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Abstract

With the increasing complexity of IoT systems, assuring the IoT system
trustworthiness has become a critical work. Based on the IoT System
Trustworthiness Levels (TALs) proposed by Beuran, this thesis reports about
a case study to ensure that robot control protocols of a smart building meet
high trustworthiness levels through formal and experimental verification.

The target smart building for this study has four subsystems, namely
the robot subsystem, Building OS, the robot control platform subsystem,
and the robot subsystem. The target protocol is implemented on the robot
control platform subsystem, with the function to command a robot to move
to another floor through the elevator.

Our formal verifications focus on model checking. We specified the basic
version of the protocol for single robot control and the improved version for
multi robots control in Maude, and successfully checked deadlock by using
Maude’s search command and checked safety and liveness properties by using
Maude LTL Model Checker. All checked properties satisfy the requirements,
which let us confirm the process correctness of the protocols.

Our experimental verifications focus on emulation and fuzzing, identi-
fying unexpected problems. We developed an emulator for emulating the
communication and action of the four subsystems. The emulator outputs
communication and action logs, all of which can help us to diagnose problems
when the system has any abnormal behaviors. Based on the emulator, we
conducted fuzzing, an automatic test method by generating a large amount
of random data. Our fuzzing involves mutating messages related to the robot
control protocols in each subsystem, aiming to affect message transmission.
In order to speed up the fuzzing, we applied some strategies. By applying
our strategies, although the improvement of the three subsystems of robots,
building OS and elevators is not obvious, the coverage of the fuzzing of 30
seeds of the robot control platform subsystem has increased from 36% to
94%. Based on the fuzzing results, we summarized 10 problems that had not
been found in model checking and divided them into 6 categories according to
Common Weakness Enumeration (CWE). Part of the problems comes from
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mistakes such as poor consideration in programming, and the other comes
from abnormal situations such as data tampering. The discovery of these
problems can be a supplement to the model checking.

To correct the problems, we modified the old model, got five new formal
models according to the ten problems, and verified the properties again
according to the requirements. At the same time, we conducted experimental
verification of the modified emulator again and observed the behaviors again
to confirm that our solution is effective.

The results of our experiment not only show the effective but also show
that the two methods have a certain complementarity. During the model
checking, some operations were omitted in the system abstraction, while
such operations are not omitted in the emulator, which is a good auxiliary
supplement for the model checking; the characteristics of random mutation
in the fuzzing are difficult to cover all paths, while the characteristics of all
reachable paths traversal in the model checking prove the correctness of the
paths.

On the other hand, state is used in emulating the operation of the
system and devices, applied to both modeling in formal verification and
emulator development in experimental verification. The problems located
by one party can be easily located in the other party. Such convenience
is reflected in later modification and re-verification. With this process
of formal verification, experimental verification, analysis, modification, re-
verification and re-analysis, we believe that our method is effective in high
trustworthiness levels assurance.

Keywords: Control Protocol, Smart Building, Model Checking, Emula-
tion, Fuzzing.
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Chapter 1

Introduction

1.1 Background

With the development of Society 5.0, the Internet of Things (IoT), made
of devices which can connect to the network, becomes more and more
common. A variety of IoT devices can be interconnected to integrate into
a complex system that provides various services. Smart buildings are the
buildings that adopt and implement such the systems. As a consequence
of the integration, smart buildings can provide varieties of services, such as
robot controls, HVAC controls, energy controls and more. However, while
enjoying convenient services, we should also realize that whether this system
is trustworthy needs to be assured.

To accomplish integration between subsystems within a smart building,
a common approach is that the building assets transmit messages through
communication protocols, and responses through control protocols according
to the message. According to Christopher et al. [1], most attacks are against
communication protocols and devices, and such attacks all affect the message
transmission. Besides, due to many control protocols customized according to
user needs, it may lead to abnormal operations [2]. Thus, as trustworthiness
assurance for a smart building, it is necessary not only to work on preventing
attacks, but also to consider whether the operation of the control protocol is
reliable and how the attacks will affect the operation of the control protocol.

Beuran et al. [3] classified IoT System Trustworthiness Assurance Levels
(TALs) into three categories, defined together with the appropriate verifi-
cation methods as follows: TAL1: Checklist regarding regulations, TAL2:
Experimental verification and TAL3: Formal and experimental verification.
For such a complex system as smart buildings, although it is difficult and
unnecessary to assure that all parts meet TAL3, it is necessary to assure that
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the key parts meet TAL3 and other parts only need to meet TAL2 or TAL1.
As the robot control protocol is one of the key parts of a smart building,
assuring a high trustworthiness level in the control protocol operation is
extremely important.

However, in papers on smart building-related research, the focus is more
on the communication protocols and less on control protocols; in control
protocol-related research, the discussion is more on whether there will be a
collision between different control protocols, and less on the trustworthiness
of a single control protocol. In papers on combining formal and experimental
verification, many researchers have contributed to the verification of commu-
nication and cryptographic protocols by guiding experiment through formal
methods [4, 5], different from our objective of a control protocol verification
and the requirements which TAL3 require to separate formal verification and
experimental verification. In order to fill this gap, we provide a research case
and methodology to verify the control protocol.

1.2 Contributions

Our contributions mainly include the following:

• We successfully specified the robot control protocols of a smart building
with Maude, and successfully completed the model checking of safety
and liveness properties.

• We developed an emulator and conducted fuzzing for the protocols,
and summarized the existing problems identified through fuzzing.

• Based on the identified problems, we have proposed some improvement
plans and conducted the re-verification to assurance a high trustwor-
thiness levels.

• We discussed the strengths and shortcomings of our methodology and
a possible direction for a combination of the model checking and
emulation approaches.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 introduces the
basic knowledge of model checking and fuzzing and the tools used. Chapter 3
introduces the methodology. Chapter 4 summarizes and analyzes the existing
problems of the protocols through the results. Chapter 5 introduces the
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improvements and reverification of the protocols. Chapter 6 discusses the
strengths and shortcomings of our method. Chapter 7 summarizes the thesis.
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Chapter 2

Preliminaries

2.1 Formal Verification

In this section we discuss various aspects related to formal verification.

2.1.1 Model Checking

Model checking [6] is a kind of formal verification, which has been widely used
in protocol verification [7, 8]. By defining the formal specifications, model
checker will traverse all paths in state spaces to check the satisfiability of the
specified properties. If there is a path does not meet the property, the path
will be called a counterexample. If there is no counterexample, it means that
the system meets the requirements. If there is a counterexample, diagnose
the reason for the counterexample through analyzing the path. Basically, the
steps of model checking are as follows:

1. Modeling the system model according to the system

2. Specifying properties according to requirements

3. Conducting the model checking

Regarding the system modeling, we used the Kripke Structure, which
will be introduced in Sect. 2.1.2. The model mainly includes state, state
transition and atomic state proposition. The atomic state proposition here
refers to the propositions such as whether the robot is in a critical section in
a certain state.

With regard to the requirements, we mainly focus on three properties:
deadlock, safety, and liveness properties.
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About the deadlock property, in our modeled system, we did not define
a termination state, so we can use Maude’s search command to find if there
is a state that cannot transition to the next state, and if we find such the
state, it means that the protocol probably has a deadlock problem.

The safety property is often described as “nothing bad should happen”.
In our emulated system, “bad thing” is that multiple robots enter the critical
section at the same time.

The liveness property is often described as “something good will eventu-
ally happen”. It can be imagined that if the system stays in a meaningless
loop, the system will neither stop nor be considered as any “bad thing”
happening, but it is meaningless. We used Linear Temporal Logic (LTL) to
specify the safety and liveness properties, which also will be introduced in
Sect. 2.1.2.

2.1.2 Kripke Structure

A labeled Kripke structure lK ≜ ⟨lS, lI, lE, lP, lL, lT ⟩, s.t.

• lS: A set of states.

• lI: The set of initial states s.t. lI ⊆ lS.

• lE: A set of events lE ⊆ U

• lP : A set of atomic state proposition s.t. lP ⊆ U lE ∩ lP = ϕ

• lT : A total ternary relation s.t. T ⊆ lS × lE × lS.

• lL: A labeling function whose type is lS → 2lP

Because lK cannot be written in a Maude system, we use events-
embedded-in-states Kripke structure Kees to simulate the lK: Kees ≜
⟨Sees, Iees, Pees, Lees, Tees⟩, s.t.

• Sees = lE × lS.

• Iees = {(ι, s)} | s ∈ lI.

• Pees = lP ∪ lE, Lees((e, s)) = {e} ∪ lL(s) for each (e, s) ∈ Sees.

