.1. This sequence ensures that the interaction between the robot
and the elevator is both efficient and safe.

To ensure the smooth execution of the entire process, our system also includes
error detection and exception handling mechanisms. If any errors occur or if
there is packet loss at any stage, the system will resend the command. When
the command resending limit is reached, an error signal will be sent, and the
current task will be halted. This design not only enhances the robustness of the
system but also ensures the safety of robot and elevator operations. Through this
Ąnely controlled communication protocol, we can achieve precise command over
the robot and elevator, thereby improving the efficiency and reliability of the entire
system.

Table 3.1: RPF control protocol commands and their
meaning

Command Meaning
\GoToElv Call the robot to wait in front of the elevator.
\GoToElv success Robot successfully arrives.
\interlock Enable or disable AGV mode.
\interlock success Mode switch is successful.
\Calling Send the target Ćoor for the robot.
\Calling success Robot accepts successfully.
\call Call elevator.
\call accept Elevator successfully receives the command.
\call accept Elevator arrives at the Ćoor.
\open Elevator door open command.
\open success Elevator door opens successfully.
\GettingOn Command the robot to enter the elevator.
\GettingOn success Robot successfully enters the elevator.
\close Call close the elevator door.
\close success Elevator door closes successfully.
\go Command to go to the target Ćoor.
\go accept Elevator successfully receives the command.
\go arrive Elevator arrives at the Ćoor.
\GettingOff Command the robot to exit the elevator.
\GettingOff success Robot exits the elevator successfully.
\Schedule Work Call the robot start cleaning task.
\Schedule Work success Robot successfully accepts and begins work.
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3.3.4 Simulator Module

The simulator module is a core component of the system, responsible for integrat-
ing the aforementioned modules to create individual simulators for the ROB, ELV,
RPF and BOS. This simulator allows us to conduct separate operational simula-
tions and tests for various components of the entire system without the need to
deploy actual hardware.

By utilizing the simulator module, we can simulate the robotŠs behavior, in-
cluding its movement, entering and exiting the elevator, and performing cleaning
tasks. For the elevator simulation, we focus primarily on its Ćoor-to-Ćoor move-
ment and the opening and closing of its doors. Additionally, the simulator can
mimic the commands issued by RPF and the responses from the elevator, ensur-
ing the smooth and correct Ćow of communication. This module enables us to test
each component independently, allowing us to identify and resolve potential issues
before actual deployment, thereby reducing risks.

3.3.5 Security Attack Module

The Security Attack Module is designed to assess the security of various compo-
nents within the simulator by simulating a range of cyber-attack scenarios. We
begin by analyzing the risks and impacts that the systemŠs components would
face under real-world conditions, and then design scenarios for several common
types of attacks. These scenarios are subsequently tested within the simulator.
We also propose countermeasures in response to the identiĄed impacts. A detailed
discussion of the attack emulation experiments will be presented in Chapter 5.

3.3.6 User Interface

As shown in Figure 3.7, to enhance user experience, we have developed an intuitive
and user-friendly interface. This interface is built using Python and Kivy, offering
cross-platform compatibility and high performance. Users can easily select the de-
sired protocols, robots, elevators, tasks, and scenarios from the interface, and start
the simulation by clicking the ŞStartŤ button. Once the simulation is complete,
users can click the ŞStopŤ button to view detailed runtime logs in the expandable
area on the right, making it easy to access information at any time. The user
interface features a modular design with clearly deĄned functional areas.

3.3.7 Other Modules

Other modules will not be introduced in detail, but they mainly include the story-
board and some common functions, as well as the deĄnition of log formats and a
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Figure 3.7: SBCSE user interface.

time simulation module.The time simulation module is responsible for controlling
the time within the emulator uniformly. We have set a time acceleration factor,
allowing the creation of accelerated time instances to more effectively control the
simulation time and improve the efficiency of simulation testing.

3.4 Comparison of SBCSE and Real Building Sys-

tem

Although our system was designed and developed based on a smart building pro-
totype from an architectural Ąrm, we modiĄed and adapted the communication
protocols between some of the components during the design process. SpeciĄcally,
we optimized the communication protocols between components to better meet
the needs of our research objectives. For example, some components in the real
building system use the PLC communication protocol, and the building company
indicated that this component would be replaced with the MQTT protocol in the
future. As a result, SBCSE then standardized on the MQTT protocol for com-
munication. These modiĄcations have resulted in some differences between our
system and the original smart building prototype in terms of some features and
performance.

In order to better analyze and discuss these differences, we used both Simu-
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lation and Emulation. In our study, the different modules of the system take on
their respective functions. SBCSE not only replicates the normal communication
and command control between components, but also Ąxes the problems in the
communication of the real building, so that the communication mechanism and
performance of the simulator are closer to the real building environment.

Table 3.2: Feature Comparison: SBCSE vs. Real Building
Feature
Comparison

Details SBCSE Real Building Type

Network
Commu-
nication
Module

ELV & BOS
Components

Interface: API,
Protocol: MQTT, MQTTS

Real industrial
protocols (PLC)

Emulation

BOS & RPF
Components

Interface: API,
Protocol: MQTT, MQTTS

MQTT Emulation

RPF & ROB
Components

Interface: API,
Protocol: MQTT, MQTTS

MQTT Emulation

Device
Motion
Module

Elevator
Simulation of elevator
operation

Physical robot motion
(sensor feedback + motion control)

Simulation

Robot
Simulation of robot
path planning and execution

Physical robot motion
(sensor + motion control)

Simulation

Security
Attack
Module

Attack test MITM, DDoS attack test
Real-world network attack
scenarios

Emulation

Security Mea-
sures

Supports security policy
testing and optimization

Depends on physical
protection and network
security measures)

Emulation

Time
Simulation

Accelerated
Simulation

Adjustable, supports
accelerated operation

Limited by physical network
and device response speed

Emulation

User
Interaction

ConĄguration
File

Supports adjusting simulation
parameters via conĄguration Ąles
(speed, robot, scenario selection)

- -

Code Interface
Supports dynamically adjusting
simulation parameters

- -

User Interface
(UI)

Kivy UI, supports task selection,
log display

- -

Other
Features

Scalability
Easily extendable to add more
devices

Limited by hardware cost and
space constraints

-

Cost Computing resources, low cost
High cost for equipment purchase,
maintenance, energyconsumption

-
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In order to fully evaluate the performance of our system and to gain a deeper
understanding of the similarities and differences between it and real buildings,
we compared our system with real buildings. As shown in Table 3.2, we have
compared and analyzed the simulation and emulation parts of the simulator with
the corresponding parts of the real building system. Through this comparative
analysis, we hope to clearly show the advantages and shortcomings of our system
and provide a strong basis for further optimization and improvement. And it can
help you better understand the functional implementation of different modules of
SBCSE, the communication mechanism and how they work together to reproduce
the behavior of a real building system.
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Chapter 4

System Assessment

In this chapter, we will evaluate the developed system. The focus of the evaluation
is to determine the effectiveness, accuracy, and reliability of the emulator in terms
of emulation. In Section 4.1, we will discuss the methods used for the evalua-
tion, outlining the speciĄc approaches we have chosen to assess the emulator and
providing the rationale for selecting these methods. Additionally, we will explain
how these methods align with the objectives of our evaluation. In Section 4.2, we
will present in detail the results obtained from the various tests and emulations
conducted.

4.1 Evaluation Method

Regarding the evaluation method, we have chosen to analyze and visualize the
log data. The reason for selecting log analysis is that our system is designed and
developed based on logs provided by real buildings. Our goal is to verify whether
the emulator can generate logs that are identical to those of real buildings. The
evaluation steps are as follows:

• Log Data Analysis
First, we analyze the log data generated by the emulator. This includes
checking the structure, content, and format of the logs to ensure they match
the logs provided by real buildings. If there are differences, we will analyze
the reasons, propose corresponding countermeasures for the identiĄed im-
pacts, and modify the program to optimize the performance of the emulator,
making it behave more like the real system.

• Communication Flow Analysis
We analyze the communication Ćow to assess the overall communication
process of the emulator and the communication between its components.
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This includes conĄrming the subscription and publication of topics and the
receipt and transmission of commands.

• Data Visualization
After analysis, we visualize the communication data, which helps to intu-
itively understand the communication between components. Visualization
allows us to more clearly see the differences between the emulator and the
real system.

• Comparative Analysis
Then, we conduct a comparative analysis to compare the communication
Ćows between the actual system and the emulator. This step is crucial as
it directly relates to the accuracy and reliability of the emulator. Our aim
is to ensure that the communication process of the emulator is as close as
possible to that of the actual system to verify its consistency. This step
helps to improve the accuracy and reliability of the emulator and provides a
emulation effect that is very close to the real system.

Through these steps, we can comprehensively evaluate the performance of the
simulator and ensure that it can provide high-quality emulation results, laying a
solid foundation for further development and practical application.

4.2 Assessment Results

This section will discuss the results obtained from the analysis and veriĄcation of
the emulatorŠs logs. All the test results presented in this thesis were performed
on an Apple computer with the macOS 14.1.1 operating system, and a hardware
conĄguration of an 8-core processor and 16 GB memory. The MQTT Broker agent
version used in the communication process was Mosquitto 2.0.18.

4.2.1 Log Data Analysis

We Ąrst conducted a comparative analysis of the logs generated by SBCSE and the
logs provided by the actual building system. Through this process, we conĄrmed
that the structure, content, and format of the emulator logs match those of the
actual building system logs. An example of the communication log format of
SBCSE is shown in Figure 4.1. The communication logs are recorded in JSON
format, with the left side of each record primarily recording the time, and the
header of each message includes the relevant topic and direction of communication.

Compared to the actual building system, our system has made some adjust-
ments. In the real system, the communication protocol between ELV and BOS
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Figure 4.1: Example of the SBCSE log format.

uses PLC, and we were unable to obtain log data for this part. The construction
company has indicated that they plan to replace the PLC protocol with MQTT
in the future. Therefore, in our emulator, the communication between these two
components also uses the MQTT protocol, and the data format has been uniĄed
to ensure consistency with other parts of the system.

4.2.2 Communication Flow Analysis and Data Visualiza-

tion

In Section 3.3, we have already presented the overall communication Ćow of the
system. Figure 3.6 showed the communication process of the system in executing
commands and returning messages after the completion of commands. Where the
vertical coordinates indicate the order of the communication commands, we can
visualize the passing path of the commands among the components in the system
as well as the sequential relationship among the messages.

