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Abstract

Vision Large Language Models (VLLMs) extend Large Language Models
(LLMs) by equipping them with the ability to perceive and process both
textual and visual data, enabling impressive capabilities such as drafting
stories based on images and building a website based on handcrafted images.
In recent years, the development of VLLMs has advanced rapidly, yielding
a substantial body of remarkable research. For instance, MiniGPT-4 [1]
introduces a simple linear mapping to align visual information from a pre-
trained vision encoder with a frozen large language model, concretely, this
linear mapping transfers the output vectors (image features) into suitable
inputs for language model, effectively functioning as amodality connector.
By fine-tuning this linear layer using a high-quality instruction-following
dataset, their work demonstrates the effectiveness of leveraging a modality
connector to elicit multimodal capabilities from frozen models. Meanwhile,
the LLaVA series [2–4] follows a similar architecture, utilizing a linear pro-
jection or a multilayer perceptron as the modality connector. Through fine-
tuned on visual instruction-tuning data, LLaVA models achieve remarkable
multimodal conversational capabilities, setting new state-of-the-art bench-
marks in multimodal reasoning tasks. In addition, other works [5, 6] such
as InstructBLIP [5] utilize a Query transFormer (Q-Former) as the cross-
modal interface, wherein the query-based mechanism enables a more selective
extraction of visual features tailored to language instruction. When combined
with vision-language instruction tuning, the model attains impressive zero-
shot performance across a variety of vision-language tasks.

As mentioned before, a common architecture of these VLLMs consists
of a frozen visual encoder, a pre-trained Large Language Model (LLM),
and a learnable cross-modal projector for mapping representations from
different modalities. Such a connector-based framework is the basis of most
modern VLLMs [1, 3, 5, 7],and has demonstrated significant efficiency and
remarkable performance in many vision-language task scenarios. In detail,
during the inference, VLLMs are fed with both visual and textual inputs,
and (1) the frozen image encoder first encodes the image into a set of visual
representations, then (2) the visual representations are transferred by a cross-
modal projector aiming an alignment with the distribution of typical text
token representation, and (3) the projected visual representations (tokens)
are then concatenated with instruction tokens (if any), and fed into the pre-
trained LLM for a causal language modeling operation.
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Given the remarkable progress of VLLMs across various vision-language
tasks, another line of work has emerged, focusing on investigating the inner
work of the VLLMs. A pioneering study [8] approached this problem by
identifying multimodal neurons within the Transformer’s MLP layers and
mapping them to semantically related text. Their experiments empirically
showed that image tokens, which have been projected into LM embed-
ding space, do not effectively encode interpretable semantics. Similarly,
another study [9] found that language models inherently capture domain-
specific visual attributes, while fine-tuning the cross-modal projector does
not enhance this capability. Compared to the above work interpreting visual
feature encoding in a human-readable format, more recent research adopts
a mechanistic interpretation approach to examine the internal processes of
VLLMs. In [10], the authors demonstrate that VLLMs encode factual asso-
ciations within early multi-layer perceptron (MLP) layers and subsequently
transfer this information to the final position token through intermediate
Multi-Head Self Attention(MHSA) modules. Similarly, paper [11] finds
that object-specific information is primarily localized within visual tokens
corresponding to object patches and is later propagated into text tokens to
facilitate language token predictions. Additional studies [12, 13] contribute
to this research domain by investigating the internal workings of VQA in
LLaVA, employing methodologies such as log-probability analysis, parameter
projections into the unembedding space, and the examination of multimodal
information flow across LM layers. These studies have significantly advanced
our understanding of the internal mechanisms of VLLMs.

In VLLMs, the LLM is fed with a concatenation of visual token rep-
resentations and textual token embeddings to perform the causal language
modeling operation, indicating that the internal mechanisms of the language
model, particularly the attention module, are required to leverage informa-
tion from the visual modality to refine representations. However, existing
research has primarily focused on interpreting the projected image tokens or
examining how multimodal information flows throughout the LLM, leaving
interaction between the vision token and text token (multimodal interaction)
unexplored. Moreover, considering that the image tokens are obtained from
encoders pre-trained exclusively on visual data, how they are progressively
processed within the LLM representation space is a crucial indicator for
revealing the aforementioned multimodal interaction.

Thus, this thesis highlights the interaction between the image token and
text token. Especially, we focus on investigating how image representations
evolve along Transformer-based autoregressive text decoders in modern
VLLMs. To this end, we first map the projected visual representations
into textual tokens by LM heads in LLMs (logit lens) to examine how
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encoded representations from the visual encoder, after being projected, are
progressively transformed into language semantics along the layers of the
LLMs. Our experiments reveal two key findings:

1. Although visual representations are not explicitly trained for next-
token prediction, LLMs can decode the visual representations into
related text tokens. Additionally, in mid-to-late layers, the hidden
states of visual tokens become more semantically aligned with the
textual modality compared to the early layers.

2. The correctness of the LM decoding of the visual token’s hidden states
appears largely independent of the instruction tokens.

Next, we employ the cosine similarity between the hidden states of visual
tokens and textual tokens to characterize the magnitude of the multimodal
interaction, using the aligning dynamics of visual token representations
toward text token embeddings as an indicator. Specifically, our experimental
results, conducted on four models across two datasets, reveal the following
findings:

1. Despite differences in designs of cross-modal projectors and the size
of LM components, these models exhibit consistent trends in their
inter-modal similarity curves, suggesting a general aligning dynamics
of visual token representations towards textual token embeddings.

2. Similarity curves exhibit a bimodal pattern and increase rapidly in mid-
to-late layers, suggesting three-stage multimodal interaction dynamics.

3. Regardless of varying types of textual prompt tokens, the layer-wise
changes in inter-modal similarity values remain consistent, suggesting
that the inter-modal interaction dynamics are largely independent of
the specific prompt used.

Moreover, from another perspective, we conducted a layer-wise attention
visualization analysis. Our analysis reveals that: (1) Attention scores from
instruction tokens (as attention queries) to visual tokens strengthen starting
from the middle layers. (2) Certain visual tokens at specific positions
receive significantly higher attention than others from textual tokens. Such
observation motivated our investigation into the relationship between the
number of visual tokens and language modeling loss, aiming to provide
empirical insights for balancing the effectiveness (lower forward loss) and
efficiency (fewer image tokens) during model inference. In detail, by modify-
ing the forward function during model inference, we investigate the impact
of varying the number of visual tokens on the model’s forward computation
loss. Extensive experiments reveal that

1. Once the quantity of image tokens surpasses a certain threshold, loss
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reduction goes slowly or even stops, indicating that subsequent image
tokens may have limited contribution and could be redundant.

2. The contribution of visual tokens to loss reduction is not uniform, with
certain tokens at specific positions playing a significantly greater role.

This finding provides valuable insights for optimizing and accelerating infer-
ence in VLLMs.

Keywords: Interpretability, Vision Large Language Models, Inference
Dynamics.
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Chapter 1

Introduction

1.1 Background

Vision Language (VL) research lies at the intersection of computer vision
and natural language processing, aiming to endow computers with the dual
capabilities of visual perception and textual understanding. This field has
long been regarded as a crucial step toward achieving general artificial
intelligence. However, because images and text differ significantly in their fea-
ture representations, early approaches were restricted to task-specific model
designs or training objectives, severely limiting research progress [14–16].
Subsequently, the Transformer architecture, originally introduced to address
sequence-to-sequence tasks in the NLP realm, demonstrated a remarkable
ability to improve model generalization capability [17–19]. Inspired by
these successes, researchers extended the Transformer architecture to image
recognition, achieving promising initial results. Building on this foundation,
a new paradigm of Vision-Language Pretraining (VLP) emerged, driving
remarkable progress in vision-language joint learning.