• Tees = {((e, s), (e′, s′)) | e, e′ ∈ lE, s, s′ ∈ lS, (s, e′, s′) ∈ lT}.

A path π of a Kees is s0; ...; si; si+1 of S s.t. (si, si+1) ∈ Tees for each i.
Let U be a universal set of symbols. Let P be the set of all paths. Let K be
the set of all Kripke structures.

The formulas φ of linear temporal logic (LTL) for Kees are as follows:

lφ ::= ⊤|p|¬φ|φ ∧ φ| ⃝ φ|φUφ
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where p ∈ Pees. Let F be the set of all formulas in LTL for Kees. For all
K ∈ K, all π ∈ P and all φ ∈ F , K, π |= φ is inductively defined as follows:

• Kees, π |= ⊤
• Kees, π |= p iff p ∈ L(π()0)

• Kees, π |= ¬φ iff K, π ̸|= φ

• Kees, π |= φ1 ∧ φ2 iff Kees, π |= φ1 and Kees, π |= φ2

• Kees, π |= ⃝φ iff Kees,π1 |= φ

• Kees, π |= φ1Uφ2 iff there exists i s.t. K, πi |= φ2 and for all j < i
K, πj |= φ1 .

• ⊥ ≜ ¬⊤
• φ1 ∨ φ2 ≜ ¬(¬φ1 ∧ φ2)

• φ1 ⇒ φ2 ≜ ¬φ1 ∨ φ2

• ♢lφ ≜ ⊤U φ

• □φ ≜ ¬(♢¬φ)
• φ1 ⇝ φ2 ≜ □(φ1 ⇒ ♢φ2)

The symbol ⃝ is called the next connective. The symbol U is called
the until connective. The symbol ♢ is called the eventually connective. The
symbol □ is called the always connective. The symbol ⇝ is called the leads
to connective. We will discuss how to model in detail in Chapter 3.

2.1.3 Maude System

Maude is a language and system based on rewriting logic [9]. In the Maude
system, the basic units are called modules, which include functional modules
and system modules. Functional modules are used for defining equations,
while system modules are used for defining rules. In the Maude system,
a state is expressed as an associative–commutative collection of name–value
pairs, where called observable components [7]. We can use functional modules
to define the name and value of a state, and system modules to define state
transition rules.

A functional module is like the following:

1 fmod ROBOTSTATE i s :
2 pr STATE .
3 sort RobotState .
4 subsort RobotState < State .
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5 op . . .
6 eq . . .
7 endfm

Among them, ROBOTSTATE is the name of this module. pr imports
another module. sort defines a new type. subsort defines the hierarchy of
types. op stands for operator, and eq stands for equations.

A system module is like the following:

1 mod PROTOCOL i s :
2 pr . . .
3 var . . .
4 r l . . .
5 cr l . . . i f . . .
6 endfm

Among them, var defines some variables used in the rules within this
module. rl defines an unconditional rewrite rule. crl defines a conditional
rewrite rule.

We use two kinds of commands for verification. One is search command
and the other one is modelCheck command. search command takes two
states, returns the path from the first state to the second state. Especially,
search state 1 =>* state 2 can help me find all the paths from state 1 to
state 2. If the paths are unbounded, we can’t complete the model checking,
while search state 1 =>! state 2 will show that the only canonical final
states are allowed, which usually indicates the end state or deadlock state.
modelCheck command takes a state and an LTL formula, which can help
us check if the formula is satisfied.

However, in practice, model checking suffers from the state explosion
problem [6], especially for such a complex system as smart buildings; it is
difficult to model all the states. Thus, we have to make a trade-off decision
between different abstractions when formalizing a system to avoid state
explosion, which may cause a lack of some important states. In order to
assure high trustworthiness levels, experimentation can not only serve as
a comparison, but also as an auxiliary to avoid the lack when writing the
system model.

2.2 Experimental Verification

2.2.1 Emulation

Simulation is a method to generate data, which can help us to collect
useful data. By generating data, Open-SBS [10], as an open source smart
building simulator, can support research in the field of Ambient Intelligence
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environments. Our research objectives are different from that. Our focus is
on comparing the results of model checking, especially supplementing and
improving the possible missing during model checking. Thus, we choose the
real communication protocol to emulate the communication process. In this
way, we can find potential problems in the process of sending and receiving
messages. For the same reason, besides emulation, we also adopt fuzzing in
order to find potential problems as many as possible.

2.2.2 Fuzzing

Fuzzing is an auto testing technique that can generate random inputs [11],
may lead to abnormal message transmission, which is also helpful for finding
potential problems, and has also been widely used in protocol verification.
In particular, because they all manifest as abnormal message transmission,
protocol fuzzing can be regarded as a simulation of attacks or device failures.

In fuzzing, randomly generating different data is called “mutation”.
Coverage-based fuzzing is a common technique. By measuring code coverage,
the fuzzer generates input that can cover more code as much as possible. This
method helps to improve the efficiency of fuzzing. However, most coverage-
based fuzzing tools require compiled programs, such as programs written in
C/C++ language. However, our emulator is developed in Python, which
is an interpreted language that cannot directly output the amount of code
like compiled languages. Therefore, we need to use fuzzing tools suitable for
Python, such as Atheris [12,13].

2.2.3 Atheris Fuzzing Tool

We used Google’s Atheris to complete the fuzzing. Atheris is actually based
on Libfuzzer, which is a famous fuzzer for C/C++. Libfuzzer needs compiled
programs, but it also accepts the input of the shared library. Therefore, the
way Atheris measures the coverage is to find the part of the code that we want
to measure the coverage, and instrument the code. Atheris will transform
this part into shared libraries to help Libfuzzer measure the coverage. In this
thesis, we only use the @atheris.instrument func decorator to instrument
the functions which are regarding the state transition of the protocols, and
all of the functions are collected in a specific class.

However, in practice, the system running the same code in different states
may cause different problems. Even if the code is tested by fuzzing, it does
not mean that there are no problems. In order to assure a high trustwor-
thiness level, formal verification, a technology that can verify whether the
protocol meets specific properties by mathematical methods is also necessary.
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Chapter 3

Methodology

This thesis combines model checking and fuzzing, which makes up for the
shortcomings of each approach, and also fulfills the requirement of TAL3.
The experiments were carried out with a MacBook Air having an Apple M2
CPU and 16 GB memory. The overall workflow of the verification process is
as shown below (see also Figure 3.1):

Step 1. Design the protocol

Step 2. Formally model the protocol

Step 3. Specify Properties

Step 4. Conduct model checking

Step 5. Emulate the protocol

Step 6. Conduct fuzzing

Step 7. Analyze the results; if necessary, propose improvements, then
repeat from step 1

Figure 3.1: Overall Verification Workflow.
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3.1 Control Protocol Description

3.1.1 Basic Version

The basic version of the robot control protocol is shown in Figure 3.2.

Figure 3.2: Robot Control Protocol Diagram.

The protocol involves four subsystems: elevator subsystem, building

10



OS (BOS), robot platform control subsystem (RPF), and robot subsystem.
Despite the building OS should be the core of a smart building, this thesis
mainly focuses on the robot control protocol and will not discuss the building
OS in detail.

The robot control protocol is implemented on the robot control subsys-
tem, which is a platform for remotely controlling and collaborative work
among robots in the building. The robot subsystem and the elevator
subsystem are the entities of robots and elevators in the building. The system
involves two kinds of messages: information message and control message.
Information message contains the current entity status like the current floor.
Control message and its replies indicate the entity control rules. There are
mainly 11 kinds of control messages:

1. interlock(Boolean): Command an elevator to the corresponding specific
status.

2. call(target floor): Command an elevator to move to the target floor.

3. open: Command an elevator door to open.

4. close: Command an elevator door to close.

5. go(target floor): Command an elevator to move to the target floor.

6. GoToElv: Command a robot to go to the front of the elevator.

7. GettingOn: Command a robot to get on the elevator.

8. GettingOff: Command a robot to get off the elevator.

9. Schedule Work: Command a robot to work following it’s schedule.

10. Charge: Command a robot to charge.

11. Calling: Command a robot to enter calling status.

An elevator sends continuously information messages, the payload of
which mainly contains the following:

• inDrivingPermission: It indicates whether the elevator is in a robot
specific mode.

• floor: It indicates the current floor of the elevator.

• door: It indicates whether the elevator door is opening.

11



Figure 3.3: Elevator State Transition Diagram.

According to the received control messages, the elevator will transition to
different states. The state transition of an elevator is shown in Figure 3.3.

A robot sends information messages continuously, which payload mainly
contains the following:

• name: It indicates the robot name.

• floor: It indicates the current floor of the robot.

• statue: It indicates the status of the robot.

• position: It indicates the position of the robot.