Here, we analyze the communication Ćow of the system from another perspec-
tive. Figure 4.2 shows the overall communication Ćow of SBCSE after running with
timestamps one the vertical axis. For ease of observation, we reset the timestamp
to the seconds elapsed in the message relative to the previous message. We can
more clearly observe the distribution of each componentŠs communication com-
mand Message in the time dimension, which helps to analyze the timing of the
communication, as well as can provide us with intuitive help when optimizing the
communication performance of the system.

Regarding the steps of the analysis, we Ąrst extracted the main topics related
to the commands, then Ąltered the data for each component, and visualized the
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Figure 4.2: Entire communication Ćow according to SBCSE logs (Timestamp-
Based).
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communication process between the components.
Regarding the visualization of the communication data Ćow, we used a vari-

ety of libraries and tools provided by the Python, which greatly assisted us in
performing an in-depth analysis of the communication log data. The powerful
libraries that already exist in Python, such as Pandas, Matplotlib, and Seaborn
for data manipulation and visualization, allowed us to more intuitively observe
the inter-component communication between components and identify problems.
With these tools, we were able to transform the communication log data into a
graphical representation of the communication relationships between components,
which allowed us to more accurately assess the communication performance of the
simulator as well as help us to compare the simulator data with the real building
data in a more comparable way. Through these analyses, we not only veriĄed
the accuracy of the SBCSE logs, but also enhanced our understanding of the sys-
temŠs communication Ćow, supporting further optimization and improvement of
the system.

4.2.3 Comparative Analysis

In our comparative analysis, we focused on the consistency of communication.
Figure 4.3 shows the comparison of the communication process between BOS and
RPF in our emulator and the actual building system. From the Ągure, we can
conĄrm that the communication process in our emulator matches that of the real
system, ensuring the accuracy of our emulation. The main comparison here is
between the content and the order of the communication commands.

In our evaluation, the accuracy calculation focuses on how well the emulator
matches the command (cmd) data in the real building communication system. We
deĄned the formula for calculating the communication accuracy of the SBCSE.
SpeciĄcally, our evaluation metrics include two main aspects: the order of com-
mands between the sender and receiver, and the consistency of the cmd message.
There are cmd data and dt data in our system, here we are evaluating the cmd
messages. The number of correctly matched messages is the number of messages in
the emulator and in the actual system where the content and order of the messages
related to cmd are exactly the same. The total number of messages is the total
number of all cmd-related messages sent by the sender during the communication
process.

In Figures 4.4 and 4.5 we compare the communication Ćow between SBCSE
and the actual building system regarding the components BOS and RPF, using the
timestamp as the vertical coordinate for the timing of the communication of the
commands. As can be seen in those Ągures, the contents of the messages coincide,
although there are some differences in the processing time. Since the communi-
cation protocols between some components in our system are different from the
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Figure 4.3: Communication Ćow in the real building versus the SBCSE log.
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real system, such as the forwarding of MQTT protocol and the algorithm of the
systemŠs acknowledgment mechanism for the messages will lead to the difference
in the message timing.

Given that network latency, processing time, and other factors in the actual
system may lead to differences in the sending and receiving times of messages, and
given that we extend some of the communications, we exclude the consistency of
timestamps in the calculation of the accuracy rate and focus only on the order of
communication messages. We deĄne the system accuracy rate calculation formula
as follows:

Accuracy =
Number of correctly matched messages

Total number of messages
× 100% (4.1)

Average match rate =

∑
n

i=1
Accuracy

i

n

(4.2)

We repeated the experiment 30 times using the emulator, thus ensuring the
accuracy of our results. For the cmd data between BOS and RPF, the accuracy
was calculated separately for each time according to the deĄned formula. Finally,
the average value was calculated to give 100% accuracy for the communication
Ćow between BOS and RPF.

Furthermore, due to the limited log data available for the robot, we expanded
the communication design between the ROB and RPF based on the existing logs.
Subsequently, we compared and visualized the communication results with the
data provided by the actual building system. As shown in Figures 4.6 and 4.7, we
achieved consistency in the communication between the ROB and RPF, proving
the effectiveness of our design.

4.2.4 Summary and Discussion

We have validated the practicality of SBCSE via several experiments. The com-
parative results indicate that we have successfully replicated the communication
processes of the real system, conĄrming the utility and accuracy of the emulator
in real testing environments. These Ąndings suggest that our emulator is reliable
for testing in real environments. The responses to various inputs are also within
normal standards, which is crucial for ensuring that the emulator can accurately
predict the behavior of the actual system under different conditions.

By conducting this comparative analysis, we have not only conĄrmed the reli-
ability of the emulator but also gained a deeper understanding of its performance
in emulating real scenarios. This is particularly important for pre-testing system
updates or changes in a controlled environment before implementing them in the
actual building system. The ability to predict and analyze potential issues in a
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Figure 4.4: Communication Ćow log in SBCSE based on timestamp.
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Figure 4.5: Communication Ćow log in the real building based on timestamp.

31



Figure 4.6: ROB-related communication Ćow in the SBCSE log.
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Figure 4.7: ROB-related communication Ćow in the real building log.
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Figure 4.8: CMD message time interval comparison for various emulation speeds

emulated environment can save time and resources, reducing the risk of system
failures or downtime in actual operations.

At the same time, the following can be said regarding the current shortcomings
of the emulator. In terms of the emulatorŠs accelerated performance, our system
can emulate at a multiple speed, which can effectively save emulation time. We
conducted several experiments on the emulation of different rates, and the exper-
imental results are shown in Figure 4.8. From the Ągure, it can be observed that
during the emulation process at a speed below 10 times, the response time and
delay of each message are basically stable, and there is no packet loss. However,
when the emulation speed exceeds 10 times, the reply time of messages begins to
become unstable. In response to this issue, we will conduct in-depth discussions
and improvements in our future research to further enhance the performance and
stability of the emulator.
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Chapter 5

Attack Scenarios and Proposed
Security Measures

In this chapter, we will explore the experimental design for security testing on
SBCSE and the organization of security measures. The designs of these security
scenarios are all implemented in the Security Attack Module. In Section 5.1, we
will detail the security analysis conducted on various components of the emulator,
which forms the basis for our security testing. In Section 5.2, I will introduce the
security attack scenarios designed for the high-level risks that our components may
face. Finally, in Section 5.3, we will provide an overview of the relevant security
measures.

5.1 Risk Analysis

Before implementing the attack scenarios, we Ąrst conduct a comprehensive risk
analysis. The speciĄc steps are as follows:

• Step 1: Component Analysis

In this stage, we conduct analysis of the functionality of each component,
as well as the data they store and process, and their roles within the overall
architecture. We conduct a detailed review of each component to identify
their security requirements and potential vulnerabilities.

We have compiled Table 5.1, which serves as the foundation for our analysis.
This chart helps us to better understand the structure of the system and
the interactions between components, thereby providing a solid basis for
subsequent risk assessment and security testing.

• Step 2: Risk Categorization
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Table 5.1: System component functionality analysis
Component Function Stored or Processed Data

MQTT

Broker

Relay messages,
Manage device communication

Publish/subscribe message,
Device status information

BOS
Data transfer,
Control of devices in the building

Control commands,
Elevator status data

RPF
Robot control
and command transmission

Robot control commands,
Task allocation,
Commands to the elevator

ROB
Cleaning,
Data transmission (robot dt)

Position data,
Operation status data

ELV
Movement between Ćoors,
Data transmission (dt data)

Floor status,
Operation status data

In this step, we refer to [18] to categorize the components using labels to
facilitate subsequent risk classiĄcation and management.

The risk categories for the MQTT Broker mainly fall under the Server/ Pro-
tocol/ Information category, which covers risks at the server and protocol
levels. Secondly, the risks for parts BOS and RPF are primarily concen-
trated in the areas of operating systems, software, and information security.
Furthermore, the risk classiĄcation for the ROB involves the Internet of
Things device information, intelligent robots, and the Ąeld layer where they
are located. Lastly, the risk category for the ELV mainly encompasses the
Internet of Things device information and the Ąeld layer where the elevator
is situated.

• Step 3: Attack Impact Analysis

In this step, we categorized and assessed the risks associated with each com-
ponent to determine potential vulnerabilities.

First, as shown in Table 5.2, we have referenced the standards and guide-
lines [19, 18, 20] to classify and organize the Threats and Risk Sources/In-
cidents that smart building systems are faced with. Then, in Table 5.3, we
evaluated several components of the system, linking them to the tags and
risk categories established in the previous steps. For each component, we
compiled an Attack Surface for Components. The symbols used in this table
are:

1. Ş+Ť indicates a high likelihood of risks occurring in the system.

2. Ş-Ť denotes components that are generally not prone to risks.
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3. Ş±Ť represents cases where risks may occur but are minimal; such cases
are excluded from this study.

• Step 4: Threat Analysis and Scenario Design

In this stage, we analyze the potential impacts and associated threats to
each component based on the risk categories established in Step 3. We
have summarizes the impact scope, impact explanation, and examples of
attack scenarios, and clearly marks the impact of different attack scenar-
ios. Table 5.4 summarizes the security event impact analysis of ELV/BOS,
Table 5.5 presents the security event impact analysis of RPF/ROB, and Ta-
ble 5.6 summarizes the security event impact analysis of MQTT-Broker.

Referring to [19], we identiĄed Ąve scenarios that have signiĄcant impacts
on system components, namely:

1. Attacks on information transmitted over the network (man-in-the-middle
(MITM) attack)

2. Distributed Denial-of-Service (DDoS) attacks using IoT botnets

3. Attacks related to Broken Access Control (Unauthorized Access)

4. Attacks involving malware

5. Attacks based on human error and social engineering techniques

In Tables 5.4, 5.5 and 5.6 we abbreviated the names of these attacks with
labels, as follows: ŞMITMŤ stands for Man-in-the-middle attack, ŞDDoSŤ
stands for Distributed Denial-of-Service, ŞBACŤ stands for Broken Access
Control, ŞMAŤ stands for malware, and ŞSEAŤ stands for social engineering
attack. In the next step, we will design the corresponding attack scenarios
and experimentally implement these scenarios.
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Table 5.2: Threats and risk sources for smart building systems
Type Threat Risk Sources/Incident

Nefarious
activity /
Abuse

Denial of Service DoS/DDoS attacks cause service disruptions
and affect system availability.

Malware

1. Malware infections occurring in part of the
building system easily spread through the
buildingŠs internal network.
2. Unauthorized devices are connected,
and malware is introduced.

Manipulation of hard-
ware /software

Unauthorized modiĄcations to hardware and
software can lead to system failures or data
breaches.