In recent years, substantial advancements have been made in the realm
of Large Language Models (LLMs). By extending the impressive emergent
capabilities of LLMs to multimodal scenarios, researchers have developed a
variety of Vision Large Language Models (VLLMs), demonstrating amazing
emergent abilities in recent studies [1–3,5–7,20,21]. Compared to traditional
VLP approaches, which involve pretraining vision-language representations,
the aforementioned VLLMs typically consist of three key components: a pre-
trained visual encoder for extracting visual representation from the image, a
pre-trained large language model for producing text output, and a cross-
modal projector (or connector) accounts for mapping visual features to
LMs’ embedding space. These models are called connector-based VLLMs,
requiring training only a lightweight projection layer—often implemented
as a simple linear mapping, a multilayer perceptron, or a cross-modal
extractor—or, in some cases, fine-tuning the LM decoder.

During inference, a typical pipeline of implementing VLLMs is to (1)
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utilize a frozen image encoder to extract visual features from the input
image, then (2) leverage a cross-modal connector to project these visual
features into LMs’ embedding space, and (3) the projected visual token
representations are concatenated with text token embedding and fed into the
LM decoder to perform causal language modeling. Despite this simplified
training process, VLLMs perform tasks beyond the reach of earlier VLP
approaches, such as generating detailed recipes from food images or creating
advertising promotions for products showcased in images. Furthermore,
since these models do not conduct extensive end-to-end training to fuse
visual and linguistic representations at a massive scale, they significantly
reduce computational and memory overhead while maintaining impressive
performance across a range of vision-language downstream tasks.

Meanwhile, various benchmark evaluations have been developed to specif-
ically assess the visual and language understanding capabilities of VLLMs.
These benchmarks cover a comprehensive evaluation of different aspects of
the model, including verb understanding, spatial cognition, visual compo-
sitional reasoning, and overall performance evaluation, spanning multiple
task levels. While these evaluations highlight the potential of VLLMs, they
also reveal critical issues such as inconsistent adherence to instructions,
hallucination generation, and difficulty in performing complex reasoning,
which significantly hinder the further development and safe deployment of
these models.

Against this backdrop, research on the interpretability of VLLMs becomes
increasingly urgent, leading to a growing focus on understanding their
internal representations and improving model transparency. A pioneering
study [8] localized multimodal neurons in MLP layers, translating them into
related text tokens. The authors empirically showed that visual feature
outputs of the cross-modal projector do not effectively encode interpretable
linguistic semantics. A following work [9] found that it is the LM decoder,
not the cross-modal projector, that encodes domain-specific visual attributes.
In comparison with the above work, where feature encoding is interpreted
in a human language form, more recent research explores the inner workings
of VLLMs in a broader scope via a mechanistic interpretation lens. In [10],
the authors show that VLLMs store factual associations in earlier Multi-
layer Perceptron (MLP) layers and transfer them to the final token position
via middle-layer Multi-Head Self Attention (MHSA) blocks. Meanwhile,
Paper [11] discovers that object-specific information is concentrated in visual
tokens spatially corresponding to object patches, then integrated into text
tokens for language token predictions. Other works [12, 13] enrich this re-
search area by examining the decision-making mechanism of Vision Question
Answering (VQA) in LLaVA through approaches such as log-probability
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changes, parameter projection to the unembedding space, and multimodal
information flow along the layers of LM decoer.

These investigations have greatly improved our understanding of the
internal mechanics of VLLMs.

1.2 Research Objective

Among existing studies on interpreting the internal behavior of VLLMs,
our research is particularly aligned with investigations into the evolution of
visual token representations across LM layers [11] and the flow of cross-modal
information integration [13].

However, prior studies have primarily focused on interpreting projected
visual features or examining how crossmodal information flows within the
LLM component, leaving the systematic analysis of multimodal interaction
largely unexplored. As introduced in § 1.1, the connector-based VLLMs allow
the LLM component to implicitly refine representations from both modalities
to complete causal language modeling computation, leading to multimodal
interaction that naturally happens within the LLM. Furthermore, since the
visual features are extracted from frozen vision encoders pre-trained solely
on visual data, understanding how these visual token representations are
sequentially transformed throughout the LLM layers is a fundamental aspect
to understanding the multimodal interaction within the LLMs.

Therefore, this thesis aims to analyze the interaction between image
tokens and text tokens. Specifically, we systematically and quantitatively
investigate the evolution of image token representations, referred to as the
dynamics of visual representation, across the different layers in modern
VLLMs. To this end, we mainly utilize two approaches described as follows:

1. Use logit lens to investigate whether visual token representations are
transformed into text tokens.

2. Apply cosine similarity to investigate how and to what extent visual
token representation interacts with textual token embeddings.

The first approach focuses on interpreting the changing process of visual
token representation using human language, while the second method utilizes
similarity metrics to quantify the degree of such an evolving procedure by
focusing on the interaction between image token representations and text
token embeddings.

The experimental results of logit lens show that while visual representa-
tions are not explicitly trained for next-token prediction, LLMs can decode
them into related text tokens. Additionally, the hidden states of visual tokens
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become more semantically aligned with the textual semantics in mid-to-late
layers compared to early layers. Finally, the correctness of the LM decoding
of the hidden states appears to be almost independent of the instruction
tokens, since the correctness remains the same across different instructions,
exhibiting negligible variance.

Cosine similarity is a widely used metric for assessing the semantic simi-
larity between high-dimensional vectors in the representation space, reflecting
the degree of contextualization encoded by the language model. Building on
this, analyzing how the similarity between visual token representations and
text token embeddings evolves layer by layer within the LM provides an
indirect perspective on the aligning dynamics of visual token representations
toward text token embeddings. Our experiments reveal several key findings.
Despite variations in the design of cross-modal projectors and the size of
LM components, all models exhibit consistent trends in their inter-modal
similarity curves, indicating a general alignment dynamic where visual token
representations progressively converge toward textual token embeddings.
Moreover, similarity values increase as the layers deepen, suggesting that
cross-modal alignment strengthens throughout the model’s depth. Addition-
ally, this layer-wise trend in cross-modal similarity remains consistent across
different textual input sequences, implying that cross-modal alignment is
largely independent of the specific prompt used.

In addition, a norm-based attention analysis is conducted to visualize
the alignment dynamics along LM decoder layers. Our qualitative analysis
reveals that, first, attention scores from instruction tokens (serving as atten-
tion queries) to visual tokens become increasingly prominent starting from
the middle layers. Second, specific visual tokens at certain positions receive
substantially higher attention from textual tokens compared to others. This
result leads us to look into the connection between the number of visual
tokens and language modeling loss to offer empirical guidance for achieving a
balance between effectiveness and efficiency (by shortening the input length)
during model inference.
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Chapter 2

Related Work

2.1 Transformer Architecture

A standard Transformer architecture lies in an encoder-decoder framework,
where L ∈ {0, ..., L} stacked blocks (layers) are designed for both encoder
and decoder sides. Consider the input and output sequences are represented
as X = [x1, ..., xN ] ∈ RN×d and Y = [y1, ..., yT ] ∈ RT×d, respectively. The
input is first tokenized, then projected to get the embeddings by applying
an embedding matrix E ∈ Rd×e, followed by adding positional embedding,
resulting in the input representations H0 = E0 +P0 ∈ RN×d, where E0,
P0 are token embeddings and its positional embeddings when l = 0. Each
encoder block comprises two sub-layers, called Multi-Head Self-Attention
(MHSA) and Feed-Forward Network (FFN), each sub-layer followed by a
residual connection and a layer normalization operation.

