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strengthens the role of data-driven models in materials science innovation.
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Chapter 1

Introduction

1.1 Modeling dynamics and complexity in Material Science

Since the inception of civilization, humankind’s advancement has been character-
ized by an evolving relationship with materials. Each significant discovery—stone,
bronze, iron, or silicon—has unlocked new possibilities, reshaping societies and pro-
pelling technological advancements. However, as our comprehension of these ma-
terials has deepened, so has the acknowledgment of their complexities. Materials
are not merely inert or straightforward; they exhibit a dynamic and multifaceted
nature that poses challenges for scientists and engineers (Agrawal and Choudhary,
2016; Ramprasad et al., 2017; Butler et al., 2018; Siriwardane et al., 2022). Materi-
als frequently demonstrate intricate behaviors in response to environmental condi-
tions, adapting and evolving in ways that reveal their fundamental characteristics
and imply potential applications across diverse fields. These responses can range
from molecular alterations to observable changes in structure or properties, provid-
ing critical insights into the nature of a material. Some transformations occur at
the subatomic level, involving subtle forces and bonding interactions, while others
manifest on a macroscopic scale, where their effects are directly observable and im-
pactful. External influences such as stress, heat, or minor environmental changes
can initiate a cascade of reactions within a material, underscoring its adaptability
and versatility.

This complex interplay of responses presents both opportunities and challenges.
The diversity and unpredictability of material behaviors necessitate detailed obser-
vation and innovative analytical frameworks. As researchers endeavor to elucidate
these complexities, they often employ advanced representation techniques that im-
pose order on the dynamic interactions observed. Such methodologies must be de-
signed to capture the full spectrum of a material’s behavior, advancing understand-
ing of its underlying processes while establishing structured pathways for reason-
ing, analysis, and model development. In summary, achieving a comprehensive un-
derstanding of materials’ complexity is pivotal to fostering innovation and revealing
the vast potential inherent in each response and interaction. This continuum from
understanding to application is essential to the future of materials science, where
the capacity to capture and represent dynamic phenomena will be instrumental in
unlocking the rich possibilities of materials that shape our world.
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FIGURE 1.1: Illustration of four paradigms in materials science.

1.1.1 Material Informatics and Representation learning

Throughout human history, the quest for advanced materials has progressed with
scientific and technological advancements. This journey is characterized by four crit-
ical paradigms that have significantly shaped the field of materials science. Accord-
ing to Agrawal (Agrawal and Choudhary, 2016), these paradigms—empirical sci-
ence, theoretical science, computational science, and data-driven science—each offer
unique approaches to discovering and understanding materials. Initially, knowl-
edge in materials science was based on empirical observations and experiments,
focusing on processes such as material extraction, purification, and processing. As
mathematical concepts, particularly algebra and calculus, advanced, theoretical mod-
els emerged. These models, grounded in mathematical equations like the laws of
thermodynamics, provided a basis for predicting material behavior. The subse-
quent significant development was the rise of computational science, which allowed
for the simulation of complex material phenomena using advanced algorithms and
methods, such as density functional theory and molecular dynamics. Most recently,
a data-driven approach has emerged as the fourth paradigm in response to the data
generated by experiments and simulations. This approach, known as materials in-
formatics, aims to integrate theory, experimentation, and computational insights,
thereby accelerating the discovery and understanding of materials through data-
driven analysis. The significantly faster decision-making process is the primary ad-
vantage of data-driven approaches over experimental methods and materials sim-
ulations. Data-driven models typically evaluate a given material data within sec-
onds, whereas simulations may take hours to days, and experiments can span days
to months. Additionally, compared to the human summarization of physical rules,
data-driven approaches excel in managing massive datasets and extracting highly
complex and nonlinear relationships between multiple inputs and outputs.

A structured data mining process is necessary to tap into the potential of data-
driven approaches in materials informatics (Fig 1.2). This process typically consists
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FIGURE 1.2: Schematic representation of the data mining process.
The sequence begins with data collection, followed by preprocessing
to clean and organize the raw data. The transformation step then con-
verts data into suitable formats or representations for analysis. Next,
data mining techniques are applied to extract patterns and insights.
Finally, through interpretation, these findings are translated into ac-
tionable knowledge, contributing to advancements in materials sci-

ence.

of several key stages: data collection, preprocessing, transformation, mining, inter-
pretation, and knowledge generation. In these stages, transformation is a prelim-
inary step in which raw and heterogeneous data are standardized to a machine-
readable unified format that can be analyzed and interpreted effectively. Proper
transformation ensures that the diverse and complex nature of data on materials is
adequately treated, allowing for more accurate and meaningful data mining out-
comes. Emphasizing transformation aids researchers in better handling the multi-
scale and multi-dimensional aspects of materials data, providing the base for suc-
cessful representation learning and subsequent analysis.

A successful application of materials informatics relies heavily on the effective-
ness of representation in the transformation process (Yang et al., 2019). Accurately
representing a material beyond merely cataloging its observable properties requires
a deep understanding of its multi-scale complexities and the ability to encode them
in a structured, machine-readable format that faithfully reflects real-world behav-
iors. Unlike simple datasets, material data are inherently diverse and multidimen-
sional, encompassing atomic structures, phase compositions, chemical environments,
and property measurements across various scales. Crafting representations to han-
dle this diversity has often involved handcrafted features—carefully designed de-
scriptors rooted in specific material attributes or known physical principles. How-
ever, these handcrafted features are typically limited in scope, capturing only nar-
row aspects of the material data and often requiring domain-specific expertise to
design. Moreover, the challenge of representation design is exacerbated by the fact
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that materials datasets are frequently specific, sparse, or fragmented, typically gen-
erated from experiments tailored to particular material classes or conditions. This
sparsity obstructs the creation of generalized models that can reliably extend across
diverse material systems. Additionally, the dynamics of materials, including their
mechanical, thermal, and transport properties, play a crucial role in understanding
their behavior under various conditions. Effective representations can significantly
aid in capturing these dynamic phenomena, allowing for more accurate predictions
of material performance over time. Furthermore, since fundamental physicochemi-
cal principles govern materials data, effective representations must adhere to these
foundational laws, preserving essential relationships between properties and their
underlying physics. Traditional numerical descriptors often fall short of this require-
ment, as they lack the flexibility necessary to encapsulate the intricate, nonlinear in-
teractions present in natural materials, particularly when considering their dynamic
responses (Hirn, Mallat, and Poilvert, 2017).

The limitations of handcrafted and fixed-feature representations underscore the
urgent need for representation learning. This innovative approach empowers mod-
els to autonomously learn complex, data-driven representations without dependence
on predefined features. In contrast to traditional descriptors, which may only cap-
ture limited dimensions of material behavior, representation learning facilitates the
extraction of nuanced patterns and interactions within multidimensional material
data, revealing relationships that would be challenging to identify through manu-
ally crafted features (Ramakrishnan et al., 2014; Himanen et al., 2019; Zhao et al.,
2023). By learning representations directly from data, this approach effectively ac-
commodates the complexity and diversity inherent in materials, including nonlinear
dependencies, hierarchical structures, and varying scales of interaction, thereby of-
fering a more comprehensive understanding of material behavior (Rupp et al., 2012).
A notable example of the potential inherent in representation learning is the Mate-
rials Project. This initiative employs machine learning models to predict material
properties by directly learning representations from large-scale material data. By
establishing a continually expanding database of computed material properties, the
project has enabled researchers to generate predictions for various materials, thereby
advancing the discovery process and informing experimental efforts. The learned
representations enhance generalization across different classes of materials, facilitat-
ing the prediction of novel compounds with desirable properties.

1.1.2 Challenges in Representation learning for Material science

As the field of materials science embraces data-driven approaches, representation
learning faces distinctive challenges tied to the complexity and diversity of materials
data. Unlike other domains, where data are often uniform and abundant, materials
data present a spectrum of unique difficulties that require specialized approaches.
Materials are governed by intricate physical, chemical, and structural properties
that do not easily translate into standardized formats or simplified features. Instead,
capturing the nuanced behaviors and interactions within materials requires repre-
sentations that can span multiple scales, from atomic and molecular interactions to
macroscopic properties. This inherent complexity requires representation learning
models that can accommodate diverse and interconnected data while still delivering
insights that are both accurate and interpretable.

An additional challenge lies in the nature of the data itself, which is often lim-
ited, sparse, or specialized. Unlike fields with extensive labeled datasets, materi-
als science frequently depends on costly and time-consuming experimental data or
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computational simulations that can introduce their own limitations and uncertain-
ties. This scarcity poses a barrier for machine learning models, which typically ben-
efit from large, well-labeled datasets for training. While techniques such as transfer
learning and few-shot learning offer promising solutions, they require careful adap-
tation to fit the specific constraints of materials science, where data availability and
diversity are far from uniform (Xie and Grossman, 2018).

One significant challenge lies in the complexity of materials data itself, which
often includes high-dimensional features that are difficult to simplify without losing
critical information. For instance, a single material’s behavior may depend on elec-
tronic structures, atomic configurations, and environmental conditions, all of which
interact in nonlinear and sometimes unpredictable ways. Traditional machine learn-
ing models can struggle to encapsulate these multifaceted relationships, leading to
potential inaccuracies in predictions or generalizations. Furthermore, ensuring that
these representations respect the physicochemical principles governing materials re-
quires careful design, as oversimplifying these relationships can result in models
that fail to capture essential properties accurately

In summary, representation learning in material informatics encounters substan-
tial challenges due to the inherent complexity of materials data, limited availability
of high-quality datasets and the need to respect physicochemical principles. Over-
coming these obstacles is essential for building models that are not only robust and
accurate but also capable of advancing our understanding and discovery of new
materials.

1.2 Deep learning and data-driven representations

Deep learning (DL) has emerged as a transformative approach in data-driven sci-
ence, offering unprecedented capability in learning complex, non-linear represen-
tations across high-dimensional data spaces. Unlike traditional methods, which
typically rely on fixed mathematical functions or manually designed features, DL
employs layered neural networks capable of autonomously extracting patterns and
relationships from raw data. This structure allows DL models to learn representa-
tions directly from the data, adapting to its inherent complexities without requiring
domain-specific descriptors. As a result, DL methods excel in tasks that involve
intricate relationships and large feature spaces, where traditional approaches may
struggle to capture the full depth of interactions (Tran et al., 2018).

The architecture of deep learning networks, often consisting of multiple hidden
layers, enables these models to perform hierarchical learning. Lower layers capture
simple features, while deeper layers progressively build on these to recognize com-
plex patterns and higher-order relationships. This capacity for hierarchical abstrac-
tion allows deep learning to learn representations that not only fit the data but also
generalize across diverse datasets and contexts. Additionally, advances in training
techniques, optimization algorithms, and computational power have accelerated the
adoption of DL, making it feasible to tackle high-dimensional data in fields ranging
from natural language processing to computer vision (Krizhevsky, Sutskever, and
Hinton, 2017, Vaswani et al., 2017).
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1.2.1 Evolution of Deep learning architectures for enhanced data repre-
sentation

The design of deep learning architectures has evolved from simple feedforward net-
works to more complex structures, which are tailored for specific data types and
tasks. This reflects an ongoing process of enhancing the models’ capabilities of learn-
ing rich, hierarchical representations of data, hence significantly improving perfor-
mance across a wide range of applications. Basically, understanding this evolution is
essential in highlighting the architectural innovations that have so far enabled deep
learning models to capture increasingly complex patterns and relationships within
data.

Early neural networks were relatively shallow-only a few layers with minimal
capacity to model complex functions. Such networks struggled with learning rep-
resentations that would generalize well to previously unseen data, primarily due to
their shallow depth and inability to capture hierarchical features. The introduction
of much deeper architectures overcame these limitations by stacking many layers
together so that the models could learn representations incrementally at higher lev-
els of abstraction. Each successive layer captures more complex features by building
upon the representations learned in previous layers, facilitating a hierarchical learn-
ing process (Bengio, 2009).

Considering the development of deep learning architecture, one of the most im-
portant milestones was the convolutional neural network, which was designed for
working with grid data, such as images. CNNs introduced convolutional layers us-
ing the idea of spatial hierarchies in data to capture local patterns and build them
into global features effectively. Early models like LeNet-5 demonstrated the efficacy
of CNNs for image recognition tasks (Lecun et al., 1998). Meanwhile, further archi-
tectures like AlexNet, VGG, and ResNet sharply increased depth. They introduced
novel ideas concerning deeper convolutional layers and residual connections that
resolved issues such as vanishing gradients (Krizhevsky, Sutskever, and Hinton,
2017,Simonyan and Zisserman, 2015, He et al., 2015). These advancements allowed
CNN to learn more expressive representations and substantially improved perfor-
mance for image classification and related tasks.

Recurrent neural networks were developed for sequential and temporal data
with the aim of modeling dependencies across time. However, traditional RNNs
suffered from the inability to learn long-term dependencies due to problems such as
exploding and vanishing gradients. This limitation has driven the development of
more complex architectures including Long Short-Term Memory (LSTM) networks
and Gated Recurrent Units (GRUs) that introduce various forms of gated informa-
tion flow and gradient propagation through time (Hochreiter and Schmidhuber,
1997, Chung et al., 2014). These architectures allowed models to learn representa-
tions that take into consideration both the short- and long-term patterns in sequen-
tial data, quite effectively model language and speech, among others.

Introducing attention mechanisms marked another significant milestone in deep
learning architecture design. Attention allows models to focus on specific input
parts when generating representations, improving the handling of dependencies
and relationships within data. The Transformer architecture, which relies entirely
on attention mechanisms without recurrent layers, revolutionized natural language
processing by enabling models to capture global dependencies more effectively (Vaswani
et al., 2017). Transformers learned highly expressive representations and formed the
basis of recent models like BERT and GPT, which broke new records on many bench-
marks across diverse language tasks.
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These different architectural innovations together show how deep learning de-
sign is evolving to create models that can learn representations of ever-increasing
sophistication. By overcoming the limitations of their predecessors and embedding
mechanisms suited for different data structures and tasks, deep learning architec-
tures have considerably widened the envelope of what is possible with data-driven
representation learning. This evolution underlines how important architecture de-
sign is in deep learning. However, it also sets the stage for exploring how these
principles can be put to work for the complex data in materials science.

1.2.2 Integrating domain knowledge into Deep learning architectures

The effective integration of domain knowledge has become a crucial strategy for en-
hancing the performance, interpretability, and generalization of deep learning mod-
els at large, especially in complex scientific domains. As much as deep learning
models are excellent at learning features from the data themselves, knowledge of
the specific expertise within the domain guides such learning processes to enable
not only the model fitting of the data but also adherence to the underlying physical
laws and principles. This synergy in data-driven learning and design informed by
the domain leads to more robust and reliable models, especially necessary in areas
where data may be scarce or noisy. (Metzler et al., 2018).

The main motives for incorporating domain knowledge include constraining
the model’s hypothesis space, a process that effectively reduces overfitting and im-
proves generalization on unseen data. By embedding known relationships, sym-
metries, or invariances into the architecture, models focus their learning on aspects
of the data that are truly novel or unexplained by existing theories. This is par-
ticularly useful in scientific fields where one has specific behaviors constrained by
known laws, like conservation laws in physics or chemical bonding rules in chem-
istry.(Raissi, Perdikaris, and Karniadakis, 2019).

There are several ways in which domain knowledge can be incorporated into
the framework of deep learning models. The common approaches involve introduc-
ing an explicitly defined loss function that penalizes deviations from known physi-
cal laws or constraints. Classic examples include physics-informed neural networks
(PINNs), where physical laws represented by differential equations are directly used
under appropriate forms in the loss function and thus guide the model toward so-
lutions that satisfy those equations (Raissi, Perdikaris, and Karniadakis, 2019). An-
other popular strategy is to architect the network structure from the domain prob-
lem. Graph neural networks, for example, are particularly tailored to model entities
and their interactions; hence, the graph-structured data like molecules or crystalline
structures naturally model the interactions in accord with the knowledge of the do-
main at hand (Gilmer et al., 2017).

Embedding domain knowledge can also take the form of input feature engineer-
ing, whereby raw data are transformed using domain-specific operations before be-
ing fed into the model. This would relieve relevant patterns and relations critical to
the task at hand. In materials science, for example, features like radial distribution
functions or electronic density of states can be computed from raw structural data
to provide the model with rich, physically meaningful inputs (Butler et al., 2018).
Additionally, transfer learning techniques can leverage pretrained models from re-
lated domains, incorporating learned representations that already encode domain-
relevant information.

While these methods have significant advantages, their integration with deep
learning models further introduces a number of challenges. Basically, domain and
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machine learning techniques are blended, which requires a deep knowledge of both
the domain and machine learning techniques to perform effectively without intro-
ducing biases or constraints that may affect the model’s ability to learn from data.
Moreover, too rigid incorporation of domain knowledge can prevent the model from
discovering new patterns that are outside conventional theories but still important.
Guidance from domain knowledge must be balanced with flexibility in deep learn-
ing, an act that requires careful consideration of the two variables mentioned above
(Xie and Grossman, 2018).

In short, the incorporation of domain knowledge into deep learning design rep-
resents a powerful approach toward improving model performance and reliability
in complex scientific fields. By embedding expertise directly into models through
customized architectures, loss functions, or feature engineering, we can obtain deep
learning systems that not only learn from data but also respect the fundamental
principles of the domain. This fusion of data-driven and knowledge-driven ap-
proaches clears the ground for further advances not only in places like materials
science, where the understanding of behaviors should necessarily respect both rich
data representations and adherence to physical laws.

1.3 The rising need for synergistic integration of Deep learn-
ing and Materials science

The convergence of deep learning and materials science shows a new era of co-
creation, where domain knowledge and advanced computational methods reinforce
mutual advances in both fields. Deep learning models become more capable of cap-
turing complexities inherent in material data when informed by the rich, nuanced
understanding of materials science. This can promote the learning of meaningful,
accurate, and physically interpretable representations in such models.

Domain knowledge from materials science infused into deep learning architec-
ture provides the models with a foundation of scientific principles. The physics inte-
gration could be explicitly expressed in network architecture, such as graph neural
networks for crystalline materials or physics constraints baked into the learning pro-
cess. Aligning model design to material behaviors and properties can thus guide the
learning process to focus on relevant features, thereby improving both performance
and interpretability.

Concurrently, Deep learning gives valuable feedback to the area of material sci-
ence by uncovering hidden patterns and relationships within complex datasets. So-
phisticated models may reveal insights into material behaviors that could not have
been evident using traditional approaches in experiments or theory. For instance,
deep learning can determine the factors that significantly affect material properties
or predict new materials with specific properties, hence hastening the discovery pro-
cess. This feedback loop enriches the domain knowledge of materials science, high-
lighting areas for further investigation and potential innovation.

The collaborative cycle between deep learning and materials science also sup-
ports a range of data mining tasks beyond predictive modeling. Deep learning’s
hierarchical feature extraction provides a powerful method for clustering materials
based on intrinsic properties, anomaly detection indicative of potentially novel phe-
nomena, and unsupervised learning where labeled data are scarce. These capabili-
ties are beneficial within materials science, where the datasets can be heterogeneous
and complex.
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FIGURE 1.3: Synergistic Integration of Deep Learning and Domain
Knowledge in Materials Science. The diagram illustrates the cyclical
process of knowledge enhancement through deep learning in mate-
rials science. The enriched knowledge enhances the existing domain
expertise, which then informs and refines subsequent deep learning
models (DL), closing the loop. This iterative process fosters contin-
uous advancement in materials science by coupling domain knowl-

edge with deep learning capabilities.

This synergistic relationship forms a continuous cycle wherein domain knowl-
edge leads and trains deep learning models, and the models, in return, provide new
insights to expand and refine the knowledge base as shown in Fig 1.3. Deep learn-
ing serves as a transformative intermediary, translating complex material data into
actionable information and hypotheses. The acceleration this creates for materials
science allows quicker exploration of material spaces and innovation. Ultimately,
co-creation by deep learning and materials science stands out as a bright example
of what interdisciplinary collaboration is all about. Suppose deep learning strengths
outstanding work with complex data and representation learning be combined with
profound expertise present in materials science. In that case, one can push both deep
learning and materials science beyond known limits. This would mean increased
predictive performance and a fundamental understanding of material phenomena ,
enabling groundbreaking discoveries and technological developments.

1.4 Research objectives

In the previous section, I discussed the challenges encountered in designing effective
representations for deep learning applications in materials science, highlighting the
importance of selecting suitable approaches to address the complexities of this field.
Representation learning in materials science is inherently challenging, given the di-
verse, high-dimensional nature of materials data and the need to capture nuanced
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properties accurately. Developing deep learning models that can effectively learn
from these data requires a careful balance between complexity and interpretabil-
ity, and a robust understanding of the underlying material mechanisms is essential.
While deep learning has shown significant promise in extracting patterns and reduc-
ing the complexity of materials data, several key limitations still impede its broader
applicability:

• Domain Knowledge Incorporation into Framework Design: Designing rep-
resentations that leverage domain-specific knowledge is essential for captur-
ing the complex, multiscale interactions that govern material properties. Deep
learning models must integrate principles from materials science to ensure rep-
resentations are not only accurate but also interpretable and grounded in sci-
entific understanding.

• Prediction Interpretability: Even when deep learning models achieve high
predictive accuracy, accurately evaluating and communicating prediction in-
terpretability remains a major challenge, especially in contexts requiring scien-
tific insights.

To address these limitations, I have developed deep learning frameworks de-
signed with embedded domain-specific knowledge to generate meaningful repre-
sentations of materials that advance various tasks in materials science. By develop-
ing frameworks rooted in scientific principles, this work aims to achieve not only
high predictive accuracy but also to provide scientifically valuable insights into ma-
terial behaviors, thereby enhancing both interpretability and discovery potential in
the field.

To demonstrate the applications of this framework, the thesis presents two major
scenarios:

• Unsupervised Representation Learning for Unknown Targets: Developing
representations from unlabeled data to discover patterns or classify materials
based on implicit relationships.

• Supervised Representation Learning for Known Targets: Learning material
representations with labeled data, targeting specific material properties or be-
haviors.

These scenarios are further illustrated through two in-depth case studies, each
serving as a focal point for the application of these methodologies. These studies of-
fer a roadmap for the thesis and showcase the potential of the proposed framework
to achieve interpretability, accuracy, and discovery within the context of materials
science. Our proposed methods are highly effective, as demonstrated by utilizing
to uncover underlying mechanisms in materials (Chapter 3) and creating of an in-
terpretable deep learning framework for predicting materials property (Chapter 4)
and
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Chapter 2

Representation Learning and
Design with Domain Knowledge
in Deep Learning

The following chapter explores the basic design methodologies for the application
of deep learning to scientific research, with an emphasis on constructing domain-
enriched representations for modeling complex phenomena. We detail the DL paradigm’s
essential ingredients, namely inputs, architectures, outputs, loss functions, and learn-
ing algorithms. Then, we will describe how each one of those elements can be tai-
lored in an application-specific fashion given scientific requirements. Consequen-
tially, the framework not only progresses the accuracy of material property predic-
tions but furthermore extends the general scientific knowledge base in such a man-
ner as to enable new material discoveries and unforeseen explanations of complex
material phenomena.

Initially, the chapter provides a comprehensive overview of the foundational
principles of deep learning. It introduces essential concepts such as neural networks,
activation functions, and the architecture of deep learning models. The discussion
also includes insights into the evolution of deep learning, highlighting significant
milestones and breakthroughs that have shaped the field. This foundational knowl-
edge sets the stage for more complex topics and advanced concepts as progress
through the material science.

Consequently, this chapter offers a review of methods for the design of inputs
and outputs compatible with scientific datasets, often characterized by high-dimensional,
structured, or sparse data. This means addressing the challenges of data prepro-
cessing and transformation and the appropriate selection of learning methods to
enhance the generalization and robustness of models. When these components are
aligned with domain-specific requirements, the scientific discovery facilitated by DL
models allows researchers to interpret results with greater confidence and precision-
meaningful patterns and relationships across varied scales and contexts.

2.1 Fundamentals of Deep Learning

Deep learning enables computational models composed of multiple processing lay-
ers to learn data representations at various levels of abstraction. In recent years,
deep learning models have achieved remarkable success in numerous fields, includ-
ing natural language processing, object detection and tracking (Vaswani et al., 2017;
Ronneberger, Fischer, and Brox, 2015), image classification (Bertasius, Wang, and
Torresani, 2021; Krizhevsky, Sutskever, and Hinton, 2017), and material property
prediction (Chen et al., 2019; Xie and Grossman, 2018).
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The success of deep learning (DL) relies on several critical factors, with four pri-
mary components—inputs, architectures, outputs, and loss functions—playing es-
sential roles in maximizing the potential of DL models. Each component contributes
uniquely to the model’s ability to learn, generalize, and perform effectively across
various tasks. Understanding these fundamental components is vital for designing
and implementing successful deep learning models, especially in specialized fields
such as materials science informatics. The following sections will explore these com-
ponents, providing fundamental concepts and general applications.