Manipulation of In-
formation / Unautho-
rized access

1. Broken Access Control
2. Unauthorized access or data tampering.

Gathering system
information from
intruders

Easy access to log information allows intruders
to examine the logs and launch attacks.

Targeted attacks
1. Injection (SQL Injection),
2. Server-Side Request Forgery

Abuse of personal
data

Cryptographic failures can lead to personal data
breaches.

Brute force Brute Force Attack can result in account com-
promise.

Eavesdrop
/Inter-
ception
/Hijack-
ing

Man-in-the-Middle at-
tack /Session hijack-
ing

Executing unauthorized commands can cause
improper behavior.

IoT communication
protocol hijacking

Attackers intercept or tamper with communica-
tion between IoT devices and send unauthorized
commands.

Network reconnais-
sance

Attackers collect information within the net-
work and steal conĄdential or authentication
data.

Physical
attack

Vandalism and theft Destroying or stealing physical equipment or de-
vices can impact the systemŠs availability and
the conĄdentiality of data.

Sabotage Disrupting the normal operation of services or
systems can cause chaos within the system.
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TYPE THREAT Risk Sources/Incident

Fault
/mal-
function
/outage

Failure or malfunction
of a sensor / actuator

Causing disruption to the normal operation of
the system.

Failure or malfunction
of a control system
(PLC, RTU, DCS)

Failures or malfunctions in the control system
can impact process control, threatening the
overall safety and availability of the system.

Software vulnerabili-
ties exploitation

Security MisconĄguration

Delayed countermea-
sures result from diffi-
culty analyzing unau-
thorized intrusions

Logs are not properly collected, making it dif-
Ącult to analyze the situation of intrusions or
infections.

Failure or disruption
of service providers

The lack of proper backup data hinders recovery
efforts in the event of damage to the system.

Communication net-
work outage

The communication network between systems is
interrupted, making services and data unavail-
able.

Power supply outage The system stops, and services or data become
unavailable.

Loss support services
(MES, ERP, CRM)

Delayed system management, monitoring, and
troubleshooting can lead to service outages and
data loss.

Company/
Personnel
manage-
ment

Building management
company lacks ade-
quate staff training

Delayed initial response to the attack can lead
to the escalation of damage.

Unintentional data or
conĄguration changes
in the system

Security and performance issues arise.

Attacked by inside
workers, etc.

Designated workers perform unauthorized op-
erations on systems or devices beyond their au-
thority.

Improper use or care
of equipment or sys-
tems

Emergency response procedures are not ade-
quately established within the operational stan-
dards.
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TYPE THREAT Risk Sources/Incident

Legal
Violation of rules and
regulations / Breach
of legislation / Abuse
of personal data

Non-compliance with laws and regulations,
unauthorized access to or misuse of personal
data, may lead to legal issues and personal in-
formation leaks.

Failure to meet con-
tractual requirements

Violations of contractual terms can result in is-
sues with service delivery or data management,
leading to legal disputes or service interrup-
tions.

Outage
/Disaster

Natural disasters Natural disasters (such as earthquakes or
Ćoods) can destroy systems and data, causing
service disruptions and delays in recovery.

Environmental disas-
ters

Environmental disasters (such as Ąres or chem-
ical spills) can result in system and data loss,
causing service disruptions and environmental
impact.

Secure
SDLC,
SDL /
imit
conĄgu-
ration

Insecure Design Vulnerable and Outdated Components
Authentication IdentiĄcation and Authentication Failures
Damage caused by
third parties

Attacks by third-party organizations or miscon-
duct by service providers can compromise the
system and data, leading to service disruptions.

The log recording
failed or is missing

Security Logging and Monitoring Failures
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Table 5.3: Attack surface for SBCSE
TYPE THREAT Broker BOS RPF ROB ELV Reference

Nefarious
activity /
Abuse

Denial of Service + + + ± ± [19] [18] [20]
Malware + + + + + [19] [18]
Manipulation of hard-
ware /software

+ + + + + [19] [18]

Manipulation of In-
formation / Unautho-
rized access

+ + + + + [19] [18] [20]

Gathering system
information from
intruders

- + + + + [18]

Targeted attacks + + + ± ± [19] [18] [20]
Abuse of personal
data

- - - - - [19] [18] [20]

Brute force + - + - - [19] [18]
Eavesdrop
/Inter-
ception
/Hijack-
ing

Man-in-the-Middle at-
tack /Session hijack-
ing

+ + + ± ± [19] [18] [20]

IoT communication
protocol hijacking

+ + + ± ± [19] [18] [20]

Network reconnais-
sance

+ + + + + [19] [18]

Fault
/mal-
function
/outage

Failure or malfunction
of a sensor / actuator

± ± ± + + [19] [18]

Failure or malfunction
of a control system
(PLC, RTU, DCS)

- - - - - [19] [18]

Software vulnerabili-
ties exploitation

± ± ± + + [19] [18] [20]

Delayed countermea-
sures result from diffi-
culty analyzing unau-
thorized intrusions

+ + + + + [18]

Failure or disruption
of service providers

± ± + + + [19] [18]

Communication net-
work outage

+ + + ± ± [19] [18]

Power supply outage ± ± ± + + [19] [18]
Loss support services
(MES, ERP, CRM)

- - - - - [19] [18]
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TYPE THREAT Broker BOS RPF ROB ELV Reference

Physical
attack

Vandalism and theft ± ± ± + + [19] [18]
Sabotage ± ± ± + + [19] [18]

Company/
Person-
nel
/manage-
ment

Building management
company lacks ade-
quate staff training

- - - - - [18]

Unintentional data or
conĄguration changes
in the system

± ± ± + + [19] [18]

Attacked by inside
workers, etc.

+ + + + + [18]

Improper use or care
of equipment or sys-
tems

± + + + + [19] [18]

Legal
Violation of rules and
regulations /Breach of
legislation /Abuse of
personal data

- - - - - [19] [18]

Failure to meet con-
tractual requirements

- - - - - [19] [18]

Outage/
Disaster

Natural disasters + + + + + [19] [18]
Environmental disas-
ters

+ + + + + [19] [18]

Secure
SDLC
SDL/
imit
conĄgu-
ration

Insecure Design + + + ± ± [18] [20]
Authentication + + + - - [20]
Damage caused by
third parties

± - + + + [19] [18]

The log recording
failed or is missing

- + + + + [20]
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Table 5.4: Security incident impact analysis for ELV/BOS
CIA Triad Scope of Impact Impact Description Attack

ConĄdentiality/
Integrity

Data tampering
Elevator status data is tampered,
showing normal but with actual faults.

- MITM
- BAC
- MA
- SEA

Backdoor implanta-
tion

Attacker implants a backdoor,
continuously monitoring and
altering system data.

- BAC
- MA
- SEA

System log tampering

Attacker manipulates system logs to
cover their activities or
mislead investigators,
preventing detection of data breaches.

- BAC
- MA
- SEA

System conĄguration
errors

Malicious modiĄcation of system conĄguration
leads to performance degradation
or functionality failure.

- MA
- SEA

Erroneous Operation
Guidelines

Attacker misguides maintenance personnel
or admins into performing unsafe
or incorrect actions.

- SEA

Availability

System Downtime and
Misoperation

Attacker alters commands,
causing the elevator to stop at
non-designated Ćoors.

- MITM
- BAC
- DDoS
- MA
- SEA

Frequent elevator
restarts and
resource exhaustion

Elevator repeatedly opens/closes doors
and restarts due to incorrect commands,
eventually stopping.

- MITM
- BAC
- DDoS
- MA
- SEA

Unmanned operation
Elevator starts abnormally when not in use,
wasting energy and
potentially creating safety risks.

- MITM
- BAC
- MA
- SEA

Emergency Response
Failure

In speciĄc cases,
the elevator is ordered to shut down,
preventing timely evacuation.

- MITM
- BAC
- DDoS
- MA
- SEA

Operation
and man-
agement

Equipment Mainte-
nance and Replace-
ment

Frequent misoperations result in the need for
frequent repairs or replacements.

- MITM
- BAC
- DDoS
- MA
- SEA

Business Interruption
and Delays

Elevator downtime causes business
interruptions.

- MITM
- BAC
- DDoS
- MA
- SEA

Compliance Non-compliance
System fails to meet safety standards, leading
to regulatory investigations and penalties.

-
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Table 5.5: Security incident impact analysis for RPF/ROB
CIA Triad Scope of Impact Impact Description Attack

ConĄdentiality/
Integrity

Data tampering
The robotŠs status data is tampered with,
appearing normal but actually malfunctioning.

- MITM
- BAC
- MA
- SEA

Backdoor implanta-
tion

The attacker implants a backdoor,
continuously monitoring and
tampering with system data.

- BAC
- MA
- SEA

System log tampering
The attacker modiĄes system logs
to cover their activities or mislead investigators.

- BAC
- MA
- SEA

System conĄguration
errors

The attacker alters system conĄgurations,
causing performance degradation
or partial failure during high load.

- MA
- SEA

Erroneous Operation
Guidelines

The attacker misleads maintenance staff
or administrators into performing unsafe
or incorrect actions.

- SEA

Availability

System Downtime and
Misoperation

The robot receives tampered path instructions,
which could lead to wrong delivery routes.

- MITM
- BAC
- DDoS
- MA
- SEA

Physical collision
and damage

Incorrect instructions could cause the
robot to collide with people or objects,
resulting in physical damage or injury.

- MITM
- BAC
- SEA

Frequent restarts
The robot frequently restarts
due to incorrect instructions,
eventually ceasing operation.

- MITM
- BAC
- DDoS
- MA
- SEA

Unmanned operation
The robot starts abnormally without supervision,
wasting energy and
potentially creating safety risks.

- MITM
- BAC
- MA
- SEA

Emergency Response
Failure

In emergencies,
the robot fails to stop
or avoid hazards as expected,
increasing risks.

- MITM
- BAC
- DDoS
- MA
- SEA

Operation
and man-
agement

Equipment Mainte-
nance and Replace-
ment

Frequent misoperations result in the need for
frequent repairs or replacements.

- MITM
- BAC
- DDoS
- MA
- SEA

Business Interruption
and Delays

Robot downtime causes business
interruptions.

- MITM
- BAC
- DDoS
- MA
- SEA

Compliance Non-compliance
System fails to meet safety standards, leading
to regulatory investigations and penalties.

-
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Table 5.6: Security incident impact analysis for MQTT-Broker
CIA Triad Scope of Impact Impact Description Attack

ConĄdentiality/
Integrity

Data leakage
The attacker obtains sensitive business data
through the attack,
causing a risk of data leakage.