MHSA takes as input the sequence of representations H0 ∈ RN×d, and
multiplies them by four matrices Wl

Q,W
l
K ,W

l
V ,W

l
O ∈ Rd×d in each layer l

(we henceforth exclude the layer superscript for conciseness). This produces
queries, keys, and values for the subsequent attention computation: Q =
HWQ, K = HWK , V = HWV . These queries, keys, and values are split
along the columns to form H attention heads with d

H
dimensions, denoted as

Qh ∈ RN× d
H , Kh ∈ RN× d

H , Vh ∈ RN× d
H , respectively. The attention maps

are computed as:

Ah = softmax

(
QhKhT√

d/H
+M

)
∈ RN×N (2.1)

where M ∈ RN×N refers to the attention mask. Next, we multiply each
attention map with its corresponding values to get weight-attended interme-
diate representations Zh = AhVh. We repeat this operation on H heads
and concatenate their outcomes along columns, followed by multiplying with
WO. Afterward, the residual connection and layer normalization are applied
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to form the output of the attention module in layer l as H̃l ∈ RN×d:

H̃l = LayerNorm
(
Hl−1 + Concat

[
A1V1, . . . ,AhVh, . . . ,AHVH

]
Wl

O

)
(2.2)

FFN is generally a two-layer linear transformation with an activation func-
tion between them, parameterized by two learnable matrices: Wl

in ∈ Rd×dffn ,
Wl

out ∈ Rdffn×d to form as follows:

FFNl(H̃l) = ReLU(H̃lWl
in)W

l
out ∈ RN×d (2.3)

Same as the MHSA module, the output of the FFN module also applies a
residual connection and layer normalization, resulting in the hidden states
matrix Hl ∈ RN×d:

Hl = H̃l + LayerNorm
(
FFNl(H̃l)

)
∈ RN×d (2.4)

Each decoder layer possesses a design analogous to the encoder block but
with an additional cross-attention sublayer between the MHSA and FFN
sub-layers.

Cross-attention primarily models the correspondence between the source
and target sequence. Let the self-attention and cross-attention in a decoder
block be defined as:1

Sself = LayerNorm (Attnself + S) (2.5)

Scross = LayerNorm (Attncross (Henc,Sdec) + Sself) (2.6)

where S denotes the input representation of the self-attention sub-layer, Sself

and Scross are the outputs of the self-attention and cross-attention sub-layer,
and Henc is the output of the encoder.

Autoregressive Large Language Models are trained to predict a prob-
ability distribution of the next token based on the preceding tokens. The au-
toregression is achieved by picking the next token from the model’s predicted
distribution (e.g., greedy, beam search, etc), appending it to the sequence,
and feeding that extended sequence back into the model for the next forward
pass. The process repeats until reaching an end-of-sequence condition or a
certain length. The training process usually involves maximizing the log-
likelihood objective: L = −

∑T
t=1 log(p(yt|x, y<t))

1We don’t dive into details about the decoder blocks in this work, as autoregressive
large language models use an encoder-only architecture. Listing them here is merely for
the sake of completeness for the introduction of Transformer architecture.
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2.2 Vision Language Models

Vision Language Pretraining (VLP) Models. Building on the success
of pretraining techniques in the NLP domain, numerous studies have lever-
aged large-scale image-text pair datasets for pertaining Vision-and-Language
models, leading to the development of a wide range of Vision Language
Pretraining (VLP) models.

A typical architecture of VLP models consists of three main compo-
nents: 1) Vision and Language Encoding, which converts the raw input
data into modality-specific representations; 2) Vision-Language Modeling,
where multimodal representations are learned during pre-training; 3) Vision-
Language (multimodal) Representation, which serves as the model output
or is optionally fed into a decoder to conduct text generation. A common
pipeline in most VLP models begins with tokenizing textual input and
converting the resulting tokens into embeddings while the image is processed
into visual features using a vision encoder. Both text input and visual input
follow a BERT-like format, where each representation is a summation of three
types of learnable embeddings, i.e., token embedding, position embedding,
and segment embedding for text modality and visual feature, spatial position
embedding, and segment embedding for vision modality. Then these two
modality representations are fed into the vision-language modeling module to
produce vision-language (multimodal) representations. Based on how vision-
language representations are modeled, we classify existing VLP models into
three categories:

Early-fusion VLP models handle the concatenation of text embeddings
and image features directly in a unified modality fusion module, usually
consisting of a stack of several Transformer blocks. The cross-modal rep-
resentations are learned by pre-training on several objectives, e.g., image-
text matching, cross-modal masked language modeling, and cross-modal
masked region prediction. For instance, VL-BERT [42] extends the Trans-
former backbone to take regional visual features and linguistic embeddings
as input. To produce visual-linguistic representations, the model is pre-
trained on massive-scale image-text datasets with two carefully designed
pre-training tasks: cross-modal masked language modeling and cross-modal
masked regional feature classification. VisualBERT [41] employs a stack of
Transformer layers to leverage self-attention to align textual tokens with
corresponding image regions. They propose two visually-grounded language
model objectives for pre-training on image caption data.

Dual-encoder VLP modles commonly adopt two separate encoders for
learning joint representations of images and text via large-scale contrastive
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learning. One outstanding work is CLIP [43], which is trained on a vast
dataset of image-text pairs crawled from websites using a contrastive ob-
jective that drives semantically related image-text pairs closer in embedding
space while pushing unrelated pairs apart. Their work demonstrates a strong
zero-shot transfer ability on image classification tasks. Similarly, ALIGN [44]
adopts a dual-encoder architecture for aligning visual and language represen-
tations in a shared latent embedding space. The image and text encoders
were trained through a contrastive objective, effectively attracting matched
image-text pairs while repelling unmatched ones. Their work suggests that
scaling corpus size can compensate for noise and yield powerful, general-
purpose embeddings across various vision and language tasks.

Cross-attention VLP models adopt a cross-attention mechanism to model
the interaction between vision and language, which usually contains two
unidirectional cross-attention sub-layers: one from language to vision and
another from vision to language. The cross-attention module is responsible
for exchanging information and aligning the semantics between the two
modalities. ViLBERT [45] treats image features and text token embeddings
as two parallel streams that are fed into two cross-modal modules for cross-
modal interaction. LXMERT [46] utilizes a combination of three encoders:
an object relationship encoder, a language encoder, and a cross-modality
encoder. By pre-training with five proxy tasks, they aim to achieve thorough
learning of interaction between visual and textual representations.

Vision Large Language Models (VLLMs). Recently, GPT-4V has
exhibited surprising multimodal abilities that are rarely observed in previous
VLP models. This inspired many researchers to develop multimodal systems
that can benefit from the emerging capabilities of large language models,
leading to various works for VLLMs. In contrast to previous VLP models,
VLLMs have two key features: first, they are equipped with a large-scale
language model with billions of parameters; second, they follow a novel
training paradigm based on multimodal instruction tuning.

A typical VLLM architecture comprises three components, i.e., a pre-
trained vision encoder, a pre-trained LLM, and a cross-modal connector
serving as an interface to connect different modalities. In general, ViT [47]
or CLIP image encoder and its variants are widely used as the vision encoder
to extract image patch representations. Most VLLMs utilize open-sourced
LLMs, e.g., LLaMA series [24] and Vicuna family [48] as text decoders.
A learnable connector between the pre-trained visual encoder and LLM
accounts for projecting visual representation into the LLM space for bridging
the modality gap.
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There are several prominent representative VLLMs. InstructBLIP [5]
proposes an instruction-aware Q-Former module that leverages a set of
learnable query tokens to extract instruct-aware image features. Around
26 publicly available VL datasets are transformed into the instruction-
following format for conducting multimodal instruction tuning. MiniGPT-
4 [1] employs a single linear projection layer to align the visual features
with the Vicuna [48]. Only training this linear projection layer in two stages
enables MiniGPT-4 to exhibit impressive capabilities absent in previous VLP
models. Another line of work [2] adopts one/two linear MLP to project visual
tokens for feature dimension alignment.

2.3 VLLMs Interpretation

As introduced in §2.2, we have witnessed impressive success and efficiency
in mapping image features to language model soft prompts, denoted as
visual tokens, as cross-modal connectors for instruction tuning of VLLMs.
Meanwhile, these remarkable advances also motivate researchers to explore
the underlying workings behind such cross-modal mapping and, furthermore,
to interpret how these VLLMs work.