2.1.1 Deep Learning models input

Deep learning models can process various types of data, each requiring a specific
format to be effectively utilized by the network. Common data formats include:

• Vectors (x ∈ Rn): Represented as one-dimensional arrays, vectors are typically
used for tabular data where each element corresponds to a distinct feature.

• Matrices (X ∈ Rm×n): Two-dimensional arrays used for image data, where m
and n correspond to the height and width of the image, respectively.

• Tensors (X ∈ Rd1×d2×···×dk ): Multi-dimensional arrays that extend beyond ma-
trices, suitable for volumetric data or sequences of images.

• Sequences (X ∈ RT×d): For time-series or sequence data, inputs are arranged
in temporal order to capture dependencies over time.

X = [x(1), x(2), . . . , x(T)] (2.1)

• Graphs (G = (V , E)): Consist of nodes (V) and edges (E ), ideal for representing
molecular structures or material lattices.

V = [x1, x2, . . . , xn] ∈ Rn (2.2)

E =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 ∈ Rm×n (2.3)

G = (V , E) (2.4)

Moreover, normalization is essential for ensuring that input features contribute
equally to the learning process, preventing biases due to differing scales. Common
normalization techniques include:

• Min-Max Scaling: Transforms features to a fixed range, typically [0, 1].

x′ =
x − xmin

xmax − xmin
(2.5)
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• Z-Score Normalization: Centers the data around zero with a standard devia-
tion of one.

x′ =
x − µ

σ
(2.6)

• Batch Normalization: Applied within neural network layers to stabilize and
accelerate training by normalizing the inputs of each mini-batch.

BN(x) = γ

 x − µbatch√
σ2

batch + ϵ

+ β (2.7)

where µbatch and σ2
batch are the mean and variance of the batch, and gamma and

β are learnable parameters.

2.1.2 Deep Learning network architectures

Deep learning architectures are fundamental to various applications, allowing mod-
els to learn intricate patterns and representations from data. Understanding these
foundational architectures is crucial for developing effective DL models tailored to
specific tasks in materials science informatics. This subsection will explore the ba-
sic architectures, including the perceptron, multilayer perceptron (MLP), fully con-
nected networks, and activation functions. We will highlight their structures, func-
tionalities, and roles in deep learning.

Core components of neural networks

Perceptron
The perceptron is the simplest neural network unit type and is the foundational

building block for more complex architectures. Introduced by Frank Rosenblatt,
1958, the perceptron represents a single neuron with a binary output.

ŷ =

{
1 if w · x + b > 0
0 otherwise

(2.8)

where x = [x1, x2, . . . , xn]T is the input feature vector and w = [w1, w2, . . . , wn]T

is the weight vector. b is the bias term and ŷ is the binary output.
The perceptron applies a linear combination of inputs and weights and a step

activation function to produce a binary classification.
Multilayer Perceptron (MLP)
The multilayer perceptron (MLP) is a type of feedforward artificial neural net-

work that consists of several layers of neurons. These layers include an input layer,
one or more hidden layers, and an output layer. Each layer is fully connected to
the next, and non-linear activation functions are applied to introduce complexity,
allowing the network to learn non-linear relationships.

z(l) = W(l)a(l−1) + b(l) (2.9)
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a(l) = σ(z(l)) (2.10)

Where l denotes the layer index, W(l) and b(l) are the weight matrix and bias
vector for layer l. a(l−1) is the activation from the previous layer and σ(·) is the
activation function.

An MLP typically consists of an input layer, one or more hidden layers, and
an output layer. The introduction of hidden layers allows the network to model
complex, non-linear relationships between inputs and outputs through hierarchical
feature extraction. While MLP are powerful, they can become computationally in-
tensive and prone to overfitting, especially with large input dimensions. Techniques
such as regularization and dropout are often employed to mitigate these challenges.

Activation functions
In addition to neural architecture, activation function play a vital role in incor-

porating non-linearity into neural networks, which allows them to learn complex
patterns and representations alongside the neural architecture. Various activation
functions are widely employed in deep learning architectures:

• Sigmoid Function The sigmoid function maps input values to a range be-
tween 0 and 1, making it suitable for binary classification tasks. σ(x) = 1

1+e−x

However, sigmoid functions can suffer from vanishing gradients, hindering
the training of deep networks.

• Hyperbolic Tangent (tanh) Function The tanh function maps inputs to a range
between -1 and 1, providing zero-centered outputs which can help in faster
convergence. tanh(x) = ex−e−x

ex+e−x Similar to the sigmoid function, tanh can also
experience vanishing gradient issues.

• Rectified Linear Unit (ReLU) ReLU is widely used due to its simplicity and
effectiveness in mitigating the vanishing gradient problem (Nair and Hinton,
2010). It outputs the input directly if it is positive; otherwise, it outputs zero.
ReLU(x) = max(0, x) ReLU accelerates convergence and allows for the train-
ing of deeper networks but can suffer from the "dying ReLU" problem where
neurons become inactive.

• Softmax Function Softmax is typically used in the output layer for multi-class
classification tasks (Bridle, 1990). It converts logits into probabilities that sum
to one. Softmax(zi) =

ezi

∑K
j=1 ezj where K is the number of classes.

Popular Architectures

The following contents builds upon foundational concepts above to explore more
advanced deep learning architectures, including Convolutional Neural Networks
(CNNs), Autoencoders, Attention Mechanisms, and Transformers. These architec-
tures have significantly enhanced the capabilities of deep learning models, allowing
them to manage complex data structures and achieve state-of-the-art performance
across various applications, including materials science informatics.

Convolutional Neural Networks (CNNs) architecture
Convolutional Neural Networks (CNNs) have transformed the field of deep learn-

ing by effectively capturing spatial hierarchies and patterns within data (Lecun et al.,
1998). Originally developed for image processing tasks, CNNs have been success-
fully adapted for various applications in other fields, including image/videos based
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FIGURE 2.1: Illustration of 2D and 3D convolution operations for im-
ages and videos.

characterization, text classification, and property prediction. Figure 2.2 demonstrates
the basic application of convolution operators on different kind of data. A typical
CNN architecture consists of a series of convolutional layers, activation functions,
pooling layers, and fully connected layers. Each component plays a specific role in
extracting and processing features from the input data:

Convolutional layers Convolutional layers are the core building blocks of CNNs.
They apply a set of learnable filters (kernels) to the input data to extract localized
features such as edges, textures, and patterns.

Y(k)
i,j =

M

∑
m=1

N

∑
n=1

Xi+m,j+n · K(k)
m,n + b(k) (2.11)

where X is the input feature map, K(k) is the k-th convolutional kernel of size
M × N, and Y(k) is the output feature map after applying the k-th kernel. b(k) is the
bias term for the k-th kernel and i, j denote the spatial position in the feature map.

The convolution operation enables the network to learn spatial hierarchies rep-
resentation of data by detecting increasingly complex features in deeper layers.

Activation functions introduce non-linearity into the network, allowing CNNs
to model complex relationships within the data. Common activation functions used
in CNNs include ReLU, Leaky ReLU, or Swish (Ramachandran, Zoph, and Le, 2017),
etc.

Pooling layers reduce the spatial dimensions of the feature maps, decreasing
computational complexity and controlling overfitting. Common pooling operations
include:

• Max Pooling:

Y(k)
i,j = max

{
X(k)

i,j , X(k)
i+1,j, . . . , Xi+m−1,j+n−1

}
(2.12)

Max pooling selects the maximum value within a defined window, preserving
the most prominent features.

• Average Pooling:

Y(k)
i,j =

1
m × n

m−1

∑
p=0

n−1

∑
q=0

X(k)
i+p,j+q (2.13)
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Luong Attention Self-Attention

FIGURE 2.2: Illustration of two primary types of attention mechanism
used in DL models.

Average pooling computes the average value within the window, providing a
more generalized feature representation.

Fully Connected Layers After several convolutional and pooling layers, the high-
level reasoning in the network is performed via fully connected layers. These layers
connect every neuron in one layer to every neuron in the next layer, enabling the
network to combine features and perform classification or regression.

y = σ(Wx + b) (2.14)
(2.15)

Attention Mechanisms and Transformers architecture
Attention mechanisms and Transformer architectures have significantly changed

the field of deep learning by allowing models to better capture complex dependen-
cies and contextual relationships within data. Originally developed to overcome
challenges in sequence modeling tasks, these innovations have since found applica-
tions in various domains, including natural language processing (NLP), computer
vision, and more. This subsection offers a thorough literature review of attention
mechanisms and Transformers, explaining their underlying mechanisms, architec-
tural components, and key applications.

The primary motivation behind attention mechanisms is to enable models to
weigh the importance of different input elements dynamically. This approach con-
trasts with traditional sequence models, such as Recurrent Neural Networks (RNNs)
and Long Short-Term Memory networks (LSTMs), which process input data sequen-
tially and often struggle with capturing long-term dependencies. There are three
primary types of attention mechanisms used in natural language processing and
machine learning: Bahdanau attention, Luong attention, and self-attention.

• Bahdanau Attention (Additive Attention):

Introduced by Bahdanau, Cho, and Bengio, 2014 for machine translation, addi-
tive attention computes attention scores using a feedforward neural network.

eij = score(hi, sj) = vT
a tanh(Wahi + Uasj) (2.16)
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where hi is the encoder hidden state, sj is the decoder hidden state, Wa and Ua
are weight matrices, and va is a weight vector.

• Luong Attention (Multiplicative Attention):

Proposed by Luong, Pham, and Manning, 2015, multiplicative attention com-
putes attention scores as the dot product between encoder and decoder hidden
states.

eij = hT
i Wasj (2.17)

This form is computationally efficient and forms the basis for later attention
mechanisms.

• Self-Attention:

Self-attention (Vaswani et al., 2017), or intra-attention, allows a sequence to
interact with itself to compute a representation of the sequence. It is a funda-
mental component of Transformer architectures.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (2.18)

where Q, K, and V are query, key, and value matrices, respectively, and dk is
the dimensionality of the keys.

Transformers, introduced by Vaswani et al., 2017 in the seminal paper "Attention
is All You Need," leverage self-attention mechanisms to model dependencies irre-
spective of their distance in the input sequence. This architecture has since become
the backbone of numerous state-of-the-art models in various domains. Models like
BERT (Bidirectional Encoder Representations from Transformers) and GPT (Gen-
erative Pre-trained Transformer) utilize Transformer architectures to achieve high
performance in tasks such as question answering, text generation, and sentiment
analysis. As research continues to tackle existing challenges and explore new appli-
cations, attention and Transformers are expected to remain at the forefront of deep
learning advancements.

Encoder-Decoder architectures
Encoder-Decoder architectures are essential neural network models that play

a crucial role in various deep learning applications, such as machine translation,
image segmentation, and generative modeling. In the field of materials informat-
ics, these models aid in tasks like predicting material properties, generating struc-
tures, and detecting anomalies by effectively capturing and reconstructing complex
data representations. This subsection will explore the core components of Encoder-
Decoder architectures, their operational mechanisms, and different variations and
concepts associated with them. The bidirectional flow enables the model to learn
meaningful representations that capture the essential features of the input data, fa-
cilitating accurate and interpretable predictions.

Input Encoder−−−−→ Latent z Decoder−−−−→ Output (2.19)
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The Encoder-Decoder framework consists of three primary components:
Encoder: Compresses the input data into a latent representation. It typically

consists of multiple layers that progressively extract higher-level features from the
raw input.

z = Encoder(x) = f (x; θenc) (2.20)

where x is the input data and f (·) represents the function learned by the encoder
with θenc are the parameters of the encoder.

Latent representation: Latent representation of input from encoder or sampling
distribution. In standard Encoder-Decoder models, the encoder produces a deter-
ministic latent vector z.

z = Encoder(x) = f (x; θenc) (2.21)

On the other hand, in Variational Autoencoders (VAEs), the encoder outputs pa-
rameters of a probability distribution, typically a Gaussian, from which the latent
vector z is sampled.

z ∼ N (µ,σ2I) (2.22)

where µ and σ2 are the mean and variance vectors output by the encoder. The
N (µ,σ2I) denotes a Gaussian distribution with mean µ and covariance σ2I.

The stochastic nature of z in VAEs allows for the generation of diverse outputs
and smooth interpolation in the latent space.

Decoder: Reconstructs the output data from the latent representation. It often
mirrors the encoder’s architecture but operates in reverse to generate the desired
output format.

ŷ = Decoder(z) = g(z; θdec) (2.23)

where ŷ is the reconstructed output and g(·) represents the function learned by
the decoder with parameters θdec of the decoder.

Encoder-decoder architectures include various neural network structures designed
for input and output data types. A notable example is U-Net (Ronneberger, Fischer,
and Brox, 2015), a convolutional neural network (CNN) created for biomedical im-
age segmentation. It features a symmetric design with a contracting path (encoder)
that captures context through convolutional and pooling layers and an expansive
path (decoder) for precise localization using upsampling and skip connections. This
enables U-Net to effectively utilize high-level and low-level features, making it ideal
for tasks requiring detailed spatial information.

Beyond U-Net, convolutional encoder-decoder models are widely used for image-
to-image translation tasks like denoising, super-resolution, and style transfer, lever-
aging the powerful feature extraction of CNNs. Models like Long Short-Term Mem-
ory (LSTM) networks and Transformers are crucial in sequential data. LSTM-based
models capture temporal dependencies and are suitable for machine translation and
speech recognition applications. In contrast, transformer-based models enhance nat-
ural language processing through self-attention mechanisms, allowing for efficient
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parallel processing and greater scalability. Their versatility extends to various tasks,
including image captioning and multimodal data processing.

2.1.3 Deep learning loss functions and learning strategies

Loss functions and learning strategies are fundamental components of DL frame-
works, playing pivotal roles in guiding the training process and optimizing model
performance. This subsection provides a comprehensive literature review of vari-
ous DL loss functions and learning strategies, elucidating their mechanisms, appli-
cations, and significance in developing effective neural network models.

Loss functions Loss functions also known as cost functions or objective func-
tions, quantify the discrepancy between the predicted outputs of a neural network
and the true target values. They serve as the foundation for the optimization pro-
cess, guiding the adjustment of model parameters to minimize prediction errors.
Some common loss functions used in various application of DL models are

• Mean Squared Error (MSE) Loss

MSE loss is widely used for regression tasks, measuring the average squared
difference between predicted and actual values.

LMSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.24)

where N is the number of samples, yiis the true value, and ŷi is the predicted
value.

• Cross-Entropy Loss

Cross-entropy loss is commonly employed for classification tasks, particularly
binary and multi-class classifications. It measures the dissimilarity between
the true label distribution and the predicted probability distribution.

– Binary Cross-Entropy Loss:

LBCE = − 1
N

N

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (2.25)

– Categorical Cross-Entropy Loss:

LCCE = − 1
N

N

∑
i=1

C

∑
c=1

yi,c log(ŷi,c) (2.26)

where C is the number of classes, yi,c is the binary indicator (0 or 1) if
class label c is the correct classification for observation i, and ŷi,c is the
predicted probability for class c.

• Dice Loss: Commonly used in image segmentation tasks to maximize the over-
lap between predicted and ground truth masks.
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LDice = 1 − 2 ∑N
i=1 yiŷi + ϵ

∑N
i=1 yi + ∑N

i=1 ŷi + ϵ
(2.27)

where ϵ is a small constant to prevent division by zero.

• Perceptual Loss: measures the difference between high-level feature repre-
sentations of the predicted and ground truth images, rather than raw pixel
values. This loss is particularly effective in tasks like style transfer and super-
resolution, where maintaining perceptual similarity is more important than
pixel-wise accuracy.

LPerceptual =
M

∑
j=1

∥ϕj(y)− ϕj(ŷ)∥2 (2.28)

where ϕj represents the activation of the j-th layer in a pre-trained network
(e.g., VGG), and M is the number of selected layers.

• Adversarial Loss: Adversarial loss is employed in Generative Adversarial
Networks (GANs) to train the generator to produce realistic images that can
fool the discriminator (Goodfellow et al., 2014). It encourages the generator to
create images indistinguishable from real ones.

LAdv = Ey∼pdata [log D(y)] + Eŷ∼pgen [log(1 − D(ŷ))]

where D is the discriminator network, pdata is the distribution of real images,
and pgen is the distribution of generated images. In generative modeling,
Ey∼pdata denotes taking the average (expected value) over real data samples,
while Eŷ∼pgen refers to the average over samples drawn from the model’s gen-
erated distribution, thereby enabling comparisons between real and generated
data.

Learning strategies encompass the methodologies and approaches employed
during the training of deep learning models. These strategies significantly influ-
ence the model’s ability to learn effectively, generalize to unseen data, and achieve
optimal performance. The primary learning strategies include supervised learning,
unsupervised learning, and transfer learning.

• Supervised learning involves training models on labeled datasets, where each
input image is paired with a corresponding target label. This strategy is widely
used in tasks such as image classification, object detection, and segmentation.

• Unsupervised learning involves training models on unlabeled data, allowing
the model to discover inherent structures and patterns within the data. This
strategy is beneficial for tasks where labeled data is scarce or expensive to ob-
tain.

• Transfer learning leverages pre-trained models on large-scale datasets and adapts
them to specific target tasks. This strategy is particularly effective when the
target dataset is limited in size.
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The learning process of deep learning (DL) models depends on optimization al-
gorithms that minimize the chosen loss function by iteratively adjusting the model
parameters. Common optimization algorithms, such as Stochastic Gradient Descent
(Ruder, 2016), and Adam (Kingma and Ba, 2017), are crucial for ensuring conver-
gence while balancing speed and stability, and for avoiding local minima. Learning
strategies often include techniques like regularization, dropout, and data augmen-
tation to improve model generalization and prevent overfitting. Understanding and
selecting the right learning strategies and optimization algorithms is essential for
designing robust and high-performing deep learning models.

By carefully selecting suitable loss functions tailored to specific tasks and uti-
lizing effective learning strategies such as supervised, unsupervised, and transfer
learning, researchers can improve model performance, ensure effective convergence,
and enhance generalization to unseen data. Understanding the relationship between
these components is crucial for designing robust and efficient neural network archi-
tectures that can tackle complex challenges.

This section explored the foundational architectures and components of deep
learning, including perceptrons, multilayer perceptrons, CNNs, and Transformer
models. We discussed the importance of activation functions in introducing non-
linearity and the role of attention mechanisms in capturing complex data dependen-
cies. Additionally, we examined loss functions for image tasks and various learn-
ing strategies such as supervised, unsupervised, and transfer learning that optimize
model performance. With this foundation, the next section will focus on incorpo-
rating domain knowledge into deep learning inputs to enhance model accuracy and
interpretability.

Figure 2.3 summarizes visually how material domain knowledge can be inte-
grated into every stage of the deep learning framework to highlight interactions
among scientific hypotheses with model components. By developing the DL models
with incorporations from domain-specific knowledge, researchers can produce pre-
dictive and interpretable representations reflecting the underlying scientific princi-
ples. This enables deeper insights into material behaviors while supporting iterative
refinement in the models and underlying scientific theories.

2.2 Designing Deep learning inputs and outputs with do-
main knowledge

Designing inputs and outputs is particularly important in domain-enriched repre-
sentation learning to enable deep learning models to utilize scientific data effec-
tively. Unlike generic applications, scientific data often involve complex relations
controlled by fundamental physics, chemistry, and biology principles. Therefore,
the design of inputs and outputs that encapsulate this domain-specific knowledge
will be essential to obtain models that are more accurate, interpretable, and com-
patible with scientific hypotheses. In Figure 2.4, we summarize the commonly seen
material input and output data formats could be used in DL models for materials
science. This subsection reviews the methodologies used to design inputs and out-
puts to be compatible with scientific data, emphasizing the incorporation of domain
knowledge to enhance model performance and relevance.
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FIGURE 2.3: Schematic of Deep learning framework designing strat-
egy for domain-enriched representation learning in material science.

2.2.1 Designing Deep learning outputs aligned with scientific objectives

The process starts with clearly identifying the targets and outputs that one wants
to achieve through the DL framework, which is intrinsically linked to the scientific
questions or hypotheses at hand. Some standard outputs in the materials informatics
area are material property prediction, material type classification, material synthe-
sis process suggestion, and segment/reconstructing material images. These outputs
need to be designed based on a clear understanding of the scientific questions being
addressed and the specific requirements for targets of downstream applications. In
the case of regression tasks, this may involve continuous variables related to prop-
erties like band gap energy, thermal conductivity, or tensile strength. In the case of
classification tasks, it could relate to material classification on structural phase, sta-
bility, or suitability for application in specific uses. This can be further extended to
design the generative models to propose new material compositions or structures,
thus aligning the output with the objective of discovering new materials with spe-
cific properties.

Besides, in scientific applications, it is useful to predict results and quantify the
uncertainty associated with these results. It is thus vital to design outputs for models
that can include estimates of uncertainty so that the scientists can have an informed
idea about the reliability of the model’s prediction (Jha et al., 2018). Bayesian neu-
ral networks or ensembling methods can be used to produce probabilistic outcomes
and measure the confidence level of each prediction. Additionally, improvement in
the interpretability of the results is necessary to extract scientific insights, which are
the ultimate target in material science. Techniques such as feature importance anal-
ysis, attention mapping, and layer-wise relevance propagation may be incorporated
into model design output to provide an understanding of which input features most
greatly drive the predictions. This itergration, in turn, allows a more fundamen-
tal understanding of the underlying materials’ behavior and further helps validate
scientific hypotheses and insights from data.
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FIGURE 2.4: Illustration of material data formats and target data for-
mats utilized in data-driven models for materials science. The in-
sights regarding physicochemical behavior in materials are the pri-

mary target of application-driven models.

2.2.2 Designing Deep learning inputs with domain knowledge embed-
ding

After defining the outputs, the next step is to design inputs that would carry the nec-
essary information to produce those outputs. In scientific applications, inputs must
codify the relevant features of an application influencing the desired outcome. This
often involves incorporating domain knowledge into the input representations to
capture the underlying physical and chemical interactions. Traditional methods are
based on hand-designed features, typically from domain knowledge, such as atomic
coordinates or bond lengths, electronic configuration, or optical systems. However,
there could be potential limitations within these features to precisely represent the
complexity of material behaviors; therefore, more intelligent methods must be de-
signed to prepare inputs.

In many cases, this input transformation depends on certain scientific hypothe-
ses that pre-determine the most relevant features to predict the desired output. This
hypothesis-driven approach reinforces the input representations as data-driven and
informed about appropriate scientific principles. For instance, one might hypothe-
size that the arrangement of atoms and the presence of defects in a material play a
critical role in determining its mechanical properties; hence, input features can be
transformed to highlight structural motifs, defect densities, and stress distributions
(Chen et al., 2019). Examples of such transformations include applying dimension-
ality reduction, feature scaling, or domain-specific transformations that emphasize
exciting aspects of the data.

The interplay between the input design and output requirements is a feedback
loop that continuously refines both aspects to capture scientific data’s complexities
better. Models are trained and evaluated, and their outputs provide insights that
might inform adjustments of the input representations to improve the performance
iteratively. For instance, some input features may prove to be highly predictive of
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the output variation; emphasis or expansion of these features could be made in sub-
sequent input designs. On the other hand, if the model shows poor predictive per-
formance for specific outputs, this may imply the inclusion of additional or alterna-
tive input features that capture the phenomena more precisely. This thus initiates
a dynamic process of co-evolution between inputs and outputs that ensures deep
learning models are informed by the scientific objectives at hand and adjusted to
new insights emerging. By integrating feedback from model performance into their
design of inputs, researchers can develop more robust and interpretable models that
advance the understanding and discovery of materials.

Well-designed inputs and outputs extend far beyond predictive modeling and fa-
cilitate data mining tasks crucial to scientific exploration. Some common tasks that
can take advantage of domain-enriched representations include clustering, classifi-
cation, anomaly detection, and dimensionality reduction. In many cases, clustering
algorithms might group materials that share similar properties, thus enabling the
identification of novel material families or the discovery of trends that would have
gone unnoticed. Similarly, anomaly detection can underline those materials that
show unusual behaviors, triggering further investigations on their specific proper-
ties or synthesis conditions. Practical input and output design also enhances the
interpretability of these data mining tasks, enabling the scientists to drive actionable
insights from the model’s predictions. By coupling the representations with domain
knowledge, researchers can more readily correlate the model findings with existing
scientific theories and hypotheses about the material systems under study.