- BAC
- MA
- SEA

Privilege leakage
The attacker exploits vulnerabilities
to gain system administrative privileges,
thereby taking full control of the system.

- BAC
- MA
- SEA

Log leakage
The attacker acquires system operation logs
to analyze the systemŠs performance
and potential security vulnerabilities.

- BAC
- MA
- SEA

Backdoor implanta-
tion

The attacker implants a backdoor in
the data platform,
continuously monitoring and
tampering with communication
between the MQTT-Broker and RPF.

- BAC
- MA
- SEA

Data tampering

The attacker alters communication
from BEP to the MQTT-Broker,
causing the robot to receive
incorrect instructions.

- MITM
- BAC
- MA
- SEA

Security policy failure

The attacker disables the security policies
in the data platform,
allowing data to be transmitted
without veriĄcation or authorization.

- BAC
- SEA

Availability
Data loss or delay

The attacker causes data loss
in the data platformŠs transmission,
leading to incomplete business data.

- DDoS

System stoppage /In-
correct operations

The attacker overloads the data
platformŠs processing load,
causing the system to crash.

- DDoS

5.2 Attack Scenarios

In this section, we will introduce the attack scenarios designed for our system
components, including the basic steps of the attacks and a brief introduction to
each attack. Our scenario design focuses primarily on attack mechanisms and
attack steps without delving into the network topology level. Therefore, network
devices such as routers and converters are omitted from the Ągure.

5.2.1 MITM Attack Scenario

This section presents the MITM attack scenarios designed for the emulator. Man-
in-the-middle attack is a type of network attack where an attacker secretly inter-
cepts and manipulates information between two communicating parties [21]. The
entry point of the attacker is the access point used by the attacker to intercept and
manipulate the communication data, this can be a router, server, device equipped
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Figure 5.1: MITM attack scenario overview.

with a wireless card, etc. We have organized several common MITM attacks with
reference to [22, 23, 24], and attackers generally use the following methods to
implement the attacks:

1. Network ConĄguration Vulnerabilities and Other Rogue Access Points: At-
tackers can maliciously insert into communication paths by exploiting vul-
nerabilities in network conĄgurations such as unencrypted Wi-Fi networks
or cache vulnerabilities.

2. Network SpooĄng: Attacks can be made by forging packets in network pro-
tocols so that the target device has a false perception of the attacker as a
trusted device. Such as ARP SpooĄng and DNS SpooĄng, mDNS SpooĄng
and so on.

3. Exploit the vulnerability of the protocol: exploit the vulnerability of the
communication protocol to attack. Such as brute force breaking WPA and
WPA2, SSL/TLS degradation attacks.

4. Utilization of malware: Attackers can use phishing emails or malicious links
to induce administrators to divulge sensitive information, or use malware to
infect clients and gain access.

For SBCSE we have designed MITM attack scenarios. As shown in Figure 5.1,
the components of our design that are susceptible to eavesdropping by attackers
are BOS and RPF. The attack steps are shown below:
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• Step 1: Information Gathering
Collect information about the target systems (BOS/RPF) and the commu-
nication protocols used by the broker to identify potential vulnerabilities.

• Step 2: Initial Positioning
Position the device controlled by the attacker within the communication path
between the BOS/RPF and the MQTT broker.

• Step 3: Interception
Intercept and capture the communication between the BOS/RPF and the
broker.

• Step 4: Manipulation
Manipulate the intercepted communication to alter the behavior of the ele-
vator and robot.

• Step 5: ExĄltration
Extract sensitive data from the intercepted communication.

• Step 6: Clearing Traces
Remove all malicious software and clean system logs to hide the evidence of
the attack.

5.2.2 DDoS Attack Scenario

This section will introduce a Distributed Denial of Service attack scenario de-
signed for emulators. DDoS refers to the act where attackers send a large volume
of requests or consume a signiĄcant amount of resources to a target system in a
distributed manner, thereby rendering the system unable to provide services nor-
mally [25]. The attacker can utilize the public APIs exposed by the system to
send a large number of malicious requests, causing the system to be unable to ef-
fectively handle the out-of-scope highly concurrent requests and eventually service
interruption. We refer to [26, 27] to summarize the attacks. The common attack
methods are as follows:

1. Traffic-based attacks: Attackers use to send malicious traffic requests to
exhaust server resources to make the service stop. Such as UDP Ćoods and
other spoofed-packet Ćoods and so on.

2. Application-layer attacks: Attackers can take advantage of fewer requests
to paralyze an application. Attackers can target Apache, Windows vul-
nerabilities for low-speed and slow-speed attacks to crash the Web server.
Application layer protocol weaknesses can be utilized to attack and exhaust
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Figure 5.2: DDoS attack scenario overview.

server resources. Application layer attacks include: Session FloodingRequest
Flooding Attack, Slow Request/Response Attack, etc.

3. Protocol-based attacks: Attacks that consume actual server resources or
intermediate communication equipment resources, such as SYN Ćoods, frag-
mented packet attacks, etc.

In our system, as shown in Figure 5.2, I have designed attack scenarios for
our components. Attackers can create multiple Bot machines to send a large
number of requests to the MQTT-Broker or BOS and RPF, thereby preventing the
system from communicating normally and affecting the message exchange between
components. Attackers typically need to go through the following steps to carry
out an attack:

• Step 1: Reconnaissance
Gather information about the target, including IP addresses, domain names,
server types, and potential vulnerabilities.

• Step 2: Botnet Recruitment
Compromise multiple devices to form a botnet, which can be used to generate
traffic against the target.

• Step 3: Command and Control Setup
Establish a command and control server to coordinate the botnetŠs activities.

• Step 4: Attack Launch
Launch the DDoS attack to overwhelm the target server with traffic.
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5.2.3 BAC Attack Scenario

This section will introduce BAC attack scenarios designed for emulator. Broken
Access Control refers to the act that An attacker can bypass authorization and
perform tasks as a legitimate user, allowing unauthorized users to access, modify,
or delete data to which they are not entitled [28]. Attacker can use improper access
mechanisms to gain illegal control over the system. The core issue of BAC is the
failure to properly restrict user access permissions when the system is developed
or conĄgured.

The access point for attackers is typically the part of the target system where
access control has not been correctly implemented or veriĄed. Attackers can ex-
ploit misconĄgurations, vulnerabilities, or unprotected API endpoints to bypass
authentication for controlled access to the system. We refer to [28, 29] for a compi-
lation of several common BAC attacks, which are typically exploited by attackers
in the following ways: unauthorized access attacks. SpeciĄcally, Broken Access
Control includes the following common types of attacks:

1. Exploiting endpoints: Attackers can exploit unprotected endpoints to bypass
access controls, such as application-system interaction points, application-
trusted services, APIs, and so on.

2. Privilege escalation: Attackers can gain access to ordinary users by changing
URL parameters, weak passwords, etc., and then gain access to administra-
tors or users with higher privileges horizontally or vertically to carry out
malicious activities.

3. Exploiting vulnerabilities: By exploiting vulnerabilities such as Insecure Di-
rect Object References (IDOR), attackers can guess the direct references of
internal objects, brute force them, and bypass access controls.

In our system, as shown in Figure 5.3, we have designed attack scenarios for
components. Among our components, BOS and RPF are vulnerable to unautho-
rized access by attackers. With unauthorized access to the system, the attacker
can manipulate the system, which may cause some physical damage. An attacker
usually needs to go through the following steps to carry out the attack:

• Step 1. Information Gathering
Collect detailed information about the target systems BOS, RPF and MQTT-
Broker to identify potential vulnerabilities and entry points.

• Step 2. Initial Access
Gain initial access to MQTT-Broker.
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Figure 5.3: BAC attack scenario overview.

• Step 3. Lateral Movement
Expand control within the network by moving laterally to BOS or RPF and
infecting additional controllers.

• Step 4. Privilege Escalation Gain administrator-level access.

• Step 5. Malicious Activities Sends commands to elevator or robot execute
Malicious Activity.

• Step 6. Clear Traces Removes all malicious software and cleans the system
logs to hide the evidence of the attack.

5.2.4 Malware Attack Scenario

This section introduces malware attack scenarios designed for the simulator, fo-
cusing primarily on ransomware attacks. Ransomware is a type of malware that
extorts money from its victims by encrypting the userŠs data or locking the userŠs
system, sensitive data, or device and demanding a ransom to decrypt the data or
unlock the system [30].

Ransomware includes both encrypted and non-encrypted ransomware, and the
ultimate goal of the attackers is basically to obtain ransom. This is prone to cause
great Ąnancial losses for the victim users or enterprises. We refer to [30, 31] to
organize the common attack methods, the attacker usually through the following
ways to attack:

1. Phishing emails: Attackers install ransomware on the target system by send-
ing phishing emails, which usually come with malicious attachments or links
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Figure 5.4: Malware attack scenario overview.

to trick victims into clicking on them.

2. Exploitation of vulnerabilities: Attackers exploit known or unknown software
vulnerabilities to inject malicious code or implant malicious ransomware into
the target system.

3. Malvertising: Attackers can spread ransomware on unsecured websites or ad
networks, and the ransomware automatically downloads or executes in the
background when users unknowingly visit these sites.

4. Bypassing Multi Factor Authentication: Attacker bypasses authentication
by stealing and exploiting user credentials to compromise a userŠs system for
malicious purposes.

In our system, as shown in Figure 5.4, I have designed a malware-based attack
scenario, with ransomware as the core method. After gaining initial access, at-
tackers can extend their control over the network by infecting other controllers to
perform malicious activities, such as encrypting critical data or locking down sys-
tem functions, forcing victims to restore their systems only after paying a ransom.
Attackers typically need to go through the following steps to carry out an attack:

• Step 1. Information Gathering
Collect information about the target systems and identify potential vulner-
abilities.

• Step 2. Initial access and foothold
After exploiting RPF and gaining access, then establish a foothold by using
a remote-access tool.
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• Step 3. Privilege Escalation
Gain administrator-level access.

• Step 4. Lateral Movement
Expand control within the network by moving laterally to BOS and infecting
additional controllers.

• Step 5. Malicious Activities
Execute Malicious Activity.