Similar to elevator, the state transition of a robot is shown as figure 3.4.

Figure 3.4: Robot State Transition Diagram.

The function of the Building OS is to forward messages between the robot
control subsystem and the elevator subsystem, without any state transition.
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According to the replies, the robot control subsystem will transition to
different states, which is shown as figure 3.5.

Figure 3.5: RPF State Transition Diagram.

3.1.2 Improved Protocol Versions

In this thesis, after verifying the basic protocol, we designed some improved
protocol versions and re-verified them, corresponding to the workflow shown
in Figure 3.1. For example, we designed a multi robots control version. Multi
robots control uses a waiting queue. Only the first row robot of the queue
can put the elevator into the robot special state and enter the elevator, while
the other robots stay and wait.

3.2 Model Checking

3.2.1 System Modeling

We use the following observable components to specify the basic version of
the protocol, all of which correspond to Sees of Kees :

• (ELV: s): It represents the state of the elevator.

• (movingStatus[ELV]: ms): It represents the moving status of the
elevator.

• (BOS: s): It represents the state of the building OS.
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• (RPF: s): It represents the state of the robot control subsystem.

• (msgCount[RPF]: n): It represents the number of messages sent by the
robot control subsystem in the current state.

• (ROB: s): It represents the state of the robot.

• (movingStatus[ROB]: ms): It represents the moving status of a robot.

• (nw: msgs): It represents messages in the network.

• (tran: t): It represents the state transition taken most recently.

Iees is the initial state of all observable components, defined as follows:

1 eq i c = (ELV: e lvq0 )
2 ( movingStatus [ELV ] : s tay )
3 (BOS: bosq )
4 (RPF: r0e0 )
5 (msgCount [RPF ] : 0)
6 (ROB: robq0 )
7 ( movingStatus [ROB] : s tay )
8 (nw : void )
9 ( tran : notran ) .

We defined the state transition for all subsystems through 46 rewriting
rules, which correspond to Tees of Kees. For instance, a rewriting rule is as
follows:

1 r l [ sendGoToElv ] :
2 (RPF: r0e0 )
3 (msgCount [RPF ] : 0)
4 (nw : NW)
5 ( tran : T)
6 => (RPF: r0e0 )
7 (msgCount [RPF ] : 1)
8 (nw : (msg(B2R, go toe lv ) NW) )
9 ( tran : sendGoToElv (RPF) ) .

The above description means that when the control protocol is in r0e0
state and the message counter is 0, a message will be sent to the network,
and the message counter will become one.

Part of the atomic state propositions are listed below, all of which
correspond to Pees of Kees:

• applied(t) holds if and only if t is the transition that was applied most
recently.
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• enabled(t) holds if and only if t is the transition that can be applied
next.

• crit holds if and only if the robot is in the critical section.

• want holds if and only if the protocol at the r0e0 state means robot
should move to another floor .

• robotarrive holds if and only if the protocol at the completed state
means the robot arrive the target floor .

For the improved versions, according to the situation, observable compo-
nents and rewriting rules will be modified. As an example, for the multiple
robots control, we added new observable components (interlock: bool) to
represent the interlock status of an elevator and (queue: empty) to represent
a waiting queue of robots.

3.2.2 Property Specification

We used linear temporal logic (LTL) [7] for specifying property formulas, and
the Maude LTL model checker to check.

For the basic version, we verified the liveness properties. Liveness
property is reflected by that if a robot wants to go to the destination, it
must reach the destination. For the improved versions, besides the liveness
properties, we also verified the safety properties according to the situation.
Safety property is reflected by that the multiple robots will not enter the
critical section at the same time.

The liveness property of basic version:

(want⇝ robotarrive)

The liveness property of multi robot version:

(want(rob1)⇝ robotarrive(rob1))∧
(want(rob2)⇝ robotarrive(rob2))∧
(want(rob3)⇝ robotarrive(rob3))

The safety property:

□(¬(crit(rob1) ∧ crit(rob2))∧
¬(crit(rob1) ∧ crit(rob3))∧
¬(crit(rob2) ∧ crit(rob3)))

The model checker traverses execution paths of the state space to find
counterexamples. Although finding no counterexample means that the
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system meets the requirements to be verified, finding a counterexample does
not mean that the system must not meet the requirement. We will give two
specific examples in Sects. 3.2.3 and 3.2.4. To avoid such problems, model
checking is required under the fairness assumptions. There are two main
types of fairness assumptions, namely weak fairness assumptions and strong
fairness assumptions.

3.2.3 Weak Fairness Assumptions

Consider a state transition as that shown in Figure 3.6. When checking
q0⇝ q2, as q1 can transition to q1, the path q0; (q1)∞ will be regarded as a
counterexample. Let t1 be the state transition q1 → q2, let enabled(t1) hold
if and only if in q1, let applied(t1) hold if and only if in q2. It can be seen
that in the path (q1)∞, enabled(t1) always holds. An example of the weak
fairness assumption is that when the system is always in q1, it will eventually
transition to q2.

Figure 3.6: State Transition Example 1.

Weak fairness:

(♢□enabled(t1)) ⇒ (□♢applied(t1))

This is reflected in our system, consider a scenario where a robot receives
a command but consistently do not execute it. Let q1 be a state where a
robot received a command but have not executed it yet. The q0 transition
to q1 means the robot received a command. The q1 transition to q2 means
that the command has been successfully executed, whereas q1 transition to
q1 means that the command still not been executed. In the real system,
when a robot successfully execute a command, the robot will send a reply for
successful execution, while if the control system doesn’t receive the reply for
successful execution over a period of time, it will raise a timeout exception.
Because this situation has been considered in the real system, this path is not
need to be regarded as a counterexample in the model checking, the robot
can be assumed that it will eventually execute the command after receiving.
Hence, we need to check under the weak fairness assumptions.
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3.2.4 Strong Fairness Assumptions

Consider a state transition as shown in Figure 3.7. When checking q4 ⇝
q6, as q5 can transition to q7, the path q4; (q5; q7)∞ will be regarded as
a counterexample. Similarly, let t2 be the state transition q5 → q6, let
enabled(t2) hold if and only if in q5, let applied(t2) hold if and only if in q6.
It can be seen that in the path (q5; q7)∞, enabled(t2) continually holds. An
example of the strong fairness assumption is that when a system transition
to q5 infinitely many times, it will eventually transition to q6.

Figure 3.7: State Transition Example 2.

Strong fairness:

(□♢enabled(t2)) ⇒ (□♢applied(t2))

This is reflected in our system, which is related to the resilience of the
protocol. It can be imagined that when the system is running, if an exception
occurred, the protocol should have a certain degree of exception handling
capability. q7 can be regarded as an exception handling state. When in q5
and an exception occurred, the protocol will transition to q7, handles the
exception and returns to q5. However, if the same exception keeps occurring,
the system will transition to q7 again, return to q5 and transition to q7 again
and again. In the real system, if the protocol is in an infinite state transition
loop, the control system will raise a timeout exception. Similar to Sect. 3.2.3,
we don’t have to regard this path as a counterexample in the model checking.
Hence, the model checking is required under the strong fairness assumption
so as to assume that the exception handling will eventually succeed.

3.2.5 Divide and Conquer Method

In the case of multi robots, when checking the liveness property, the checker
will find a counterexample, which shows that a robot has never entered the
waiting queue. As mentioned before, because there is no need to regard such
a path as a counterexample, we should use the weak fairness assumptions
for model checking. However, under weak fairness assumptions, our model
checker has not any outputs after a period of time, which may be caused
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by the state explosion problem. Therefore, we need to apply the divide and
conquer method to avoid state explosion.

About the divide and conquer method, on the basis of the fairness
assumption, we added the quasi-fairness assumption. Let all the state
transitions related to the robot joining the waiting queue be the weak fairness
assumptions, which allows us to conjecture that whenever a robot is not in a
queue, it will eventually enter the queue, which is expressed as qfair12(I).

The qfair12(I) condition is defined as follows: ♢□¬queue?(roboti) ⇝
□♢queue?(roboti). Moreover, the atomic state proposition queue?(roboti) is
defined as:

1 ceq ( queue : Q ) C |= queue ?( I ) = true i f I \ in Q .

This represents whether the roboti is in the waiting queue. The
quasi-fairness assumption qfair12 is qfair12(robot1) ∧ qfair12(robot2) ∧
qfair12(robot3). The divide and conquer method refers to dividing model
checking fair ⇒ liveness property into model checking the fair ⇒ qfair12(I)
and the qfair12 ⇒ liveness property.