2.3 Designing Deep learning architectures with domain knowl-
edge

The architecture of deep learning models is critical in defining their performance
in terms of meaningful representation learning from complex data. Integrating do-
main knowledge into model architectures becomes crucial for raising performance,
interpretability, and generalization within scientific domains like materials science.
By designing architectures that integrate domain-specific insights, models would be
better positioned to capture the underlying physical, chemical, and structural princi-
ples governing material behaviors. This section will revisit some methodologies and
techniques to inject domain knowledge into deep learning architecture to enhance
representation learning and facilitate scientific discovery.

2.3.1 Incorporating Physical and Chemical Constraints

One of the fundamental ways to integrate domain knowledge into deep learning
architectures is by embedding physical and chemical constraints directly into the
model. This approach ensures that the learned representations adhere to known
scientific laws and principles, enhancing the model’s reliability and interpretability.
For example, Physics-Informed Neural Networks incorporate into the loss function
differential equations describing physical laws that guide the network to output so-
lutions satisfying these equations (Raissi, Perdikaris, and Karniadakis, 2019). Such
embedded constraints enable PINNs to model complex phenomena such as fluid
dynamics or material deformation where conventional neural networks may lose
physical plausibility.
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Most importantly, geometrical constraints play a crucial role in materials science,
wherein the spatial arrangement of atoms and molecules significantly affects mate-
rial properties. By incorporating geometrical constraints into deep learning models,
one can ensure that the learned representations respect the materials’ inherent sym-
metries and structural invariances. For instance, rotational and translational symme-
tries are fundamental in crystal structures. By constructing convolutional layers that
are equivariant to these transformations, models can ensure predictable consistency
independent of the orientations or positions of the input data, as stated by Fuchs et
al., 2020. This process not only generalizes a model across different configurations
of materials but also simplifies the learning task by infusing prior knowledge about
the geometry of materials.

Activation functions play a critical role in determining the behavior and stabil-
ity of deep learning models. In materials informatics, activation constraints can be
used to enforce physical limits and ensure that the model outputs remain within
scientifically plausible ranges. For instance, certain material properties, such as den-
sity or thermal conductivity, cannot exceed specific physical bounds. By designing
activation functions that inherently respect these limits—such as using bounded ac-
tivation functions like sigmoid or tanh for properties with known upper and lower
bounds—models can avoid unphysical predictions (Yao et al., 2022a). Additionally,
enforcing non-negativity constraints on outputs where applicable (e.g., energy den-
sities) can be achieved by employing activation functions like ReLU or its variants,
which naturally restrict outputs to non-negative values.

Embedding scientific equations directly into neural network layers is another ef-
fective strategy for incorporating domain knowledge. This method involves design-
ing custom layers that perform specific calculations based on physical or chemical
laws. For example, in modeling material deformation, a layer can be designed to
compute stress-strain relationships based on Hooke’s Law or more complex con-
stitutive models. By integrating these equations into the network architecture, the
model is guided to produce outputs that are consistent with established physical the-
ories (Fuchs et al., 2020; Anderson, Hy, and Kondor, 2019). This approach not only
enhances the interpretability of the model by making its internal computations align
with known scientific principles but also improves predictive accuracy by leverag-
ing domain-specific relationships.

In some materials science applications, analyzing data in the frequency domain
can reveal patterns and relationships that are not easily discernible in the spatial or
time domains. Incorporating Fourier transformations into deep learning models al-
lows the network to learn representations that capture frequency-based features. For
example, in studying vibrational properties of materials, Fourier transforms can con-
vert time-series data of atomic vibrations into frequency spectra, which can then be
used as inputs for convolutional or recurrent neural networks (Metzler et al., 2018;
Shamshad, Abbas, and Ahmed, 2019). By leveraging frequency domain represen-
tations, models can more effectively capture periodicities and oscillatory behaviors
inherent in material properties, enhancing their ability to predict dynamic phenom-
ena accurately.

Materials show behavior from atomic level interactions to properties at the macro
scale. Integrating multiscale constraints within deep learning architecture allows
models to reveal the hierarchical nature of material properties (Rupp et al., 2012).
This can be enabled by utilizing multiscale neural networks comprising intercon-
nected modules to process information on various scales. For example, a multi-
scale network could have separate branches for atomic configurations and struc-
tures at the mesoscale; each branch would learn scale-specific representations that
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later merge to predict properties at the macroscopic scale. This hierarchical approach
enables models to incorporate constraints and interactions at each relevant scale, af-
fording a holistic understanding of material behavior.

Incorporating physical and chemical constraints into deep learning architectures
allows for constructing accurate but scientifically meaningful models in materials
science. This embedding can be done through geometrical constraints, activation
constraints, incorporation of domain-specific equations, derivative constraints, mod-
eling noisy data, Fourier transformations, and multiscale constraints; thus, deep
learning models will make sure to respect fundamental scientific principles and cap-
ture complicated and multifaceted natures of material behaviors. This will enhance
the reliability and interpretability of model predictions and facilitate the discovery
of new materials by unmasking patterns and relationships that are somewhat com-
plicated yet consistent with established scientific knowledge. As deep learning con-
tinues to evolve, integrating domain knowledge and such constraints will remain a
cornerstone for advancing materials informatics and driving scientific innovation.

2.3.2 Utilizing specialized layers

Another strategy for embedding domain knowledge involves using specialized lay-
ers and modules within deep learning architectures. These components are designed
to capture specific aspects of the data pertinent to the domain. For instance, Convo-
lutional Neural Networks (CNNs) incorporate convolutional layers that exploit spa-
tial hierarchies in data, making them well-suited for image-based tasks. In materials
science, similar principles can be applied by designing layers that capture spatial
relationships between atoms or molecules.

Graph Neural Networks (GNNs) exemplify this approach by using graph-based
layers to model the interactions between atoms in a material. GNNs represent atoms
as nodes and bonds as edges, allowing the network to naturally encode the struc-
tural information inherent in molecular and crystalline systems (Karamad et al.,
2020; Rahaman and Gagliardi, 2020). This architectural choice leverages the rela-
tional nature of material data, enabling the model to learn representations that reflect
the underlying atomic interactions and spatial configurations critical for predicting
material properties.

Attention mechanisms represent another advanced module that significantly en-
hances the capability of deep learning models to handle complex correlations within
data (Fuchs et al., 2020; Vaswani et al., 2017). Attention models allow the network
to dynamically focus on different parts of the input data when making predictions,
effectively modeling intricate dependencies and interactions. In materials science,
attention mechanisms can be utilized to emphasize critical atomic or molecular in-
teractions that substantially impact material properties. For example, in predicting
the thermal conductivity of a material, an attention layer can prioritize interactions
between specific atom pairs that contribute most to heat transfer.

Furthermore, incorporating autoencoder architectures facilitates unsupervised
representation learning by compressing input data into lower-dimensional latent
spaces and then reconstructing the original data from these representations (Cherukara
et al., 2020; Wengrowicz et al., 2020). In materials science, autoencoders can be em-
ployed to learn compact and meaningful representations of complex material struc-
tures, enabling tasks such as anomaly detection, clustering, and dimensionality re-
duction. These learned representations can reveal hidden patterns and relationships
within the data, providing valuable insights for material discovery and characteri-
zation.
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2.3.3 Feedback mechanisms and iterative refinement

The integration of domain knowledge into deep learning architectures is often an
iterative process, where feedback from model performance informs subsequent ar-
chitectural adjustments. Feedback mechanisms, such as attention layers or iterative
refinement modules, allow models to dynamically adjust their focus based on the
relevance of different features or interactions. In materials science, attention mech-
anisms can help models prioritize atomic interactions that are most influential in
determining material properties, thereby enhancing the efficiency and accuracy of
representation learning (Vaswani et al., 2017).

Additionally, iterative refinement processes enable models to progressively en-
hance their representations by revisiting and refining previously learned features.
This approach aligns with the scientific method, where hypotheses and models are
continuously tested and improved based on new data and insights. By incorporat-
ing such feedback loops, deep learning architectures can evolve to better capture the
complexities of material systems, leading to more accurate and insightful represen-
tations.

Active learning is another crucial component of the feedback loop in represen-
tation learning. By actively selecting the most informative data points for train-
ing, models can focus their learning efforts on areas where they are most uncer-
tain or where additional data would yield the greatest improvement in performance
(Nguyen et al., 2023). In materials science, this might involve identifying and syn-
thesizing new material samples that exhibit unique or extreme properties, thereby
expanding the model’s understanding of the material space. Active learning not
only optimizes the use of limited experimental resources but also ensures that the
model continuously evolves to incorporate new and diverse data, enhancing its gen-
eralizability and robustness

Designing deep learning architectures with embedded domain knowledge is a
pivotal strategy for advancing representation learning in materials science. By in-
tegrating physical and chemical constraints, utilizing specialized layers, embedding
symmetries, capturing hierarchical structures, leveraging transfer learning, and in-
corporating feedback mechanisms, researchers can develop models that are both
powerful and scientifically meaningful. These domain-enriched architectures not
only enhance the accuracy and interpretability of predictions but also facilitate the
discovery of new materials by uncovering intricate patterns and relationships inher-
ent in complex material data. As deep learning continues to evolve, the synergistic
integration of domain knowledge will remain a cornerstone for unlocking the full
potential of data-driven approaches in materials science.

2.4 Designing Deep learning loss functions and evaluation
metrics with domain knowledge

In deep learning, the selection of appropriate loss functions and evaluation met-
rics is paramount to the successful training and assessment of models. Loss func-
tions guide the optimization process by quantifying the discrepancy between the
predicted outputs and the true values, thereby enabling the model to learn from
data effectively. Evaluation metrics, on the other hand, provide a means to assess
the performance and generalizability of the trained models. In the context of ma-
terials science, where the objectives often extend beyond mere prediction accuracy
to include adherence to physical laws and scientific interpretability, the design of
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custom loss functions and the selection of domain-relevant metrics become crucial
components of representation learning

2.4.1 Custom loss functions for incorporating domain knowledge

Traditional loss functions, such as mean squared error (MSE) or cross-entropy loss,
are widely used in various deep learning applications due to their simplicity and
effectiveness. However, in materials science, these standard loss functions may not
sufficiently capture the intricate relationships and physical constraints inherent to
material properties. To address this limitation, custom loss functions are devel-
oped to embed domain-specific knowledge directly into the learning process. For
instance, Physics-Informed Neural Networks (PINNs) incorporate differential equa-
tions that represent physical laws into the loss function, ensuring that the model’s
predictions adhere to these fundamental principles (Raissi, Perdikaris, and Karni-
adakis, 2019). By penalizing deviations from known physical behaviors, such cus-
tom loss functions enhance the model’s ability to produce physically plausible and
scientifically meaningful representations.

Another approach involves the use of regularization terms that enforce specific
constraints related to material properties. For example, in predicting mechanical
properties, constraints can be added to ensure that the predicted values respect con-
servation laws or symmetry properties observed in real materials. These domain-
informed regularizations not only improve the model’s predictive accuracy but also
enhance its interpretability by aligning the learned representations with established
scientific theories

In materials science, image reconstruction tasks, such as scanning electron mi-
croscopy (SEM) image enhancement or tomography, benefit significantly from cus-
tom loss functions that incorporate physical constraints. For example, in SEM image
reconstruction, loss functions can be designed to enforce spatial consistency and fi-
delity to the underlying material structure. By integrating constraints that preserve
edge sharpness or specific texture patterns characteristic of certain materials, mod-
els can achieve higher-quality reconstructions that are both visually accurate and
scientifically relevant (Haan et al., 2019).

Furthermore, in tomography, custom loss functions can incorporate geometric
constraints derived from the physics of imaging systems. These constraints ensure
that reconstructed images adhere to the principles of projection geometry and ma-
terial density distributions. By embedding such domain-specific knowledge, deep
learning models can produce more accurate and reliable reconstructions, facilitat-
ing better analysis and interpretation of material structures (Wang, Ye, and De Man,
2020).

Generative models, such as Generative Adversarial Networks (GANs) and Vari-
ational Autoencoders (VAEs), are powerful tools for creating novel material struc-
tures or simulating material behavior under various conditions. In materials sci-
ence, ensuring the chemical validity of generated structures is paramount. Custom
loss functions can be designed to enforce chemical rules, such as valency constraints
or stoichiometric balances, during the generation process. For instance, in the gen-
eration of new alloy compositions, loss functions can penalize configurations that
violate known chemical bonding rules, ensuring that the synthesized materials are
chemically feasible (Dan et al., 2020).

Additionally, for applications like molecular generation, loss functions can incor-
porate constraints that maintain molecular stability and functional group integrity.
By embedding these chemical principles into the loss function, generative models
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can produce realistic and functional molecular structures that are more likely to ex-
hibit desired properties, thereby accelerating the discovery of new materials with
targeted functionalities.

Accurate similarity measurements between materials are crucial for tasks such as
clustering, classification, and recommendation in materials informatics. Custom loss
functions can be designed to incorporate structural invariants and domain-specific
similarity metrics that reflect the true relational nature of materials. For example, in
graph-based representations of materials, loss functions can be tailored to preserve
topological features and connectivity patterns that are indicative of similar material
properties (Wang et al., 2024).

By embedding structural invariants into the loss function, models can learn rep-
resentations that maintain meaningful similarities between materials, even when
traditional numerical descriptors fail to capture these relationships. This leads to
more effective clustering of materials based on their intrinsic properties and facili-
tates the discovery of new materials by identifying those that are structurally similar
to known high-performance materials.

Regularization techniques are integral to preventing overfitting and enhancing
the generalization capabilities of deep learning models. In materials informatics,
custom regularization terms can be crafted to enforce smoothness, sparsity, or other
domain-specific properties within the learned representations. For example, in pre-
dicting material properties, a smoothness regularization term can be introduced to
ensure that small changes in input features lead to gradual and consistent changes
in the output predictions, reflecting the continuous nature of material behaviors (Ki-
manius et al., 2024).

Custom loss functions play a vital role in embedding domain knowledge into
deep learning models, ensuring that the learned representations are both accurate
and scientifically meaningful in materials science. This integration not only im-
proves predictive performance but also enhances interpretability and trustworthi-
ness, paving the way for more effective and insightful applications of deep learning
in materials informatics. As the field continues to evolve, the development of in-
creasingly sophisticated custom loss functions will remain essential for advancing
the synergy between deep learning and materials science, driving forward innova-
tion and discovery.

2.4.2 Evaluation metrics from Deep learning and Materials science per-
spectives

Evaluation metrics in materials informatics must bridge the gap between traditional
deep learning performance indicators and domain-specific requirements. While met-
rics such as accuracy, precision, recall, and F1-score are essential for classification
tasks, materials science often demands additional metrics that evaluate the physi-
cal relevance and scientific validity of the predictions. For regression tasks, metrics
like root mean squared error (RMSE) and mean absolute error (MAE) are commonly
used; however, in materials science, it is also important to consider metrics that as-
sess the adherence to physical laws and the consistency of predicted properties with
known material behaviors.

Moreover, materials-specific metrics may include the deviation of predicted prop-
erties from experimentally measured values, the ability to generalize across differ-
ent material classes, and the robustness of predictions under varying environmental
conditions. Incorporating these specialized metrics ensures that the deep learning
models not only perform well statistically but also provide valuable insights that are
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actionable within the scientific domain. Materials often exhibit different behaviors
under varying environmental conditions such as temperature, pressure, or chemical
environments. Metrics that assess the robustness of model predictions under such
variations are crucial. Sensitivity analysis metrics, which measure how changes in
input conditions affect the outputs, can be employed to evaluate model stability and
reliability (Peng et al., 2022). A model that maintains consistent performance across
a range of conditions is more valuable for practical applications.

2.4.3 Learning strategies: Supervised, Unsupervised, and Hybrid approaches

The choice of learning strategy significantly influences the design of loss functions
and evaluation metrics in materials informatics. Supervised learning, where models
are trained on labeled data, is prevalent in tasks such as property prediction and
classification of material types. In this paradigm, the loss function is directly tied to
the accuracy of the predictions against known labels, making it straightforward to
apply traditional and custom loss functions (Butler et al., 2018).

Unsupervised learning, on the other hand, focuses on uncovering hidden pat-
terns and representations within unlabeled data. Techniques such as clustering,
dimensionality reduction, and autoencoders are employed to explore the intrinsic
structure of material data. In this context, loss functions may emphasize reconstruc-
tion accuracy or the preservation of data manifold structures, while evaluation met-
rics might include measures of cluster cohesion and separation or the quality of the
learned embeddings (Himanen et al., 2019).

Hybrid approaches that combine supervised and unsupervised learning paradigms
are increasingly being adopted to leverage the strengths of both strategies. For exam-
ple, semi-supervised learning can utilize a small amount of labeled data alongside
a large volume of unlabeled data, enhancing the model’s ability to generalize and
reducing the dependency on extensive labeled datasets. Such strategies necessitate
the design of composite loss functions that balance supervised objectives with un-
supervised regularizations, as well as the development of multifaceted evaluation
metrics that capture performance across different learning dimensions.

2.4.4 Balancing predictive accuracy and scientific interpretability

A critical challenge in designing loss functions and evaluation metrics for materials
informatics is achieving a balance between predictive accuracy and scientific inter-
pretability. Highly accurate models that lack interpretability may offer limited utility
in scientific discovery, as they do not provide insights into the underlying material
mechanisms. Conversely, models that prioritize interpretability may sacrifice some
degree of accuracy, potentially limiting their predictive power.

To address this challenge, researchers employ multi-objective optimization tech-
niques that simultaneously optimize for both accuracy and interpretability. For ex-
ample, regularization terms can be introduced to encourage sparsity or simplicity
in the learned representations, making them easier to interpret without significantly
compromising predictive performance. Additionally, visualization techniques and
feature importance analyses are integrated into the evaluation process to provide in-
tuitive explanations of the model’s predictions, thereby enhancing the interpretabil-
ity of complex deep learning models (Butler et al., 2018).

One effective strategy for balancing accuracy and interpretability is the gradual
addition of features to the model. Starting with a minimal set of well-understood,
domain-relevant features allows researchers to build a foundation of interpretable
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models. As the model’s performance on these core features is established, additional
features can be incrementally introduced to capture more complex interactions and
nuances within the data. This staged approach helps prevent the model from be-
coming overly complex too quickly, which can obscure the underlying mechanisms
and reduce interpretability.

By carefully selecting and adding features, researchers can maintain control over
the model’s complexity, ensuring that each new feature contributes meaningfully
to the predictive performance without overwhelming the model with unnecessary
information. Techniques such as feature selection algorithms, which identify the
most impactful features based on statistical criteria or domain knowledge, can aid
in this process. Furthermore, dimensionality reduction methods like Principal Com-
ponent Analysis (PCA) or t-Distributed Stochastic Neighbor Embedding (t-SNE) can
be employed to distill high-dimensional data into more manageable representations,
preserving essential information while enhancing interpretability

Another crucial aspect of balancing accuracy and interpretability involves the
careful design of model parameters, progressing from simple to more complex con-
figurations. Initially, models can be trained with a smaller number of parameters
and simpler architectures, ensuring that the fundamental relationships within the
data are captured without introducing excessive complexity. As understanding of
the data deepens and initial models demonstrate reliable performance, additional
parameters and more intricate architectural elements can be incorporated to refine
the model’s capabilities.

This incremental approach not only facilitates a clearer interpretation of how
each parameter and architectural choice influences the model’s predictions but also
mitigates the risk of overfitting. By progressively expanding the model’s capacity, re-
searchers can monitor performance improvements and maintain a balance between
model sophistication and interpretability. Techniques such as cross-validation and
regularization can further support this strategy by ensuring that the model general-
izes well to unseen data while avoiding unnecessary complexity (Bishop, 2006).

Another approach to maintaining interpretability is model simplification, which
involves reducing the complexity of deep learning models without significantly sac-
rificing their performance. Techniques such as pruning, where less important weights
or neurons are systematically removed from the network, can streamline the model
while preserving its core predictive capabilities. Pruned models are generally easier
to interpret, as they contain fewer parameters and simpler structures, making it eas-
ier to identify and understand the key factors driving the model’s predictions (Han,
Mao, and Dally, 2016).

In the context of materials informatics, simplified models can facilitate the identi-
fication of critical material features and their interactions, providing clearer insights
into the mechanisms governing material properties. Additionally, simpler models
often require less computational resources, enabling faster training and evaluation,
which is beneficial for iterative scientific research processes

Figure 2.5 presents a schematic overview of the comprehensive model design
strategy for material representation and analysis, which seamlessly integrates raw
material data, scientific insights, and domain knowledge to inform and optimize
the design of model inputs, architectures, outputs, and loss functions. The frame-
work emphasizes enriched feature selection, the incorporation of physical and chem-
ical constraints, geometric representation learning, and the utilization of physics-
informed operators to create robust, scientifically grounded representations. Out-
puts are guided by custom loss functions and domain-specific evaluation metrics,
while transfer learning techniques enable adaptability across diverse material classes.
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An iterative feedback and refinement process ensures that the model design remains
aligned with material hypotheses and experimental validations, thereby balancing
predictive accuracy with scientific interpretability and fostering a synergistic ad-
vancement in materials informatics.

Building upon this comprehensive design strategy, the subsequent sections delve
into the practical applications of deep learning in materials science. By adhering to
the outlined framework and effectively embedding domain knowledge, these appli-
cations demonstrate how deep learning can address specific challenges in materials
discovery, property prediction, and structural analysis. Through detailed case stud-
ies and examples, we illustrate the integration of enriched feature selection, domain-
informed architectures, and custom loss functions to solve complex materials science
problems, thereby showcasing the transformative potential of deep learning in ad-
vancing the field.
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FIGURE 2.5: Schematic overview of the model design strategy for ma-
terial representation and analysis. The framework integrates material
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Chapter 3

Deep Learning Framework Design
for Unsupervised Representation
Learning in Image Reconstruction
from Diffraction Data

3.1 Introduction

X-ray imaging offers unparalleled insights into the internal structures of materials
without causing damage, making it indispensable in materials science and engi-
neering (Wang et al., 2008; Withers et al., 2021; Johnson et al., 2023). X-ray diffrac-
tion, which is central to techniques such as X-ray crystallography, facilitates detailed
studies of crystalline materials at the atomic or molecular levels. Coherent X-ray
diffraction imaging (CXDI) advances these capabilities, enabling the visualization of
materials (without the requirement of the crystallinity) with high spatial resolution,
surpassing traditional lens-based approaches (Chapman and Nugent, 2010; Keller,
1957) and the capabilities of conventional methods such as electron and probe mi-
croscopy, which usually require extensive sample preparation and operate in special
environments, offering only excellent surface resolution without providing internal
structural information. Thus, CXDI enables non-destructive imaging of both the
surface and internal structures of materials in their natural state, with exceptional
spatial resolution (Miao et al., 2015a).

In CXDI, a well-defined coherent X-ray beam is directed onto an sample, produc-
ing a diffraction image that includes intensity information but lacks phase details
(Chapman et al., 2006; Robinson and Harder, 2009; Sun et al., 2012; Abbey, 2013;
Ulvestad et al., 2015; Yau et al., 2017; Pedersen et al., 2020; Takazawa et al., 2021).
Reconstruction of the sample image necessitates sophisticated phase retrieval analy-
sis, which recovers the phase information from the measured diffraction image. The
inverse problem typically uses iterative computational methodologies that employ
forward diffraction simulation and image-reconstructing algorithms based on error
reduction, hybrid input–output (HIO) (Marchesini et al., 2003), or difference map
(Latychevskaia, 2018; Fienup, 1982; Kliuiev et al., 2016; Marchesini, 2004). How-
ever, the inherent ambiguity in phase retrieval analysis, in which a single diffraction
image with only intensity information may correspond to multiple potential sam-
ple images, complicates image reconstruction and evaluation of the reliability of the
constructed images. Moreover, it limits real-time applications crucial for in-situ and
operando experiments (Kourousias et al., 2018; Datta et al., 2019).

Scanning CXDI, commonly known as X-ray ptychography (Pfeiffer, 2018), effec-
tively images extensive samples by systematically scanning a coherent beam across
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FIGURE 3.1: Schematic illustration of ptychographic setup for the
overlapping raster scan.

them, necessitating overlapping spatial sequences to ensure each section contributes
multiple diffraction images (Fig 3.1). This redundancy is vital as it provides addi-
tional spatial constraints to verify the accuracy of the phase retrieval analysis, en-
hancing the convergence of the analysis. Despite their advantages, phase retrieval
methods using iterative algorithms such as the extended ptychographical iterative
engine (ePIE) (Maiden and Rodenburg, 2009), which is widely recognized for its
high convergence rate and noise robustness, often struggle without static overlap-
ping illumination areas and are highly sensitive to parameter selections (Cherukara
et al., 2020). These challenges significantly compromise accuracy and limit capabil-
ities in imaging dynamic phenomena (Miao et al., 2015b; Rodenburg and Maiden,
2019; Nashed et al., 2014).

