
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Kフレームワークの調査研究と見える化 [課題研究報告書]

Author(s) 大澤, 広朗

Citation

Issue Date 2025-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/19844

Rights

Description
Supervisor: 緒方 和博, 先端科学技術研究科, 修士 (情報

科学)



Investigation and Visualization of K Framework

2130026 Hiroaki Osawa

This research project introduces the K Framework, a framework that can
rigorously defines the syntax and semantics of a programming language using
formal methods, and proposes a tool to effectively visualize the formal se-
mantics of a programming language described using the K Framework. The
framework is a framework that enables concise and systematic definitions
of programming languages based on operational semantics and has the abil-
ity to automatically generate tools such as parsers, interpreters, and model
checkers. This feature provides great convenience in formalizing existing pro-
gramming languages and designing new languages, and it is widely used in
software development for formal semantics of programming languages such
as C, Java, JavaScript, and Ethereum smart contracts. Successful examples
such as the formal specification of the EVM language confirm its practicality.
However, understanding the formal semantics described in the K Framework
requires a precise grasp of a large number of rewriting rules, the complexity
of which is a major barrier for learners and practitioners.

Based on operational semantics, the K Framework defines the semantics
of a programming language using its syntax, an initial state, and a set of
rewriting rules. The syntax is represented by a context-free method using
BNF, and the initial state is represented by a tree structure. The state is
often the main body of the program or an environment for storing variables.
Rewriting rules make it possible for a language designer to explicitly only
describe part of an entire state (called a configuration) being changed and
omit the other parts being unchanged.

One of the characteristics of the K Framework is the mixture of rewriting
rules explicitly described by the designer and implicit rules generated by
the framework itself. The latter is, for example, rewriting rules necessary
to realize value calls in evaluation strategies, while programming language
implicit rules are essential to fully define the behavior of the language, they
can also be a source of ambiguity about the designer’s intentions. Therefore,
when studying the semantics of a language written in the K Framework,
it is not easy to identify the rules that the designer considered important
and separate them from other less-important information. To mitigate this
problem, this study developed a dedicated tool to effectively understand the
rewriting rules of the language described in the K Framework. This tool
extracts rules explicitly specified by the designer and visualizes before and
after states rewritten by the specified rewriting rules.

The proposed tool was applied to various language paradigms, includ-
ing procedural programing language (IMP), functional programing language

1



(LAMBDA), object-oriented programing language (CLASS), and a concur-
rent programming language (THREAD), to demonstrate the usefulness of
visualization according to their characteristics. CLASS traces the behavior
of object creation and method invocation, helping the reader to understand
the concepts specific to object-oriented programming. In THREAD, we pro-
vide a method to clarify the complex behavior of concurrency by detailing
the state transitions associated with concurrent threads creation, synchro-
nization mechanisms, and inter-threads conflicts. These case studies demon-
strate the applicability of the proposed tool to various programming language
paradigms.

Furthermore, the proposed tool is unique and superior to existing visu-
alization tools (e.g., ShiViz, SMGA). In particular, the ability to selectively
visualize rewriting rules that designers consider important is a feature not
found in other tools. In addition, by visually showing the order of applica-
tion of rewriting rules along a time axis, the tool is designed to intuitively
understanding the interaction between rules and the priority of application.
This approach lowers the hurdle for learning formal semantics and shows its
potential for practical as well as academic applications.

The significance of this research is that it provides a new approach to
effectively understanding the formal semantics of programming languages
utilizing the K Framework. This tool reduces the complexity of the semantics
described in the K Framework and increases the practicality of designing and
describing the semantics of programming languages using formal methods.
Furthermore, due to the inherent flexibility of the K framework, it can be
applied to new programming language paradigms and more complex systems
in the future and has the potential to further expand the range of applications
of formal methods. This research is an important step toward the practical
application and dissemination of language design using formal methods and
represents a new direction in the field of formal semantics.

2