3.3 Protocol and Device Implementation

3.3.1 Protocol Implementation

We use a state machine to model the devices and protocols. We analyzed
the operation of the protocol, added state information, and developed an
emulator named Smart Building Control System Emulator (SBCSE) using
Python. The emulator architecture is shown in Figure 3.8; note that the
control protocol is emulated, but the devices are simulated. For more details
about SBCSE, see [14].

3.3.2 Device Implementation

The device motion module is part of the SBCSE, which aims to provide
definitions and management methods for devices, including robots and
elevators.

Specifically, the device definitions include not only the state involved in
the state machine mentioned before, but also some information such as the
motion status and the position of the device. On top of that, we further
defined the device’s motion, the examples are the robot working, going to
the elevator, getting on & off the elevator, the elevator move up & down, and
the elevator door open & close, etc. we implemented these in the emulator
as variables and functions. Moreover, we also designed some functions to
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Figure 3.8: Smart Building Emulator Architecture.

adjust these for simulation. A typical function is to find a suitable path for
robot movement.

In terms of simulation, the robot simulator, the elevator simulator, and
their related modules will operate the attributes or functions of the devices
according to the messages. Meanwhile, based on the requirements, the
emulator will calculate the time. When the interval reaches or exceeds the
set threshold, the corresponding attribute or functions will also be operated.

In order to support protocol testing, the robot also has a protocol test
mode. In protocol test mode, the robot will not execute the path for the
simulated work, which would take a very long time; instead, it will wait a
short time and start the next task. This allows us to pay more attention
to the protocol testing. Since the objective of this thesis is to verify the
protocol, most experiments are conducted in the protocol test mode.

We also designed some management classes for handling robots and
elevators, both of which are singleton classes and can be used to manage the
copy and destruction of device instances to save snapshots in some fuzzing
situations to optimize testing strategies (see Sect. 3.4.2 for details). The
robot management class is also used for multi robots handler.
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3.4 Fuzzing Method

We used Atheris for fuzzing, which is a coverage-guided fuzzing engine [12].
The fuzzing architecture is shown in the Figure 3.9. The fuzzing method
involves generating random messages sent and received by the robot control
subsystem to observe whether the emulator behaviors are abnormal. If
any abnormal behavior appears, logs are analyzed to diagnose problems.
We randomly generate seeds, and the seed is both the seed that generates
the Smart Building Emulator scenario and the fuzzer seed. Although the
same seed can generate the same scenario, unfortunately, it does not always
generate the same fuzzing case.

Figure 3.9: Fuzzing Architecture.

For the fuzzing method, this thesis will mainly explain from three parts:
Sect. 3.4.1 explains how to generate test messages; Sect. 3.4.2 explains how
to optimize the test strategy; Sect. 3.4.3 explains the emulator’s abnormal
behaviors.

3.4.1 Test Message Generation

This section explains the test message generation in regard to two aspects,
the types of messages and the target subsystems, as described next.

Types of Messages For the types of messages, although fuzzing is char-
acterized by the generation of random test case types in general, there are
mainly three types in our system: correct messages, incorrect parameters
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messages and incorrect messages. Table 3.1 summarizes the three message
types and three effects according to the effect of different message types.

Correct messages and incorrect parameters messages all have correct
formats. There is not necessary to repeat the correct messages. An example
of incorrect parameters message is that the control system sends a command,
which is received by the target but has not been executed yet, however,
the control system receives a reply for successful execution. Regarding the
effect, if the command format is correct, the problem could be caught by the
control module possibly, and there will be corresponding problem handling or
exception raising. Sometimes it can be equivalently considered to be caused
by malicious message tampering or incorrect data transmission, both of which
result in incorrect parameters. Exceptions might help us evaluate how the
protocol handles incorrect data.

Incorrect message means even the format is incorrect. Consider a scenario
in which the control system sends command 1, but receives a reply for
command 2 has been completed, or a reply including garbled characters.
Concerning the effect, if the command format is incorrect, the system will
not accept it. Sometimes it can be equivalently considered to be caused by
message loss or device failure, both of which result in not receiving valuable
messages. This helps us to evaluate how the protocol handles data loss or
detects failure.

Table 3.1: Fuzzed Message

Sent

Received Correct Msg.
Incorrect Pa-
rameter Msg.

Incorrect Msg.

Correct Msg.
Regular Opera-
tion

Exception Message Loss

Incorrect Pa-
rameters Msg.

Exception Exception Message Loss

Incorrect Msg. Message Loss Message Loss Message Loss

Target Subsystems In regard to the target subsystems, we distinguished
between the robot control subsystem fuzzing and other subsystems fuzzing
according to the robot control protocol. Only the robot control subsystem
sends control messages, while other subsystems respond and reply control
messages and send information messages. We overridden or implemented
the corresponding message sent function. When a new fuzzing starts, the
inputted seed will also specify the target of this fuzzing when generating the
emulator scenario.
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3.4.2 Optimization Strategies

As Atheris is a coverage-guided fuzzer, the first optimization strategy is to
apply the coverage-guided features. The protocol was emulated by a state
machine, which different states send different messages and transition to the
next state based on the replies. When testing the protocol, the main is
testing the state transition. Thus, covering as many as state during fuzzing
is important. The first strategy is instrumenting the functions related to
the state transition, and Atheris will automatically cover as many state as
possible.

The second optimization strategy is to save snapshots of the current state.
If the control system cannot receive an acceptable reply within a period of
time, there will be a timeout exception raised. In fact, the characteristics
of fuzzing determine that most test cases will trigger timeout exceptions.
During the fuzzing, the emulator is not necessary to retest from the beginning
if a timeout exception is triggered. The fuzzing module will save the device
snapshots when the system transition to a new state, and if a timeout
exception is triggered, the emulator will only reset to the saved snapshot
state.

To evaluate the effectiveness of our optimization strategy, we randomly
selected 30 seeds for each target, and ran tests under different strategies with
each test set to 1000 test runs. In these experiments, we used four mosquito
processes with different PIDs to listen to four different ports separately,
ran four different emulator programs, and each program conducted different
subsystems fuzzing.

The tool coverage.py [15] is a tool that lets us view the code coverage
of the emulator running. After 1000 x 30 runs, we recorded the coverage
and test runtime, as shown in Tables 3.2 and 3.3. It should be noted that
the time we recorded is the testing runtime reported by the fuzzer, not the
emulator runtime. It’s also important to note that our table only gives a
rough idea that our work is effective. Due to fuzzing is random, if there
aren’t enough samples, the specific numbers in the table might not be very
accurate. These numbers are more for showing the general improvement
trend, not for detailed analysis. It should also be noted that the coverage
mentioned in this thesis only refers to the coverage of the class of the protocol.
When developing the emulator, we use a special class to implement the state
machine of the robot control protocol.

Our strategies show weak performance in coverage for the fuzzing of
the elevator subsystem, robot subsystem, and Building OS. However, our
strategies show a significant improvement in coverage for the fuzzing of the
robot control subsystem. Most of the problems mentioned later in Chapter 4
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Table 3.2: Coverage for the Four Subsystems with 30 Seeds Each
None Coverage-Guided Snapshot Both

Elevator 47% 52% 50% 52%
BOS 47% 49% 50% 52%
RPF 36% 39% 64% 94%
Robot 37% 40% 37% 40%

None: Fuzzing with no strategies applied
Coverage-Guided: Coverage-guided fuzzing

Snapshot: Save and load the snapshots fuzzing

Both: Fuzzing with both strategies above applied

Table 3.3: Execution Time for the Four Subsystems with 30 Seeds Each
None Coverage-Guided Snapshot Both

Elevator 0.5h 0.5h 42.4h 42.4h
BOS 0.5h 0.5h 34.9h 36.3h
RPF 0.4h 0.4h 258.3h 217.9h
Robot 0.4h 0.4h 20.2h 20.7h

None: Fuzzing with no strategies applied
Coverage-Guided: Coverage-guided fuzzing

Snapshot: Save and load the snapshots fuzzing

Both: Fuzzing with both strategies above applied

do come from the fuzzing of the robot control subsystem, so we believe that
the proposed strategies do help to improve the efficiency of fuzzing.

3.4.3 Emulator Behaviors

Expected behaviors are categorized as:

1. Protocol exception occurred.

2. All tasks set in the scenario are completed without obvious problems.

3. Not all tasks are completed, but no obvious problems are found.

Regarding the first behavior, it represents expected exception occurred.
We defined some protocol exceptions, such as timeout exception. When a
protocol exception occurs, it means that there is an exception caught by
the control module but cannot be handled. In this case, other modules are
responsible for handling this exception, which can be regarded as a normal
behavior from the perspective of the control protocol.
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The second behavior indicates the emulator’s normal termination. Nev-
ertheless, if the emulator does not normal terminate, it still can be regarded
as a normal behavior. As it was mentioned in Sect. 3.4.2, due to the
characteristics, fuzzing usually triggers timeout exceptions, and when a
timeout exception is triggered, the emulator will return to the saved snapshot.
At the beginning of each test, we should set a number of test runs. If a test
keeps triggering a timeout exception and going back to the saved snapshot
again and again, we may not be able to complete all the tasks set in the
scenario although all test runs are completed. However, there is no new
undefined exception occurred. Thus, we classify this situation as the third
normal behavior.