Scanning CXDI has broader issues, especially in capturing high temporal and
spatial resolution of samples with dynamic processes. In particular, the scanning
speed of the coherent X-ray beam moving across the whole sample for collecting
diffraction images directly affects the ability to capture fast-evolving phenomena.
The CXDI is typically performed in a step-scan manner, where the beam stops at
discrete points following a previously designed scenario. On-the-fly scanning is
also developed, which attempts to speed up the measurement process by moving
the beam across the sample without stopping and the data is collected continuously
as the beam moves. Regardless of the method, a slow scanning speed may result in
temporal inconsistencies between imaging regions of the sample, as simultaneous
imaging of every local region is desired. Conversely, a faster scanning speed short-
ens the exposure time for each illuminated local area, reducing diffraction signals
and lowering image quality. Additionally, the assumption that each sample section
is consistently illuminated multiple times and contributes multiple diffraction im-
ages may not hold during dynamic changes in the sample, potentially reducing the
accuracy of the phase retrieval analysis and negatively affecting the spatial resolu-
tion of the reconstructed image.

Several non-scanning CXDI methods, which use single-shot imaging to capture
multiple frames, have been proposed to depict the dynamic process with excellent
temporal resolution (Abbey et al., 2008; Zhang et al., 2016; Khakurel et al., 2017; Lo
et al., 2018; Levitan et al., 2020; Takayama et al., 2021a). However, these remain
in the proof-of-principle stage, and comprehensive studies on the dynamics of ac-
tual samples in the hard X-ray region must be undertaken. One of the challenges
in phase retrieval analysis for the single-shot CXDI is the lack of additional spatial
constraints, which complicates image reconstruction and affects the reliability of the
results. Additionally, low signal-to-noise ratios (SNR) present another challenge,
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as the single-shot CXDI requires short exposure times per frame to capture fast-
evolving phenomena, leading to fewer photons being detected and higher noise in
the measurements. Recent advancements have led to the proposal of practical meth-
ods for single-shot CXDI, which can effectively and comprehensively elucidate ma-
terial dynamics and functions (Takazawa et al., 2021; Kang et al., 2021; Takazawa
et al., 2023).

Deep learning (DL) can be applied to address complex imaging problems like
those encountered in holography and phase retrieval analysis, enhancing accuracy
and computational efficiency (Cherukara et al., 2020; Wu et al., 2021a; Yao et al.,
2022b; Bohra et al., 2023; Welker et al., 2022; Cha et al., 2021; Lee et al., 2021; Zhuang
et al., 2022; Zhang et al., 2021a; Ye, Wang, and Lun, 2023; Gugel and Dekel, 2022;
Cherukara, Nashed, and Harder, 2018; Ye, Wang, and Lun, 2022). These techniques
often face challenges such as the accurate reconstruction of phase information from
intensity measurements and handling the inherent noise and artifacts in the data.
Among the notable advancements, PtychNet, a convolutional neural network (CNN),
facilitates the direct reconstruction of Fourier ptychography data. Similarly, Pty-
choNN (Cherukara et al., 2020) and SSPNet, which are encoder–decoder deep neu-
ral network (DNN) architectures, are designed explicitly for single-shot CXDI. These
networks streamline the imaging process by directly reconstructing sample images
without explicitly reconstructing phase information, thus simplifying the imaging
process (Kappeler et al., 2017; Wengrowicz et al., 2020; Cherukara et al., 2020). Deep
PtychShamshad, Abbas, and Ahmed, 2019 employs generative models to regularize
the phase problem and achieve superior reconstruction quality; however, it requires
the identification of an applicable prior model. Conversely, prDeep (Metzler et al.,
2018) optimizes an explicit minimization objective using a generic denoising DNN
trained for a specific target data distribution.

Recent advancements in DL for video processing have increased our ability to
capture the semantics and context of dynamic scenes (Bertasius, Wang, and Torre-
sani, 2021). Leveraging sophisticated neural network architectures, DL methods can
extract meaningful temporal variations and patterns from sequential image frames,
surpassing the results of traditional image analysis. This capability demonstrates the
potential of DL in the CXDI of dynamic phenomena. By analyzing temporal context
and correlations in diffraction images and reconstructed images, DL is expected to
facilitate high-resolution image reconstructions of dynamically changes within the
sample and learn the underlying mechanisms of these phenomena. This learning
may, in turn, enhance the quality of phase retrieval and image reconstruction, en-
abling a reciprocal relationship in which each aspect reinforces the other.

Despite remarkable advances in phase retrieval analysis that benefit from DL,
DL-based methods are associated with numerous challenges. A notable issue is the
reliance on supervised learning, which necessitates the use of ground-truth data for
training. However, obtaining such data in real-world phase retrieval scenarios is of-
ten unfeasible, leading to unreliable image reconstruction models when only simu-
lated data are used. Several unsupervised DL methods, such as AutoPhaseNN (Yao
et al., 2022a) and DeepMMSE (Chen et al., 2022a), have been proposed to address
this issue. These methods do not require ground-truth data for constructed images
(Tripathi, McNulty, and Shpyrko, 2014) but need appropriate constraints tailored
to the optical settings. Nonetheless, they often trade time efficiency for accuracy,
which compromises their suitability for in-situ experiments. Incorporating physi-
cal insights and mathematical constraints into DL-based methods can enhance their
performance on complex problems (Zhang et al., 2016; Lucas et al., 2018; Kang et al.,
2021).
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This study introduces a DL-based method specifically designed to address the in-
herent challenges of phase retrieval analysis for single-shot CXDI, aiming to signifi-
cantly enhance the visualization of local nanostructural dynamics within the sample.
This method adopts a unsupervised learning strategy, where the model is trained
using the data itself to generate supervisory signals, rather than relying on external
labels provided by humans. The DL architecture is composed of a measurement-
informed refined neural network block (RB), designed to integrate optical settings
and mathematical constraints into the learning process, and a temporal neural net-
work block (TB), designed to capture the temporal correlations between diffraction
images and those of the corresponding reconstructed images via the learning pro-
cess. Additionally, a single-shot CXDI optical system was constructed to compare
the proposed method with state-of-the-art methods in real-world experiments.

3.2 Integrating Domain Knowledge into Model Design Strate-
gies

3.2.1 Principle of coherent X-ray diffraction

The common coherent X-ray system uses a monochromatic X-ray beam, which is
shaped by an aperture to generate X-ray beam illuminating the sample. The exit
wavefield ψ(r) of the sample can be represented as

ψ(r) = P(r)× O(r), (3.1)

where r denotes the real-space coordinate vector, and P(r) is the illumination probe
function. The complex object function O(r) = A(r) ∗ eiϕ(r) is the mathematical rep-
resentation of the sample in real-space, which comprises amplitude A(r) and phase
ϕ(r) components.

This exit wavefield produces a diffraction images in the far field, captured as a
two-dimensional intensity pattern by a downstream detector. The intensity of the
diffraction images can be expressed as

I(q) = |Ψ(q)|2 = |F [ψ(r)]|2, (3.2)

where q denotes the reciprocal-space coordinate vector, and Ψ(q) is the wavefront
of the ψ(r) in the detector plane. F represents the Fourier transform operator. The
objective of phase retrieval in a CXDI experiment is to inversely derive a unique
complex object function O from I diffraction pattern.

In practice, the measured diffraction intensity I(q) on the detector is represented
as a two-dimensional image, usually a square, denoted as I ∈ Nm×m (m is the mea-
surement size of the image in pixels). The illumination probe function P(r) is a two-
dimensional matrix P ∈ Cm×m and is assumed constant during the experiment in a
fixed optical system with a coherent X-ray (stable illumination source). Such probe
functions are often estimated in advance via scanning CXDI and are assumed to re-
main constant. The complex object function O(r) is represented by two-dimensional
matrices A ∈ Rm×m and ϕ ∈ Rm×m expressing the amplitude and phase informa-
tion, respectively.

For scanning CXDI with N positions, the observed diffraction intensity image at
the tth frame is denoted as It. Typically, the conventional phase-retrieval algorithm
iteratively refines the object function Ot based on the reciprocal–space constraint.
Starting from an initial guess O0, the estimation of the object function in the iteration



3.2. Integrating Domain Knowledge into Model Design Strategies 39

(i + 1)th is expressed as follows:
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t + α
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, (3.3)

where P̄ is the complex conjugate of P. The scalar α is a feedback parameter of
the updating object function U and ψt = P × Oi

t is the wavefield of the sample
reconstructed from the previous iteration ith. Meanwhile, ψ′

t is the revision of the
wavefield ψt satisfying the constraint in the reciprocal space:
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|Ψt|2

]
, (3.4)

where Ψt = F [ψt]. F−1 denotes the inverse Fourier transform operator. Through
the iterative process, the refinement algorithm is expected to converge to a solution
of the complex object function Ot that corresponds to It.

However, due to the complexity of both the object and the illumination in diffrac-
tion experiments, it is necessary to ensure that the overlapping condition is met by
having at least 50% overlap between scanning positions (Pfeiffer, 2018). This sub-
stantial overlap is crucial for accurately reconstructing the object from the collected
diffraction patterns, as it provides sufficient redundancy and constraints to solve
the phase retrieval problem by the iterative algorithm. The requirement for such a
high degree of overlap introduces challenges in dynamic CXDI, particularly when
attempting to capture time-resolved changes in materials.

3.2.2 Designing output targets for image reconstruction

The ultimate objective in phase retrieval for dynamic coherent X-ray diffraction imag-
ing (CXDI) is to accurately reconstruct the evolving object and gain insights into the
underlying dynamic phenomena within materials. In an unsupervised learning con-
text, this involves designing a model that can learn from unlabeled diffraction data
to produce meaningful reconstructions without explicit ground truth references.

To align the model outputs with both the physical principles of diffraction and
the goals of dynamic imaging, the designs of outputs need to include:

• Reconstructed Object: A spatial representation of the material’s structure at
each time point, capturing its dynamic changes over time.

• Computed Diffraction Patterns: Simulated diffraction data obtained by apply-
ing the forward Fourier Transform to the reconstructed object, which can be
directly compared with the experimentally observed diffraction patterns.

By including both the reconstructed object and the computed diffraction pat-
terns as outputs, the model can iteratively adjust the object’s representation to mini-
mize the discrepancy between the computed and experimental diffraction data. This
design ensures that the reconstruction adheres to the mathematical formulation of
diffraction, specifically the Fourier relationship between the object and its diffraction
pattern.
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FIGURE 3.2: Overlapping concept in raster scan CXDI for static object
and single-shot CXDI for dynamic object sample.

Moreover, it is crucial that the reconstructed object exhibits consistency over time
to accurately reflect the material’s dynamics. While the iterative methods indepen-
dently reconstruct single object at a time, there is no guarantee the stable and consis-
tent of objects’ representation overtime. To overcome this, the output design need to
incorporates temporal coherence by enforcing smoothness or continuity constraints
across consecutive time frames.

3.2.3 Designing input transformations aligned with reconstruction goals

In the context of dynamic coherent X-ray diffraction imaging (CXDI), the require-
ment for consistent reconstruction of the object over time directly influences how
we prepare and transform the input data for the model. To achieve outputs that
accurately reflect the temporal evolution of the material, we must design the input
transformation to align with these objectives.

Understanding the physical movement of the object provides critical domain
knowledge that informs our input transformation strategy. In many dynamic CXDI
experiments, the object’s motion between consecutive time frames is minimal due
to the high frame rates and relatively slow dynamics of the material processes being
studied .

• Converting Spatial Overlap to Temporal Overlap: Traditionally, ensuring suf-
ficient spatial overlap in scanning positions is necessary for accurate phase re-
trieval in static imaging. However, in dynamic CXDI, the minimal movement
of the object over short time intervals means that overlapping information can
be obtained through the temporal dimension. This effectively transforms the
requirement of spatial overlap into one of temporal overlap (Fig 3.2).

Based on the need for temporal consistency in the reconstructed object, the input
diffraction data should be arranged as sequences of diffraction patterns correspond-
ing to consecutive time frames, rather than processing each diffraction image inde-
pendently. By presenting the data as a temporal sequence, the model can learn the
dependencies and correlations between adjacent time points, enabling it to capture
the dynamic behavior of the object more effectively.

By embedding knowledge of the diffraction process and object motion into the
input transformation, we ensure that the model’s learning is guided by both data



3.2. Integrating Domain Knowledge into Model Design Strategies 41

and physical principles. This includes normalizing and preprocessing the diffraction
data in ways that preserve critical physical information.

3.2.4 Model architecture design incorporating diffraction principles

The design of the model architecture is critically informed by domain knowledge
from materials science and the physics of diffraction. Based on the input and out-
put requirements, the model must effectively learn material representations in both
spatial and Fourier domains while considering temporal information between adja-
cent frames. Additionally, it must integrate physical constraints such as the Fourier
Transform (FFT) and align with experimentally measured data. Dynamic CXDI in-
volves reconstructing a sequence of object states over time. The model architecture
must therefore consider temporal dependencies between adjacent frames to accu-
rately capture the material’s dynamic behavior.

To archive that, the model design need to include:

• Temporal Modeling Components: Architectural elements such as recurrent
connections, temporal convolutional layers, or attention mechanisms that can
model sequential data and capture temporal dependencies.

• Consistency Constraints: Mechanisms that enforce temporal coherence in the
reconstructed object, such as loss terms that penalize unrealistic changes be-
tween frames or modules that model expected physical motions.

• Fourier Transform Relationship: The model must ensure that the reconstructed
object’s Fourier Transform matches the experimentally measured diffraction
patterns. This can be enforced by incorporating the FFT operation within the
model and comparing the computed diffraction patterns with the observed
data.

• Physics-Informed Networks: Incorporate physical laws and constraints di-
rectly into the network architecture. By embedding equations governing diffrac-
tion and material behavior in model design, the model is guided by known
physics, reducing the solution space and improving convergence.

Designing the model architecture with domain knowledge at its core enables the
model to effectively reconstruct dynamic material structures from diffraction data.
By learning representations in both spatial and Fourier domains, considering tempo-
ral information, and integrating physical constraints, the model aligns closely with
the underlying physics of the problem. This alignment enhances the model’s ability
to produce accurate, physically meaningful reconstructions that provide valuable
insights into the dynamic phenomena within materials.

3.2.5 Designing loss functions and evaluation metrics for image recon-
struction

In unsupervised learning for diffraction image reconstruction, designing an appro-
priate loss function and evaluation metrics is crucial for effective model training and
validation. The nature of diffraction data, which follows a Poisson distribution due
to the counting statistics of photon detection, necessitates careful consideration in
defining the loss function between the computed diffraction patterns and the ex-
perimentally measured data. Additionally, incorporating temporal consistency into
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the loss function is important for accurately reconstructing dynamic processes over
time.

Diffraction measurements are inherently subject to Poisson noise because the de-
tected intensities correspond to photon counts, which are discrete and probabilistic.
To account for this, the loss function should reflect the statistical properties of the
data. Moreover, to ensure that the reconstructed object maintains temporal coher-
ence across sequential frames, temporal regularization terms are required to design
and add to the loss function.

Evaluating the quality of the reconstructed object without ground truth data re-
quires a multifaceted approach that combines quantitative assessments with expert
validation.

• Visual Inspection: The direct and straightforward evaluation is from experts
reviews about reconstructed images to identify realistic features and artifacts.

• Simulations comparison : If simulations of the expected dynamics are avail-
able, compare them with the reconstruction as a test case with known object
and behaviors. This will bring the insights about the model design settings
and modification need for improving in real scenarios.

• Consistency with Experimental Settings: Ensure that the reconstruction aligns
with known experimental conditions, such as applied stresses, size of the ma-
terials or temperature changes.

Designing an effective loss function and metric strategy is essential for unsu-
pervised learning in diffraction image reconstruction, especially in the absence of
ground truth data. By modeling the Poisson nature of diffraction measurements
in the loss function and incorporating temporal consistency terms, the model is
guided toward producing physically plausible and temporally coherent reconstruc-
tions. The evaluation metrics combine quantitative assessments of data fidelity and
temporal consistency with qualitative analyses by experts and cross-validation with
experimental settings. This comprehensive approach ensures that the reconstructed
images are not only mathematically consistent with the measured data but also
meaningful representations of the dynamic phenomena within the material.

Based on all of these design strategies, the subsequent methodology and exper-
iment sections will provide detailed explanations of our unsupervised learning ap-
proach for dynamic coherent X-ray diffraction imaging (CXDI). The methodology
section will elaborate on the specific implementation of the model architecture, in-
cluding how we integrate data-driven methods with physics-informed networks,
process input transformations, and design loss functions that reflect the Poisson na-
ture of diffraction data while incorporating temporal consistency and physical con-
straints. The experiment section will showcase the application of our model to real
diffraction datasets, demonstrating its effectiveness in reconstructing dynamic mate-
rial structures and capturing their temporal evolution. By aligning our model design
with domain knowledge from materials science and diffraction physics, we aim to
achieve accurate, physically consistent reconstructions that offer valuable insights
into the dynamic phenomena occurring within materials.
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3.3 Methodology

3.3.1 Dynamic phase retrieval in single-shot CXDI

Figure 3.3a illustrates a single-shot CXDI optics system for dynamic object imag-
ing Takazawa et al., 2021; Takazawa et al., 2023. The system uses a monochromatic
X-ray beam, which is shaped by a rounded triangular aperture and a Fresnel zone
plate (FZP) to generate a rounded triangular X-ray beam illuminating the sample.

To investigate the dynamic behavior of objects included in a sample, we captured
the dynamic changes by imaging the sample a total of N consecutive frames, with
each frame recorded over an exposure time ∆t. The observed diffraction intensity
image at the tth frame is denoted as It. The objective of phase retrieval in a dynamic
CXDI experiment is to inversely derive a unique complex object function Ot from It
for each tth frame. Typically, the conventional phase-retrieval algorithm iteratively
refines the object function Ot based on the reciprocal–space constraint.

In this study, we adopt the mixed-state reconstruction approach (Thibault and
Menzel, 2013) that applies a set of illumination probe functions P(k) ∈ Cm×m with
mode k ∈ [1, 2, · · · , K] for single-shot CXDI. Such probe functions are often esti-
mated in advance via scanning CXDI and are assumed to remain constant. Starting
from an initial guess O0, the estimation of the object function in the iteration (i + 1)th

is expressed as follows:

Oi+1
t = Oi

t + αUi

= Oi
t + α

∑k P̄(k)(ψ′(k)
t − ψ

(k)
t )

∑k |P(k)|2max
, (3.5)

where P̄(k) is the complex conjugate of P(k). The scalar α is a feedback parameter of
the updating object function U and ψ

(k)
t = P(k) × Oi

t is the wavefield of the sample
reconstructed from the previous iteration ith. Meanwhile, ψ

′(k)
t is the revision of the

wavefield ψ
(k)
t satisfying the constraint in the reciprocal space:

ψ′(k)
t = F−1

√It
Ψ(k)

t√
∑k |Ψ

(k)
t |

2

 , (3.6)

where Ψ(k)
t = F [ψ

(k)
t ]. F−1 denotes the inverse Fourier transform operator. Through

the iterative process, the refinement algorithm is expected to converge to a solution
of the complex object function Ot that corresponds to It. However, it should be noted
that the diffraction intensity images It are observed with noise, and the iterative
algorithm and the condition of corresponding It may result in multiple solutions for
the complex object function Ot.

3.3.2 PID3Net: Physics-informed unsupervised learning framework

Borrowing the concept from the iterative refinement algorithm, this study employed
a unsupervised learning strategy to develop a neural network: the Physics-Informed
Deep learning Network for Dynamic Diffraction imaging (PID3Net), tailored to phase
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FIGURE 3.3: (a) Schematic diagram of single-shot CXDI optical sys-
tem with a triangular aperture and a Fresnel zone plate. (b) Overview
of the PID3Net framework for dynamic phase retrieval in single-shot

CXDI.

retrieval in single-shot CXDI for dynamic object imaging. Figure 3.3b shows the de-
sign of the proposed network. Given a sequence of T consecutive diffraction inten-
sity images I = [I1, I2, . . . , IT], which are extracted from the total observed N consec-
utive diffraction intensity images, the network was designed to reconstruct simulta-
neously a corresponding set of T object functions, O = [O1, O2, . . . , OT]. The objec-
tive was to ensure that the calculated diffraction images Î = [ Î1, Î2, . . . , ÎT] derived
from these object functions closely matched the experimental diffraction images I .
Consequently, the challenge of phase retrieval in CXDI experiments was formulated
as a gradient-descent optimization problem (Tripathi, McNulty, and Shpyrko, 2014)
to minimize the discrepancies between two sets of diffraction images, I and Î . This
self-supervised learning strategy enabled our method to learn directly from inten-
sity data while avoiding the need for images of the sample and ensuring consistency
in the inverse estimation of Oi within T consecutive frames (i ∈ [1, 2, · · · , T]).

3.3.3 Encoder-Decoder Block for Learning Diffraction Representations

To learn effective representations of diffraction patterns and reconstruct the ampli-
tude and phase representations of the object, we employ an encoder-decoder block.
This architecture is designed to facilitate the convergence of phase retrieval in single-
shot CXDI for dynamic object imaging by introducing smoothness constraints in
both spatial and temporal domains. The smoothness constraints are implemented
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to ensure temporal coherence and physical plausibility in the reconstructed object
functions across sequential frames.

To enable spatiotemporal feature learning directly from a sequence of diffrac-
tion frames, we adopted the spatiotemporal convolution (Tran et al., 2018 (or 3D-
CNN)), which is widely applied for video understanding tasks. This block processes
spatiotemporal information by learning features that span both spatial regions and
adjacent time frames. The spatiotemporal convolutional block forms the core of
the phase retrieval network and is critical for capturing dynamic behaviors in the
diffraction data.

PID3Net first inputs the set of diffraction images I to encoder–decoder modules,
including one encoder and two decoders (Fig. 3.3b). These modules utilize temporal
blocks (TBs), composed of three 3D-CNN layers, to encode temporal information
and reconstruct real-space amplitude and phase representations of the object (Fig.
3.4a). The TBs are designed to enhance the temporal coherence of the reconstructed
objects across sequential frames.

In the encoder, temporal information is captured at three hierarchical levels: the
diffraction image itself, three adjacent diffraction images, and five adjacent diffrac-
tion images. This multi-level encoding ensures that temporal dependencies across
varying timescales are effectively captured. During decoding, shared temporal in-
formation is reconstructed through TBs, enhancing coherence over time. We rep-
resented the kernel as F×K×W×W, where F represents the number of filters, and
K and W are the kernel sizes for the temporal and spatial spaces, respectively. As
shown in Figure 3.4a, one TB consists of three CNN layers: F×1×3×3 + (F/2)×3×3×3
+ (F/2)×5×3×3, which accumulate information in both spatial and temporal spaces
to encode the input diffraction images. Following each TB layer, a 1 × 2 × 2 max
pool layer was applied to reduce the image size by half while preserving the tempo-
ral information. The encoded diffraction representation at the last layer of encoder
module would be used for reconstructing the object representation in the decoder
module.

In the decoding phase, two separate decoder channels reconstruct amplitude and
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phase information. These decoders use TB layers similar to those in the encoder
and incorporate 1 × 2 × 2 transpose convolution layers for adaptive upsampling.
This approach ensures that fine-grained spatial and temporal details are preserved
during reconstruction, outperforming simpler interpolation methods. A final 1 ×
3 × 3 convolution layer generates the outputs for each decoder channel. For the
amplitude and phase outputs, the sigmoid and π × tanh activation functions are
used, respectively, to ensure normalized and physically interpretable results. The
decoders leverage the encoded diffraction representation to produce sequential real-
space amplitude A0 = [A0

0, A0
1, · · · , A0

T] and phase ϕ0 = [ϕ0
0, ϕ0

1, · · · , ϕ0
T] images for

the T object functions.

3.3.4 Measurement-Informed Refinement Block: Integrating Physical Con-
straints into the Model

The phase-retrieval process often causes the problems of twin image ambiguity,
translation, and initialization, complicating the convergence of the inversion pro-
cess Li et al., 2016; Guizar-Sicairos and Fienup, 2012. To address the challenges,
we integrated optical settings and mathematical constraints via a second block, the
measurement-informed refinement block (RB). The block refines the phase ϕ0 and
intensity A0 information using a hybrid approach that combines DL methods with
the iterative process (Fig. 3.4b).