5.2.5 Social Engineering Attack Scenario

This section we will introduce an attack scenario designed for emulator based on
human error and social engineering. Human error and social engineering refer to
an attackerŠs ability to gain trust by exploiting human weaknesses, psychological
manipulation, and other deceptive means to allow the target person to disclose
sensitive information leading to security breaches or data leakage. Social engi-
neering can bypass Ąrewalls, intrusion detection, etc. to gain human trust and
manipulate psychologically [32]. The core problem of this attack lies in the secu-
rity issues caused by improper operation, misconĄguration or carelessness. People
are often susceptible to psychological factors such as trust, curiosity, or fear, and
inadvertently assist attackers in causing damage to systems. Common tactics used
by attackers usually include the following:

1. Phishing attacks: Attackers can use phishing emails or malicious advertise-
ments to lure people into clicking on malicious links or attachments, thereby
stealing login credentials or other sensitive information.

2. Insider threat: An attacker can exploit the greed or dissatisfaction of an
insider of the target of the attack to induce the insider to leak information.

3. MisconĄguration: An attacker can induce a user to misconĄgure the system,
resulting in a security breach.

4. Exploitation of trust vulnerabilities: attackers can impersonate technical or
maintenance to gain the trust of the target of the attack to obtain internal
privileges.

In our system, as shown in Figure 5.5, we designed a social engineering at-
tack scenario. After gathering information about individuals and the company,
the attacker gains access to an employeeŠs PC through a carefully crafted scam.
Subsequently, the attacker performs lateral movement to infect other controllers,
expanding control within the network and executing malicious activities, such as
taking control of the robots via control over RPF.
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Figure 5.5: Social engineering attack scenario overview.

• Step 1. Information Gathering
Collect information about the target individuals or organization to identify
potential vulnerabilities.

• Step 2. Reconnaissance
Gather information about personal,professional and company.

• Step 3. Exploitation
Perform speciĄc attacks to obtain sensitive information or access.

• Step 4. Lateral Movement
Expand control within the network by moving laterally to RPF and infecting
additional controllers.

• Step 5. Data Breach
Steal sensitive data from organization.

• Step 6. Clear Traces
Removes all malicious software and cleans the system logs to hide the evi-
dence of the attack.

5.3 Security Measures

The smart building and Internet of Things (IoT) device interaction also brings
more vulnerabilities to the smart building. Attackers tend to attack smart build-
ings through these potential threats, resulting in a signiĄcant risk to the system.
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In order to effectively address these challenges, this section discusses a series of se-
curity measures. We refer to the literature [19, 18, 33, 34, 35] and focus speciĄcally
on the security of infrastructure and IoT devices in the smart building domain. We
have classiĄed and analyzed security measures, adopting a classiĄcation method
similar to Table 5.6. In Table 5.7, we use the CIA (ConĄdentiality, Integrity,
Availability) framework to categorize threats and and organize the corresponding
security measures.

Regarding the use of the table, we need to refer to Tables 5.4, 5.5 and 5.6 where
we can see what kind of impact the corresponding attack will face, and then we
can Ąnd the security measure corresponding to this impact against Table 5.7. For
example, if the system encounters a MITM attack, we can refer to Table 5.4 to Ąnd
the corresponding Scope of Impact, one of which is Impact is Data tampering, and
then we can Ąnd the same Data tampering label under Threats in the Counter-
measures Table, and there are corresponding Security measures in the last column
of the same row. One of the methods is Encryption of transfer channels, which is
the countermeasure implemented in the MITM attack that we will discuss in later
chapters. The query for the countermeasures for the other attacks and impacts is
the same.

In the later sections, we will conduct experiments on attack testing and coun-
termeasure validation in the simulator to ensure the effectiveness of these measures.
By implementing these countermeasures, we aim to enhance the overall security
proĄle of IoT devices in smart buildings and protect them from potential threats.
These measures not only include protection at the technical level, but also involve
aspects such as security management and personnel training. By synthesizing
these measures, we can build a more secure, reliable and resilient smart building
environment.
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Table 5.7: Analysis of possible security measures for cybersecurity threats
ClassiĄcation Threats Details Security measures

ConĄdentiality
/
Integrity

Data leak/
Information
leak

Attacks can obtain
sensitive data,
posing a risk of
data leakage

1. Data encryption
2. Implement data access controls
3. Introduce data breach detection
and response systems (DLP)
For highly conĄdential data,
implement encryption and
key management to ensure only authorized
users can access the information.

Privilege
leakage

The attacker gains
system administrator
privileges through
a vulnerability and
then takes complete
control of the system.

1. Regular vulnerability scanning and patching
2. Multi-factor authentication (MFA)
- Implement options like Apple Touch ID,
security tokens
3. Enforce the principle of least privilege for access
4. Monitor and audit the use of privileges

Log leak

Obtain system
operation logs and
analyze the systemŠs
operational status and
potential security
vulnerabilities.

1. Encrypt logs
2. Implement log access controls
3. Perform de-identiĄcation of sensitive log data
4. Conduct regular log audits
- Adopt a Privileged Access Management (PAM)
solution to manage elevated privileges
administrator rights.

Data tam-
pering

ElevatorŠs, robotŠs
status data has been
tampered with

1. Encryption of transfer channels
- DeĄne data exchange channels between devices
and ensure system owners securely accept them.
2. Encryption of data in transit
- Monitor production data both in storage
and in transit to identify potential
unauthorized modiĄcations.
3. Use of digital signatures (non-repudiation)
4. Implementation of monitoring and
detection systems
- Establish a baseline and monitor for anomalies
and compliance with that standard.

Embedding a
backdoor

Plants a backdoor,
enabling continuous
monitoring and
tampering of system
data.

1. Regular system scans
2. Detection and removal of backdoors
- Implement software signing/
checksum management.
3. Strengthen access controls
4. Establish conĄguration baselines
across business systems
- Harden systems by removing unnecessary
administrator accounts and closing unnecessary
public-facing ports.
- Verify integrity based on a root of trust,
digital signatures, and embedded identiĄers
to ensure manufactured devicesŠ integrity
is assessed and veriĄed.
- To maintain system manageability, limit the
number of protocols implemented within speciĄc
environments, and disable all unused default
network services.
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ClassiĄcation Threats Details Security measures

ConĄdentiality
/
Integrity

Tampering
with system
logs

The attacker tampers
with system logs to
hide their activities or
mislead investigators,
ensuring no trace of
data leakage is
discovered

1.Log monitoring and tampering detection
- Protect data in use and during transfer.
2. Regular log audits
- Protection of data at rest can be achieved
through access control and authentication
requirements. For critical data, the implementation
of encryption algorithms is recommended.

System con-
Ąguration er-
rors

Malicious changes to
system settings result
in degraded system
performance or
loss of functionality

1. Monitoring system conĄguration
2. Implementation of change management processes
3. Implementation of conĄguration management
- Change default passwords and usernames during
trial runs or initial use.
- Include information such as IP addresses, physical
locations, hosts, current Ąrmware/OS versions,
and used communication protocols.
4. Availability management processes
5. Backup settings and recovery plans
- Ensure the continuity of system operations by
creating a Business Continuity Plan (BCP) and
Disaster Recovery Plan (DRP)
to address security issues.
6. Regular review of access permissions
- Periodically review access permissions and
promptly remove access rights after employees
transfer or leave the company

Incorrect
operational
guidance

Misleading
maintenance personnel
to perform unsafe or
incorrect operations

1. Education for maintenance personnel
(security training and awareness enhancement)
- Conduct cybersecurity training for employees.
2. Implementation of a double-check process
3. Provision of accurate operation manuals

Expiration of
security poli-
cies

Attacker disables data
middleware security
policies, allowing
transmission
without veriĄcation
or authorization.

1. Implement security policy management.
2. Regularly review and update security policies.
3. Monitor security policy changes
use automated tools.
4. Enforce multi-factor authentication
and strong password policies.

Non-
compliance

Equipment
Maintenance
and Replace-
ment

Non-compliance with
safety standards
leads to investigation
and sanctions by
regulatory authorities.

1. Conduct regular audits.
2. Maintain safety standards.
- Perform cybersecurity acceptance tests
(e.g., FAT, SAT, pre-production penetration tests)
during various validation activities
and product lifecycle stages.
3. Ensure compliance with laws and regulations.
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ClassiĄcation Threats Details Security measures

Availability

System stop-
page and in-
correct oper-
ations

-Alters commands,
cause ELV to stop
at an unintended Ćoor.
-Robot receiving
tampered path
instructions, may
follow wrong route.
-Performance bottleneck
(network/server resource)

1. Strengthen access control.
2. Validate and authenticate commands.
- Establish secure security associations between
communication devices using proven encryption
algorithms to ensure mutual authentication,
integrity, and conĄdentiality.
3. Install emergency stop buttons.

Physical
collisions and
damage

Incorrect instructions
may cause the robot to
collide with people or
objects, leading to
physical damage
or injury.

1. Implement collision detection
2. Install safety sensors.
3. Develop and follow safe operating procedures.
4. Provide regular training for operators.

Frequent
restarts

-Due to incorrect
instructions,
the elevator repeatedly
opens and closes
doors, and restarts.
-Incorrect instructions
cause the robot to
restart frequently,
eventually stopping.

1. Validate instructions.
- Establish secure security associations between
communication devices using proven encryption
algorithms to ensure mutual authentication,
integrity, and conĄdentiality.
2. Limit the number of restarts.
3. Monitor the system.

Operating
without su-
pervision

The ELV/ROB may
start abnormally
without supervision,
wasting energy and
potentially causing
safety issues.

1. Detect unsupervised operation.
2. Implement energy management systems.
3. Add abnormal stop functions.
4. Monitor the system.

Failure in
emergency
response

- In special situations,
ELV may receive stop
command, preventing
personnel from
evacuating properly.
- In emergencies,
ROB may fail to stop
as expected, increasing
risks due to evacuation
failure.

1. Establish emergency response procedures.
2. Conduct regular evacuation drills.
3. Prepare detailed emergency manuals.

Operation
/
Management

Equipment
repair and
replacement

- Frequent misuse
requires elevator
repairs or replacement.
- Frequent misuse
necessitates frequent
robot repairs
or replacement.

1. Perform regular maintenance.
2. Monitor operation logs.
3. Implement preventive maintenance measures.

Business
Interruption
and Delays

- Business interruption
caused by elevator
stoppage.
- Business interruption
caused by robot
stoppage.

1. Develop an emergency response plan.
2. Implement system redundancy.
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Chapter 6

Experiment Results

In this chapter, we will test the MITM and DDoS attack scenarios designed in
Section 5.2 on the emulator and respond to these attack scenarios by implement-
ing appropriate security measures. We will select suitable measures and test the
attacks again after applying these countermeasures on the simulator to conĄrm the
effectiveness of these countermeasures. Through this process, we aim to validate
and optimize our security measures to ensure that they can protect IoT devices in
smart buildings from damage when actual attacks occur. This results in a more
secure and reliable smart building environment.