Abnormal behaviors are shown as follows:

1. Program exception occurred.

2. Obvious abnormal entries in the logs.

3. The emulator doesn’t raise an exception, but no meaningful behavior.

The first abnormal behavior differs from the first normal behavior, which
unexpected exceptions occurred is an abnormal behavior. About the second
abnormal behavior, for example, a robot starts a new action but it’s old
action doesn’t completed yet, or a log with single entry of action start but
multiple entries of this action completed. Another example is, a command is
sent to robot 2 but robot 1 response the command. For the third abnormal
behavior, if some issues such as deadlock occurred, these issues will cause
the emulator to neither stop nor run, leading to obvious abnormal behavior
wouldn’t appeared. However, we can notice there is no meaningful behavior
in the emulator, which also be regarded as an abnormal behavior. In most
cases, it can be found through the situation that the emulator is still running
but no subsystems change state for a long time.
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Chapter 4

Results and Analysis

In this chapter and the next chapter, we will show some results, analysis, and
improvement plans for some problems. It should be noted that due to the
further improvement of the program, the seed in this thesis may not trigger
the same problems in the latest version of the emulator.

4.1 Model Checking Results

For the basic version of the protocols, the results are shown in Table 4.1.

Table 4.1: Model Checking Results
Deadlock* Safety† Liveness†

Single Robot Version ✓ ✓
Multi Robot Version ✓ ✓ ✓

*Using Maude search Command
†Using Maude LTL Model Checker

4.1.1 Evaluation of Models

The command search ic =>* C:Config can output all the paths that can
be reached from the initial state. We checked the path to confirm that the
model is consistent with the protocol process shown in Figure 3.2. Judging
from the transition of the observable component (tran: T) in the path, our
model maintains consistency with the target protocol.

We use search =>! C:Config to check whether our model has any
deadlock states, and the results which output ”no solution” demonstrate the
absence of deadlock.
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Figure 4.1: Basic Version Deadlock.

Figure 4.2: Multi Version Deadlock.

4.1.2 Model Checking Results

We verified the liveness property in the basic version of the protocol and
verified the safety and liveness properties of the multiple robots version. The
result of the basic version is shown in Figure 4.3.

Figure 4.3: Basic Version Liveness Property.

The results of the multiple robots version are shown in Figures 4.4 and 4.5.
All these properties satisfy the requirements. Moreover, to avoid the situation
in which the properties hold vacuously (i.e., because their conditions can
never be satisfied), we also checked that the property RCP-FORMULA |= ∼
qfair does not hold in the multiple robots version (see Figure 4.6).

From the results of the model checking, we can conclude that there are
no problems in deadlock, safety and liveness properties in the basic process
of our protocols.

4.2 Fuzzing Results

4.2.1 Problem Diagnosis

During the fuzzing, we analyzed the logs and summarized ten major
problems, which were classified according to Common Weakness Enumer-
ation(CWE) [16] as follows: CWE-20 Improper Input Validation, CWE-754
Improper Check for Unusual or Exceptional Conditions, CWE-833 Deadlock,
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Figure 4.4: Multi Robots Version Safety Property.

Figure 4.5: Multi Robots Version Liveness Property under Fairness Assump-
tion.

CWE-571 Expression is Always True, CWE-691 Insufficient Control Flow
Management, and CWE-431 Missing Handler, as summarized in Table 4.2.

Table 4.2: Problems Found Through Fuzzing
No. Description CWE
1 Improper Input Validation CWE-20
2 Command an elevator to go to an incorrect floor CWE-754
3 An elevator go to an incorrect floor CWE-754
4 Command a robot to pass through a closed door CWE-754
5 Deadlock CWE-833
6 Expression is Always True CWE-571
7 Insufficient Control Flow Management CWE-691
8 Missing Handler CWE-431
9 Inappropriate parameter selection N/A
10 Unknown Reasons N/A

CWE-20 includes problem 1, which due to the failure to handle the
garbled characters. In some cases if a message containing garbled characters
is sent to the robot control subsystem, it will cause the robot control
subsystem to raise an undefined exception. CWE-754 includes problems 2-4,
which are all caused by incorrect message data. Problems 5-8 stem from the
wrong code during programming, are separately classified under CWE-833,
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Figure 4.6: Multi Robots Version RCP-FORMULA |= ∼ qfair

CWE-571, CWE-691, CWE-431. Problem 9 arises from other programming
problems. Problem 10 appears from some unknown reasons that cannot be
easily reproduced.

4.2.2 Problem Analysis

Problems 2-4 Problem 2 can be seen as that the commands sent by the
robot control subsystem to be tampered with. For example, consider a
scenario where the robot control subsystem sends a command to an elevator
to go to the 8th floor. If this command is tampered with to go to an incorrect
floor, the elevator will go to the incorrect floor. This case may cause someone
to go to an unauthorized zone. Problem 3 is based on problem 2, with
even the message indicating the elevator’s arrivaleing tampered with. One
example is the situation in which the elevator moves to an incorrect floor; if
the message indicating the elevator’s aarrivalis tampered with, it may result
in a false positive acknowledgment. Problem 4 can be seen as that the replies
of some commands received by the robot control subsystem to be tampered
with. Consider a scenario in which an elevator received a command to open
the door, but the door keeps closing. However, the reply is tampered with
to indicate the door is open. Such a message may lead to the robot control
system commanding a robot to move through a closed door.

Problem 5 Problem 5 will cause deadlock. When a robot is in a working
status for the first command, if the robot receives the second command, it
will reply with a message to indicate successfully receiving the command but
discard it without executing it. After completing the first command, the
robot will enter a waiting status for the third command. Meanwhile, the
robot control subsystem will continue to wait for feedback that the robot
has successfully executed the second command, due to it receiving the reply
of successfully receiving the second command, and will not send the third
command. This case will result in a deadlock status. It can be seen from
the log that between 14:17:04 and 14:17:34 in Figure 4.7, the robot was
performing the command schedule work, but at 14:17:28, it received the
command of gotoelv, at which time the robot had actually discarded the
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command.

Figure 4.7: Problem 5 Deadlock.

Problem 6 Problem 6 is about an if conditional statement that is always
true after a specific operation. For example, this Python code:

1 def i n t e r l o c k ( s e l f ) :
2 i f s e l f . b cp s ta tu s = S . E0 :
3 s e l f . handler . send inter lock command (True )
4 i f s e l f . ch e ck suc c e s s (ELV. INTERLOCK SUCCESS) :
5 s e l f . b cp s ta tu s = S . E1
6 e l i f s e l f . b cp s ta tu s == S .E9 :
7 s e l f . handler . send inter lock command ( Fa l se )
8 i f s e l f . ch e ck suc c e s s (ELV.INTERLOCK SUCCESS) :
9 s e l f . b cp s ta tu s = S .COMPLETED

When the protocol is in the E0 state, this function will be called,
and send a message in line 3, and according to the reply to set the
ELV.INTERLOCK SUCCESS to True and transition to the next state.
However, when in the E9 state, the function will be called again, but due to
this variable still being True, which means regardless of whether there is a
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reply to the message sent in line 7, the if conditional statement in line 8 will
always be True, and will enter the next state.

Problem 7 To illustrate Problem 7, imagine a scenario where if the robot
control subsystem receives replies, it will immediately change the attributes
according to the replies. But due to insufficient control flow management, if
it receives a reply to the command that has not been sent, the attributes will
also be changed. In fact, this is also a problem of message authentication.

Problem 8 During the fuzzing, we found some code like this.

1 try :
2 # do something 1
3 f ina l ly :
4 # do something 2

The problem is that if there is an exception occurred during do something 1,
the program will enter the code block do something 2 without any error
message. This caused us to be confused when analyzing the logs. We can
only find abnormal behaviors in the logs, but it is difficult to locate the
specific code. Another case which is included in problem 8 is incorrect error
status code output. When a certain exception occurs, it should output the
corresponding error code; however, the log sometimes records an error error
code.

Problem 9 Problem 9 arises from inappropriate parameter selection during
programming. One such example is that the robot control subsystem will
raise a timeout exception when it does not receive a reply within a period of
time. However, some periods are set too short, causing the system to raise
timeout exceptions even for acceptable delays.