At each refinement step (i + 1)th, the amplitude ϕi and intensity Ai informa-
tion from the previous step is first combined to complex object functions Oi =

[Oi
1, Oi

2, . . . , Oi
T], in which Oi

t = Ai
t ∗ eiϕi

t . The updating information is defined us-
ing CNN blocks, by adopting the updating Eq. 3.5 from the iterative phase retrieval
algorithm. However, rather than individually updating each object function, we use
the TB layer to learn the updates for all T object functions simultaneously, preserv-
ing overlapping information shared with other sample reconstructions in real space
(Fig. 3.4b). We denote FA, Fϕ : RT×m×m → RT×m×m as the CNN blocks used to deter-
mine the revision for the amplitude and phase information. Each network comprises
one TB followed by an output convolution layer of size 1 × 3 × 3. Activation func-
tions in FA and Fϕ are sigmoid and π∗tanh to limit the amplitude and phase output
to [0, 1] and [−π,π], respectively. The updating process is expressed as follows:

Ai
u = FA(|U i|), ϕi

u = Fϕ(arg(U i)), (3.7)

where U i = [Ui
1, Ui

2, . . . , Ui
T] are updating information of the object functions calcu-

lated using Eq. 3.5. arg(.) and |.| indicate the argument and modulus of a complex
number, respectively. Subsequently, the object functions are updated using mathe-
matical constraints as follows:

Oi+1 = Oi + α(Ai
u ∗ eiϕi

u), (3.8)

where α is a learnable parameter of the update rate. Both FA, Fϕ, and α undergo
adaptive training to regulate the amount of measurement constraint incorporated in
Oi+1.

After K iterations, we obtained the reconstructed object functions Ô (= OK) and
derived the amplitude Â = |Ô| and phase ϕ̂ = arg(Ô) from the reconstructed object
functions Ô.
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3.3.5 Loss design and Model training

Within DL approaches, the image reconstruction problem can be solved by mini-
mizing the difference between I and Î = |F [P × Ô]|2, which is quantified via the
absolute error loss, expressed as

LMAE(I , Î) =
1

Tm2 ∑
t,i,j

|It[i, j]− Ît[i, j]|. (3.9)

However, in real-life experiments, diffraction image It are captured using photon-
counting statistics, meaning the measured diffraction values are non-negative inte-
gers. Conversely, the mathematically estimated diffraction Ît consists of real values,
which may cause numerical issues during loss calculation in optimization. This is-
sue needs to be considered carefully when the signal in the diffraction image is weak
due to short exposure time. To address this, we design a loss function that measures
the difference in detected photon counts per pixel by employing independent Pois-
son distributions, which accurately reflect the photon-counting statistics of diffrac-
tion measurements (Bian et al., 2016; Chen and Candes, 2015). This loss function
ensures a more robust and statistically grounded approach for modeling the experi-
mental data, as follows:

LP(I , Î) = −∑
t

Log fPoiss(It; λt)

= −∑
t
(∑

i,j
It[i, j]logλt[i, j]− λt[i, j]), (3.10)

where λt indicates the number of photons detected in each pixel, which is deter-
mined by Poisson sampling with the rate Ît as shown in Fig. 3.3.

Additionally, to ensure a smoothness constraint in both spatial and temporal do-
mains for the constructed images, we employed a 3D total variation loss, LTVChambolle,
2004; Takayama et al., 2021a. Herein, LTV is defined as

LTV(Ô) =
1

3Tm2

T

∑
t=1

m

∑
i=1

m

∑
j=1

(||Ôt[i, j]− Ôt[i + 1, j]||2+

||Ôt[i, j]− Ôt[i, j + 1]||2 + ||Ôt[i, j]− Ôt+1[i, j]||2), (3.11)

where Ô is the complex reconstructed objects with the shape T × m × m.
In summary, our loss function L comprises two components: the diffraction loss

(Ldi f f ), which is responsible for minimizing the disparity between the estimated and
measured diffraction images, and the smoothness penalty loss (LTV). The total loss
function L is formulated as

L = Ldi f f (I , Î) + βLTV(O), (3.12)

where the scalar weight β is learned and adjusted during the training for balancing
the two loss components and Ldif f is either LMAE or LPO.

In the case of phase retrieval, PID3Net serves as a unsupervised learning model
that learns to minimize the difference between the measured diffraction image and
intensity image estimated by the network. The consistency of the reconstructions
with the observed diffraction datasets during phase retrieval was monitored using
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the R f factor, as indicated below

R f =
∑N ∑m2 ||Ψt| −

√
It|

∑N ∑m2 |
√

It|
, (3.13)

where N is the number of diffraction images in the datasets.
The model was trained with the Adam optimizer on an individual Tesla A100-

PCIe graphics processing unit with a memory capacity of 40 GB. The learning rate
was set to 0.001, and the batch size was set to eight. The network was trained for
20 and 50 epochs for the test chart and AuNP datasets, respectively. Remarkably,
less than one million parameters were used in PID3Net. In this study, the number of
sequence images for learning (T) was set to five for all the datasets. The number of
iteration updates in the RB layer was set at five for the performance–speed trade-off.
For the iterative reconstruction methods, the number of iterations was set such that
the R f score was saturated and did not decrease.

3.3.6 Experimental design

We conducted three evaluation experiments to demonstrate the efficacy of PID3Net
for phase retrieval in single-shot CXDI for depicting dynamic process of the sample.
These experiments involved capturing diffraction intensity images of the sample
using an experimental optic system (Fig. 3.5a) or through numerical simulations un-
der similar optical conditions. In the first evaluation experiment, we examined the
efficacy of PID3Net in imaging a moving Ta test chart, commonly used as a proof-of-
concept sample for evaluating optic systems or phase retrieval analysis. In this ex-
periment, the Ta test chart was moving at a fixed velocity of 340 nm s−1 (Figure 3.5a)
relative to the X-ray beam. The diffraction intensity images of the moving Ta test
chart were captured on-the-fly using the experimental optic system. PID3Net was
then used to reconstruct the movement of the sample from the measured diffraction
intensity images.
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The two following evaluation experiments examined the efficacy of PID3Net in
imaging the dynamics of gold nanoparticles (AuNPs) dispersed in solution. Ob-
serving the motion of AuNPs over a broad spatiotemporal scale is essential, as they
are widely used to probe the mechanical properties of materials and the rheologi-
cal properties within living cells. In the first evaluation experiment of AuNPs, we
evaluated the efficacy of PID3Net using simulations of moving AuNPs, providing
both amplitude and phase data along with corresponding diffraction images. This
allowed us to directly compare the phase information retrieved by PID3Net with
the ground-truth data, facilitating an accurate assessment of our method’s efficacy.
In the second evaluation experiment of AuNPs, we employed a sample of AuNPs
dispersed in aqueous polyvinyl alcohol (PVA) solution. We evaluated the efficacy
of PID3Net in the real experimental scenario when the AuNPs were moving in the
solution. We expected that the movement of the AuNPs would be captured using
single-shot CXDI by measuring the diffraction images directly with the experimental
optic system.

We assessed the efficacy of PID3Net by comparing it with a conventional method
(Kang et al., 2021) that uses reciprocal-space constraints and gradient descent, specif-
ically extended to a mixed-state model (Thibault and Menzel, 2013) where multiple
probe functions are applied in optical systems. The multi-frame PIE-TV (mf-PIE)
(Takayama et al., 2021a), which introduces virtual overlapping frames constraint
for solving dynamic CXDI, was also applied for comparison. Hereinafter, we de-
note these two methods as mixed-state and mf-PIE. Besides the iterative methods,
we compared our method with two state-of-the-art DL-based methods for phase re-
trieval, including the AutoPhaseNN (Yao et al., 2022a) and PtychoNN (Cherukara
et al., 2020). Additionally, we investigated the effectiveness of the Poisson loss LP
and the MAE loss LMAE when applied in PID3Net for phase retrieval, denoting the
models as PID3Net-PO and PID3Net-MAE for the respective loss functions used.
The efficacy of these methods was evaluated on the basis of three critical criteria: 1)
the discrepancy between the diffraction images reproduced from the reconstructed
sample images and measured diffraction images, 2) the spatial resolution of the re-
trieved phase information, and 3) the efficiency of the retrieved phase information
for post analysis, in terms of applicability and accuracy.

To quantify the discrepancies between diffraction images, we used the R f score
(Miao et al., 2006), which provides a single scalar value indicative of the overall
pixel-by-pixel difference between the measured diffraction images and those cal-
culated from the reconstructed sample images. The R f score is crucial for assess-
ing how well the reconstructed sample images reproduce the measured diffraction
images on average. To evaluate the spatial resolution of the retrieved phase infor-
mation, we employed the phase retrieval transfer function (PRTF) (Chapman et al.,
2006; Sekiguchi, Oroguchi, and Nakasako, 2016) or Fourier ring correlation (FRC)
(Wakonig et al., 2019). This is crucial for determining the resolutions at which phase
retrieval remains accurate and reliable. The PRTF assessed the fidelity of phase re-
trieval by comparing diffraction images calculated from reconstructed sample im-
ages with those measured across various spatial frequencies. In contrast, the FRC,
applicable when ground-truth values are available, employed Fourier transforms of
the reconstructed and actual images of the sample to evaluate discrepancies across
spatial frequencies.

Additionally, the efficiency of the retrieved phase information was quantified
using the structural similarity index measure (SSIM) (Takayama et al., 2021b; Hore
and Ziou, 2010) when the ground truth of the sample was available in the simulation
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scenario. The SSIM provided a single scalar value; however, it indicated the similar-
ity between the retrieved phase information and those calculated from the ground
truth of the sample. To quantitatively evaluate the efficiency of our method in real
experimental scenarios, where images of the sample are reconstructed from diffrac-
tion images measured during actual X-ray diffraction experiments, we verified the
fidelity of the reconstructed pattern on the sample by referencing ground-truth in-
formation about the samples and their moving behaviors. The ground-truth infor-
mation included the shape and moving velocity of the sample in the experiment
with the Ta test chart and the distinguishability between particles and the solution
in the experiment with AuNPs dispersed in PVA solution (Takazawa et al., 2023).

3.4 Case study 1: Phase retrieval for movement of Ta test
chart

In this section, we discuss the first proof-of-concept experiment that was conducted
to evaluate the performance of PID3Net in phase retrieval for movement of the Ta
test chart (Fig. 3.6a). Before performing the single-shot CXDI measurements, the
phase image of the Ta test chart and probe function were reconstructed using the
mixed-state method (Takazawa et al., 2021) via scanning CXDI with an exposure
time of 10 s at each scan position. The diffraction images measured with a 7 ms
exposure time per frame in the moving experiment are presented in Fig. 3.5b for
some steps from the first to the 1400th frames. Table B.1 presents the detailed settings
of the three experiments.

Figure 3.6a presents the retrieved phase information from the diffraction images
by using the mixed-state, mf-PIE, PID3Net-MAE, and PID3Net-PO. At first glance,
the patterns and line absorber shapes of the Ta test chart in the phase images re-
constructed by PID3Net-PO and PID3Net-MAE are more precise and more stable
over time than those retrieved by mixed-state or mf-PIE, as further illustrated in
Appendix Movie C1. The phase information retrieved using AutoPhaseNN and
PtychoNN is also shown in this movie and Appendix Figure B.1; however, the reso-
lution of the reconstructed images is not as clear and stable as with PID3Net-PO and
PID3Net-MAE.

Next, to evaluate the spatial resolution of the reconstructed image obtained by
the phase retrieval methods, profiles of two circular arcs on the Ta test chart were an-
alyzed for each frame. Figure 3.6b shows the enlarged view of the phase information
retrieved from the measured diffraction images at the 400th frame, highlighting the
two circular arcs. The red circular arc crosses over 100 nm-width patterns, while the
blue circular arc crosses over 200 nm-width patterns. These patterns include trans-
mitted and absorbed regions, represented by areas with positive and negative phase
shifts, respectively. Figure 3.6c shows plots of the retrieved phase information by the
four applied methods along the two circular arcs. In the Ta test chart, the patterns
are organized cyclically along the circular arcs, with equal widths along each arc
but different widths between the two arcs for both the absorbed and transmitted re-
gions. Both PID3Net-MAE and PID3Net-PO successfully reconstructed the patterns
that the two circular arcs pass through, accurately reflecting the ground-truth shape
of the Ta test chart. In contrast, the patterns are not clearly observed in the phase
information retrieved by using the mixed-state and mf-PIE methods. Similar to the
iterative methods, the DL methods, such as AutoPhaseNN and PtychoNN, did not
reconstruct the patterns accurately, as shown in Appendix Figure B.2 b. Addition-
ally, PID3Net-PO yielded a more stable and smoother cycle of phase transition than
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FIGURE 3.6: Phase information was retrieved from diffraction inten-
sity images of a moving Ta test chart using four methods: mixed-state,
mf-PIE, PID3Net-MAE, and PID3Net-PO, with a 7 ms exposure time
per frame. (a) The frame index for each image is shown at the top. (b)
Magnified views of green square areas at frame 400, including pro-
files of two circular arcs with zero position markers. (c) Analysis of
phase shifts along these arcs from the 400th frame diffraction image.
(d) PRTF analysis of phase images from the four retrieval methods,
with dashed lines indicating reliability thresholds. (e) Estimated ve-
locity distribution from phase images over 400 frames, with a dashed

line at 340 nm/s and a white bar indicating the median.
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PID3Net-MAE. The estimated widths of the patterns reconstructed using PID3Net-
PO are approximately 120 nm and 210 nm for the red and blue curved lines, respec-
tively, aligning well with the widths of these patterns in the Ta test chart. The ob-
tained results quantitatively demonstrate that PID3Net-PO and PID3Net-MAE can
retrieve phase information with at least twice higher spatial resolution compared to
the iterative methods such as mixed-state and mf-PIE methods, as well as DL meth-
ods like AutoPhaseNN and PtychoNN.

As an attempt to evaluate the reliability of the proposed methods in scenarios
where ground-truth information of the sample is unavailable, unlike the scenario
with the Ta test chart, we assessed how accurately the reconstructed sample images
could reproduce the observed diffraction images. This assessment is crucial for de-
termining the practical applicability of the proposed methods. The discrepancies on
average between diffraction images reproduced from phase information retrieved
using the mixed-state method and the measured diffraction images are the smallest,
as evidenced by an R f score of 0.84. The scores for PID3Net-MAE and PID3Net-PO
are almost the same, at 0.84 and 0.85, respectively. Meanwhile, the results of other
DL-based methods are slightly higher, at 0.87 for both the AutoPhaseNNand the
PtychoNN. The diffraction images reproduced from phase information obtained via
the mf-PIE method exhibit the largest discrepancies, with an R f score of 0.91.

Figure 3.6d presents the PRTF indices, which assess the fidelity of phase retrieval
across spatial frequencies, for the four methods, mixed-state, mf-PIE, PID3Net-MAE,
and PID3Net-PO. The PRTF indices of the mixed-state method and PID3Net-MAE
are comparable and outperform the remaining methods at all spatial resolutions.
In this context, the full-period spatial resolution of the mixed-state method and
PID3Net-MAE is up to approximately 190 nm. The results of PID3Net-PO are at
approximately 230 nm and are slightly worse than those of the mixed-state method
and PID3Net-MAE. Conversely, the worst spatial resolution threshold is observed
for mf-PIE, at approximately 270 nm, suggesting less reliable phase retrieval at these
finer resolutions. Results of similar analyses for phase images reconstructed using
the DL methods are presented in Appendix Figure B.2c. The threshold for PtychoNN
is slightly worse than those of PID3Net-PO, while the number for AutoPhaseNN is
slightly better and is up to approximately 200 nm.

The analysis of the R f scores and PRTF indices indicates that the diffraction im-
ages obtained using the mixed-state method closely resemble the actual measured
diffraction images compared to other phase retrieval methods we considered. Our
method shows comparable results to the mixed-state method and performs slightly
better than other DL-based methods. In addition to finding the solutions that match
the measured diffraction images, the phase retrieval methods also need to recon-
struct phase information that accurately depicts the dynamic behaviors of the sam-
ple. In our method, the temporal block (TB) is specifically designed to simultane-
ously retrieve phase information of adjacent frames from a sequence of diffraction
images, ensuring the dynamic behaviors of the sample are reliably depicted. This
approach contrasts with traditional methods that individually retrieve phase infor-
mation from a single diffraction image.

Further investigations were performed to evaluate the efficiency of the phase in-
formation retrieved from our proposed methods in depicting the moving behaviors
of the Ta test chart. We employed auto-correlation methods on pairs of adjacent
phase images retrieved using the six methods, mixed-state, mf-PIE, AutoPhaseNN,
PtychoNN, PID3Net-MAE, and PID3Net-PO, and monitored the number of shifted
pixels to estimate the velocity of the movement of the Ta test chart. As shown in
Fig. 3.6e, the averages of estimated velocities derived from these phase retrieval
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methods are close to the actual velocity settings of the sample in the experiment. In
contrast, the numbers derived from DL methods were lower than the actual velocity,
as shown in Appendix Figure B.2d. Notably, the estimated instantaneous velocities
by using PID3Net-MAE and PID3Net-PO during the experiment are more stable,
with smaller variances, than those estimated by using the mixed-state and mf-PIE
methods. The results indicate that the PID3Net method adeptly learns to reconstruct
phase information that matches the dynamics behaviors of the sample, where the Ta
test chart is moving horizontally relative to the X-ray beam from left to right at a
fixed velocity.

TABLE 3.1: Time reconstruction of each methods for Test chart dataset
7ms with 1755 images.

Methods Iterations (epochs) Run time (s) Inference time (s/image)

mixed-state (CPU) 100 7,830 4.45

mf-PIE (CPU) 200 55,970 31.90

PtychoNN (GPU) 20 194 0.001

AutoPhaseNN (GPU) 20 436 0.001

PID3Net-NR-P (GPU) 20 505 0.002

PID3Net-MAE (GPU) 20 1,745 0.003

PID3Net-PO (GPU) 20 1,760 0.003

The previous evaluation results have shown that our proposed method can re-
construct high-quality images for the moving Ta test chart by adding constraints to
ensure smoothness in both spatial and temporal domains. These high-quality re-
constructions may be attributed to the deep learning method’s capacity to capture
the underlying mechanisms of the sample’s dynamic behaviors, thereby addressing
both the issue of random noise in observed diffraction images and the issue of mul-
tiple solutions in phase retrieval. To test the capacity of the proposed methods, we
simulated a hypothetical movement of the Ta test chart using the obtained exper-
imental data by rearranging the order of the consecutive measured diffraction im-
ages. In this test, the Ta test chart repeatedly moved from left to right over 400 frames
and then moved back to the left over the subsequent 200 frames instead of moving
in only one direction as in the actual experiment. The PID3Net-PO model, which
was trained on the experimental dataset featuring only one direction of movement,
successfully retrieved high-resolution images for the simulated movement of the Ta
test chart with changes in the direction of movement (Appendix Movie C2) without
requiring retraining. This finding suggests that the DL method holds promise in
capturing the dynamic behaviors of the sample moving horizontally relative to the
X-ray beam, and thus producing high-quality image reconstructions. However, fur-
ther detailed studies are required to fully assess this characteristic of the proposed
method.

In summary, our method yielded high-quality images that accurately captured
the movement of the Ta test chart, surpassing the iterative and DL methods. The
iterative methods somewhat captured the dynamic behavior of the moving Ta test
chart but resulted in lower-quality images, while the other DL methods failed to
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TABLE 3.2: Comparative evaluation of PID3Net-MAE, PID3Net-PO
and two other phase retrieval methods using R f and SSIM values. A
lower R f score indicates that reconstructed sample images appropri-
ately reproduce the measured diffraction images on average, whereas
a higher SSIM score indicates that the reconstructed sample images
closely resemble the actual samples. The bold numbers indicate the

best values among the four methods.

R f score SSIM score

mixed-state Kang et al., 2021 0.73 0.55

mf-PIETakayama et al., 2021a 0.82 0.81

PID3Net-MAE 0.71 0.92

PID3Net-PO 0.72 0.95

portray the sample’s dynamic behavior accurately. Consequently, in the forthcom-
ing evaluation experiments, we compared our method with only two iterative meth-
ods: mixed-state and mf-PIE. Besides accurately reconstructing high-quality images
of the Ta test chart, our method is less time-intensive than iterative methods. As
shown in Table 3.1, our method is four times faster than the mixed-state method and
thirty-two times faster than the mf-PIE method in training, while the inference time
of our method is thousands of times faster, making it highly suitable for practical de-
ployment. More details about the comparison are presented in the section Appendix
B.

3.5 Case Study 2: Phase retrieval for simulated movement of
AuNP in solution

In the second evaluation experiment, we examined the efficacy of PID3Net in retriev-
ing phase information for the motion of AuNPs in solution from simulated diffrac-
tion images. Starting from such numerical simulations, which provide a controlled
setting as well as known ground truth, will facilitate an accurate assessment of our
method’s efficacy before applying it to the actual experimental scenario. Table B.2
presents the detailed settings of the second experiments.

Figure 3.7a shows the schematic of the simulation for the AuNPs dispersed in the
solution and a simulated diffraction image. This simulation used four modes of the
numerical probe function, which were reconstructed using scanning CXDITakazawa
et al., 2023. Figure 3.7b presents the retrieved phase information from the simulated
diffraction images using the mixed-state, mf-PIE, PID3Net-MAE, and PID3Net-PO.
The PID3Net method was superior to other methods, particularly in the contrast be-
tween the AuNPs and the background. This superior contrast led to a more accurate
capture of the shape of particles from the retrieved phase information.

At first glance, the distinction between AuNPs and solutions in the phase im-
ages reconstructed by PID3Net-PO and PID3Net-MAE appears more precise and
more stable over time compared with those retrieved by mixed-state or mf-PIE, as
further illustrated in Appendix Movie C3. In particular, PID3Net-PO and PID3Net-
MAE can retrieve finer details and more rounded edges, which match better with
the ground truth of the simulation, and are crucial for interpreting and analyzing the
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FIGURE 3.7: (a) Schematic of the simulation for the AuNPs dispersed
in the solution and a simulated diffraction image. The simulated
diffraction images are accumulated with a 100 ms exposure time and
four-mode probe functions. The four-mode probe functions were re-
constructed using scanning CXDI. (b) Amplitude (upper) and phase
(below) information in the first frame reconstructed using the mixed-
state, mf-PIE, PID3Net-MAE, and PID3Net-PO methods. (c) The
Fourier ring correlation (FRC) and the phase retrieval transfer func-
tion (PRTF) analysis of the phase images reconstructed using the four
phase retrieval methods. The dashed line indicates a threshold value

of 1/e and the corresponding spatial frequency.

moving behaviors of the AuNPs. Additionally, PID3Net-PO shows potential in ac-
curately capturing amplitude information, which is essential for characterizing the
intensity distribution of the sample. However, reconstructing amplitude for short
exposure times in practice remains challenging for all the methods.

Table 3.2 presents a quantitative evaluation of phase retrieval accuracies for the
four methods by considering the differences in both diffraction and phase images.
The PID3Net-MAE method achieves the lowest R f score of 0.71 among considered
methods, indicating that the diffraction images it calculates are closest to the sim-
ulated diffraction images. However, the PID3Net-PO method, which achieved a
slightly higher R f score, reconstructed phase information most closely to the ground
truth of the simulation, as evidenced by the highest SSIM score of 0.95, surpassing
those of all other methods. The mixed-state exhibits a comparable R f score with
those of our methods, but the phase reconstructions achieved using this method lack
accuracy compared with the ground truth of the simulation, as evidenced by its sig-
nificantly lower SSIM score. Conversely, the worst R f score is observed for mf-PIE,
at 0.82, but its SSIM score is much better than the number of the mixed-state. The
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obtained results again suggest that achieving better R f does not guarantee better-
quality phase information due to the multiple solutions issue.

Furthermore, the spatial resolution of retrieved phase images was statistically
assessed using both the FRC and PRTF analysis methods (Fig. 3.7c). The FRC for
phase information of PID3Net-MAE and PID3Net-PO outperformed those of other
methods across all spatial resolutions. Notably, the spatial resolutions of the diffrac-
tion images reproduced from the retrieved phase information by PID3Net-MAE and
PID3Net-PO were up to 185 nm and 150 nm. In comparison, the reliable spatial reso-
lutions for mixed-state and mf-PIE were limited to 305 nm and 315 nm, respectively.
However, regarding PRTF analysis, the mixed-state and PID3Net-MAE have slightly
better spatial resolution at approximately 135nm. Meanwhile, the PID3Net-PO and
mf-PIE results are up to 150 nm and 250 nm, respectively.

In summary, these statistical results underscore the efficacy of the PID3Net method
in accurately retrieving phase information for the motion of AuNP in simulations
with high spatial resolution, compared with the other two iterative phase retrieval
methods. The promising outcomes suggest the potential applicability of the PID3Net
method in real experimental scenarios, where diffraction images are measured using
an experimental optic system instead of simulations. Additionally, this experiment
shows that while the R f and PRTF metrics provide insights into the reconstruction
consistency on the basis of the observed diffraction images, the SSIM and FRC met-
rics offers a more nuanced perspective on the fidelity of the reconstructed image.
This distinction underscores the importance of considering both metrics while eval-
uating phase retrieval methods.