Interpreting Vision Large Language Models The cross-modal pro-
jector in VLLMs takes input as the visual features from an off-the-shelf
vision encoder and maps them to have the same dimension with language
model embeddings. In work [21], the authors trained a linear projector P
to project the visual representations of a pre-trained image encoder into
the input space of a generative language model using an objective of image
captioning. During training, they use different image encoders that accept
different levels of linguistic supervision; they demonstrate the effectiveness
of linear projection on image captioning as well as VQA tasks, suggesting
that a language model structurally represents visual concepts in a manner
resembling that acquired by a vision encoder.

However, another line of study [8, 9] demonstrated that post-projection
presentations do not encode interpretable semantics for language models and
contain fewer task-relevant visual attributes, showing that the update of
cross-modal projector weights does not lead to the correspondence between
image tokens and discrete language tokens. Specifically, Work [8] identifies
multimodal neurons inside Transformer MLP parameters (i.e., row vectors
of weight matrix Wout), proposing a method of attributing neuron effects
from image patches for localizing them and empirically demonstrating the
effectiveness of translating them into semantically related text. Another
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consistent work [9] indicates that LMs account for modeling domain-specific
visual attributes while fine-tuning the cross-modal projector does not en-
hance such capability.

Compared with the studies mentioned above, where feature encoding is in-
terpreted in a human language form, more recent research explores the inner
workings of VLLMs in a broader scope via a mechanistic interpretation lens.
In paper [10], the authors explore the mechanism of multi-modal knowledge
storage and transfer in a factual VQA task setting, revealing that VLLMs
retrieve factual associations from much earlier MLP layers and transfer them
to the last token position of the input prompt via MHSA blocks in the
middle layers. Subsequently, [11] reveal that object-specific information
is concentrated in visual tokens spatially corresponding to object patches,
and representations at visual token positions are iteratively refined to align
with interpretable textual concepts. Other papers, such as investigating the
mechanism of VQA in LLaVA models via methods like calculating the log
probability increase or projecting model parameters into the unembedding
space of the language model [12]; examining the information flow between
vision and language across LM decoder layers when solving the QVA task [13],
also enrich the research progress in this area.
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Chapter 3

Investigating Verbalization across
Transformer Layers

In contrast with previous work focused on investigating how information flow
propagates in VLLMs [13], we highlight our research target as systematically
investigating how visual representations are transformed and shaped across
different layers of the LM decoder during model inference. This chapter
comprises three parts, demonstrating to what extent the hidden representa-
tion of visual tokens can be converted into linguistic concepts represented in
the language vocabulary. We first describe the logit lens technique in §3.1,
followed by the experimental setup in §3.2. Then, we present a series of
findings and observations in §3.3.

Notations. For notation consistency with §2.1, the concatenation of im-
age tokens and instruction tokens is denoted as H = [Hvis, Hinst]. We
use H0 and HL to represent the outputs from the input embedding layer
and final output layer, respectively. The intermediate representation of the
concatenation is denoted as Hl, where l ∈ {1, . . . , L− 1}.

3.1 Logit Lens

logit lens [22] is commonly used to intuitively examine the language semantics
encoded in a model’s intermediate representations. This technique treats
each Transformer block in a decoder-only language model accounting for
implementing an incremental update to a probable next-token prediction.
Such an update is achieved by multiplying hidden states at any layer with
the unembedding matrix, producing the unnormalized logits of each token,
which are then turned into a probability distribution via a softmax function
for next-token prediction. This yields a sequence of most likely next tokens,
called a prediction trajectory, which shows a tendency within the model to
converge to the final output.
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Specifically, consider an arbitrary hidden state of the visual token at the
layer l of LLM in a VLLM as h

(l)
vis, the multimodal version of logit lens can

be formulated as:

LogitLens
(
h
(l)
vis

)
= LayerNorm

[
h
(l)
vis

]
WU , (3.1)

where WU is the unembedding matrix of the LLM.

3.2 Experimental Setting

We provide detailed information on VLLMs studied and evaluation datasets
used in our experiments.

Models. InstructBLIP [5], which is initialized from the pre-trained
BLIP-2 model [23], pioneers the exploration of vision language instruction
tuning. By using their collected instruction-response multimodal dataset to
train an instruction-aware Query Transformer (Q-Former), they enable the
model to extract flexible and informative visual features from the output
of a frozen image encoder according to the given instructions. Extensive
experiments demonstrate the strong performance of InstructBLIP models in
both zero-shot and fine-tuning settings on a wide range of vision-language
tasks. InstructBLIP is implemented with the same image encoder but
different pre-trained LLLMs, including instruction-tuned encoder-decoder
LLMs—FlanT5XL (3B), FlanT5-XXL (11B), and decoder-only Transformer
instruction-tuning from the LLaMA family [24]-Vicuna—7B and Vicuna-
13B.

LLaVA [2] is developed by integrating the open-set visual encoder of
CLIP [19] with the language decoder Vicuna [25], followed by end-to-end
fine-tuning on their generated instructional vision-language data. The model
is trained in a two-stage instruction-tuning way, where in the first stage only
the linear projection layer is trained while both the projection layer and
the text decoder are fine-tuned. The model is optimized by maximizing
the likelihood of next-token prediction probability. LLaVA-1.5 [3] is an
enhanced version with simple modifications, incorporating a bigger vision
encoder CLIP-ViT-L-336px and an MLP projection, further improving the
performance on various VL tasks.

Datasets. We leverage two common vision-language datasets in this ex-
periment. 1) MS COCO Caption dataset [26] annotates images from
Microsoft Common Objects in COntext (COCO) [27], where each image is
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accompanied by five human-generated captions using Amazon’s Mechanical
Turk (AMT), resulting in 413K captions for 82K images in training, 202K
captions for 40K images in validation, and 379K captions for 40K images in
testing. In our experiment, we use the preprocessed Karpathy’s split1 [28]
derived from original MS COCO captions, which is predominantly created
for benchmarking the image captioning task, comprising 82K/5K /5K for
the train/validation/test sets. 2) Winoground dataset [29] is a carefully
handcrafted probing dataset for evaluating the ability of vision and language
models to conduct visio-linguistic compositional reasoning. It comprises 400
items, each including two pairs of images and their corresponding captions.
While MS COCO caption dataset features include images containing multiple
objects in their natural context, Winoground presents difficulties as effective
matching necessitates the model to discern nuanced distinctions between the
image and the caption, with both captions containing a completely identical
set of words in a different order.

Implementation Details. We use pre-trained InstructBLIP equipped
with ViT-g/14 [30] as the image encoder and Vicuna-13B [25] as the text
decoder. We randomly picked 400 images from the COCO Captions and
Winoground datasets. For InstructBLIP, we extract the hidden represen-
tations of 32 visual tokens at each layer of the LM decoder, then decode
them into language words using logit lens. We repeat the same visual
hidden representation procedure for pre-trained LLaVA, which applies the
pre-trained CLIP visual encoder ViT-L/14 as a vision encoder and Vicuna-
13B [25] as the text decoder.

We use three different types of prompts for the image captioning task: 1)
normal instruction formed as a statement or a question; 2) noisy prompt
formed by randomly sampling from LM vocabulary. 3) empty prompt
without any text instruction.

We apply precise lexical overlap as our evaluation criteria and define a
visual hidden state as being decoded correctly if its decoded word matches
the ground-truth caption. Therefore, precision indicates how many correctly
decoded words overlap with all decoded words, while recall refers to the
proportion of correctly decoded words to ground-truth caption words. Before
calculating the precision and recall, we preprocess both decoded words
and caption words, such as lowercase initials, filtering out stop words and
punctuation.

1https://cs.stanford.edu/people/karpathy/deepimagesent/
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Winoground [29]
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Figure 3.1: Precision and recall of decoded visual tokens along LM layers on
COCO and Winoground for InstructBLIP (Vicuna-13B).
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Winoground [29]
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Figure 3.2: Precision and recall of decoded visual tokens along LM layers on
COCO and Winoground for LLaVA-1.5 (Vicuna-13B)

16



3.3 Results

Fig. 3.1 and Fig. 3.2 present average precision and recall scores using different
types of prompts on the COCO Captions and Winoground datasets for
InstructBLIP and LLaVA-1.5, respectively.