Problem 10 Some problems cannot be easily reproduced. One guess is
that because our emulator has a speed controlling feature, and most of the
time, the fuzzing is set at 10x speed, such unreproducible problems sometimes
occurred. However, while collecting data for this thesis, we ran more than 120
seeds at normal speed (1x), and this kind of problems didn’t show up. This
makes us think the problem might happen because of thread competition
when the speed is too fast. We have not completely solved this problem.
One way to avoid it is to limit the maximum running speed of the emulator
during fuzzing.
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Chapter 5

Improvement and
Reverification

The problems found through fuzzing were not found through model checking,
because most of the problems come from improper programming implemen-
tation and abnormal message transmission, which have not been considered
when modeling the protocol. We proposed solutions to some of the problems,
constructed new formal models, and conducted reverification, as summarized
in Table 5.1.

To evaluate the formal verification, we checked the required properties
of new models. If these properties satisfied the requirement, we will record
the problem done. To evaluate the experimental verification, we can use the
seeds which can trigger the problem to observe whether the seed will still
lead to abnormal behaviors; if not, we will record the problem as solved. We
can also check the coverage files and logs to confirm whether the modified
part is running.

Regarding problem 1, we have no way to formally verify whether there
still have problems that lack input validation through the model checking.
As for the problems 2-4, we added some methods to identify whether the
message has been tampered with and constructed a new formal model to
check. Concerning problems 5-6, we modeled the execution order of the
code. However, about the problem 7, modifying the execution order cannot
solve all the problems, since message authentication should be assigned to the
communication module rather than handled at the control module. For the
problems 8 and 9, there are also not the problems caused by the control
protocol, it’s also not necessary to construct a new formal model. For
problem 10, since it cannot be reproduced, we cannot solve it.
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Table 5.1: Reverification Results
No. Description F E
1 Improper Input Validation N/A Done
2 Command an elevator to go to an incorrect floor Done Done
3 An elevator go to an incorrect floor Done Done
4 Command a robot to pass through a closed door Done Done
5 Deadlock Done Done
6 Expression is Always True Done Done
7 Insufficient Control Flow Management N/A Done
8 Missing Handler N/A Done
9 Inappropriate parameter selection N/A Done
10 Unknown Reasons N/A N/A

F: Formal Verification
E: Experimental Verification

5.1 Problem 2: Command Elevator to Go to

Incorrect Floor

Since the control messages are tampered with while the replies and shared
information messages are not, we can detect whether there is a problem
by the robot control subsystem through comparing the sent messages and
the replies. The improvement we propose is that if the robot control
module detects that the elevator has gone to an incorrect floor through the
comparing, it will try to resend the same message. Back to the example
in Sect. 4.2, because after the elevator executes the command to move, it
will have some messages to indicate arrival and position, then the robot
control subsystem can detect whether it is correct through these messages
and the floor of the target the elevator should move to. If the elevator
arrives an incorrect floor, the robot control subsystem will return to the
last state (r1e2 → r1e1, r2e6 → r2e5) and send the command again. The
modified state transition is shown as Figure 5.1. In the emulator, if the same
command message still fails to command the elevator to the correct floor
after a certain number of resents, it will raise “E001” code exception and
assign the exception to other modules for handling.

The new objective is to verify if the resend process works, we formalized
this resend process without formalized resend times and error code. There
is a new observable component (floor[ELV ]:boolean) indicating whether the
elevator arrives the correct floor, and changed the past two rewriting rules
to the following four:
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Figure 5.1: Problem 2 Modified State Transition.

1 r l [ s endCal lArr ive1 ] :
2 (ELV: e lvq2 )
3 ( movingStatus [ELV ] : moving )
4 ( f l o o r [ELV ] : t rue )
5 (nw : NW)
6 ( tran : T)
7 => (ELV: e lvq2 )
8 ( movingStatus [ELV ] : s tay )
9 ( f l o o r [ELV ] : f a l s e )
10 (nw : (msg(E2D, c a l l a r r i v e ) NW) )
11 ( tran : sendCal lArr ive1 (ELV) ) .
12
13 r l [ s endCal lArr ive2 ] :
14 (ELV: e lvq2 )
15 ( movingStatus [ELV ] : moving )
16 ( f l o o r [ELV ] : t rue )
17 (nw : NW)
18 ( tran : T)
19 => (ELV: e lvq2 )
20 ( movingStatus [ELV ] : s tay )
21 ( f l o o r [ELV ] : t rue )
22 (nw : (msg(E2D, c a l l a r r i v e ) NW) )
23 ( tran : sendCal lArr ive2 (ELV) ) .

After receiving messages, the elevator may go to an incorrect or correct
floor. These rewriting rules indicate that the message be/not be tampered
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with.

1 r l [ r e cvCa l lAr r i v e1 ] :
2 (RPF: r1e2 )
3 (msgCount [RPF ] : 0)
4 ( f l o o r [ELV ] : f a l s e )
5 (nw : (msg(D2B, c a l l a r r i v e ) NW) )
6 ( tran : T)
7 => (RPF: r1e1 )
8 (msgCount [RPF ] : 1)
9 ( f l o o r [ELV ] : t rue )
10 (nw : (msg(B2D, c a l l ) NW) )
11 ( tran : r e cvCa l lAr r i v e1 (RPF) ) .
12
13 r l [ r e cvCa l lAr r i v e2 ] :
14 (RPF: r1e2 )
15 (msgCount [RPF ] : 0)
16 ( f l o o r [ELV ] : t rue )
17 (nw : (msg(D2B, c a l l a r r i v e ) NW) )
18 ( tran : T)
19 => (RPF: r1e3 )
20 (msgCount [RPF ] : 0)
21 ( f l o o r [ELV ] : t rue )
22 (nw : NW)
23 ( tran : r e cvCa l lAr r i v e2 (RPF) ) .

These indicate that the different handling when the elevator goes to a
correct or incorrect floor.

Under the strong fairness assumptions, the liveness of the system can be
successfully checked. Among them, liveness6 and liveness7 indicate that
the elevator must be able to arrive correct floor after receiving the command
of call and go respectively. fair3, fair5, fair9 and fair11 are assumptions
that the elevator will eventually move to a correct floor. liveness indicates
that the robot must be able to arrive destination it wants to go to. The
results shown in Figure 5.2.

5.2 Problem 3: Elevator Goes to Incorrect

Floor

In this situation, it is possible that the target is arriving the incorrect floor,
but the messages indicate the correct arrival. At this time, the robot control
subsystem cannot detect it due to the lack of correct messages, but the robot
itself can. Therefore, the improvement plan we propose is that when a robot
finds itself on an incorrect floor, it will try to send messages about being
on the incorrect floor, which we define as “E002” code. When the robot
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Figure 5.2: Problem 2 Liveness Property.

control subsystem receives a message about “E002”, it will try to handle it.
Unlike for problem 2, we did not modify the state transition of the protocol,
but added a method to detect whether the robot is on the correct floor.
The model is also needs minimal changes, adding an observable component
(floor[ROB]:boolean) indicating whether the robot is on the correct floor and
the corresponding rewriting rule to go to the correct and incorrect floor.

1 r l [ sendGettingOffCompleted1 ] :
2 (ROB: robq0 )
3 ( movingStatus [ROB] : moving )
4 ( f l o o r [ROB] : B)
5 (nw : NW)
6 ( tran : T)
7 => (ROB: robq0 )
8 ( movingStatus [ROB] : s tay )
9 ( f l o o r [ROB] : t rue )
10 (nw : (msg(R2B, g e t t i ngo f f c omp l e t ed ) NW) )
11 ( tran : sendGettingOffCompleted1 (ROB) ) .
12
13 r l [ sendGettingOffCompleted2 ] :
14 (ROB: robq0 )
15 ( movingStatus [ROB] : moving )
16 ( f l o o r [ROB] : B)
17 (nw : NW)
18 ( tran : T)
19 => (ROB: robq0 )
20 ( movingStatus [ROB] : s tay )
21 ( f l o o r [ROB] : f a l s e )
22 (nw : (msg(R2B, g e t t i ngo f f c omp l e t ed ) NW) )
23 ( tran : sendGettingOffCompleted2 (ROB) ) .

The new liveness property means that the robot arrived at the correct
floor. The liveness property can be successfully checked as shown in Fig-
ure 5.3.
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Figure 5.3: Problem 3 Liveness Property.