3.6 Case study 3: Phase retrieval for experimental movement
of AuNPs in the PVA solution

Previous evaluation experiment using numerical simulations of samples with nanopar-
ticle motions have theoretically demonstrated the efficacy of the PID3Net method in
phase retrieval for dynamic behaviors of AuNPs in solution. Statistical analyses
on ground-truth images or prior knowledge about the AuNPs’ dynamics, such as
known velocities, showed that the PID3Net method enables high-resolution image
reconstructions and aids in understanding the underlying mechanisms of motion of
AuNPs in solution. In the third experiment, we used the proposed method to recon-
struct the image of an actual sample with motions of colloidal AuNPs Takazawa et
al., 2023 in a 4.5 wt% polyvinyl alcohol solution, with particle sizes of approximately
150 nm, from its measured diffraction images to assess the efficacy of the PID3Net
method. Table B.3 presents the detailed settings of the third experiments.

Figure 3.8a shows reconstructed images from one-second-exposure diffraction
images across five frames, using mixed-state, mf-PIE, PID3Net-MAE, and PID3Net-
PO. The images reconstructed by mixed-state and mf-PIE appear blurred and noisy,
suggesting less effective particle position and contrast resolution. In contrast, PID3Net-
PO clearly reproduces the particles’ positions and contrasts, which results in smoother
estimations and markedly reduced noise. However, phase recovery using PID3Net-
MAE is difficult, yielding images with diminished contrast and increased blurriness.
This issue is attributed to its reliance on the MAE calculation that averages pixel
losses across the image, potentially smoothing out critical details. For a more de-
tailed visualization of these results, refer to Appendix Movie C4. The evaluated R f
scores for mixed-state, mf-PIE, PID3Net-MAE, and PID3Net-PO are 0.33, 0.62, 0.49,
and 0.53, respectively. Moreover, the PRTF scores for mixed-state and PID3Net-MAE
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FIGURE 3.8: (a) Phase information were retrieved from measured
diffraction images for the AuNPs dispersed in the PVA solution with
a one-second exposure time per frame. These phase images are re-
trieved using mixed-state, mf-PIE, PID3Net-MAE, and PID3Net-PO.
The rightmost images show zoomed-in views of the areas enclosed
by the red squares in the 2000th frame. (b) The phase retrieval trans-
fer function (PRTF) analysis of the phase images reconstructed using
the four phase retrieval methods. The dashed line indicates a thresh-
old of 1/e and the corresponding spatial frequency. (c) Distributions
of entropies of phase images reconstructed using the four methods.
(d) Pixel intensity distributions of the particle and solution patterns

in reconstructed phase images.

are comparable and outperform the other two methods at various spatial resolutions
(Fig. 3.8b). The limits of full-period spatial resolution for mixed-state and PID3Net-
MAE are approximately 80 nm, whereas for PID3Net-PO and mf-PIE, the limits ex-
tend to 160 and 220 nm, respectively.

Further investigations were conducted to quantitatively evaluate the efficiency
of the phase information retrieved from our proposed methods for capturing the
movement of the AuNPs in the PVA solution. Figure 3.8c shows the mean entropy
of all the reconstructed images by using each method. Notably, PID3Net-PO demon-
strates lower entropy values than PID3Net-MAE, and significantly lower entropy
values than mixed-state and mf-PIE, indicating enhanced contrast in the images re-
constructed by and superior noise-reduction capabilities of PID3Net-PO.

Additionally, an adaptive threshold filter (Takazawa et al., 2023) was employed
to assess the performance of each method in supporting accurate gold particle de-
tection. With consistent settings for differentiating between the signal from particles
and those from the noise and the background (solution), the images reconstructed
by PID3Net-PO distinctly show a significant enhancement in distinguishing particle
and PVA solution distributions, as illustrated in Figure 3.8d. Moreover, Moreover,
Figure 3.9 presents a comparison between PID3Net-PO and the mixed-State method
in terms of particle detection and the effectiveness of tracking their movement over
time. The results demonstrate that PID3Net-PO not only provides superior spatial
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resolution but also more effectively captures the dynamic behavior of the nanopar-
ticles. Notably, the size of the detected particles in the PID3Net-PO reconstructions
closely matches the sizes specified during fabrication and consistent with experi-
mental settings. This agreement confirms the model’s ability to accurately resolve
particles at the expected scale, which is crucial for reliable analysis and validation of
experimental results. The accurate sizing of particles ensures that quantitative mea-
surements, such as particle diameter and volume, are trustworthy and can be used
confidently in subsequent analyses.

Moreover, the number of detected particles is significantly higher when using
PID3Net-PO compared to other reconstruction methods. This increase can be at-
tributed to the model’s improved capability to distinguish particles from the noise
background and the PVA solution. This is particularly evident in the improved abil-
ity to track particle movements across consecutive frames, highlighting the model’s
capability in handling dynamic imaging scenarios. By leveraging the advanced re-
construction capabilities of PID3Net-PO, we achieved more accurate and reliable
detection of gold nanoparticles, which is crucial for applications requiring precise
characterization of particle distributions and dynamics. The integration of the adap-
tive threshold filter further enhanced the robustness of our analysis by minimizing
the influence of noise and background signals. This ensured that the observed im-
provements in particle detection and tracking are attributable to the reconstruction
method itself rather than variations in post-processing techniques.

Although further analyses are required to fully comprehend the nanoscale dy-
namics of each specific material, the results obtained from all three evaluation exper-
iments underscore the efficacy of the PID3Net method. The temporal self-consistent
learning approach employed in both Fourier and real spaces offers crucial support
for improving phase-retrieval quality, providing valuable insights for further devel-
opment of phase-retrieval methods in CXDI to depict dynamic process of the sample.

3.7 Contributions and limitations

PID3Net represents DL architectures specifically engineered to address the phase
retrieval challenges in CXDI for depicting dynamic process of the sample. This
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network leverages self-supervised learning strategy to reconstruct complex struc-
tures of the sample from sequential diffraction images, achieving exceptional per-
formance. The strength of PID3Net lies in its application of 3D convolutional layers
to the temporal sequences of diffraction images, which enables the model to learn
diffraction images representations self-consistently. This capability enables PID3Net
to effectively capture intricate features present in experimental data. Additionally,
PID3Net integrates these learned representations to perform inverse reconstructions
of sample images via deep dynamic diffraction imaging. This comprehensive ap-
proach facilitates accurate predictions and enables the generation of high-fidelity re-
constructions, even in scenarios marked by dynamic variations and significant noise.

However, limitations associated with DL models compared with traditional iter-
ative reconstruction methods should be acknowledged. Although iterative methods
can effectively work with a single data point, DL models typically require substan-
tial data for training and convergence. The availability and quality of training data,
complexity of the imaging system, and computational resources required for train-
ing are crucial factors for consideration. Despite these challenges, the successful im-
plementation of PID3Net has prompted advancements in the field of coherent X-ray
imaging.

Future studies could focus on several directions to overcome the existing limita-
tions of DL models. One promising direction is the integration of physical models
and prior knowledge into the DL framework to reduce the dependency on exten-
sive training datasets. Additionally, advancements in transfer learning could allow
models trained on the data of one type material to be adapted for use with differ-
ent types of materials, improving the versatility and applicability of DL methods
in CXDI (Zhang et al., 2021b). Furthermore, integrating numerical simulation and
self-supervised learning DL in a reinforcement learning manner could enhance the
model’s ability to learn and adapt to dynamic changes in real-time, significantly im-
proving phase retrieval performance and robustness.

PID3Net is a valuable tool for various scientific and industrial applications ow-
ing to its ability to generate accurate reconstructions in real time and efficiently pro-
cess dynamic variation positions. The development of PID3Net will enhance our
understanding of material systems at the nanoscale, potentially transforming the
landscape of nanomaterial research and development.
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Chapter 4

Deep Learning Framework Design
for Supervised Representation
Learning in Material Property
Prediction

4.1 Introduction

The main task of materials science consists of a combination of empirical knowl-
edge and theoretical approaches to study the composition and structure of materials
with specific properties. It is also necessary to confirm these materials experimen-
tally, which is rather time-consuming and often depends on serendipity. To over-
come such difficulties, it was the rapid growth of materials informatics (MI) as an
interdisciplinary solution. MI extracts valuable information regarding materials and
their physicochemical behaviors from experimental and computational data using
data-driven techniques, hence accelerating the discovery and development process
of superior materials. (Agrawal and Choudhary, 2016; Ramprasad et al., 2017; Butler
et al., 2018; Siriwardane et al., 2022).

The majority of materials informatics (MI) approaches consist of three essen-
tial components Ward and Wolverton, 2017. The first component includes datasets
that provide details about the structures of materials, measurement outcomes di-
rectly associated with these structures, and physical properties that align with ma-
terial development objectives. The second component, known as representation,
quantitatively describes the data from the first component, offering a fundamental
characterization of materials for identification and analogical reasoning. The final
component involves a system that utilizes machine learning or data mining algo-
rithms—individually or in combination—to extract knowledge from the materials
datasets for specific objectives, such as predicting properties or discovering new ma-
terial compositions and structures.

Traditionally, materials have been defined by their elemental compositions and
structural configurations. Researchers have primarily depended on their exper-
tise and experience—often called tacit knowledge—to anticipate the properties of
hypothetical materials with specific compositions and structures. Computational
chemistry methods grounded in quantum mechanics and exceptionally dense func-
tional theory (DFT) simulations enable the theoretical verification of these composi-
tions and structures through in-silico experiments. However, despite their ability to
provide accurate information on the physical properties of hypothetical materials,
computational experiments have certain limitations. For instance, the vast number
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FIGURE 4.1: Illustrations of approaches for representing material
structure and learning property.

of potential hypothetical materials makes designing materials with desired physi-
cal properties time-consuming and expensive due to the extensive calculations re-
quired. Furthermore, researchers need specialized and detailed knowledge to nar-
row down the potential compositions and material structures effectively.

Unlike traditional methods, materials informatics (MI) approaches begin by trans-
forming basic data descriptions into suitable representations that facilitate mathe-
matical reasoning and inference, as illustrated in Fig. 4.1. Specifically, MI systems
are tasked with estimating both qualitative and quantitative relationships between
materials based on these transformed representations, enabling the discovery of po-
tential patterns within the material data Ramakrishnan et al., 2014; Himanen et al.,
2019; Zhao et al., 2023. Developing material representations—such as designing ma-
terial descriptors or developing methods to learn representations from data—is crit-
ical in MI approaches. The effectiveness of an MI algorithm significantly depends on
the quality of the material representation, directly influencing the algorithm’s per-
formance and aiding in the explanation and interpretation of inference processes and
prediction outcomes Rupp et al., 2012. Recent advancements in automated experi-
mentation and high-performance computing have facilitated the acquisition of vast
experimental and computational data. As a result, there is an increasing demand for
developing explainable and interpretable MI methods to deepen our understanding
of physical and chemical phenomena.

Recently, various deep learning (DL)-based materials informatics (MI) approaches
have been developed to tackle challenges related to material representation and the
prediction of physical properties Schütt et al., 2014; Karamad et al., 2020; Xie and
Grossman, 2018; Rahaman and Gagliardi, 2020. A typical example is the DL archi-
tecture that incorporates a continuous-filter convolution layer with filter-generation
networks, enabling the handling of atomistic systems and the accurate prediction
of properties for both molecular and crystalline materials Schütt et al., 2014. An-
other noteworthy approach utilizes convolutional neural networks based on crystal
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graphs, which can predict material properties with accuracy comparable to density
functional theory (DFT) calculations while also providing atomic-level chemical in-
sights Xie and Grossman, 2018. Beyond these methods, researchers have developed
various other DL architectures designed to encode the local chemical environments
of atoms and enhance prediction accuracy. These works have been achieved by in-
tegrating different material descriptors, applying graph neural networks (GNNs),
and utilizing many-body tensor representations Karamad et al., 2020; Rahaman and
Gagliardi, 2020. Additionally, several studies have incorporated prior knowledge
into neural network models to ensure that the relationships between material struc-
tures and their properties are learned with high fidelity Anderson, Hy, and Kondor,
2019; Fuchs et al., 2020; Vaswani et al., 2017.

However, interpretability is a crucial challenge for traditional and DL-based ma-
chine learning methods. Most machine learning models try to include all the avail-
able information rather than selecting interpretable representations to enhance the
accuracy of the predictions. The nature of the relationship between material rep-
resentations and their properties is complex and nonlinear; therefore, the machine
learning model works like a "black box," with no explicit correlations being mani-
fested. Although the statistical evaluation based on existing data often reveals very
high prediction accuracies, assessing their predictive performance for new materials
is difficult. Moreover, a comprehensive understanding of the physicochemical phe-
nomena by machine learning in order to shed light on these underlying processes
remains a challenge.

Numerous studies have sought to improve model interpretability by integrat-
ing additional information or features. For example, graph convolutional networks
utilize SMILES strings to represent molecules as inputs, which aids in identifying es-
sential fingerprint fragments and facilitates interpretation Duvenaud et al., 2015; Wu
et al., 2018. Despite these advancements, these networks still need help in accurately
predicting the properties of molecular and crystalline materials due to the lack of 3D
structural information. Message-passing neural network-based models (MPNNs)
Fung et al., 2021; Gilmer et al., 2017; Yang et al., 2019 incorporate heuristic bond-
ing information to capture atomic interactions but encounter several issues, includ-
ing handling long-range interactions, ensuring feature interpretability, representing
global information, and maintaining scalability when processing large molecule or
crystal datasets. To address these limitations, recent research has shifted towards
transformer-based networks Fuchs et al., 2020; Chen et al., 2022b; Cao et al., 2023;
Kang et al., 2023; Korolev and Protsenko, 2023; Das et al., 2023; Gunning et al.,
2019; Moran et al., 2023, which leverage attention mechanisms Vaswani et al., 2017.
These networks present a promising approach by modeling interatomic interactions
through attention scores, which reflect the importance of each atom in learning the
representations of other atoms. Subsequently, various pooling methods, such as max
or average pooling Pham et al., 2019; Schütt et al., 2018; Moran et al., 2023; Fuchs et
al., 2020; Anderson, Hy, and Kondor, 2019; Wu et al., 2021b; Schweidtmann et al.,
2023; Xu et al., 2019, are employed to generate a comprehensive representation of
the entire structure. However, extracting meaningful structure-property relation-
ships from these transformer-based networks remains a challenging and complex
task.
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4.2 Integrating Domain Knowledge into Model Design Strate-
gies

Developing advanced machine learning models for materials science necessitates
metic harmonizing domain-specific knowledge with computational techniques. This
integration is pivotal because materials science encompasses complex phenomena
governed by the laws of chemistry and physics. By embedding chemical and physi-
cal insights into the model design, we can significantly enhance predictive accuracy
and interpretability. Such embedding ensures that the models are mathematically
robust and deeply aligned with the fundamental principles governing material be-
havior. This alignment facilitates models that can generalize better, offer meaningful
insights, and ultimately contribute to accelerated material discovery and innovation.

4.2.1 Designing Output Targets for Material Property Prediction

The ultimate objective in materials modeling is to accurately predict material proper-
ties and gain insights into the underlying structure-property relationships. Achiev-
ing this dual goal requires the development of highly predictive and inherently in-
terpretable models. To realize this, we first define our desired outputs:

• Precise Property Predictions: The model should reliably and accurately predict
material properties, enabling the identification and characterization of materi-
als with desired functionalities.

• Meaningful Interpretations of Structure-Property Relationships: The model
should provide insights into how specific structural features contribute to ma-
terial properties, highlighting the regions or components within a material that
are most influential.

While structure-property relationships in materials are inherently complex and
span a wide range of aspects—including electronic structure, bonding, defects, and
microstructure—we narrow down our focus to make the problem tractable within a
computational and deep learning (DL) framework. By setting up the second output
to qualitatively estimate the contribution of different regions within the material’s
structure to its properties, we create a pathway for the model to identify and em-
phasize these critical areas.

4.2.2 Designing material structures transformations based on output

Understanding that material properties are intrinsically linked to atomic and molec-
ular structures, we prioritize input representations that capture essential chemical
and physical characteristics. This involves selecting features that reflect the local
atomic environments and their interactions, which are critical determinants of ma-
terial properties. To address this, we propose using representations built upon lo-
cal structures. By focusing on local atomic environments, we can more accurately
model the interactions that govern material properties. Local structures encapsulate
information about an atom’s immediate neighbors, bond lengths, bond angles, and
coordination geometry, which are fundamental to understanding chemical bonding
and physical interactions.

Building input representations from local structures involves constructing de-
scriptors that capture the geometry and chemistry of an atom’s neighborhood. This
approach aligns with the chemical intuition that an atom’s properties are influenced
by its local environment.
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FIGURE 4.2: Comparison of the descriptive ability of local structure
representation methods: (1) Distance-based descriptors, emphasizing
pairwise atomic distances; (2) Voronoi-based descriptors, focusing on
spatial partitioning and local atomic environments; and (3) Angle-
based descriptors, capturing angular relationships to highlight geo-

metric orientation.

• Local Atomic Environments: For each atom in the material, we consider its
neighboring atoms within certain conditions. This neighborhood defines the
local atomic environment, characterized by interatomic distances, angles, and
the types of neighboring atoms.

• Voronoi Tessellation: We utilize Voronoi tessellation to partition space and de-
fine local environments more naturally. This method divides space into regions
based on the proximity to atoms, resulting in Voronoi polyhedra representing
each atom’s spatial influence. Voronoi-based descriptors effectively capture
atoms’ spatial arrangement and connectivity, which are crucial for modeling
material properties as shown in Fig 4.2.

• Distance-Based and Angle-Based Descriptors: We incorporate descriptors that
quantify interatomic distances and Voronoi solid angles. These geometric fea-
tures are essential for characterizing the local geometry and understanding
how atomic arrangements influence material properties.

• Chemical Feature Embeddings: We embed chemical information like atomic
numbers into the input representations. This embedding allows the model
to consider geometric and chemical factors when learning structure-property
relationships.

By constructing input representations emphasizing local structures with domain
specific knowledge, we provide the model with rich, detailed information about the
material’s atomic-scale configuration. This approach enhances the model’s ability
to learn meaningful patterns and relationships grounded in chemical and physical
reality.
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4.2.3 Model architecture design incorporating Materials science princi-
ples

We began designing our model architecture by grounding our approach in funda-
mental materials science principles. Recognizing that multiple-scale interactions
determine material properties—from atomic-level interactions to collective behav-
iors—we aimed to create a model that mirrored this hierarchical nature. By inte-
grating domain knowledge into the architectural design, we ensured that the model
predicted material properties accurately and provided interpretable insights into the
underlying structure-property relationships.

• Local structure representation: The model design should first focus on captur-
ing the interactions within local atomic environments. This involves learning
representations that encapsulate the essential features of an atom and its im-
mediate neighbors, such as bonding patterns and geometric configurations. By
doing so, the model aligns with the chemical intuition that local environments
are foundational to material behavior.

• Global structure repsentation: Simultaneously, the model must incorporate a
mechanism to understand how these local structures interact and contribute
to the material as a whole. Drawing from domain knowledge, we recognize
that not all local structures equally impact a material’s properties; certain re-
gions or configurations may play a more pivotal role. By designing the model
to weigh the importance of different local structures when forming a global
representation, we ensure that significant features are emphasized, mirroring
the material’s true physical and chemical priorities.

Essentially, aligning the model architecture with domain knowledge involves
creating a system reflecting the materials’ hierarchical and interconnected nature. By
capturing detailed local interactions and effectively integrating them into a coherent
global understanding, the model can more accurately predict properties and provide
meaningful insights within the context of materials science. This design strategy
leverages fundamental principles to guide architectural choices, ensuring that the
model is not just a computational tool but also a representation of the material’s
intrinsic characteristics.

4.2.4 Designing loss functions and evaluation metrics for accurate prop-
erty prediction

In developing a supervised learning model for materials science, designing the loss
function and learning strategy in alignment with domain knowledge is essential to
ensure both accurate predictions and meaningful interpretations. The choice of tar-
get properties, the formulation of the loss function, and the evaluation metrics all
play pivotal roles in this process.

The selection of target properties for prediction is guided by understanding which
material properties can be meaningfully interpreted within the model’s framework.
Not all properties are equally suitable for interpretation based on local and global
structural features. For instance, properties like electronic band gaps, formation en-
ergies, or mechanical strengths are directly influenced by atomic configurations and
are thus appropriate targets. These properties have well-established correlations
with structural features, making them conducive to models that aim to interpret



4.2. Integrating Domain Knowledge into Model Design Strategies 67

structure-property relationships. We ensure the model’s predictions and interpreta-
tions are meaningful and relevant by focusing on properties where domain knowl-
edge indicates a structure-property solid relationship.

The loss function is a critical component that directs learning by quantifying the
discrepancy between the model’s predictions and the actual values. The Mean Ab-
solute Error (MAE) is often the primary loss function for the supervised learning
model. MAE measures the average magnitude of errors without considering their
direction, making it a straightforward and interpretable metric.

While the loss function addresses prediction accuracy, evaluating the model’s in-
terpretability requires additional metrics that involve domain expertise and physical
validation. Interpretation in materials science often necessitates confirming that the
model’s internal representations and outputs align with known physical laws and
chemical principles.

• Expert Knowledge Evaluation: Scientists and engineers assess the model’s in-
terpretative outputs—such as feature importances—to determine if they cor-
respond with an established understanding of material behavior.

• Physical and Mathematical Confirmation: To validate the found knowledge,
the model’s interpretations are compared against theoretical calculations, sim-
ulations, or experimental data. For example, if the model highlights specific
atomic configurations as critical, this should be consistent with known structure-
property relationships.

By involving domain experts and leveraging physical and mathematical analyses,
we ensure that the interpretability metrics are grounded in reality and provide mean-
ingful insights.

Integrating domain knowledge into model design strategies is crucial for ad-
vancing machine learning applications in materials science. By starting with the
desired outputs—accurate property predictions and meaningful interpretations of
structure-property relationships—we inform our choices for input representations,
model architecture, and learning strategies. We create robust and interpretable mod-
els by embedding domain knowledge consistently at every stage of the model de-
velopment. These models serve as powerful tools for property prediction and con-
tribute to a deeper understanding of structure-property relationships, ultimately ac-
celerating innovation and discovery in materials science. The specific details and
implementation of the model—including input representations, architectural com-
ponents, and learning strategies—are presented in the following methodology sec-
tion.

Based on all these desin strategies, this study presents an interpretable DL archi-
tecture that integrates attention mechanisms to predict material structural properties
and elucidate the relationships between structure and properties. The proposed ar-
chitecture begins by learning representations of local atomic structures within a ma-
terial through the recursive application of attention mechanisms to the surrounding
atoms. The overall material structure representation is then derived from these lo-
calized atomic representations. This architecture employs attention mechanisms to
incorporate information about the geometric configurations of neighboring atoms
into the local structure representations. Furthermore, it quantitatively assesses the
degree of attention each local structure receives from a global perspective when
forming the material structure representation. By training the model with a specific
target property, our approach facilitates the interpretation of the structure-property
relationships in materials.
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FIGURE 4.3: Illustrations of representations for local structure and
material structure. Schematics of (a) the learning recursive represen-
tation of a local structure (central atom and its neighboring atoms)
within the molecular structure of phenol (C6H5OH), and (b) measure-
ment of the global attention given to a local structure when determin-

ing representation of the molecular structure.

4.3 Methodology

We introduce a DL architecture named the self-consistent attention neural network
(SCANN). SCANN is designed to represent material structures by focusing on the
local atomic structures and assigning learned weights to them, thereby enabling both
the prediction and interpretation of material properties. The primary objective of
SCANN is to recursively learn consistent representations of these local atomic struc-
tures within a material, as illustrated in Fig. 1a. These local representations are then
appropriately combined to form an overall representation of the material’s structure.
A detailed overview of the proposed SCANN architecture is provided in Figure 4.3.

4.3.1 Characterization of material structure

In this study, each material structure S in a dataset D is represented using the co-
ordinates of M atoms (AS = {a1, a2, · · · , aM}) and the corresponding of its atomic
numbers Z. The atomic number Z of an atom ai (1 ≤ i ≤ M) is considered and
represented using a v-dimensional embedding vector ei (ei ∈ Rv). Next, a linear
function Fe : Rv → Rh is learned to project this information to provide a better rep-
resentation of atom ai. Consequently, atom ai is represented by an h-dimensional
vector c0

i = Fe(ei). The vector c0
i ∈ Rh is used as the initialization of local structure

for the local attention layers computation in the next steps. Hereinafter, we denote
the matrix C0 = [c0

i ]1≤i≤M as [c0
i ]1≤i≤M = [c0

1, c0
2, ..., c0

M].
Each local structure consists of a central atom, its neighboring atoms, and their

arrangement around the central atom. To determine the neighboring atoms and
segment each material structure into local structures, we employ the definition of
O’Keeffe (O’Keeffe, 1979; Pham et al., 2017) instead of the assumption about chem-
ical bonds between the atoms in the structure. According to O’Keeffe’s definition,
all atoms at these atomic sites share Voronoi polyhedron faces with the atomic site
of an atom under consideration (the central atom of the local structure) and are re-
garded as neighboring atoms. Subsequently, the local structures of the neighboring
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atoms are referred to as the neighboring local structures. By incorporating the in-
formation from the Voronoi polyhedron faces, we assess the geometrical influences
of neighboring atoms on the central atoms for conveying the structural informa-
tion of structure S to SCANN for learning the appropriate representation of S. The
Voronoi method is employed to accurately identify neighboring atoms within a lo-
cal structure, leveraging material domain knowledge and aligning with the logical
framework of our approach, as illustrated in Fig. 4.2.