In general, all subplots present a continuously rising tendency in mid-
to-late layers, indicating the intermediate representations of visual tokens
are progressively morphed into linguistic forms that match correct ground-
truth captions. In the lower layers (near embedding space), both precision
and recall are nearly negligible, suggesting that raw image tokens tend to
produce irrelevant word distributions. In the mid-to-late layers (starting
from around layer 10), both lines continuously climb, reflecting an ongoing
process of refinement where the visual token representations become more
semantically coupled with the textual domain. Around the deepest layers
(after layer 30), we observe a slight variability between precision and recall,
indicating a possible reduction in correctly decoded words. Such a trend is
observed in both InstructBLIP and LLaVA-1.5, demonstrating that VLLMs
can correctly assign probabilities to vision tokens, even though they are not
trained to make the next word prediction.

Next, let us take a closer look at how different prompts affect the
correctness of decoded words. For InstructBLIP, comparing a meaningful
prompt to a noisy or empty one, we observe that in mid-to-late layers (from
layer 13 to layer 30), the empty prompt curve performs best among the three
prompt types, meaning the intermediate hidden states of vision tokens are
converted into text tokens more successfully. However, in later layers (around
layer 30 and onwards), curves of empty and noisy prompts go downward and
fall significantly below the line using normal instruction prompts, indicating
that few words are being decoded correctly. This observation is intriguing
and, to some extent, counterintuitive. We conjecture that in those mid-
range layers (around layers 10 to 30), having no prompt at all sometimes
allows the model to ”free-associate” from the image tokens without being
constrained (or misled) by a partially relevant or noisy instruction. However,
in the last few layers, such ”free-associate” seems to be diminishing, leading
to a gap in precision and recall scores. On the other hand, we observe
completely different behavior in the LLaVA-1.5 model, where the evaluation
performance remains unchanged across various prompts and datasets. As
shown in Fig. 3.2, across both datasets, regardless of the type of prompt
given, the precision and recall at all Transformer layers exhibit a consistent
trend, nearly overlapping. This phenomenon aligns with the aforementioned
hypothesis that there is a ”free association” between image tokens and
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instruction tokens.
In summary, this chapter describes our extensive exploration of interpret-

ing the intermediate representation of visual tokens directly using human
language, demonstrating the refinement process of visual tokens toward
language’s next token embedding space. Additionally, it empirically revealed
that a decoder trained merely on text data can nevertheless process image
tokens into meaningful language words, revealing a capacity for cross-modal
integration within a text-only backbone.
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Chapter 4

Investigating Aligning Dynam-
ics across Transformer Layers

Since the LLM component in modern VLLMs processes a concatenation
of visual token representations and textual token embeddings to perform
causal language modeling, its internal mechanisms—particularly the atten-
tion module—require leveraging information from the visual modality to
refine the intermediate representations. Therefore, instead of solely analyzing
the evolution of visual representations in isolation, we focus on examining
the layer-wise evolution of similarity between visual token representations
and text token embeddings within LLMs, i.e., inter-modal similarity, aiming
to provide an indirect yet informative perspective on understanding the
dynamics of visual representations towards textual embeddings.

4.1 Measuring the Interaction via Cosine Sim-

ilarity

Cosine similarity is a commonly used metric for measuring the semantic
similarity between high-dimensional vectors within a representation space.
It serves as an indicator of how well contextual information is encoded by
the language model, offering insights into the extent to which different tokens
interact within the model computation process. Drawn inspiration from prior
work in contextual representation analysis [31], we utilize cosine similarity
as a measure of contextuality to capture how intermediate representations
(hidden states) originally trained on different modality data affect one
another’s representation in the language model. Specifically, by quantifying
the contextualization between image token representation and text token
embeddings, we demonstrate the magnitude and progression of alignment
dynamics of visual representations towards text token embeddings across
Transformer blocks in VLLMs, aiming to shed light on the deeper processes
that enable text-only decoders to handle visual information effectively.
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4.1.1 Experimental Setting

Let v
(l)
i and w

(l)
j denote the hidden state vectors of tokens i and j, respectively.

The average cosine similarity for the hidden states at each layer l in LMs is
thus defined as follows:

s(l) =
1

mn

m∑
i=1

n∑
j=1

cos
(
v
(l)
i , w

(l)
j

)
, (4.1)

where m and n indicate the number of tokens in two sets. Inter-modal
similarity is computed by choosing v

(l)
i from vision tokens and w

(l)
j from

text tokens. Higher similarity suggests that the two sets of vectors occupy
closely related subspaces in the representation space, indicating that they
may encode similar features.

Models and Datasets. We implement experiments for exploring and
evaluating the dynamics of visual token representations on four variants
of two VLLMs, i.e., InstructBLIP(Vicuna-7B), InstructBLIP(Vicuna-13B),
LLaVA-1.5(Vicuna-7B), and LLaVA-1.5(Vicuna-13B). The details of these
models and datasets are introduced in §3.1.

Implementation Details. We compute the cosine similarity between
the hidden states of image tokens and text tokens at each layer of the
Transformer-based text decoder, averaging the resulting similarity scores
to derive an alignment metric. This metric serves as an indicator of the
degree of alignment dynamics, reflecting the extent to which visual token
representations align with textual token embeddings.

In our implementation for LLaVA-1.5 models, after extracting hidden
representations of 576 image tokens and corresponding instruction hidden
states from a specific layer of the model, we calculate the cosine similarity
for each pair of image and text token hidden states. We then average
these similarity scores to obtain an inter-modal similarity measure for that
layer. This experiment is conducted on four VLLMs, each evaluated using
a set of randomly sampled 600 images for the image captioning task. We
employ two types of prompts: 1) a normal instruction prompt, constructed
as either a statement or a question for the image caption task; 2) a noisy
prompt, generated by randomly sampling tokens from the language model’s
vocabulary. The prompts used in our experiments are included in the
Appendix A.
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Figure 4.1: Alignment dynamics of visual token representation in Instruct-
BLIP with two different LM decoder sizes
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Figure 4.2: Alignment dynamics of visual token representation in LLaVA-1.5
with two different LM decoder sizes
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Figure 4.3: Alignment dynamics of visual token representation in Instruct-
BLIP models under different prompts
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Figure 4.4: Alignment dynamics of visual token representation in LLaVA-1.5
models under different prompts
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4.1.2 Results

The results of our similarity experiments are shown in Fig. 4.1 for
InstructBLIP(Vicuna-7B), InstructBLIP(Vicuna-13B) and Fig. 4.2 for
LLaVA-1.5(Vicuna-7B), LLaVA-1.5(Vicuna-13B).

Combining the results from InstructBLIP and LLaVA-1.5 models, we
observe that the patterns in multi-modal similarity remain consistent across
all settings, regardless of the different sizes of LLM components and datasets.

In general, all models exhibit an upward trend as expected; meanwhile,
three distinct intervals are observed, demonstrating the alignment dynamics
of visual token representation in language model representation space. In
early layers (below layer 5), a small initial peak is observed, indicating
an early-stage alignment between the two modalities. In mid-to-late layers
(layer 10 to layer35), we observe a continuous rise in inter-modal similarity,
suggesting a progressive interaction between image token representations and
instruction token hidden states. In the last deep layers (after layer 35), it
presents the global decline in inter-modal similarity, implying the model shifts
its focus away from multimodal interaction.