5.3 Problem 4: Command Robot to Pass

Through a Closed Door

If the messages are tampered with, these messages may cause the robot
control subsystem to control a robot through a closed door. However, in
fact, because the robot has a certain environmental perception ability, it can
detect whether there are physical obstacles on the path and stop moving,
we define this situation as “E004” exception. Like the problem 3, the robot
will sends messages include “E004”. When the “E004” exception occurs,
the protocol will back to last state (r1e4 → r1e3, r2e8 → r2e7) try to
send the command to open the door again like Figure 5.4. If it cannot
handle the exception within a certain number of times, it will assign the
exception to other modules for handling. Similar to the previous work, we
still simply added the observable component and the corresponding rewrite
rules to indicate normal and abnormal situations.

Figure 5.4: Problem 4 Modified State Transition.
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The code below represents that the door opening command was sent, but
the door was not successful/successfully opened.

1 r l [ recvOpen11 ] :
2 (ELV: e lvq2 )
3 ( door : c l o s e )
4 (nw : (msg(D2E, open ) NW) )
5 ( tran : T)
6 => (ELV: e lvq3 )
7 ( door : c l o s e )
8 (nw : (msg(E2D, opensucces s ) NW) )
9 ( tran : recvOpen11 (ELV) ) .
10
11 r l [ recvOpen12 ] :
12 (ELV: e lvq2 )
13 ( door : c l o s e )
14 (nw : (msg(D2E, open ) NW) )
15 ( tran : T)
16 => (ELV: e lvq3 )
17 ( door : open )
18 (nw : (msg(E2D, opensucces s ) NW) )
19 ( tran : recvOpen12 (ELV) ) .

The code below represents that if the door is not successfully opened,
return to the r1e3 state and try to send it again.

1 r l [ sendGettingOn1 ] :
2 (RPF: r1e4 )
3 (ELV: e lvq3 )
4 ( door : c l o s e )
5 ( tran : T)
6 => (RPF: r1e3 )
7 (ELV: e lvq2 )
8 ( door : c l o s e )
9 ( tran : sendGettingOn1 (RPF) ) .
10
11 r l [ sendGettingOn2 ] :
12 (RPF: r1e4 )
13 (msgCount [RPF ] : 0)
14 ( door : open )
15 (nw : NW)
16 ( tran : T)
17 => (RPF: r1e4 )
18 (msgCount [RPF ] : 1)
19 ( door : open )
20 (nw : (msg(B2R, ge t t ingon ) NW) )
21 ( tran : sendGettingOn2 (RPF) ) .

Under the strong fairness, the liveness of the system can be successfully
checked. Among them, liveness8 and liveness9 indicate that the door must
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be able to open after receiving the command of open. fair6 and fair12 are
assumptions mean the door will eventually open. liveness indicates that the
robot must be able to arrive the correct destination.

Figure 5.5: Problem 4 Liveness Property.

5.4 Problem 5: Deadlock

Problem 5 did not appear in our previous formal verification, it reminds us
that our previous formal model did not formalize other commands of the
robot. We have added more states to the robot, as shown in the Figure 5.6.

Figure 5.6: New Robot State Transition Diagram.

We formalized the state transition with some new rewriting rules, includ-
ing those shown below.
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1 r l [ sendScheduleWork ] :
2 (RPF: r0e0 )
3 (msgCount [RPF ] : 0)
4 (nw : NW)
5 ( tran : T)
6 => (RPF: r0e0 )
7 (msgCount [RPF ] : 1)
8 (nw : (msg(B2R, schedulework ) NW) )
9 ( tran : sendScheduleWork (RPF) ) .
10 r l [ sendGoToCharge ] :
11 (RPF: r0e0 )
12 (msgCount [RPF ] : 0)
13 (nw : NW)
14 ( tran : T)
15 => (RPF: r0e0 )
16 (msgCount [RPF ] : 1)
17 (nw : (msg(B2R, gotocharge ) NW) )
18 ( tran : sendGoToCharge (RPF) ) .

The results of the new model checking are as follows (Figure 5.7 and 5.8).
fair1 is a strong fairness assumption used to assume that the command to
control the robot to the elevator will eventually be sent. If it is not send,
there is a possibility that other working commands have been sent to the
robot, with never enter the state transition robq0 → robq1.

Figure 5.7: Problem 5 Deadlock (New Model).

Figure 5.8: Problem 5 Liveness (New Model).

5.5 Problem 6: Expression is Always True

In order to avoid such problems, in the model check, we added some member
variables used in the emulator to the rewriting rule. These member variables
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represent whether the robot control subsystem receives a reply to certain
messages, and it is the improper management of these variables that leads to
the existence of Problem 6. We formally specified such variables in Maude,
as illustrated below.

The new initial configuration is:

1 eq i c = (ELV: e lvq0 )
2 ( movingStatus [ELV ] : s tay )
3 (BOS: bosq )
4 (RPF: r0e0 )
5 (RPF[GOTOELVSUCCESS ] : f a l s e )
6 (RPF[GOTOELVCOMPLETED] : f a l s e )
7 (RPF[CALLINGSUCCESS ] : f a l s e )
8 (RPF[INTERLOCKTRUESUCCESS ] : f a l s e )
9 (RPF[OPENSUCCESS ] : f a l s e )
10 (RPF[CALLACCEPT] : f a l s e )
11 (RPF[CALLARRIVE ] : f a l s e )
12 (RPF[GETTINGONSUCCESS ] : f a l s e )
13 (RPF[GETTINGONCOMPLETED] : f a l s e )
14 (RPF[CLOSESUCCESS ] : f a l s e )
15 (RPF[GOACCEPT] : f a l s e )
16 (RPF[GOARRIVE] : f a l s e )
17 (RPF[GETTINGOFFSUCCESS ] : f a l s e )
18 (RPF[GETTINGOFFCOMPLETED] : f a l s e )
19 (RPF[INTERLOCKFALSESUCCESS ] : f a l s e )
20 (msgCount [RPF ] : 0)
21 (ROB: robq0 )
22 ( movingStatus [ROB] : s tay )
23 (nw : void )
24 ( tran : notran ) .

An example of new rewriting rules follows:

1 r l [ s end In t e r l o ck1 ] :
2 (RPF: r1e0 )
3 (msgCount [RPF ] : 0)
4 (RPF[INTERLOCKTRUESUCCESS ] : f a l s e )
5 (nw : NW)
6 ( tran : T)
7 => (RPF: r1e0 )
8 (msgCount [RPF ] : 1)
9 (RPF[INTERLOCKTRUESUCCESS ] : f a l s e )
10 (nw : (msg(B2D, i n t e r l o c k 1 ) NW) )
11 ( tran : s end In t e r l o ck1 (RPF) ) .
12
13 r l [ r e c v i n t e r l o c k s u c c e s s 1 ] :
14 (RPF: r1e0 )
15 (msgCount [RPF ] : 1)
16 (RPF[INTERLOCKTRUESUCCESS ] : f a l s e )
17 (nw : (msg(D2B, i n t e r l o c k s u c c e s s 1 ) NW) )
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18 ( tran : T)
19 => (RPF: c a l l i n g )
20 (msgCount [RPF ] : 0)
21 (RPF[INTERLOCKTRUESUCCESS ] : t rue )
22 (nw : NW)
23 ( tran : r e c v In t e r l o ckSuc c e s s 1 (RPF) ) .

The new model checking result of the liveness property is shown in
Figure 5.9.

Figure 5.9: Problem 6 Liveness Property.

5.6 Experiment Summary

In this chapter, we have modified our formal model for 5 of the 10 problems
we identified in Chapter 4.

Table 5.2: Model Checking Result Overview
Deadlock Safety Liveness

Single Robot Version ✓ ✓
Multi Robot Version ✓ ✓ ✓
Model Problem 2 ✓ ✓
Model Problem 3 ✓ ✓
Model Problem 4 ✓ ✓
Model Problem 5 ✓ ✓
Model Problem 6 ✓ ✓

Among them, problems 2-4 are actually caused by abnormal message
transmission, which is a situation that was not considered in the protocol
designed. We needed additional handling of these situations, therefore we
modified the state transition of the basic version, and added a certain ability
of abnormal message detection. When modifying the model, we added some
observable components that indicate abnormal status, and added some new
rewriting rules.

Problems 5-6 are some errors that were omitted in formalizing but existed
in the emulator. Among them, problem 5 is that we only specified the state
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transition related to the interaction between the robot and the elevator when
formalizing. In order to model checking for problem 5, we added several
new rewriting rules to represent other commands of the robot. Problem
6 is a programming error in the specific implementation. We added some
member variables of the protocol class in the old rewriting rules. So far, we
have created a total of 7 models and checked total 15 properties for different
requirements, as shown in Table 5.2. It can be seen that it is not troublesome
to recreate a new model, especially as long as if we know what state causes
the error, we can easily locate the rewrite rules that need to be modified.
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Chapter 6

Discussion

6.1 Strengths and Shortcomings

Chapter 4 showed the complementary nature of model checking and fuzzing.
On the one hand, no exception related to the verified properties occurred dur-
ing fuzzing, which highlights the effectiveness of model checking in detecting
potential logical problems. On the other hand, the problems found through
fuzzing all of which were not found during model checking, which highlights
the importance of fuzzing in detecting potential operational problems.