For each atom ai in the structure S, the Voronoi tessellation is utilized to deter-
mine Ni ⊂ AS, which contains N atoms whose atomic sites share Voronoi polyhe-
dron faces with an atomic site of ai. Subsequently, the geometrical influence of a
neighboring atom aj ∈ Ni on atom ai is represented by a vector gij ∈ Rh. This vector
is defined by combining the Euclidean distance dij (Å) and Voronoi solid angle θij ∈
[0, 4π] information between the atoms (Pham et al., 2017). The Euclidean distance
dij is expanded by using k Gaussian basis functions ϕi(x) = exp(−(x − µd

k)/2σ2)

located at each centers 0 Å < µd
k < dt Å for every σ = 0.5 Å (Chen et al., 2019; Schütt

et al., 2018). Next, the distance embedding layers is defined as shown below:

DE(dij) = Fd([ϕ1(dij), ϕ2(dij), . . . , ϕk(dij)]) (4.1)

(4.2)

where Fd : Rk → Rh is the fully-connected layer with a Swish activation function
(Ramachandran, Zoph, and Le, 2017). Subsequently, the geometrical influence g0

ij ∈
Rh is defined as follows:

g0
ij = DE(dij)×

θij

max(θik)
(4.3)

A comprehensive depiction of the proposed SCANN architecture is presented in
Figure 4.4.

4.3.2 Local attention layers

The SCANN architecture comprises a series of L local attention layers, each utilizing
attention mechanisms (Vaswani et al., 2017) to represent the local structures within
a material structure. The SCANN, with the design of multiple layers of local atten-
tion, could iteratively learn and enhance the consistency of local structure represen-
tations, thereby providing insights regarding long-range interactions between these
local structures. At the (l + 1)th local attention layer, the representation cl+1

i ∈ Rh

of local structure {ai,Ni} is derived from the representation vectors in the preced-
ing layer of itself (cl

i), its N neighboring local structures (Cl
Ni

= [cl
j]aj∈Ni ), and the

geometrical influence (Gl
Ni

= [gl
ij]aj∈Ni ) as follows:

cl+1
i = LocalAttentionl+1(cl

i , Cl
Ni

× Gl
Ni
) (4.4)

= Attention(ql
i , Kl

Ni
) + ql

i

= so f tmax(ql
i
⊤

Kl
Ni
)Kl

Ni
+ ql

i

= ∑
aj∈Ni

αl
ijk

l
j + ql

i ,
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representation to predict material properties.

where Kl
Ni

= [Cl
Ni

× Gl
Ni
]Wl

k = [kl
1, kl

2, ..., kl
N ] and ql

i = cl
iW

l
q (kl

j, ql
i ∈ Rh) are

the degree each atom aj influencing the atom ai and degree atom ai accepting the
influence from the neighboring atoms, respectively. In addition, Wl

q and Wl
k ∈ Rh×h

are the trainable weight parameters. The local attention score αl
ij can be interpreted

as the degree of attention to which the information of the local structure centered at
atom aj should be referred to appropriately represent the local structure centered at
atom ai:

αl
ij =

esij

∑ak∈Ni
esik

, sij = ql
i
⊤

kl
j. (4.5)

The local attention layers are learned to ensure that the neighboring atoms aj ex-
erting a more significant impact on the central atom ai have higher sij scores. Herein,
a softmax function is used to normalize these scores to the interval [0, 1] to obtain the
attention scores αl

ij. The sum of the attention scores of the neighboring atoms aj is
1 (∑aj∈Ni

αl
ij = 1). Consequently, we employed the standard attention mechanism

Vaswani et al., 2017 to create the representation for the local structure as follows.

cl+1
i = LayerNorm(Fn(cl+1

i ) + cl+1
i ), (4.6)

where Fn : Rh → Rh is a fully-connected layer with a Swish activation function, and
LayerNorm is the layer normalization (Ba2016layer).

By employing multiple local attention layers, the attention information related to
a target property within a material structure S can through the attention interactions
among neighboring local structures. In our evaluation experiments, SCANN models
utilize L local attention layers, with the number of layers L being adjusted to opti-
mize performance for each specific dataset. Consequently, we preserve the structural
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information of S from the representations of all its local structures obtained from the
final local attention layer, to produce CL, where CL = [cL

i ]ai∈AS .

4.3.3 Material structure representation

Previous research has typically represented a material structure by aggregating its
local structures using operations such as summation or pooling. However, these
methods either assume that all local structures contribute equally (as in sum and
average pooling) Pham et al., 2019; Schütt et al., 2018; Moran et al., 2023; Fuchs
et al., 2020; Anderson, Hy, and Kondor, 2019 or concentrate on a single specific
local structure (as in max and min pooling) Wu et al., 2021b; Schweidtmann et
al., 2023; Xu et al., 2019. These approaches can hinder the clear understanding of
structure–property relationships. To overcome this limitation, SCANN represents a
material structure as a linear combination of the representation vectors of its local
structures, where the global attention (GA) scores of each local structure act as the
coefficients.

SCANN again utilizes the dot-product key-query attention (Vaswani et al., 2017)
to coherently learn the representation of local structures and integrate them into
the representation of material structure in a target-dependent manner. We define
Qg = CLWg

q = [qg
1 , qg

2 , ..., qg
M] and Kg = CLWg

k = [kg
1 , kg

2 , ..., kg
M] as query and key

matrix, where Wg
k, Wg

q ∈ Rh×h are learnable parameters of the global-attention layer.
Then, we compute the attention matrix A = QgKg⊤ ∈ RM×M in the same manner
as previous local attention layers.

When representing the material structure S, we propose that local structures
receiving higher cumulative attention scores from other local structures should be
given priority. Consequently, the degree of attention to a local structure {ai,Ni}
in S is quantitatively modeled by summing all the attention it receives from other
atoms. We show here the details for calculating the Global attention (GA) score of
local structure {ai,Ni} as the sum of the attention from all query vectors qg

j (j ̸= i)
to the key vector kg

i as shown below:

si =
M

∑
j=1

[A(1 − I)]j,i =
M

∑
j,j ̸=i

qg
j
⊤kg

i , (4.7)

where I is denoted for the identity matrix. In practice, these scores si are normalized
by using the ℓ2 normalization to prevent the sum of them from becoming extremely
high in structures that contain a significant number of atoms, as follows:

ŝi =
si

||[s1, · · · , sM]||2
(4.8)

The function ρ(.) is designed based on the hypothesis that significant attention should
be given to a local structure if its representation is crucial for accurately representing
other local structures to interpret the structure-property relationship in S effectively,
as follows:

ρ(A) = αg = softmax([ŝ1, ŝ2, ..., ŝM]) (4.9)

The representation vector xS of the material structure S is then formulated by ag-
gregating the representations of M local structures according to the obtained global
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attention (GA) scores, as follows:

xS = GlobalAttention(CL) (4.10)
= SAttention(Qg, Kg)

= ρ(Qg⊤Kg)Kg = ρ(A)Kg

= αgKg =
M

∑
i=1

α
g
i kg

i ,

The GA score αg = [α
g
1 , α

g
2 , ..., α

g
M], which describe the degrees of attention paid

to each local structure in S, are used to reveal critical aspects to help interpret the
structure-property relationship of S.

Consequently, the physical property yS of the material structure S can be pre-
dicted from the learned representation xS with fully connected layers FS, as follows:

ŷS = FS(xS) (4.11)

The design of the SCANN architecture, especially the inclusion of a fully con-
nected layer, is specifically crafted to capture the intricate and nonlinear relation-
ships between representations and their corresponding properties. Additionally, the
GA scores αg of the local structures, derived from the global attention layer, aid
in identifying key factors that enhance the understanding of the material’s struc-
ture–property relationships.

4.3.4 Refining Model Design: From SCANN to SCANN+ through Itera-
tive Development

The design of SCANN was iteratively refined to address limitations and incorporate
improvements inspired by observed trends during preliminary evaluations and the-
oretical analysis. The updated model, SCANN+, integrates enhanced mechanisms
to better capture complex local structures and their interactions within materials.
Key updates include modifications to the geometry influence for improved repre-
sentation learning and adjustments to the architecture to optimize performance in
predictive tasks. These enhancements were guided by a continuous feedback loop,
ensuring alignment with the model’s objectives and the dynamic nature of material
data representation. The SCANN+ introduced the embedding vector for the Voronoi
solid angle θij as follows:

g0
ij = DE(dij)× AE(θij), (4.12)

where DE(dij) and AE(θij) are the distance and angle embedding layers correspond-
ing to the distance dij and angle θij of an h-dimensional vector. Similar to the dij ,
the Voronoi solid angle θij is also expanded by k Gaussian basis functions ϕi(x) =
exp(−(x − µa

k)/2σ2) at each center 0 rad < µa
k < 4π rad for every σ = 0.5 rad and

applied to the angle embedding layer. Next, the embedding layers is defined as
shown below:

AE(dij) = Fa([ϕ1(θij), ϕ2(θij), . . . , ϕk(θij)]) (4.13)

where Fa : Rk → Rh is the fully-connected layer with a Swish activation function.
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In addition, the geometry influences between the neighbor cl
j and the center cl

i
are updated based on the following formulation:

gl+1
ij = Fl

g([c
l
i ⊕ gl

ij ⊕ cl
j]) + gl

ij, (4.14)

where ⊕ denotes the concatenating vectors and Fg : Rh → Rh is a fully connected
(FC) layer.

These updates collectively improve the iterative information propagation through
layers, enabling a more effective and nuanced representation of material structures.
By refining the modeling of geometric influences, SCANN+ enhances its ability to
capture the complex spatial relationships and local structural interactions that are
critical for accurately predicting material properties. This advancement ensures a
more comprehensive integration of distance and angular dependencies, aligning the
model with the dynamic and multidimensional nature of material data.

4.3.5 Loss design and Model training

The training of the DL model using the proposed architecture begins with initializ-
ing all learnable parameters. Weighting matrices such as Wl

q, Wl
k, Wg

q, and Wg
k are

initialized as random matrices using the Glorot Uniform method Glorot and Bengio,
2010, while all bias vector entries are set to zero. To enhance regularization, dropout
layers, and attention dropout Vaswani et al., 2017 are applied within the local atten-
tion layers at a rate of 0.1.

During the training process, all parameters of the proposed DL model are up-
dated by minimizing a loss function using Adam optimization Kingma and Ba, 2017,
with a scheduled learning rate decay ranging from 5 × 10−4 to 10−4. To predict the
physical property yS of a material structure S in the training dataset D, the loss func-
tion is defined as follows:

L =
1
|D| ∑

S∈D
(yS − ŷS)

2 (4.15)

Remarkably, SCANN consists of fewer than one million parameters, primarily
influenced by the configuration settings of the number of LocalAttention layers (L).
Appendix Table II presents the epoch-wise time cost for the QM9 dataset with a
batch size 128. SCANN excels in training times per epoch and is notable for its com-
mendable memory efficiency, making it highly suitable for practical deployment.

4.3.6 Experimental design

In this study, we develop two variants of deep learning models based on the pro-
posed SCANN architecture and its enhanced version, SCANN+. Each variant is
trained independently on different datasets with distinct target properties to as-
sess the architecture’s effectiveness in predicting these properties and its capability
to elucidate structure-property relationships (interpretability) across five molecular
and crystal structure datasets (see Table 4.1). The properties within these datasets are
derived from quantum mechanical calculations performed using density functional
theory (DFT). The data is divided into training, validation, and test sets to evaluate
predictive performance. The models are trained on the training set and optimized
to minimize the mean absolute error (MAE) on the validation set. The MAEs for
the predicted target properties on the test sets are then reported and compared with
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ALIGNN

MEGNet SchNet

SE(3)-Trans

FIGURE 4.5: Illustration of four neural networks designed for mate-
rials with their key innovations. MEGNet (Chen et al., 2019): inclu-
sion of state attributes. SchNet (Schütt et al., 2018): convolution filter
for atomic interaction. ALIGNN (Choudhary and DeCost, 2021): up-
dating bond angle representations by line graph. SE(3)-Trans (Fuchs
et al., 2020): equivalence network for rotations and translations.
Reprinted and adapted with permission from Refs. Chen et al., 2019;

Schütt et al., 2018; Choudhary and DeCost, 2021; Fuchs et al., 2020.

other models documented in the literature. From this point forward, the models im-
plemented using the SCANN architecture and trained on their respective datasets
will be referred to as SCANN models.

We assessed the predictive capabilities of the SCANN models by comparing
them with seven DL models using the QM9 dataset (Ramakrishnan et al., 2014). The
models compared include SchNet (Schütt et al., 2018), and MEGNet (Chen et al.,
2019), all of which employ graph neural networks to represent molecules or crystals
as atomistic graphs. Additionally, Cormorant (Anderson, Hy, and Kondor, 2019)
and SE(3)-Trans (Fuchs et al., 2020) are variants of graph neural networks that inte-
grate physical constraints, such as covariant or equivalence principles, on the three-
dimensional coordinates of atoms. On the other hand, ALIGNN (Choudhary and
DeCost, 2021), the leading network in this area, utilizes an extra line graph where
bonds act as nodes, and edges represent the angular relationships between bonds
in addition to the atomistic graph. These added information allows ALIGNN to
effectively capture the geometric arrangement of triplets of atoms in a molecule or
crystal.

Furthermore, the interpretability of the SCANN models is assessed by examin-
ing the relationship between the learned GA scores of the local structures and the
corresponding results from first-principles calculations. The results demonstrate
the ability of the SCANN models to provide valuable information regarding the
structure–property relationships of materials in four scenarios: the local structures
and HOMO/LUMO molecular orbitals (QM9 Ramakrishnan et al., 2014 and Fullerene-
MD Vu and Chi, 2023), the deformation energy ∆U and the deformation of the
Pt/graphene structures (Pt/graphene-MD Vu and Chi, 2023).
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TABLE 4.1: Summary of datasets used in evaluation experiments. The
table shows information of five datasets regarding eight properties
analyzed with the SCANN models, including dataset size (number
of molecules/crystals - #Size), number of atoms present in structures

(#Atoms), and the specific physical properties examined.

Dataset #Size #Atoms Properties

QM9 (Ramakrishnan et al., 2014) 130,831 4 to 29 EHOMO , ELUMO,

Egap, α, Cv

Fullerence-MD (Vu and Chi, 2023) 3000 60, 70, 72 EHOMO , ELUMO

Pt/Graphene-MD (Vu and Chi, 2023) 21,666 103 ∆U

EHOMO (meV): Energy of the highest occupied molecular orbital; ELUMO (meV): Energy
of the lowest unoccupied molecular orbital; Egap (meV): Energy HOMO-LUMO gap; α

(Bohr3): Isotropic polarizability; Cv (cal mol−1 K−1): Heat capacity at 298 K; ∆U (eV): De-
formation energy; ∆E (meV atom−1): Formation energy per atom; Eg (meV): Band gap.

4.4 Case Study 1: Material property prediction for small molecules

The QM9 dataset, as described in Ramakrishnan et al., 2014, is an extensive repos-
itory containing data on 133,885 drug-like organic molecules, predominantly com-
posed of five elements: carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and
fluorine (F). During the refinement process for our analysis, 3,054 entries were ex-
cluded due to concerns about their geometric stability, as noted in Anderson, Hy,
and Kondor, 2019. Consequently, the final dataset consists of 130,831 well-defined
molecules, which are the foundation for our subsequent experiments.

To evaluate the predictive performance of the SCANN models, we focus on five
key physical properties derived from the QM9 dataset. These properties are essential
for understanding molecular behavior and include:

1. The energy of the highest occupied molecular orbital (EHOMO), which provides
insights into a molecule’s electron-donating capabilities.

2. The energy of the lowest unoccupied molecular orbital (ELUMO) helps deter-
mine a molecule’s electron-accepting potential.

3. The energy gap (Eg), calculated as the difference between ELUMO and EHOMO,
indicating the molecule’s stability and reactivity.

4. The isotropic polarizability (α) measures how easily an external electric field
can distort the electron cloud of a molecule.

5. The heat capacity at 298 K (Cv) reflects how a molecule absorbs and stores
thermal energy at room temperature.

In the context of dynamic phenomena, the QM9 dataset provides valuable in-
sights into the foundational quantum interactions that govern molecular behavior.
Although the dataset primarily consists of static molecular structures, its quantum
mechanical properties directly influence the dynamic processes in materials, such
as:
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• Electronic Dynamics: Properties like the HOMO-LUMO gap and polarizability
provide a basis for understanding electronic transitions and responses, which
are crucial for dynamic phenomena like charge transport and exciton diffusion
in materials.

• Structural Transformations: The dataset’s inclusion of molecular geometries
allows exploration of how atomic arrangements evolve under external stimuli,
laying the groundwork for understanding structural dynamics at larger scales.

• Transfer Learning: Pre-trained models on QM9 capture fundamental chemical
relationships and patterns that can be transferred to other datasets or related
tasks. This is especially beneficial when working with limited data on dynamic
processes, as the model has already learned basic chemical principles.

In our experiments, we compare the predictive capabilities of the SCANN mod-
els against those of several recent state-of-the-art DL models, aiming to advance our
understanding of molecular property predictions.

4.4.1 Evaluation of the predictive performance

To evaluate the predictive capability of SCANN in forecasting five physical mate-
rial properties within the QM9 dataset, we perform train–validation–test splits in
an 80:10:10 ratio. Additionally, six DL methods are employed for comparison, with
their prediction accuracies assessed using mean absolute error (MAE). The evalu-
ation process is repeated five times to calculate an average MAE for the test set,
thereby providing a robust assessment of the model’s predictive performance Fuchs
et al., 2020; Anderson, Hy, and Kondor, 2019.

Table 4.2 presents the average Mean Absolute Error (MAE) scores obtained from
five training runs of the SCANN models and scores from competing models on the
QM9 dataset. The ALIGNN model outperforms all other competing models across
the four properties evaluated. In comparison, the MAEs of the SCANN models are
2 to 2.5 times higher than those of ALIGNN. Despite this disparity, SCANN demon-
strates competitive performance relative to other remaining models, particularly in
predicting EHOMO, ELUMO, and Eg.

Incorporating traditional prior knowledge—such as numerous atomic features
and bonding information between atoms Choudhary and DeCost, 2021; Chen et al.,
2019; Xie and Grossman, 2018—or integrating physical constraints like equivalen-
cies, covariates, and equations Anderson, Hy, and Kondor, 2019; Fuchs et al., 2020;
Hirn, Mallat, and Poilvert, 2017 into the learning process for structural representa-
tions can enhance prediction accuracy. For instance, the ALIGNN model outper-
formed all competing models by introducing additional angular information among
triplets of atoms. In contrast, other models only considered two-body interactions
(such as distances and bond valences). To better capture the geometrical structures
of molecules or crystals, we developed an enhanced version of SCANN, termed
SCANN+, which includes minor modifications to the original architecture by incor-
porating a Voronoi solid angle embedding layer and refining the geometrical infor-
mation through multiple LocalAttention layers. These enhancements significantly
improve the method’s predictive capabilities; the SCANN+ models outperform all
other competitors, except for the ALIGNN model, in predicting electronic proper-
ties (EHOMO, ELUMO, and Eg in the QM9 dataset; that are sensitive to the geometrical
structure of molecules or crystals (see Tables 4.2). The performance of SCANN+ on
the training data for each property is shown in the Fig. qm9_reg
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TABLE 4.2: Comparative evaluation of SCANN, SCANN+, and six
other DL models predicting five physical properties using the QM9

dataset.

EHOMO ELUMO Egap α Cv

(meV) (meV) (meV) (Bohr3) (cal mol−1 K−1)

WaveScatt 85 76 118 0.160 0.049

SchNet 41 34 63 0.235 0.033

MEGNet 38 31 61 0.081 0.030

Cormorant 34 38 61 0.085 0.026

SE(3)-Trans 35 33 53 0.142 0.054

ALIGNN 21 19 38 0.056 –

SCANN 41 37 61 0.141 0.05

SCANN+ 32 31 52 0.115 0.041

EHOMO: Energy of the highest occupied molecular orbital; ELUMO: Energy of the lowest
unoccupied molecular orbital; Egap: Energy gap; α: Isotropic polarizability; Cv: Heat ca-
pacity at 298 K. The dash symbol (–) indicates the result has not been reported yet. The
bold numbers denote the lowest mean absolute errors (MAEs) among the eight models.

Implementing these strategies increases dimensionality, which can introduce bi-
ases into the model. This bias may favor certain materials while overlooking others,
or it may lead to an oversimplification of complex phenomena that arise from the
constraints or inaccuracies present in the heuristic information utilized during the
training phase. Consequently, these challenges can hinder a detailed understanding
of the critical structure–property relationships that are central to this study’s objec-
tives. In the context of the QM9 dataset, the field recognizes specific benchmarks
for "chemical accuracy". These thresholds are notably set at 43 meV for the three
energy-related properties: t EHOMO, ELUMO, and Eg; 0.1 Bohr3 for the isotropic po-
larizability α; and 0.05 cal mol−1 K−1 for the heat capacity Cv at 298 K (Faber et
al., 2017). Notably, the SCANN models demonstrated impressive performance by
achieving a prediction error of 41 meV for EHOMO, 34 meV for ELUMO and 0.05 cal
mol−1 K−1 for Cv. These results indicate that the models have successfully fulfilled
the criteria for chemical accuracy regarding these specific properties.

In practical applications, it is often unnecessary to surpass the threshold for
chemical accuracy by simply increasing the complexity of the models used. This
is particularly true when the data originates from DFT calculations. Adopting a
more complicated model can risk overfitting the data or introducing biases, which
in turn can compromise the model’s interpretability and obscure the underlying
chemical principles. Therefore, we focus on examining the relationship between the
molecules structures within the QM9 dataset and their associated properties (EHOMO
and ELUMO) by using the GA scores obtained from the SCANN models instead of
those from the more complex SCANN+ model, which possesses higher dimension-
ality and more parameters.
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FIGURE 4.6: Illustration of regression performance of SCANN+ on
five properties in QM9 dataset.

4.4.2 Correspondence between the learned attentions of local structures
and the molecular orbitals of small molecules:

For the small molecules in the QM9 dataset, the SCANN models demonstrate a re-
markable correspondence between the obtained GA scores of the local structures
and molecular orbitals results obtained via DFT calculations. As a representative
example, Figure 4.7 shows the comparison between the GA scores of the local struc-
tures and the HOMO/LUMO orbitals obtained from DFT calculations for four molecules.
Notably, an apparent correspondence between the relative GA scores of the local
structures and the HOMO orbitals of the dimethyl butadiene molecule (cis-2,3-dimethyl-
1,3-butadiene) is evident (Fig. 3a). Furthermore, the GA scores of the local structures
can be easily linked to the interpretation that dimethyl butadiene readily undergoes
the Diels–Alder reaction. Similarly, the correspondence between the HOMO orbital
and the GA scores of the local structures is apparent for the thymine molecule (5-
methyl pyrimidine-2,4 (1H,3H)-dione), which is a nucleobase in DNA (Fig. 4.7b).

Moreover, similar correspondences are confirmed between the GA scores of the
local structures and the LUMO orbitals obtained from the DFT calculations for methyl
acrylate (methyl prop-2-enoate) and dimethyl fumarate (dimethyl(2E)-but-2-enedioate).
Methyl acrylate is a reagent that is commonly used in the synthesis of various phar-
maceutical intermediates (Ohara et al., 2020), whereas dimethyl fumarate has been
proposed to exhibit immunomodulatory properties without causing significant im-
munosuppression (Schulze-Topphoff et al., 2016); thus, it has been evaluated as a
potential treatment for COVID-19 (Mantero et al., 2021). The apparent correspon-
dence between the LUMO orbitals and the GA scores of the local structures of these
two molecules (Fig. 4.7c and d) further highlight that the attention scores of the
SCANN model provide valuable insights to interpret the structure–property rela-
tionships of molecules. Further investigations show that the obtained GA scores
from the SCANN+ models are almost consistent with those of the SCANN models
for these molecules.
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FIGURE 4.7: Visualization of structure–property relationships in the
QM9 dataset, showing the correspondence between GA scores and
molecular orbitals for four molecules: (a) dimethyl butadiene, (b)
thymine, (c) methyl acrylate, and (d) dimethyl fumarate. For each
molecule, the left side of the figure illustrates the wave function of the
HOMO (a), (b), or the LUMO (c), (d), as calculated via DFT. The iso-
surfaces with positive and negative values of the wave functions are
represented by blue and red lobes, respectively. The right-side figures
display the GA scores of the local structures derived from the SCANN
models, where atom colors indicate estimated GA scores; link colors
do not signify the sign or nodes of the molecular orbital wave func-

tions.