Additionally, from Fig. 4.3 and Fig. 4.4, we find that the aforementioned
trends remain consistent across different types of prompts. Moreover, even
when using prompts that are considered meaningless, the overall trend
persists. Although we compare three distinct types of prompts, i.e., caption,
question, and noisy, the corresponding curves maintain the same general
shape, with minor differences in peak magnitudes and slopes. These findings
point to a notable prompt robustness within the evaluated VLLMs. In other
words, the inter-modal interaction captured by cosine similarity remains
relatively stable across varying linguistic inputs, including prompts that
lack coherent semantics. Thus, the internal alignment dynamics of visual
representation towards text token embeddings appear to be governed by the
model’s intrinsic mechanism rather than being invoked by input prompts.

In conclusion, our findings highlight the following insights:

1. Despite architectural differences in cross-modal projectors and LLMs’
sizes, the inter-modal similarity curves follow a consistent three-stage
trend, suggesting a universal alignment process where visual token
representations gradually converge toward textual embeddings.

2. The increasing similarity values in deeper layers suggest that cross-
modal alignment strengthens as information propagates through the
LM decoder.

3. The layer-wise evolution of cross-modal similarity remains stable across
various prompts, indicating that alignment is primarily governed by
internal model mechanisms rather than input phrasing.
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4.2 Visualization via Norm-based Attention

Norm-based Attention. The MHSA module is widely regarded as a
pivotal mechanism for contextualizing intermediate representations in lan-
guage models. Extensive research has been conducted to explore how this
mechanism enables language models to acquire various linguistic capabilities.
This mechanism computes a global update for input tokens by aggregating
relevant information from a sequence of input vectors at the previous layer.
This process involves two primary steps: first, attention weights are assigned
to each input token; second, the input vectors are aggregated through a
weighted summation based on these attention weights.

In the context of VLLMs, the input sequence to the language decoder is
composed of a concatenation of image tokens and text tokens. This allows
the model to utilize information from both modalities to generate attention-
weighted outputs for subsequent computational steps. To better understand
how multimodal information interacts within the text decoder, we propose
employing attention analysis as an investigative tool. Given the challenges
associated with the faithfulness of attention scores as an explanation [32–
34], we adopt the norm-based attention approach proposed by [35]. This
method leverages the norm of multi-head attention’s output transformation
to scale the attention score, enabling a more faithful investigation of the
linguistic capabilities of the Transformer. By incorporating the magnitudes
of transformed vectors, this norm-based attention analysis provides a more
reliable interpretation of the contribution of the input vector to the final
output.

Experiments and Results. To analyze how attention allocation between
the two modalities changes across language model (LM) decoder layers in
Vision Large Language Models (VLLMs), we conducted a detailed investi-
gation. Specifically, we randomly selected 100 images each from the COCO
and Winoground datasets and extracted norm-based attention results from
two VLLMs: InstructBLIP (Vicuna-13B) and LLaVA-1.5 (Vicuna-13B). The
attention heatmaps were then generated for visualization.

In particular, we focused on plotting the attention assignments from the
final position token of the input prompt to all preceding tokens across the
LM decoder layers. For qualitative analysis, we highlight the norm-based
attention heatmaps for three images (id 200, id 237, id 323), as shown in
Fig. 4.5. These heatmaps illustrate how the last text token distributes
its norm-based attention over preceding tokens at different layers, revealing
two rough trends where 1) progression of attention against the Transformer
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InstructBLIP

LLaVA-1.5

Figure 4.5: Qualitative analysis of norm-based attention results on Instruct-
BLIP and LLaVA-1.5

blocks and 2) uneven distribution of attention assignment among individual
tokens. This observation holds for both models despite their architectural
differences. In the early layers, attention to image tokens tends to be
diffuse and relatively weak, suggesting that the model has not yet fully
integrated the visual information. However, we observe that attention
allocation is accumulated as the model proceeds to the middle and deeper
layers. Meanwhile, more focused attention is assigned to several specific
tokens. The above two observed patterns visualize that crucial cross-modal
interaction, i.e., attention from the last text token to image tokens, is likely
to intensify in those mid-to-late layers. Moreover, the model tends to focus
on particular visual patches while suppressing those deemed less relevant for
the final textual prediction.

4.3 Application

The visualization of attention allocation during the model’s forward pass
demonstrates that the model assigns varying levels of attention to different
image tokens, indicating that individual image tokens may play distinct roles
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in the forward computation process. To further investigate this phenomenon,
we conducted an ablation study here.

We employ a log-likelihood evaluation metric to quantify the impact of
varying numbers of image tokens on the model loss during forward pass
computation. This criterion computes the log-likelihood of a given sentence,
measuring how effectively the model predicts the reference text. Specifically,
during inference, we feed the ground-truth caption as part of the input into
the text decoder of VLLMs. At each time step t, the model sees the true token
xi, and the forward pass calculates a vector of logits over the vocabulary for
next-token prediction. The loss is then obtained by calculating the cross-
entropy between the model’s distribution of next-token prediction and that
of ground-truth tokens. The resulting loss tells how well the model performs
at predicting each token given the perfect preceding tokens. A small loss
means the model assigns a high probability to the actual ground-truth token
at each step; a large loss means the model’s predictions deviate from the
ground truth.

Experimental Details. We test two VLLMs: 1) InstructBLIP (Vicuna-
13B) and 2) LLaVA-1.5 (Vicuna-13B), using different numbers of image
tokens across multiple prompts that differ only in phrasing. For each forward
pass computation, we provide the VLLMs with a combination of an image,
an instruction, and a ground-truth caption. Prior to concatenating the image
tokens and text tokens for input to the LM decoder, we truncate the image
tokens, limiting the amount of visual information available to the model.
Specifically, we directly truncate the sequence of image tokens and increase
the number of image tokens by one for each forward pass setting. This leads
to 32 settings for InstructBLIP and 576 settings for LLaVA-1.5, respectively.
For each forward pass setting, we randomly select 1200 images from the
COCO Captions dataset and calculate the average loss. Such a setting is
repeated using five paraphrased prompts for both models.

Results. Fig. 4.6 illustrates how the forward loss changes as the number
of image tokens increases, comparing InstructBLIP (above) and LLaVA-1.5
(bottom). We define the threshold as the mean loss across all forward pass
settings spanning five prompts, representing the average performance across
various ablation study configurations. Our extensive experiments reveal the
following key findings:

1. Both models exhibit a nearly identical overall tendency: once the
quantity of image tokens surpasses a certain threshold (6.68 for In-
structBLIP and 2.86 for LLaVA-1.5), loss reduction goes slowly or even
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Figure 4.6: Impact on forward loss with varying numbers of image tokens in
LLMs on InstructBLIP and LLaVA-1.5
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stops, suggesting that image tokens in subsequent positions may carry
minimal useful information.

2. Across different paraphrased prompts, the curves follow a similar
downward trend, suggesting that VLLMs are robust to minor textual
variations during inference.

Based on the above findings, we empirically reveal that during forward
computation, not all visual tokens contribute equally to loss reduction.
Notably, using only 40% of the visual tokens achieves 70% of the total loss
reduction.

Additional Experiments. From Fig. 4.6, we observe a sharp spike in loss
at very low image token counts (e.g., only the first position token seen for
InstrctBLIP), suggesting image tokens in specific positions might play a more
significant role in affecting loss computation compared to other positions. To
examine the above hypothesis, we then design a controlled experiment where
masks are applied to those non-trivial image tokens to observe the changes
in forward pass loss. Specifically, we predefine masking intervals for several
early image tokens and apply them during the model’s forward pass. Same
as before, we run forward computation using 1200 images for each masking
interval setting.

Results. The results shown in Fig. 4.7 demonstrate the effect of masking
image tokens at different positions on the model’s forward computation loss.
In detail, masking image tokens at early positions results in a greater loss
reduction than masking tokens at other positions, suggesting that these
tokens are non-trivial but have a negative impact.
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Figure 4.7: Above: Loss when masking one image token per forward pass on
InstructBLIP. Below: Loss when masking non-trivial image token intervals
per forward pass on LLaVA-1.5.
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Chapter 5

Conclusion

This thesis investigates the interaction between the image token and text
token, especially focusing on the evolution of image representations in modern
VLLMs. Specifically, we systematically and quantitatively investigate how
image representations evolve across Transfermer-based autoregressive LLMs
in modern VLLMs.