Chapter 5 demonstrated that the combination of model checking and
emulation is not only helpful in verifying protocol properties and finding
problems, but also very convenient to modify and reverify because the two
use the same state transition modeling. In the modification of the model
after the problem is found, because the specific error state is known in the
emulator, we can quickly locate the part in Maude that needs to be modified.
When modifying, most work focuses on the protocol problem state adding
some new observable components, corresponding functional modules, rewrite
rules and assumptions, and do not go to great lengths.

One shortcoming is that when the emulator was developed, fuzzing
module wasn’t considered. In particular, in the case of the fuzzing of the
robot control subsystem, the emulator can input the same seed and output
the same results for a long time, but in the case of the fuzzing of other
subsystems cannot do this, while inputting the same seed can only generate
the same initial environment, and the mutations will become different quickly.
The guess is that the subsystems in the emulator are implemented by threads,
and the random trigger order of the threads leads to such a result. In the
robot control subsystem, the robot control protocol has low level rely on
the trigger order of other subsystems. It will not respond immediately after
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receiving the messages, but stores the value of the received message and
responds in the dedicated module according to the value. However, other
subsystems respond immediately after receiving the message, or because of
this difference lead to such the problem.

Finally, we had to implement the system twice in system modeling and
emulation according to the workflow shown in Figure 3.1. However, ideally,
the implementation should be done only once, as discussed next.

6.2 Automated Translation from Emulator

Runtime Data to Maude Code

As a preliminary idea, we propose a method to generate Maude code about
part of the model of the basic version of the protocol shown in Sect. 3.1.1
from the emulator. This approach is shown in Figure 6.1.

Figure 6.1: Formal Model Generator.

We can use a decorator to monitor the attribute changes and function
calls. In order to successfully generate a formal model, we need to monitor
the following aspects:

1. Attributes that we want to model. These attributes correspond to all
other observable components except (nw: msgs) and (tran: t).
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2. The function of sending messages. These correspond to the observable
component (nw: msgs).

3. Received Message. These also correspond to the observable component
(nw: msgs).

During the emulator running, the decorator will save the information
about the order of function calling or attribute changing, which contains the
information of state transition. We can use Algorithm 6.1 to extract the
state transition information needed to generate a formal model.

Algorithm 6.1 Export State Transition

Input: D = {d0, d1, ..., dn} // Program Runtime Monitoring Data
Output: T // State Transition

1: set T = empty list
2: set tran = empty list
3: for d = d0 to dn do
4: if dmode == message then
5: for d′ = dnext to dn do
6: if d′name == dname then
7: if d′.mode == message then
8: set T = T ∪ tran
9: set tran = empty list
10: break;
11: else
12: set tran = tran ∪ d
13: end if
14: end if
15: end for
16: end if
17: end for

After a subsystem sends or receives messages, the member variables will
be changed. The goal is to export the changes. The algorithm will traverse
all the program runtime monitoring data and collect the parts involved in
message sending or receiving from the same subsystem.

The set of all attributes values is lS, the set of the attributes values
that are first assigned is lI, the set that the algorithm 6.1 exported is lT ,
the lE in this paper are temporarily replaced by serial numbers. The Maude
code generated in this way can be successfully checked with liveness property
formula similar to basic version of the protocol in Sect. 3.2.2 (see Figure 6.2).

An example of the generated rewriting rules is as follows:
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1 r l [ t ran0 ] :
2 (RCP. r e t r i e s : 0)
3 (RCP. r cp s t a tu s : r0e0 .RCP. r cp s t a tu s )
4 (nw : NW)
5 ( tran : T)
6 =>
7 (RCP. r e t r i e s : 1)
8 (RCP. r cp s t a tu s : r0e0 .RCP. r cp s t a tu s )
9 (nw : (msg(GoToELV.ROB. recvcmd ) NW) )
10 ( tran : tran0 ) .

Figure 6.2: Model Checking Result of Liveness Property for the Automati-
cally Generated Model.

However, this method can only export state transitions on the surface.
For example, the robot waiting queue can be modeled within our handcrafted
models, while cannot be modeled through this method. This method can only
be used at the beginning part to help us generate the simplest version of the
model. In the analysis, improvement and reverification part after step 6
in Figure 3.1, since it may be necessary to add new functions to adjust the
model to satisfy different requirements, the method may become unworkable.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

We applied the IoT System Trustworthiness Levels, focusing on the im-
plementation of TAL3, followed the workflow mentioned in Chapter 3 to
analyze the operations of the robot control protocols and entities of a
smart building, and constructed 3 state machine models of 4 subsystems.
Based on the state machine models, we conducted formal verification and
experimental verification. Then, we comparatively analyzed these results,
proposed improvement plans, and re-verified the protocols, which reflects
the flexibility of our method.

Our formal verification method involves using Maude to formally specify
the protocols. We conducted model checking to check whether the protocols
meet specific properties. We used Maude search command and Maude
LTL Model Checker, applied weak fairness assumptions, strong fairness
assumptions, and the divide and approach, specified different LTL formulas
to verify the deadlock, safety and liveness properties according to varying
requirements for a total of 7 models of robot control protocols. The formal
verification results showed that the basic version and the improved versions
all meet requirements, which helps us assure the logical correctness of the
protocol.

Our experimental verification method involves using an emulator to
emulate the protocols and simulate entities under the state machine models.
The emulation of the protocol makes the experimental verification not merely
use the model-based techniques but rather close to the real system, which
can be a good auxiliary for model checking to make the models of the
system better. The simulation of entities help the problems found in the
experimental verification easier to locate in the models, which also allows
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emulator be a good auxiliary for model checking.
After the emulator was developed, we conducted fuzzing to test whether

the protocols still have unexpected problems. Our fuzzing focus on mutating
messages related to the message sending and receiving about the protocol.
We applied two methods to speed up the fuzzing. By applying our strategies,
although the improvement of the three subsystems of robots, building OS and
elevators is not obvious, the coverage of the fuzzing of 30 seeds of the robot
control platform subsystem has increased from 36% to 94%. We summarized
3 types of emulator abnormal behavior identified via fuzzing. By observing
the abnormal behaviors and analyzing the code, we identified 10 types of
problems, most of the improvement plans based on avoiding these problems,
which helps us assure the operational correctness. Part of the problems
caused by mistakes such as poor consideration in programming, and the
other comes from abnormal situation such as data tampering, all of which
problems were not considered in modeling. The result comparison of model
checking and fuzzing reflects the complementary nature of our method.

7.2 Future Work

Our future work will focus on optimizing testing strategies. In current fuzzing
implementations, the fuzzer generates input data based on a predefined
range, which remains constant throughout the entire testing cycle. Each
test begins by generating input from the same initial bytes and mutates on
the basis of this initial input. However, the initial input generated in each
round is same, leading to repetitive first inputs and redundant mutation
processes. For example, in the testing of a robot control subsystem, the
process always starts by sending the command interlock(false). Further-
more, the mutation process always begins from the very start. This issue is
particularly noticeable when testing robot and elevator subsystems. The
testing frequently simulates that the robot or elevator is failure, which
resulting in low coverage of the testing. As future work, it may be worth
exploring dynamic adjustments to the input generation range. For example,
instead of always starting from the same initial state, the test could begin
from a specific state after sending a sequence of correct, non-fuzzed messages.
This approach could help focus the testing on unexplored paths and improve
efficiency and code coverage.

Secondly, the emulator capabilities could be improved. One direction is
try to solve the problem of having the same seed input but different outputs.
A possible solution is to change from using threads to coroutines. Another
possible direction is to insert a bug in emulator that cannot be found by
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experimental verification but can be found by formal verification. In our
formalized model, the order of messages in the network is not preserved, but
in our emulator, messages are always received in order. Adding disordered
message transmission to the emulator can not only further improve our model
according to the behaviors of the emulator, but also help to explore more
potential problems.

Finally, we will focus on merging some duplicate work in the workflow.
We already tried to merge Modeling and Emulation in this thesis, but the
proposed method is not perfect. A possible direction refers to letting the
method become workable in all parts of the workflow (see Figure 7.1).

Figure 7.1: Future Work.

NOTE: Generative AI technology was used for translation and grammar
checking during the preparation of this thesis.
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