
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
ヘテロジニアス環境におけるMapReduce の自動タスク割

り当て [課題研究報告書]

Author(s) 若井, 久瑠美

Citation

Issue Date 2025-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/19838

Rights

Description
Supervisor: 井口 寧, 先端科学技術研究科, 修士 (情報科

学)



Auto task assignment in MapReduce on Heterogeneous Environment

2230019 Kurumi Wakai

In recent years, with the explosive growth of data volume and the in-
creasing diversity of computational tasks, data centers have evolved from
homogeneous cluster architectures to heterogeneous ones. This transition
is driven by the widespread adoption of specialized hardware components
such as GPU, ARM CPU, and FPGA. However, MapReduce were originally
developed with homogeneous environments. MapReduce has proven excep-
tionally effective in large-scale data processing on homogeneous clusters of
commodity machines, its performance can degrade significantly in heteroge-
neous environments.

To address this challenge, a method known as MrHeter was proposed,
aiming to optimize task assignment in MapReduce running on heterogeneous
clusters. Specifically, MrHeter distributes map and reduce tasks according
to the actual capabilities of each node. MrHeter can dramatically reduce the
execution time of MapReduce jobs, achieving improvements of 30% to 70%
over traditional, homogeneous scheduling approaches.

The MrHeter method solves the calculation models MrHeter-MS and
MrHeter-R to find the optimal number of task assignments. To solve these
computational models, we use the average execution time of the map and
reduce tasks for each heterogeneous node, but this needed to be measured
manually. The more heterogeneous nodes there are, the more time-consuming
it is to measure the average execution time. For this reason, the MrHeter
method had the disadvantage of being expensive to use.

In this study, we will conduct a demonstration experiment to perform
task allocation using Optuna, a Python hyperparameter optimization library.
Optuna takes in hyperparameters and an objective function, and outputs the
hyperparameter values that minimize or maximize the objective function.
Therefore, it is not necessary to measure things such as average execution
time in advance, and labor savings can be achieved.

The advantage of using Optuna to automatically obtain parameters to
reduce MapReduce execution time is that it requires less effort to things
such as measure average execution time than the MrHeter method. The main
contributions of this research are as follows. The first point is that, where in
the past, the parameters for task allocation had to be measured manually,
by using the Python hyperparameter optimization library Optuna, manual
measurement becomes unnecessary. The reason that manual measurement is
no longer necessary is that when you input the hyperparameters and objective
function into Optuna, you can obtain the hyperparameters that minimize the

1



objective function, in other words, the execution time of MapReduce. The
second reason is that manual measurement is no longer necessary, so the cost
of measurement can be reduced, and a heterogeneous environment consisting
of many different types of nodes can be constructed at low cost.

Many studies have been conducted to improve the performance of MapRe-
duce in heterogeneous environments. LATE is the first study in the academic
field to address this issue and has been very successful. LATE identifies tasks
with slow execution speeds, called stragglers, and reduces the overall execu-
tion time of the job by speculatively executing them on other nodes. TPR,
Dolly, and Mantri are also studies that focus on stragglers. In heterogeneous
environments, predictable and stable computing power is the main cause of
stragglers. However, most research does not investigate the causes of strag-
glers, but only tries to eliminate their effects, so the problem is not solved
at its root. On the other hand, there are also studies that optimize jobs
by improving the data imbalance between nodes in a cluster. For example,
there are SkewReduce, Topcluster, and Libra. The aim is to distribute data
according to the processing power of the nodes, but it is difficult to determine
the appropriate coefficient because there is variation depending on the appli-
cation. There have also been studies on improving MapReduce performance
through configuration optimization. However, there are so many parameters
that affect job performance that tuning them requires multiple tests, which
is inefficient.

Unlike previous research, the MrHeter method identifies the causes of
the performance degradation of MapReduce in heterogeneous environments
and designs a computational model to solve the problem from the roots.
One drawback of the MrHeter method is that it is costly to manually search
for and input performance indicators and other data that are used as input
variables for the computational model. In particular, measuring the average
execution time of local map tasks and remote map tasks for each type of
node is costly, so we propose an automated program. We also aim to re-
duce MapReduce execution time by using Optuna, a black-box optimization
method, to skip the manual search for optimal parameters and use automat-
ically derived parameters.

Local map task average execution time and Remote map task average
execution time measurements are costly, so we have proposed a program to
automate the measurement process. This program calculates the average
task execution time for a specified server based on the container ID, which
is unique for each job, from the resourcemanager log. The input information
required is the path to the log file, the server name to be measured, and
the container ID. When measuring the Local map task, the log of the Local
map task execution is extracted from the resourcemanager log, and when

2



measuring the Remote map task, the log of the Remote map task execution
is extracted from the resourcemanager log, and the path of these log files is
specified as input information.

In this paragraph, we will explain how to execute MapReduce task as-
signment using Optuna. The flow of the code for parameter optimization
using Optuna is as follows: First, the results of the previous execution using
Optuna are evaluated and a parameter search is performed, and the param-
eters to be set for the next trial are determined. In the case of the first
trial, only the parameter search is performed. Next, the parameters for each
server (mapreduce.job.maps and mapreudce.job.reduces) derived by Optuna
to minimize the execution time of the job are set in the Hadoop configuration
file mapred-site.xml for each server, and the server is restarted to reflect the
settings. This parameter setting and server restart process is performed on
all servers. After that, the job to be minimized is executed and the execution
time is measured. Optuna evaluates this execution time and specifies the pa-
rameters to be used in the next trial. The program ends when the number
of times the job is executed reaches the specified number.

The experiment used a heterogeneous cluster environment. We used 14
servers, including one Opteron 2 (AMD Ryzen 7 3700X 8-Core Processor
4.4GHz), one P100 (Intel(R) Xeon(R) CPU E5-2637 v4@ 3.50GHz), and
icl00-icl09 (Intel(R) Celeron(R) J4105 CPU @ 1.50GHz) 10 units, and icl10-
icl11 (Intel(R) Celeron(R) J4005 CPU @ 2.00GHz) 2 units.

In terms of the cost of the procedure, the procedure for the MrHeter
method takes 1+(number of server types * 2) steps, and the procedure for
the proposed method takes 4 steps, so we can say that the labor saving of
parameter determination using Optuna has been achieved. The more server
types there are in a cluster environment, the greater the benefit of using the
proposed method to save labor.

From the execution results of the wordcount job, it was found that the
proposed method using Optuna was able to reduce the time by 16-50% com-
pared to the default settings of Hadoop. The previous study, the MrHeter
method, reduced the time by 4-48% compared to the default settings of
Hadoop, so it was found that the proposed method had execution times that
were equivalent to or shorter than the MrHeter method.

In this study, the execution time of MapReduce was used as a performance
benchmark. In the future, it will be necessary to consider whether it is
possible to use the parameters automatically derived by Optuna in situations
where it is necessary to satisfy multiple criteria other than execution time,
such as power consumption and memory usage.

3