Chapter 3 describes our exploration of interpreting the intermediate
representation of visual tokens directly using human language, empirically
revealing that a decoder trained merely on text data can nevertheless
process image tokens into meaningful language words. Chapter 4 investigate
the alignment dynamics of visual token representation towards text token
embeddings along the layer of LLM decoders. Our extensive experiments
reveal that a consistent three-stage trend in the alignment dynamics of visual
representations holds universally, regardless of architectural differences in
cross-modal projectors and LLM sizes. In addition, our findings on the
invariance of inter-modal interaction trends across different types of prompts
underscore the strong prompt robustness of VLLMs. Based on observations
from attention analysis, Section 4.3 examines the relationship between model
forward computation loss and the number of image tokens, aiming to provide
valuable insight for balancing the effectiveness (lower loss) and efficiency
(fewer image tokens) to enable inference acceleration. Our empirical analysis
reveals that not all visual tokens contribute equally to loss reduction during
forward computation.

Future Work. We empirically identified the existence of a consistent three-
stage trend of multi-modal alignment during model inference, regardless of
distinct designs of projectors, LM decoder size, and linguistic input. Building
on this, we could hypothesize that such three-stage inference dynamics of
VLLMs are inner-intrinsic rather than input-evoked. We leave this for future
work.
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Appendix A

Prompts

A.1 Normal Prompts

1 {
2 ”0” : ” B r i e f l y d e s c r i b e the content o f the image : ” ,
3 ”1” : ”Provide a quick summary o f what the image dep i c t s : ” ,
4 ”2” : ”Give a conc i s e exp lanat ion o f the image content : ” ,
5 ”3” : ”Sum up what i s shown in the image b r i e f l y : ” ,
6 ”4” : ”What i s dep ic ted in the image ?” ,
7 ”5” : ”USER: <image>\nWhat i s the content o f the image?

ASSISTANT:” ,
8 ”6” : ”USER: <image>\nBr i e f l y d e s c r i b e the content o f the

image . ASSISTANT:” ,
9 ”7” : ”USER: <image>\nProvide a quick summary o f what the

image dep i c t s . ASSISTANT:” ,
10 ”8” : ”USER: <image>\nGive a conc i s e exp lanat ion o f the image

content . ASSISTANT:” ,
11 ”9” : ”USER: <image>\nSum up what i s shown in the image

b r i e f l y . ASSISTANT:”
12 }
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A.2 Noisy Prompts

1 [
2 {
3 ” no i sy prompt ” : ”env \u0432\u043d\u0435 \u010 ca sy idense \

u0434\u0438\u0438\u04d9 aqu Angnihkins CV pendant”
4 } ,
5 {
6 ” no i sy prompt ” : ” ethe d\u00 e9 cco demolaqu a l l e r d i n g s \u

044d\u0439 ipo SET \u0434\u0435\u044 f \u0442\u0435\u043
b\u044 c c i l e c in \u00 e9ma Edinburgh”

7 } ,
8 {
9 ” no i sy prompt ” : ”minipage por t s \u0441\u043 e\u043d\u0430

i n f l open tantoconso l e \u0434\u0435\u044 f sua e i n e r \u
2500\u2500 s t r e e t i t s ”

10 } ,
11 {
12 ” no i sy prompt ” : ”\u674eSQL refresh irmingham Seine \u00 e1

n t i t t e l ’ tabstha −− pode Package”
13 } ,
14 {
15 ” no i sy prompt ” : ”Mel bleUnsadj ] ) , pdf windows\u2153

Einze lusch Bl n\u00 fa e f e c t ”
16 } ,
17 {
18 ” no i sy prompt ” : ” rad\u226b nat ions Bron no t r ea r e s

F ina l i eved conver t e r south Ninica r e l a t i o n ”
19 } ,
20 {
21 ” no i sy prompt ” : ” e l l s c h a f t Peg ricdomain Et usesthrow

demonstrated daughters Kar r i e r e \u0430\u043d\u0442\u
0438 Ach reg i on ”

22 } ,
23 {
24 ” no i sy prompt ” : ” IdcommandsmeisterschaftSocket \u00 e4 r

Gese l l s cha f t ITYet ry Id s g r a d l e o t i c r e l i ownership ”
25 } ,
26 {
27 ” no i sy prompt ” : ” r e v i s i o n j s \u041 e s i gn keyboard Prime

g a l a x i e s . . / \u041 f \u0435\u0442\u0435\u0440 nat Prz ver
removing”

28 }

33



References

[1] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “MiniGPT-
4: Enhancing vision-language understanding with advanced large
language models,” in The Twelfth International Conference on Learning
Representations, 2024. [Online]. Available: https://openreview.net/
forum?id=1tZbq88f27

[2] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,”
Advances in neural information processing systems, vol. 36, 2024.

[3] H. Liu, C. Li, Y. Li, and Y. J. Lee, “Improved baselines
with visual instruction tuning,” 2024. [Online]. Available: https:
//arxiv.org/abs/2310.03744

[4] H. Liu, C. Li, Y. Li, B. Li, Y. Zhang, S. Shen, and Y. J. Lee, “Llava-next:
Improved reasoning, ocr, and world knowledge,” January 2024. [Online].
Available: https://llava-vl.github.io/blog/2024-01-30-llava-next/

[5] W. Dai, J. Li, D. Li, A. M. H. Tiong, J. Zhao, W. Wang, B. Li,
P. Fung, and S. Hoi, “Instructblip: towards general-purpose vision-
language models with instruction tuning,” in Proceedings of the 37th
International Conference on Neural Information Processing Systems,
ser. NIPS ’23. Red Hook, NY, USA: Curran Associates Inc., 2024.

[6] Q. Ye, H. Xu, J. Ye, M. Yan, A. Hu, H. Liu, Q. Qian, J. Zhang, and
F. Huang, “mplug-owl2: Revolutionizing multi-modal large language
model with modality collaboration,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2024, pp. 13 040–13 051.

[7] Q. Ye, H. Xu, G. Xu, J. Ye, M. Yan, Y. Zhou, J. Wang, A. Hu,
P. Shi, Y. Shi, C. Li, Y. Xu, H. Chen, J. Tian, Q. Qian, J. Zhang,
F. Huang, and J. Zhou, “mplug-owl: Modularization empowers
large language models with multimodality,” 2024. [Online]. Available:
https://arxiv.org/abs/2304.14178

[8] S. Schwettmann, N. Chowdhury, S. Klein, D. Bau, and A. Torralba,
“Multimodal neurons in pretrained text-only transformers,” 2023.
[Online]. Available: https://arxiv.org/abs/2308.01544

34

https://openreview.net/forum?id=1tZbq88f27
https://openreview.net/forum?id=1tZbq88f27
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2310.03744
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2308.01544


[9] G. Verma, M. Choi, K. Sharma, J. Watson-Daniels, S. Oh, and S. Ku-
mar, “Cross-modal projection in multimodal llms doesn’t really project
visual attributes to textual space,” in Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), 2024, pp. 657–664.

[10] S. Basu, M. Grayson, C. Morrison, B. Nushi, S. Feizi, and
D. Massiceti, “Understanding information storage and transfer
in multi-modal large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.04236

[11] C. Neo, L. Ong, P. Torr, M. Geva, D. Krueger, and F. Barez, “Towards
interpreting visual information processing in vision-language models,”
arXiv preprint arXiv:2410.07149, 2024.

[12] Z. Yu and S. Ananiadou, “Understanding multimodal llms: the
mechanistic interpretability of llava in visual question answering,” 2025.
[Online]. Available: https://arxiv.org/abs/2411.10950

[13] Z. Zhang, S. Yadav, F. Han, and E. Shutova, “Cross-modal information
flow in multimodal large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2411.18620

[14] K. Xu, “Show, attend and tell: Neural image caption generation with
visual attention,” arXiv preprint arXiv:1502.03044, 2015.