Since the BAC Attack Scenario, Malware Attack Scenario and Social Engi-
neering Attack scenarios are closely related to user participation and personnel
management, and simulation experiments of user behavior are difficult to be car-
ried out effectively at the current stage, the current study has only conducted
preliminary tests on BAC assuming that an administrator user exists. BAC was
preliminarily tested, however, the experiments are not perfect enough. For the
malware attack and social engineering attack scenarios, it is difficult to visualize
the results due to the lack of personnel involvement, so this research does not in-
volve the discussion of these two scenarios for the time being. We plan to extend
the simulator for testing more attack scenarios in future research. For example,
by introducing a personnel simulation module, richer simulation tests can be con-
ducted to more comprehensively evaluate the security and response capabilities of
the system.

6.1 MITM Attack Scenario

In this section, we will test the MITM attack scenarios designed in Chapter 5.
As shown in Figure 6.1, in our system, the attackerŠs target for eavesdropping
can be either BOS or RPF. Here, we will provide a more detailed explanation of
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Figure 6.1: MITM intercept points

the attack scenarios. According to the designed scenarios, we have added MITM
scenario testing to the security attack module in SBCSE. Considering the risks
of network attack testing, we have omitted the earlier steps. In the emulator, we
assume that the network has been successfully scanned and eavesdropped upon,
and we conduct our experiments based on this assumption. That is to say, the
part enclosed in green in Figure 5.1 is the main segment of our experiment.

In this section, we will introduce a MITM experiment targeting BOS, with
an attack process that includes hijacking communication, intercepting data, and
fabricating messages. As shown in Figure 6.2, we have emulated a scenario where
RPF sends an ŞOpenŤ command, which is supposed to be forwarded by BOS to
the elevator to open the door.

6.1.1 Experiment 1 Ű MITM Attack Targeting BOS

In this scenario, the attacker intercepts and disrupts BOSŠs communication, pre-
venting BOS from successfully forwarding the ŞOpenŤ command to the elevator,
resulting in the elevator door not opening. At the same time, the attacker fab-
ricates a message and sends a false ŞOpen successŤ response to RPF. This leads
RPFŠs state machine to make an incorrect judgment and sends a ŞGetting OnŤ
command to the robot. As a result, with the elevator door still closed, the robot
attempts to enter the elevator, which could cause a collision between the robot
and the elevator, potentially leading to damage to physical assets.

Figure 6.3 presents the log analysis results after a successful implementation
of the MITM attack. The logs indicate that the robot ultimately failed to enter
the elevator. Based on observations of real robotic vacuum cleaners, we have
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Figure 6.2: MITM attack targeting BOS.

considered that the robot is equipped with a camera to enable it to assess the
status of the door and to report the failure to enter along with the reasons for the
failure.

6.1.2 Experiment 2 Ű MITM Attack Targeting RPF

Similarly, we have designed a comparable MITM experiment targeting RPF. As
depicted in Figure 6.4, we have emulated a scenario where the interception target
is RPF. The attacker manipulates RPF, taking control to alter the internal code of
the state machine, send unexpected commands, and provide feedback that appears
to be normal. For instance, instead of forwarding the ŞOpenŤ message to the ELV,
the attacker causes RPF to send a ŞGettingOnŤ command to the robot. This
emulates a similar scenario in which the elevator door is closed, prompting the
robot to attempt entering the elevator.

Figure 6.5 displays the log analysis results following the successful execution of
the MITM attack. The logs reveal that, consistent with the previous scenario, the
robot ultimately fails to enter the elevator. From the results, it can be seen that
the MITM attack experimental scenario has affected the normal communication
of the system.
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Figure 6.3: Experiment results for MITM attack targeting BOS.
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Figure 6.4: MITM attack targeting RPF.

6.1.3 Experiment 3 Ű MITM Attack Targeting BOS With

Security Measures

Referring to the security measure Table 5.7, we understand that encryption of the
communication forwarding channel is a key measure to prevent data tampering
in MITM attacks. To this end, our system has integrated the MQTTS protocol,
which is a secure communication protocol that combines the MQTT protocol with
TLS encryption technology. The standardized name according to IANA is Şsecure-
mqttŤ [36]. To enable TLS encryption, we replace the default non-encrypted port
1883 with encrypted port 8883 to ensure secure data transmission. With the
application of the MQTTS protocol, all transmitted data will be protected by
TLS encryption, effectively preventing the possibility of attackers eavesdropping
on or tampering with the data.

In the test, we speciĄcally conducted a MITM attack targeting BOS using the
MQTTS protocol, with the results shown in Figure 6.6. The test results clearly
show that even under a emulated MITM attack environment, the communication
tasks and command order are remains normal and unaffected. This result con-
Ąrms that the MQTTS protocol can effectively prevent data tampering caused
by MITM attacks in practical applications, ensuring the security and integrity of
communications and data.
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Figure 6.5: Experiment results for MITM attack targeting RPF.
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Figure 6.6: Experiment results for MITM attack targeting BOS when using
MQTTS as security measure.
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Figure 6.7: DDoS attack targeting MQTT-Broker.

6.2 DDoS Attack Scenario

In this section, we explore the testing of DDoS attack scenarios. As shown in
Figure 6.7, we mainly use MQTT-Broker as the attack target for testing. The
following is a detailed description of the attack scenarios. To test the DDoS at-
tack, we have integrated two DDoS attack methods in the security attack module:
publish Ćooding and connection Ćooding. we have chosen a local mosquitto for
our Broker for testing. The following is a detailed discussion of these two attack
scenarios.

6.2.1 Experiment 1 Ű DDoS Connection Flooding Attack

In this section, we will introduce an experiment targeting Broker with Connec-
tion Flooding. Connection Flood attacks are a type of denial-of-service attack
that establishes a large number of connection requests, leading to service refusal.
This attack exploits the server by initiating a large number of connections and
not releasing them for a long time, thus occupying server resources, causing server
efficiency to decrease or even exhausting resources, making it unable to respond to
other clientsŠ connection requests [37]. The attack level is at the application layer,
where attackers emulate multiple clients initiating connection requests simultane-
ously, with the aim of exhausting the BrokerŠs connection resources, causing service
unavailability and affecting the communication of other components in SBCSE.

The attack process generally includes three steps: building a botnet, remote
command and control, and launching an attack. When a large number of fake
requests and malicious traffic hit the Broker at the same time, exceeding its pro-
cessing capacity, it may cause the service to crash or become extremely slow. In
order to observe and understand how the system reacts and behaves in the face
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Figure 6.8: DDoS connection Ćooding experiment targeting MQTT-Broker: Com-
parison of active connections.

of a large number of simultaneous connection requests. We conduct these tests in
SBCSE, where we created a large number of botnet client and Broker connections,
and found that once the attack was launched, the server blocked due to the large
number of connections occupying server resources, and the normal communication
tasks of the components in the system could not be accomplished.

In order to better observe the experimental results, we add the ConnectionMon-
itor module, which can monitor the number of active connections on the broker
side in real time and record them in the log. We test the no attack case and con-
nection Ćooding attack case respectively, and visualize and analyze the log. From
Figure 6.8, we can clearly see that in the case of no attack, the number of active
connected clients detected from the broker side always stays below 15 and remains
relatively stable after the system has been running for some time. Meanwhile,
by observing the communication logs between components, we conĄrm that the
communication between all components is in a normal state.

However, in the case of an attack, observing the part of the red line in the
Ągure, at Ąrst the number of Active Connections is the same as in the case of ŞNo
attackŤ, but as the attack starts, the number of active connections starts to rise
signiĄcantly. Due to the large number of malicious connections established by the
attacker with the broker, the broker was unable to process and respond to normal
communication requests in a timely manner. This led to the failure of message
forwarding between some components, and the system tasks could not be carried
out normally.
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6.2.2 Experiment 2 Ű DDoS Publish Message Flooding At-
tack

In this section, we describe the Publish Ćooding experiment targeting the MQTT
Broker. MQTT Publish Ćood attack [38] is an attack against the MQTT protocol
in which the attacker interferes with the MQTT Broker by sending a large number
of Publish messages to the Broker with the goal of exhausting the BrokerŠs re-
sources or network bandwidth, thereby interfering with its normal service. In our
experimental setup, we simulate this attack scenario by sending a large number of
command packets to a customized attack topic. Here we set the number of simu-
lated attack clients for the experimental settings to be 1000 and the frequency of
data transmission to be 0.001. In this way, we are able to observe how the Broker
behaves under high load conditions and how it affects normal communication.

In order to observe the experimental results, we have added the MQTTBroker-
Monitor module, which can log the success rate of requests for messages received
by the MQTT Broker, thereby facilitating our effective evaluation of the experi-
ment. We conducted tests for both attack and non-attack scenarios and visualized
the relevant logs. The formula for calculating the response rate of MQTT-Broker
is as follows, where ŞSentŤ represents the amount of data forwarded from the Bro-
ker end, and ŞReceivedŤ represents the amount of data published by the client and
received by the Broker.

Response success rate =
Sent

Received
× 100% (6.1)

Since we monitor some of the MQTT managed data, the amount of ŞSentŤ
data will be larger than the amount of ŞReceivedŤ data, resulting in a Response
rate of more than 100%. In order to calculate more accurately, we will subtract the
number of subscriptions to the management data. In addition, since our messages
are QoS1, the MQTT Broker sends PUBACK or PUBREC acknowledgement mes-
sages to the publisher, and these acknowledgement messages may also increase the
volume. At the same time, the case of response delay may also cause the number
of packets sent to be more than the number of packets received. Therefore, we will
combine the message logs of each component to observe the experimental results.

The comparison result of ŞResponse success rateŤ is shown in Fig 6.9. In the
case of no attack, the ŞResponse success rateŤ of the Broker stays at 100%, which
indicates that the BrokerŠs processing of packets is normal. In the case of attack,
the ŞResponse success rateŤ decreases signiĄcantly and Ćoats around 1.38%, which
is close to 0. This is because the attacker sends a large number of packets to the
Broker, exhausting its resources and interfering with the normal message sending
and receiving process. We combined the message forwarding logs of the observation
components and conĄrmed again that the normal communication was affected in
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Figure 6.9: DDoS publish message Ćooding experiment: Comparison of MQTT-
Broker response success rate.

the case of DDOS attacks.

6.2.3 Experiment 3 Ű DDoS Publish Message Flooding At-
tack With Security Measures

Referring to the countermeasures in Table 5.7, we understand that DDoS attacks
bring serious impact on the availability of the system, which is mainly reĆected in
the performance bottleneck of network and server resources. In order to effectively
defend against such attacks, we adopt the strategy of enhanced access control.
SpeciĄcally, we implemented an allowlist setting in the connection with the MQTT
Broker, so that only the users on the allowlist can establish a connection with the
Broker and communicate normally. This means that users who are not on the
list at the time of connection are Ąltered. In our system, only the individual
components are set up to connect normally. This approach can effectively prevent
illegal connections from external IPs, thereby reducing the potential risk of DDoS
attacks. By setting up a allowlist, we are able to ensure that only authenticated and
trusted clients are able to access the MQTT Broker, which not only improves the
security of the system, but also reduces resource consumption due to unauthorized
connections.

We once again conducted a DDoS Publish Flooding attack test on the Broker
with allowlist access control enabled, and the test results of the message communi-
cation are shown in Figure 6.10. The test results clearly show that the communi-
cation process remains normal and is not affected in any way under the simulated
DDoS attack environment. The response success rate of the MQTT Broker is
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shown in Figure 6.11, from which we can see that it remains at 100% as in the
case of no attack, which conĄrms the effectiveness of the security measures we have
taken.

Additionally, there are other prevention methods that can further enhance the
systemŠs security. For example, a study proposed a detection method for DDoS
Ćood attacks on SDN based on machine learning [39]. This method can effectively
classify and detect attacks. In addition, reducing the server timeout value [40]
can also reduce the intensity of the attack. We will test more countermeasures in
future research.

6.3 BAC Attack Scenario

In this section, we will perform a preliminary test of the BAC scenario. As shown
in Figure 5.3, the target of unauthorized access by an attacker in our system can
be either BOS or RPF. Here, we will explain the attack scenarios in more detail.
According to the designed scenarios, we add the test of BAC scenarios to the secu-
rity attack module in our system. Considering the risk of network attack testing,
as in the MITM Attack Test above, we omit the Ąrst few steps, and we assume
that we have successfully scanned the network and initial access. And because
the BAC Attack Scenario is related to the personnel, and the simulation of user
behavior is not yet implemented in the current simulator, the current experiments
are preliminary tests of BAC under the assumption that the administrator user
exists, and the experiments are yet to be improved.

6.3.1 Experiment 1 Ű BAC Attack Targeting BOS

In this section, we introduce a BAC attack experiment targeting BOS. The at-
tack process involves lateral movement to BOS, infecting the controller to expand
control within the network, and obtaining administrator-level access to carry out
malicious activities.

As shown in Figure 6.12, we emulated a scenario where the attacker uses default
usernames and passwords to access and control BOS. It is assumed that the control
elevator does not open the door when personnel and robots enter the elevator.
When RPF sends an elevator ŞOpenŤ command, the attacker manipulates BOSŠs
system to forward a ŞcloseŤ command to the elevator instead. Once the elevator
returns a Şclose successŤ response to BOS, BOS forwards a modiĄed response
indicating Şopen successŤ to RPF. This causes RPFŠs state machine to make an
incorrect judgment and send a ŞGetting OffŤ command to the ROB. At this time,
the elevator door is still closed and the robot is trying to exit the elevator, which
may cause the robot to collide with the elevator. Or the control of the elevator
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Figure 6.10: Experiment results for DDoS publish message Ćooding targeting
MQTT-Broker when using allowlist as security measure.
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Figure 6.11: DDoS publish message Ćooding experiment: Comparison of MQTT-
Broker response success rate when using allowlist as security measure.

does not open the door when the personnel is in the elevator, which causes panic
and service interruption caused by the security problems.

Figure 6.13 shows the log analysis results after successfully implementing the
BAC attack. From the log, we can see that in the case of BAC attack, the robot
failed to exit the elevator, and the elevator door was always closed. The commu-
nication results are consistent with the scenario we designed.

6.3.2 Experiment 2 Ű BAC Attack Targeting RPF

Similarly, we designed a similar BAC attack experiment with RPF as the target.
As shown in Figure 6.14, we emulated a scenario. Assuming that the target of the
attackerŠs control is RPF, the attacker controls RPF to tamper with the internal
code of the program, such as controlling RPF to send a ŞcloseŤ command to the
elevator and then sending a ŞGettingOffŤ command to the robot. This could
emulate the same effect as having the robot try to get out of the elevator when
the doors are closed.

Figure 6.15 shows the results of log analysis after the successful implementation
of the BAC attack. As can be seen from the logs, the same bot eventually fails to
successfully exit the elevator. The communication results are consistent with the
scenario we designed.
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Figure 6.12: BAC attack targeting BOS.

6.3.3 Experiment 3 Ű BAC Attack Targeting BOS With
Security Measures

Referring to the measures in Table 5.7, we understand that in order to prevent BAC
attacks, the system must be designed and implemented with sufficient strength and
rigor in access control. Of course using MQTTS is also one of the methods, and
since the use of this method was discussed in the MITM attack above, here we
discuss the other methods. For this reason, here we have adopted an encrypted
authentication to prevent unauthorized access by attackers. SpeciĄcally, we added
login authentication for the vulnerable components BOS and RPF. However, since
an attacker can login to the system directly through the default weak password or
other ways. So we use the bcrypt algorithm to encrypt the user account password
and verify the registration. We use this method to strengthen in the storage and
veriĄcation of passwords. Ensure that every request is validly authenticated and
only authenticated users can access the system.

For the case of using encrypted authentication, we again conducted a BAC
attack test targeting BOS. The test results are detailed in Figure 6.16. The test
results clearly show that under the emulated BAC attack environment, the com-
munication process remains normal and is not affected in any way. This result
conĄrms the effectiveness of the countermeasures we have taken.
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Figure 6.13: Experiment results for BAC attack targeting BOS.
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Figure 6.14: BAC attack targeting RPF.
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Figure 6.15: Experiment results for BAC attack targeting RPF.
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Figure 6.16: Experiment results for BAC attack targeting BOS when using en-
crypted authentication as security measure.
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Chapter 7

Conclusion

7.1 Summary

To address the shortcomings of the current simulation platforms for smart build-
ing control systems, this study has successfully developed SBCSE, which provides
a powerful tool for testing and evaluating the performance and security of smart
building systems. In addition, SBCSE provides a user-friendly interface and a
security module capable of emulating attack scenarios, so that various attack sce-
narios can be simulated and tested for potential risks, and corresponding security
measures can be proposed. By developing a emulation platform that combines the
simulation functions of smart building control systems with cybersecurity testing,
we have not only helped to reduce testing costs, but also improved the security
of smart building testing. In the context of increasing cybersecurity threats, sim-
ulators play an immeasurable role in ensuring the safety and reliability of smart
building systems, and this study provides an effective testing platform to promote
the further development and security of the smart building Ąeld.

Regarding the performance of the emulator, we veriĄed the accuracy of the
emulator by analyzing the logs of the SBCSE communication data and comparing
them with the logs of the real building. Our analysis results show that the match
rate between the SBCSE and real building data regarding the message command
Ćow between BOS and RPF during the communication process reaches 100%,
conĄrming that the emulator successfully reproduces the test environment of the
real system. The emulatorŠs response to various inputs was tested to be within
normal standards, which is essential to ensure that the simulator can correctly
predict the behavior of the real system under different conditions, guaranteeing the
accuracy of the test environment. In addition, the speed of SBCSE in predicting
and analyzing potential problems saves testing time compared to traditional testing
methods, and it can be tuned for emulation speed. The results show that the
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emulatorŠs response time and latency for individual messages remain largely stable
during experiments up to 10x speed, and no packet loss occurs.

In terms of cybersecurity in smart buildings, we have added a security attack
module to SBCSE. Five attack scenarios were analyzed for the network attacks
with high risk in the current system. In the emulator, we implemented three
scenarios of attacks on MITM, BAC, and DDoS. Security measures are proposed
for each of these attacks, and the effectiveness of the countermeasures is conĄrmed
by implementing attack tests with the countermeasures applied. This module
provides an effective method for intelligent buildings in network security testing.

Overall, the emulator reduces the risk of system failure or downtime that may
result from testing in actual building systems. In this way, we can conduct in-depth
testing and system optimization of smart building systems without increasing the
risk of actual buildings, ensuring the safety and reliability of the technology before
implementing it in actual building systems. SBCSE provides a more cost-effective
solution for testing and evaluation of smart buildings.

NOTE: Generative AI technology was used for translation and grammar check-
ing during the preparation of this thesis.

7.2 Future Work

In the future, we will focus on improving the performance of the emulator to
address the limitations that currently exist. SpeciĄcally, we will enhance the error
and exception handling mechanisms, especially in handling packet loss, timeouts,
and exceptions. We will also consider the response latency of the real-time system,
which is currently only guaranteed to be normal up to 10x speed, and we will follow
up with improvements to increase fault tolerance at higher speeds.

Meanwhile, in order to cope with the evolving cybersecurity threats, we will
extend the cybersecurity attack module of SBCSE. Although the current design
already covers some attack scenarios, there are more security issues that need to
be addressed in the Ąeld of intelligent buildings. Therefore, we will extend the
systemŠs functionality to support user-deĄned testing of security attack scenarios
and plan to add more types of cyber attacks.

Finally, the scope of smart building control systems is very broad, and future
research can simulate multiple robots, add other IoT devices and energy systems,
and so on, to enrich the functionality of the simulator. In our future work we will
continue to improve the simulator system and add more features while ensuring
accuracy.

78



Publications

• Weng, X., Beuran, R. ŞSmart Building Control System Emulation Platform
for Security Testing.Ť 29th IEEE PaciĄc Rim International Symposium on
Dependable Computing (PRDC 2024). IEEE, 2024. p.220-223.

79



Bibliography

[1] ASHB. 2023 Intelligent Building Technology & Market Trends. Report. Ac-
cessed: 2024-12-01. 2023. url: https : / / www . ashb . com / wp - content /

uploads / 2024 / 02 / HRI _ ASHB _ IBC _ Survey - Executive - Summary _ 14 -

November-2023-Final-2.pdf.

[2] Wolfgang Kastner et al. ŞCommunication systems for building automation
and controlŤ. In: Proceedings of the IEEE 93.6 (2005), pp. 1178Ű1203.

[3] Shengwei Wang and Junlong Xie. ŞIntegrating Building Management System
and facilities management on the InternetŤ. In: Automation in construction
11.6 (2002), pp. 707Ű715.