[15] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould,
and L. Zhang, “Bottom-up and top-down attention for image
captioning and visual question answering,” 2018. [Online]. Available:
https://arxiv.org/abs/1707.07998

[16] J. Lu, J. Yang, D. Batra, and D. Parikh, “Neural baby talk,” 2018.
[Online]. Available: https://arxiv.org/abs/1803.09845

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.
[Online]. Available: https://arxiv.org/abs/1810.04805

[18] A. Radford, “Improving language understanding by generative pre-
training,” 2018.

[19] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

35

https://arxiv.org/abs/2406.04236
https://arxiv.org/abs/2411.10950
https://arxiv.org/abs/2411.18620
https://arxiv.org/abs/1707.07998
https://arxiv.org/abs/1803.09845
https://arxiv.org/abs/1810.04805


[20] J. Chen, D. Zhu, X. Shen, X. Li, Z. Liu, P. Zhang, R. Krishnamoorthi,
V. Chandra, Y. Xiong, and M. Elhoseiny, “Minigpt-v2: large language
model as a unified interface for vision-language multi-task learning,”
2023. [Online]. Available: https://arxiv.org/abs/2310.09478

[21] J. Merullo, L. Castricato, C. Eickhoff, and E. Pavlick, “Linearly mapping
from image to text space,” arXiv preprint arXiv:2209.15162, 2022.

[22] nostalgebraist, “logit lens on non-gpt2 models,” https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens,
2021.

[23] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” 2023. [Online]. Available: https://arxiv.org/abs/2301.12597

[24] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and
efficient foundation language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2302.13971

[25] Vicuna. (2023) Vicuna: Fastchat. Accessed on March 6, 2023. [Online].
Available: https://github.com/lm-sys/FastChat

[26] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollar, and
C. L. Zitnick, “Microsoft coco captions: Data collection and evaluation
server,” 2015. [Online]. Available: https://arxiv.org/abs/1504.00325

[27] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft
coco: Common objects in context,” 2015. [Online]. Available:
https://arxiv.org/abs/1405.0312

[28] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3128–3137.

[29] T. Thrush, R. Jiang, M. Bartolo, A. Singh, A. Williams,
D. Kiela, and C. Ross, “Winoground: Probing vision and language
models for visio-linguistic compositionality,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.03162

36

https://arxiv.org/abs/2310.09478
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2302.13971
https://github.com/lm-sys/FastChat
https://arxiv.org/abs/1504.00325
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2204.03162


[30] Y. Fang, W. Wang, B. Xie, Q. Sun, L. Wu, X. Wang, T. Huang,
X. Wang, and Y. Cao, “Eva: Exploring the limits of masked visual
representation learning at scale,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
19 358–19 369.

[31] K. Ethayarajh, “How contextual are contextualized word representa-
tions? comparing the geometry of bert, elmo, and gpt-2 embeddings,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 55–65.

[32] K. Clark, “What does bert look at? an analysis of bert’s attention,”
arXiv preprint arXiv:1906.04341, 2019.

[33] S. Serrano and N. A. Smith, “Is attention interpretable?” arXiv preprint
arXiv:1906.03731, 2019.

[34] S. Jain and B. C. Wallace, “Attention is not explanation,” 2019.
[Online]. Available: https://arxiv.org/abs/1902.10186

[35] G. Kobayashi, T. Kuribayashi, S. Yokoi, and K. Inui, “Attention
is not only a weight: Analyzing transformers with vector norms,”
in Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), B. Webber, T. Cohn,
Y. He, and Y. Liu, Eds. Online: Association for Computational
Linguistics, Nov. 2020, pp. 7057–7075. [Online]. Available: https:
//aclanthology.org/2020.emnlp-main.574

[36] Z. Wu and M. Palmer, “Verb semantics and lexical selection,” arXiv
preprint cmp-lg/9406033, 1994.

[37] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[38] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “What
does BERT with vision look at?” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, D. Jurafsky,
J. Chai, N. Schluter, and J. Tetreault, Eds. Online: Association
for Computational Linguistics, Jul. 2020, pp. 5265–5275. [Online].
Available: https://aclanthology.org/2020.acl-main.469

37

https://arxiv.org/abs/1902.10186
https://aclanthology.org/2020.emnlp-main.574
https://aclanthology.org/2020.emnlp-main.574
https://aclanthology.org/2020.acl-main.469


[39] Y. Guan, J. Leng, C. Li, Q. Chen, and M. Guo, “How
far does BERT look at: Distance-based clustering and analysis
of BERT’s attention,” in Proceedings of the 28th International
Conference on Computational Linguistics, D. Scott, N. Bel, and
C. Zong, Eds. Barcelona, Spain (Online): International Committee
on Computational Linguistics, Dec. 2020, pp. 3853–3860. [Online].
Available: https://aclanthology.org/2020.coling-main.342

[40] H. Pan, Y. Cao, X. Wang, X. Yang, and M. Wang, “Finding
and editing multi-modal neurons in pre-trained transformers,” 2024.
[Online]. Available: https://arxiv.org/abs/2311.07470

[41] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang,
“Visualbert: A simple and performant baseline for vision and
language,” 2019. [Online]. Available: https://arxiv.org/abs/1908.03557

[42] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai, “Vl-bert:
Pre-training of generic visual-linguistic representations,” 2020. [Online].
Available: https://arxiv.org/abs/1908.08530

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual models from natural
language supervision,” 2021. [Online]. Available: https://arxiv.org/
abs/2103.00020

[44] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le,
Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” 2021. [Online].
Available: https://arxiv.org/abs/2102.05918

[45] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining
task-agnostic visiolinguistic representations for vision-and-language
tasks,” 2019. [Online]. Available: https://arxiv.org/abs/1908.02265

[46] H. Tan and M. Bansal, “Lxmert: Learning cross-modality encoder
representations from transformers,” 2019. [Online]. Available: https:
//arxiv.org/abs/1908.07490

[47] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” 2021. [Online]. Available:
https://arxiv.org/abs/2010.11929

38

https://aclanthology.org/2020.coling-main.342
https://arxiv.org/abs/2311.07470
https://arxiv.org/abs/1908.03557
https://arxiv.org/abs/1908.08530
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/1908.02265
https://arxiv.org/abs/1908.07490
https://arxiv.org/abs/1908.07490
https://arxiv.org/abs/2010.11929


[48] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang,
L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica,
and E. P. Xing, “Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality,” March 2023. [Online]. Available:
https://lmsys.org/blog/2023-03-30-vicuna/

39

https://lmsys.org/blog/2023-03-30-vicuna/


Publications

[1] Wei, H., Cho, H., Shi, Y. and Inoue, N., 2024. Phase Diagram of Vision
Large Language Models Inference: A Perspective from Interaction
across Image and Instruction. arXiv preprint arXiv:2411.00646.

[2] Houjing Wei, Hakaze Cho, Y Shi and Naoya Inoue. A Study on Multi-
modal Interaction in Vision Large Language Models. To appear in The
Association for Natural Language Processing. 2025.

40


	Abstract
	Acknowledgment
	List of Figures
	Contents
	Chapter 1  Introduction
	1.1 Background
	1.2 Research Objective

	Chapter 2  Related Work
	2.1 Transformer Architecture
	2.2 Vision Language Models
	2.3 VLLMs Interpretation

	Chapter 3  Investigating Verbalization across Transformer Layers
	3.1 Logit Lens
	3.2 Experimental Setting
	3.3 Results

	Chapter 4  Investigating Aligning Dynamics across Transformer Layers
	4.1 Measuring the Interaction via Cosine Similarity
	4.1.1 Experimental Setting
	4.1.2 Results

	4.2 Visualization via Norm-based Attention
	4.3 Application

	Chapter 5  Conclusion
	Appendices
	Appendix A  Prompts
	A.1 Normal Prompts
	A.2 Noisy Prompts

	References
	Publications