[4] Kaspersky. Smart buildings threat landscape: 37.8% targeted by malicious
attacks in H1 2019. Online. Accessed: 2024-12-01. 2019. url: https://me-

en.kaspersky.com/about/press-releases/smart-buildings-threat-

landscape.

[5] Houssem Eddine Degha et al. ŞOpen-SBS: Smart Building SimulatorŤ. In:
2022 International Arab Conference on Information Technology (ACIT).
IEEE. 2022, pp. 1Ű15.

[6] David P Chassin, Kevin Schneider, and Clint Gerkensmeyer. ŞGridLAB-D:
An open-source power systems modeling and simulation environmentŤ. In:
2008 IEEE/PES Transmission and Distribution Conference and Exposition.
IEEE. 2008, pp. 1Ű5.

[7] Rongpeng Zhang and Tianzhen Hong. ŞModeling of HVAC operational faults
in building performance simulationŤ. In: Applied Energy 202 (2017), pp. 178Ű
188.

[8] Tamas PĆanzner et al. ŞMobIoTSim: Towards a mobile IoT device simu-
latorŤ. In: 2016 IEEE 4th International Conference on Future Internet of
Things and Cloud Workshops (FiCloudW). IEEE. 2016, pp. 21Ű27.

[9] R. Beuran J. Wu. ŞFormal and Experimental VeriĄcation of Robot Control
Protocols for Smart BuildingsŤ. In: Symposium on Cryptography and Infor-
mation Security (SCIS 2025). SCIS. 2025.

80



[10] Michael Mylrea and Sri Nikhil Gupta Gourisetti. ŞCybersecurity and op-
timization in smart ŞautonomousŤ buildingsŤ. In: Autonomy and ArtiĄcial
Intelligence: A Threat or Savior? (2017), pp. 263Ű294.

[11] Jesus Pacheco and Salim Hariri. ŞIoT security framework for smart cyber
infrastructuresŤ. In: 2016 IEEE 1st International workshops on Foundations
and Applications of self* systems (fas* w). IEEE. 2016, pp. 242Ű247.

[12] Bruno Augusti Mozzaquatro et al. ŞAn ontology-based cybersecurity frame-
work for the internet of thingsŤ. In: Sensors 18.9 (2018), p. 3053.

[13] Digital Transformation Channel. What is a Smart Building? Explaining the
Meaning and DeĄnition from the Basics. Online. Accessed: 2024-12-01. 2022.
url: https://www.cloud- for- all.com/dx/blog/what- is- smart-

building#toc-0.

[14] Digital Architecture Design Center Information Processing Society of Japan.
Smart Building System Architecture Guideline. Online. Accessed: 2024-12-
01. 2023. url: https : / / www . ipa . go . jp / digital / architecture /

Individual-link/ps6vr70000016bq2-att/smartbuilding_system-architecture_

guideline.pdf.

[15] Vinicius Fulber-Garcia. Differences Between Simulation and Emulation. On-
line. Accessed: 2024-12-01. 2024. url: https://www.baeldung.com/cs/

simulation-vs-emulation.

[16] Shu Tang et al. ŞBIM assisted Building Automation System information ex-
change using BACnet and IFCŤ. In: Automation in Construction 110 (2020),
p. 103049.

[17] Muneer Bani Yassein et al. ŞInternet of Things: Survey and open issues of
MQTT protocolŤ. In: 2017 international conference on engineering & MIS
(ICEMIS). Ieee. 2017, pp. 1Ű6.

[18] Industrial Cyber Security Research Group (METI). Cyber-Physical Secu-
rity Measures Guideline for Building Systems. Online. Accessed: 2024-12-01.
2023. url: https://www.meti.go.jp/policy/netsecurity/wg1/bill_

gideline_2.pdf.

[19] European Union Agency for Cybersecurity. Good Practices for Security of
Internet of Things in the context of Smart Manufacturing. Online. Accessed:
2024-12-01. 2018. url: https://www.enisa.europa.eu/publications/

good-practices-for-security-of-iot.

[20] OWASP. OWASP Top 10 - 2021. Online. Accessed: 2024-12-01. 2023. url:
https://owasp.org/Top10/.

81



[21] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. ŞA survey of man in the
middle attacksŤ. In: IEEE communications surveys & tutorials 18.3 (2016),
pp. 2027Ű2051.

[22] Rapid7 Corporation. Man in the Middle (MITM) Attacks. Online. Accessed:
2024-12-01. url: https://www.rapid7.com/fundamentals/man-in-the-

middle-attacks/.

[23] Gregg Lindemulder and Matt Kosinski. What is a Man-in-the-Middle Attack
(MITM)? Online. Accessed: 2024-12-01. url: https://www.ibm.com/cn-

zh/think/topics/man-in-the-middle.

[24] Manesh Thankappan, Helena Rifà-Pous, and Carles Garrigues. ŞMulti-Channel
Man-in-the-Middle attacks against protected Wi-Fi networks: A state of the
art reviewŤ. In: Expert Systems with Applications 210 (2022), p. 118401.

[25] NEC Fielding Corporation. What is a DDoS attack? Online. Accessed: 2024-
12-01. url: https://www.fielding.co.jp/service/security/measures/

column/column-1/#anc-01.

[26] Imperva Corporation. DDoS Attacks. Online. Accessed: 2024-12-01. url:
https://www.imperva.com/learn/ddos/ddos-attacks/.

[27] Ghafar A Jaafar, Shahidan M Abdullah, and Saifuladli Ismail. ŞReview of
recent detection methods for HTTP DDoS attackŤ. In: Journal of Computer
Networks and Communications 2019.1 (2019), p. 1283472.

[28] Nedim Marić. Broken Access Control: Attack Examples and 4 Defensive Mea-
sures. Online. Accessed: 2024-12-01. 2023. url: https://brightsec.com/

blog/broken-access-control-attack-examples-and-4-defensive-

measures/.

[29] HITACHI Corporation. Preventing Broken Access Control Vulnerabilities.
Online. Accessed: 2024-12-01. url: https://www.securebrain.co.jp/

eng/blog/broken-access-control-vulnerabilities/.

[30] Matthew Kosinski. What is ransomware? Online. Accessed: 2024-12-01. 2024.
url: https://www.ibm.com/cn-zh/topics/ransomware.

[31] Jason Firch. How Does Ransomware Spread? Online. Accessed: 2024-12-01.
2024. url: https://purplesec.us/learn/common-ways-ransomware-

spreads/.

[32] Fatima Salahdine and Naima Kaabouch. ŞSocial engineering attacks: A sur-
veyŤ. In: Future internet 11.4 (2019), p. 89.

82



[33] European Union Agency for Cybersecurity. Guidelines for Securing the In-
ternet of Things. Online. Accessed: 2024-12-01. 2020. url: https://www.

enisa.europa.eu/sites/default/files/publications/ENISA%20Report%

20-%20Guidelines%20for%20Securing%20the%20Internet%20of%20Things.

pdf.

[34] European Union Agency for Cybersecurity. Threat Taxonomy A tool for
structuring threat information. Online. Accessed: 2024-12-01. 2016. url:
https://www.um.es/documents/2096502/4937674/Enisa.pdf/2374a6a9-

3c9d-422c-b5ad-b047a2fb8568.

[35] NIST. Draft NISTIR 8228: Considerations for Managing Internet of Things
(IoT) Cybersecurity and Privacy Risks. Online. Accessed: 2024-12-01. 2019.
url: https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8228-

draft.pdf.

[36] HiveMQ Team. TLS/SSL - MQTT Security Fundamentals. Online. Accessed:
2025-1-24. 2024. url: https://www.hivemq.com/blog/mqtt-security-

fundamentals-tls-ssl/.

[37] Saman Taghavi Zargar, James Joshi, and David Tipper. ŞA Survey of De-
fense Mechanisms Against Distributed Denial of Service (DDoS) Flood-
ing AttacksŤ. In: IEEE Communications Surveys & Tutorials 15.4 (2013),
pp. 2046Ű2069. doi: 10.1109/SURV.2013.031413.00127.

[38] Ivan Vaccari et al. ŞMQTTset, a new dataset for machine learning techniques
on MQTTŤ. In: Sensors 20.22 (2020), p. 6578.

[39] Abimbola O. Sangodoyin et al. ŞDetection and ClassiĄcation of DDoS Flood-
ing Attacks on Software-DeĄned Networks: A Case Study for the Application
of Machine LearningŤ. In: IEEE Access 9 (2021), pp. 122495Ű122508. doi:
10.1109/ACCESS.2021.3109490.

[40] Amit Praseed and P Santhi Thilagam. ŞDDoS attacks at the application
layer: Challenges and research perspectives for safeguarding web applica-
tionsŤ. In: IEEE Communications Surveys & Tutorials 21.1 (2018), pp. 661Ű
685.

83


	Abstract
	Acknowledgment
	Introduction
	Background
	Objectives
	Significance and Contributions
	Organization

	Related Work and Background
	Related Work
	Simulators
	Security Frameworks

	Background and Related Concepts
	Smart Buildings
	Simulation and Emulation
	Protocol


	Proposed System
	System Components
	System Architecture
	Fundamental Framework
	Network Communication Module
	Device Motion Module
	RPF Control Protocol
	Simulator Module
	Security Attack Module
	User Interface
	Other Modules

	Comparison of SBCSE and Real Building System

	System Assessment
	Evaluation Method
	Assessment Results
	Log Data Analysis
	Communication Flow Analysis and Data Visualization
	Comparative Analysis
	Summary and Discussion


	Attack Scenarios and Proposed Security Measures
	Risk Analysis
	Attack Scenarios
	MITM Attack Scenario
	DDoS Attack Scenario
	BAC Attack Scenario
	Malware Attack Scenario
	Social Engineering Attack Scenario

	Security Measures

	Experiment Results
	MITM Attack Scenario
	Experiment 1 – MITM Attack Targeting BOS
	Experiment 2 – MITM Attack Targeting RPF
	Experiment 3 – MITM Attack Targeting BOS With Security Measures

	DDoS Attack Scenario
	Experiment 1 – DDoS Connection Flooding Attack
	Experiment 2 – DDoS Publish Message Flooding Attack
	Experiment 3 – DDoS Publish Message Flooding Attack With Security Measures

	BAC Attack Scenario
	Experiment 1 – BAC Attack Targeting BOS
	Experiment 2 – BAC Attack Targeting RPF
	Experiment 3 – BAC Attack Targeting BOS With Security Measures


	Conclusion
	Summary
	Future Work

	Publications