All carbon, nitrogen, and oxygen atomic sites in the QM9 dataset were statisti-
cally analyzed for a systematic evaluation of the GA scores obtained by the SCANN
models. Since the GA scores of atomic sites were normalized to 1, the relative GA
scores were calculated based on the average GA score of the sp3-hybridized carbon
atoms in each molecule. Molecules without any sp3-hybridized carbon atoms were
excluded (Fig. 4.8). The analysis of the GA scores for the HOMO energy reveals that
the influence on HOMO follows the order of oxygen, nitrogen, and carbon. Specifi-
cally, sp3-hybridized carbon sites have a lower influence compared to sp2-hybridized
or sp-hybridized carbon sites (Fig. 4a). These findings align with the electronegativ-
ity and bonding characteristics of the elements. Oxygen and nitrogen exhibit strong
electronegativity and electron-rich regions in π-bonds, leading to a more significant
electron density shift and higher HOMO energy localized around oxygen, nitrogen,
and carbon sites with double or triple bonds.

In contrast, the GA scores for the LUMO energy show no significant difference
among the three elements. This observation is consistent with the understanding
that unoccupied orbitals primarily influence the LUMO energy, resulting in a less
pronounced difference in electronegativity compared to its impact on the HOMO
energy (Fig. 4.8b).
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FIGURE 4.8: Correspondence between obtained GA scores of carbon,
nitrogen, and oxygen atomic sites and molecular orbitals of molec-
ular structures in QM9 dataset. Statistics of the relative GA scores
for EHOMO (a) and ELUMO (b) for all carbon, nitrogen, and oxygen
atomic sites in the molecular structures of the QM9 dataset, calcu-
lated based on the average GA score of sp3-hybridized carbon atoms
in each molecule. Gray, blue, and red lines and filled regions repre-
sent the statistics for carbon, nitrogen, and oxygen sites, respectively.

4.5 Case Study 2: Material property prediction for molecular
dynamics of fullerene molecules

Fullerene-MD (Vu and Chi, 2023) is an in-house developed computational mate-
rial dataset comprising data on three well-known fullerene molecules: C60 (Ih), C70
(D5h), and C72 (D6h). Fullerenes are a class of carbon allotropes characterized by
their closed-cage structures, which exhibit unique electronic, optical, and mechan-
ical properties. These molecules have garnered significant attention due to their
potential applications in various fields, including materials science, electronics, nan-
otechnology, and medicine. For instance, fullerenes are utilized in developing or-
ganic photovoltaics, as drug delivery agents, and in creating advanced composite
materials.

The dataset includes optimized structures and 3,000 deformed structures ob-
tained from molecular dynamics simulations, with 1,000 structures for each molecule.
The HOMO (EHOMO) and LUMO (ELUMO) energies of these structures are deter-
mined using density functional theory (DFT) calculations, following the methodol-
ogy employed in the QM9 dataset. These energy levels are crucial for understanding
the electronic properties and reactivity of fullerenes, which influence their suitability
for applications such as electronic devices and photovoltaic cells.

Experiments conducted on this dataset aim to evaluate the predictive capabil-
ity of the SCANN models for HOMO and LUMO energies and to assess the inter-
pretability of the model’s predictions within dynamic scenarios. A distinctive fea-
ture of all structures in this dataset is that they contain only carbon atoms, simpli-
fying the analysis while highlighting the intrinsic properties of carbon-based nano-
materials. Furthermore, due to the symmetric nature of fullerene molecules, the
local structures within each molecule are highly similar, with only minor differences
arising from deformations. This uniformity allows for a precise evaluation of the
interpretability of the SCANN model, as it can effectively discern subtle variations
in structure-property relationships.

In the evaluation experiment using the Fullerene-MD dataset, SCANN models
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pre-trained on the QM9 dataset are applied to train prediction models for the HOMO
and LUMO energies of the fullerene molecules. This approach leverages extensive
training on a diverse set of molecules to enhance the accuracy and generalizability
of predictions for highly symmetric and structurally similar fullerene compounds.
By doing so, the study not only validates the performance of the SCANN architec-
ture in predicting electronic properties but also underscores its capability to provide
meaningful insights into the structure-property relationships of carbon-based nano-
materials.

GA score for ELUMO
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FIGURE 4.9: Visualizations of structure–property relationships in
fullerene molecules. Correspondence between the obtained GA
scores and the molecular orbitals of C60. The left panel illustrates the
wave functions of the degenerate HOMO (bottom) and LUMO (top)
orbitals calculated via DFT, where blue and red lobes represent pos-
itive and negative isosurfaces, respectively. The right panel displays
the GA scores of local structures derived from the SCANN model for

the corresponding property.

4.5.1 Evaluation of the predictive performance

Herein, a similar number of train–validation–test splits are applied as those used
in the QM9 dataset experiments. In addition, to predict EHOMO and ELUMO for the
fullerene structures in Fullerene-MD, the weights from the QM9 dataset are applied
as the pre-train model to initialize weights of the SCANN model in the learning
process on the Fullerene-MD dataset. A detailed explanation regarding the optimal
SCANN hyperparameters for these datasets is presented in section V.

In the test for predicting the HOMO and LUMO energies with the Fullerene-MD
dataset using pre-trained weights, the SCANN models yield MAEs of 23 meV and 27
meV, respectively, which are less than two-third of the "chemical accuracy" thresh-
old. The remarkable prediction accuracy of SCANN confirms its practical applica-
bility and suggests that the interpretation derived from the attention scores provides
valuable insights into key structure–property relationships for the investigated ma-
terial properties. In the following sections, we examine the correspondence between
the obtained GA scores of the local structures and the corresponding results from
first-principles calculations to assess the interpretability of the SCANN models.
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4.5.2 Correspondence between the learned attentions of local structures
and molecular orbitals of fullerene molecules

To further evaluate the interpretability of the proposed method, the correspondence
between the obtained GA scores of the local structures and the molecular orbitals
obtained from DFT calculations for fullerene molecules is examined. Supplementary
Figure 4.9 shows the GA scores of the local structures for the HOMO and LUMO
energies of the C60 molecule (Ih symmetry). In this case, the target molecule has a
truncated icosahedral structure composed of 20 hexagons and 12 pentagons, with all
carbon atoms exhibiting equivalent local structures. The SCANN model estimates
identical GA scores for all local structures of the C60 molecule, thus indicating its
ability to handle large and symmetric molecules.

C70 (D5h symmetry)

Side viewFront view Front view Top view
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FIGURE 4.10: Visualizations of structure–property relationships for
fullerene molecules. Correspondence between obtained GA scores
and the molecular orbitals of (a) C70 and (b) C72. For each molecule,
the left side shows wave functions of the degenerate HOMO (bottom)
and LUMO (top) orbitals calculated via DFT, with blue and red lobes
representing positive and negative isosurfaces, respectively. he blue
and red lobes in the illustration represent positive and negative iso-
surfaces, respectively. The right panel shows the GA scores for local
structures derived from the SCANN model, corresponding to the spe-

cific property being analyzed.

As the number of carbon atoms in the fullerene molecule increases, the symme-
try of the C70 (D5h symmetry) and C72 (D6h symmetry) molecules becomes slightly
broken, and the local structures of the carbon atoms in these molecules are no longer
equivalent. Figure 4.10 demonstrates the significant correspondence between the
GA scores of the local structures and the HOMO and LUMO results obtained from
DFT calculations for the C70 and C72 molecules. The GA scores of the local struc-
tures in the C70 and C72 molecules exhibit a five-fold (top view) and six-fold (top
view) symmetry upon the prediction of the HOMO energy, respectively. These re-
sults align with the structural symmetry and degenerate HOMO orbitals of the two
fullerene molecules. Notably, the C70 molecule possesses an additional 10-carbon
ring, forming a plane symmetry, resulting in a planar symmetry of its HOMO with
the node situated on that ring’s plane. The SCANN model reveals a clear corre-
spondence between the HOMO of the C70 molecule and the GA scores of the local
structures (Fig. 4.10a), along with the LUMO and their corresponding GA scores.
Furthermore, the shapes of LUMO and HOMO of the C72 molecule exhibit a per-
fect correspondence with the GA scores of the local structures obtained using the
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SCANN models (Fig. 4.10b). Compared to C60, the C72 molecule has an additional
ring of 24 carbon atoms with six-fold symmetry, consisting of 12 pairs of carbon–
carbon bonds in five-membered carbon rings. The high GA scores of the local struc-
tures in the ring indicate the localization of the LUMO of the C72 molecule on the
ring. In contrast, the HOMO orbitals are located on two opposite sides of the ring
and are also captured by the local structures with high GA scores. This evalua-
tion experiment provides further confirmation that SCANN-derived GA scores of-
fer valuable insights for understanding the structure–property relationship, even for
large molecules.
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FIGURE 4.11: Visualizations of structure–property relationships for
fullerene molecules at 8 consecutive molecular dynamics steps of
LUMO property. The number in the top left corner indicate the in-

dex of the molecular dynamics steps.

Figures 4.11 and 4.12 further illustrate this by displaying eight consecutive molec-
ular dynamics structures of the C72 molecule as it converges towards its stable con-
figuration. Throughout the MD simulation, the molecule undergoes structural changes
that influence its electronic properties. The GA scores for the local structures contin-
uously adjust in response to these changes, particularly for the LUMO and HOMO.
As the structure evolves, the GA scores progressively converge to those of the stable
configuration, reflecting the gradual localization of the LUMO on the additional car-
bon ring. This dynamic adjustment is reasonable and demonstrates how the SCANN
model captures the interplay between structural dynamics and electronic proper-
ties. More details about the visualization of attention for the molecular dynamics
are shown in the videos at Appendix A.

The ability of the GA scores to adapt and accurately represent changes in elec-
tronic localization during molecular dynamics simulations underscores the effec-
tiveness of the SCANN model in analyzing dynamic phenomena. It highlights the
model’s potential in providing deeper understanding of how local structural vari-
ations impact the electronic properties of molecules over time. This enhanced de-
scriptive capability is crucial for studying large molecular systems where structural
and electronic complexities are significant.
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FIGURE 4.12: Visualizations of structure–property relationships for
fullerene molecules for 8 consecutive molecular dynamics steps of
HOMO property. The number in the top left corner indicate the index

of the molecular dynamics steps.

4.6 Case Study 3: Material property prediction for structural
deformation in Pt/graphene

Pt/graphene-MD Vu and Chi, 2023 is an in-house developed computational mate-
rial dataset that represents a system composed of a platinum (Pt) atom adsorbed
on a graphene flake terminated by hydrogen atoms Chi et al., 2006; Dam et al.,
2009. This dataset includes approximately 21,000 optimized and deformed struc-
tures generated through molecular dynamics simulations, providing a comprehen-
sive overview of the Pt-graphene interactions under various conditions. The ad-
sorption energies of these structures are determined using density functional theory
(DFT) calculations, following the methodology employed in the QM9 dataset.

The primary objectives of the experiments conducted on this dataset are twofold:
first, to evaluate the predictive performance of the SCANN models in forecasting the
deformation energies (∆U) of the structures, and second, to assess the interpretabil-
ity of the model’s predictions concerning these deformation energies. A distinctive
feature of this dataset is the presence of a two-dimensional honeycomb network of
carbon atoms forming the graphene flake. Although the local structures of each car-
bon atom in the system exhibit slight distortions from the ideal sp2 hybridization
structure Dam et al., 2009, this dataset facilitates a quantitative evaluation of the
interpretability of the SCANN models in terms of the distortion of the honeycomb
network on the graphene surface.

Platinum-graphene systems are highly interested in materials science and nan-
otechnology due to their exceptional catalytic properties. Pt atoms supported on
graphene surfaces serve as highly efficient catalysts for various chemical reactions,
including hydrogenation, oxygen reduction, and carbon dioxide reduction Dam et
al., 2009. The unique interaction between Pt atoms and the graphene substrate en-
hances catalytic activity and stability, making these materials pivotal in fuel cells,
chemical synthesis, and environmental remediation applications.
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In terms of properties, the Pt/graphene-MD dataset captures the intricate bal-
ance between adsorption energy and structural deformation, providing insights into
the stability and reactivity of Pt-graphene interfaces. The ∆U are critical for un-
derstanding how Pt atoms influence the mechanical and electronic properties of
graphene, which in turn affect the material’s overall performance in practical ap-
plications. By leveraging the SCANN models trained on this dataset, researchers
can better understand the structure-property relationships, enabling the design of
more efficient and durable Pt/graphene-based materials.

4.6.1 Evaluation of the predictive performance

Herein, a similar number of train–validation–test splits are applied as those used in
the QM9 dataset experiments. For the Pt/Graphene-MD dataset, the SCANN model
achieves an MAE of 0.16 eV in predicting the ∆U of the system. Figure 4.13 shows the
∆U and the SCANN model’s predictions over the first 500 steps of the molecular dy-
namics simulation. The SCANN model closely tracks the actual deformation energy
throughout these steps, demonstrating its ability to accurately predict energy fluctu-
ations associated with the dynamic structural changes in the Pt/Graphene system.
This alignment indicates that the model effectively captures the complex interactions
and deformations occurring during the simulation.

Step

FIGURE 4.13: Visualization of the ∆U over the first 500 steps of the
molecular dynamics simulation, alongside the predictions made by

the SCANN model.

The ability of the SCANN model to accurately predict deformation energy un-
derscores its effectiveness in delivering insightful interpretations through GA scores.
These scores highlight the contributions of specific local structures to the overall
deformation energy, providing a deeper understanding of the structural dynamics
within the Pt/Graphene system during molecular dynamics simulations.
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4.6.2 Correspondence between the learned attentions of local structures
and structural deformation in Pt/graphene:

Figure 4.14 a presents the GA scores of the local structures obtained by the SCANN
model for predicting the deformation energy of a system comprising a platinum
atom adsorbed on a graphene flake. The deformation energy is defined as the differ-
ence between the total energy of the deformed and optimized structures. A detailed
examination of the obtained GA scores reveals that local structures with high GA
scores possess relatively elongated carbon–carbon bonds (Fig. 4.14 b). Additionally,
the carbon atoms that form high local curvatures upon the formation of a convex
from the planar structure of the sp2 hybridization bonding network received high
GA scores (Fig. 4.14c).
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FIGURE 4.14: Visualization of the relationship between adsorption
energy and deformation of a graphene flake with an adsorbed plat-
inum atom. (a) GA scores from the SCANN model for the de-
formed Pt/Graphene system; atom colors indicate estimated GA
scores, while link colors do not represent molecular orbital wave
functions. Structural visualizations of the high attention local struc-
tures during the deformation: (b) elongated carbon–carbon bond, and
(c) convexed carbon–carbon configuration. Distances between adja-
cent carbon atoms (in Å) highlight the distortion caused by the defor-

mation.

The results obtained from the experiment on the system where a platinum atom
was adsorbed on a graphene flake reveal that the GA scores obtained by the SCANN
model exhibit a high correspondence with the observed structural deformations. In
particular, the high GA scores for the increased carbon–carbon bond lengths and
the convexed carbon atoms align well with the contribution to the deformation en-
ergy, as determined by DFT calculations. This finding indicates that the GA scores
generated by SCANN are reliable indicators of structural deformations in such sys-
tems, demonstrating the model’s capability to capture and interpret the underlying
material instability.
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FIGURE 4.15: Visualizations of structure–property relationships in
Pt/graphene structures at 4 consecutive molecular dynamics steps
and optimized structure for ∆U property. The number in the top left

corner indicate the index of the molecular dynamics steps.

Furthermore, Figure 4.15 presents four consecutive frames from the molecu-
lar dynamics simulation as from the flatten configuration of graphene structure.
Throughout these frames, the GA scores dynamically adjust in response to the evolv-
ing structural features. Notably, the GA scores highlight that the regions of the
graphene flake remaining relatively flat exhibit higher attention scores, indicating
a significant contribution to the deformation energy. This observation is insightful
because the actual optimized structure of the Pt/Graphene system features a slight
curvature in the graphene sheet due to the adsorption of the platinum atom, rather
than being perfectly flat as seen in the first simulation steps 1. More details about
the visualization of attention for the molecular dynamics are shown in the videos at
Appendix A.

The SCANN model effectively captures this subtle structural nuance by assign-
ing higher GA scores to the flatter regions, which are under strain as they transition
toward the curved optimized configuration. This alignment between the GA scores
and the physical deformation highlights the model’s capability to interpret and pre-
dict material instabilities accurately. The GA scores not only reflect the immediate
structural distortions, such as elongated carbon–carbon bonds and convexed carbon
configurations, but also provide a dynamic understanding of how these deforma-
tions contribute to the overall energy of the system during the simulation. These re-
sults validate the usefulness of SCANN in understanding and predicting structural
deformations in materials, particularly in cases involving the interaction of different
elements or adsorption onto surfaces.

4.7 Contributions and limitations

This study proposes SCANN, an attention-based DL architecture designed for mate-
rial dataset analysis. SCANN leverages attention mechanisms to learn from material
datasets, predict material properties, and interpret the underlying characteristics of
material structures. By applying attention recursively to neighboring local struc-
tures, SCANN learns representations of atomic local structures in a self-consistent
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manner. The architecture then combines these local structure representations to cre-
ate a comprehensive representation of the entire material structure, enabling precise
property predictions. During the learning process, global attention scores are esti-
mated, indicating the importance of each local structure in representing the overall
material structure. Experimental results based on five molecular and crystalline ma-
terial structure datasets demonstrated the excellent predictive capability of SCANN
for different material properties. Furthermore, an in-depth qualitative analysis of the
global attention scores of local structures revealed that the trained models can extract
essential information from material datasets, facilitating a deeper understanding of
the structure–property relationships in both molecular and crystalline materials. The
ability of the proposed architecture to interpret the attention scores can aid in iden-
tifying critical features and accelerating the material design process.

However, there are limitations to consider with the SCANN architecture. First,
the performance of SCANN is highly dependent on the quality and diversity of the
training datasets. If the datasets are limited in size or lack representation of certain
material classes, the model may not generalize well to unseen materials. Second,
while SCANN provides valuable interpretability through global attention scores,
these scores can sometimes be challenging to correlate directly with specific physical
or chemical properties without additional analysis (Jain and Wallace, 2019; Wiegreffe
and Pinter, 2019; Grimsley, Mayfield, and R.S. Bursten, 2020). Third, the computa-
tional complexity of attention mechanisms can lead to increased training times and
resource requirements, especially for large-scale material datasets or when model-
ing materials with very complex structures. Despite these challenges, the findings
of this study demonstrate the potential of attention mechanisms in uncovering valu-
able information that can provide a the better understanding of structure–property
relationships in materials.



89

Chapter 5

Conclusion and Limitation

5.1 Conclusion

This thesis has discussed how deep learning frameworks can integrate with domain
knowledge to solve some of the significant challenges in materials science. By sys-
tematically designing and tailoring deep learning models for specific scientific ap-
plications, we showcased how representation learning can be optimized to improve
predictive accuracy and interpretability. The broad goal was to connect the dots
between sophisticated computational methods and complex demands in material
property prediction and diffraction image reconstruction for deeper insights and
new understandings in research.

The focus of the first part of this work was on material property prediction using
supervised deep learning methodologies. We designed deep learning frameworks
that incorporate domain-specific knowledge, resulting in models that can not only
make accurate predictions of various properties of materials but also can be used to
provide meaningful interpretations of the underlying mechanisms. By incorporat-
ing domain-enriched representations, these models could capture far more sophis-
ticated relationships in the data, which enhanced their predictive performance and
provided further scientific insight. This may constitute a route to using supervised
deep learning to advance materials informatics by providing tools that assist in the
rational design and discovery of new materials possessing target properties.

The second part of this thesis focused on unsupervised deep learning approaches
toward diffraction image reconstruction. Here, we designed models that could re-
construct high-fidelity patterns with no dependency on labeled data but, instead, ex-
ploited the intrinsic structures of the data diffraction itself. Intrinsic domain knowl-
edge was inculcated into model architecture and training strategies such that the
unsupervised models captured the rich dynamics of diffraction processes and prin-
ciples of Fourier transformation, leading to accurate and reliable reconstructions of
images. This work put into perspective the capability of unsupervised deep learning
in handling high-dimensional and complex scientific data, therefore opening further
exploratory and diagnostic tasks in materials science.

Finally, embedding domain knowledge into the deep learning framework pre-
sented a critical theme recurring throughout this work, strongly influencing model
performance and interpretability. We developed means for embedding scientific
principles and domain-specific constraints into the design of inputs, architectures,
loss functions, and metrics for evaluation, thereby enhancing the generalization ca-
pabilities of the models, along with their robustness to data variability. The synergis-
tic way this was done improved the accuracy and reliability of the predictions and
reconstructions and ensured that the learned representations were scientifically co-
herent and meaningful. The successful fusion of deep learning with domain knowl-
edge underlines the importance of an interdisciplinary approach, opening the future
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toward advancements powered by computational intelligence and scientific exper-
tise to make this innovation possible in materials science.

This thesis has shown how combining deep learning with domain-specific knowl-
edge could transform some of the intractable problems in materials science. We have
realized remarkable improvement in material property prediction and diffraction
image reconstruction through appropriate supervised and unsupervised learning
methods tailored by scientific insights. First, the methodologies and frameworks de-
veloped herein contribute to improving accuracy and interpretability in deep learn-
ing models and to broader scientific understanding and the discovery of new mate-
rials. In the future, this work’s general principles and strategies lay a strong foun-
dation for further exploration and application of deep learning in various scientific
fields, fostering further innovation and progress.

5.2 Limitation

While this thesis has made significant strides in integrating deep learning frame-
works with domain knowledge to enhance material property prediction and diffrac-
tion image reconstruction, several limitations must be considered. First, the models
currently possess different levels of uncertainty in predictions and reconstructions.
The supervised models, while achieving high accuracy in the prediction of material
properties, usually do not have appropriate mechanisms for uncertainty quantifica-
tion. This may further limit the model’s predictability, mainly when new or unusual
materials are analyzed where data sparsity is considerable. In addition, unsuper-
vised models for diffraction image reconstruction may contain partial or incorrect
reconstructions in the presence of increasingly complex material patterns and re-
quire the development of advanced uncertainty estimation techniques for evaluat-
ing the confidence levels of the obtained generated output.

Another limitation involves transforming and integrating domain knowledge
into deep learning architectures. Although this work has successfully embedded
material science principles into model design, the process is somewhat manual and
heuristic. Choosing the most adequate domain-specific transformations and con-
straints is challenging since it usually requires thorough scientific domain knowl-
edge and a deep understanding of the intricacies of deep learning methodologies.
This can only be manually integrated, which may often lead to suboptimal repre-
sentations and not capture material behaviors’ complexities.

While promising, the reconstruction capabilities of unsupervised models are sim-
ilarly bound by the quality and diversity of their training data. High-dimensional
and complex diffraction images demand large and varied datasets so that models
can generalize well. These datasets are often tricky and time-consuming to acquire,
which can be a significant barrier to using the models. Moreover, current reconstruc-
tion models need more robustness and may easily break if applied to highly noisy
or incomplete data, an inherent feature of most experimental setups. Overcoming
these issues involves designing more robust methods for training and investigating
advanced augmentation strategies that could further improve the model’s robust-
ness.

Future research efforts should improve uncertainty prediction and quantification
in deep learning, supervised and unsupervised. Applying Bayesian deep learning
techniques or introducing ensemble methods will make the uncertainty estimates
more realistic and, therefore, gain more trust in model predictions or reconstruc-
tions. Another critical issue is the further development of methods that incorporate
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domain knowledge. The research would also be considerably enhanced in applica-
bility and impact by being done on an increased range of material properties and
reconstruction tasks. Some potential future research might consider using transfer
learning to adapt existing models to new material systems when only limited labeled
data are available, improving the versatility of the models. Also, this would enable
more successful and more varied datasets through collaborative work with experi-
mentalists, letting the models learn from various material behaviors and diffraction
patterns. Finally, the investigation of the integration of real-time data acquisition
and model inference may enable dynamic and interactive material discovery plat-
forms that will further accelerate the innovation cycle in materials science.
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Description of additional appendix
movies for attention visualization

The supplementary materials include additional movies that provide dynamic visu-
alizations of the GA score over time. These movies demonstrate the capabilities of
our proposed reconstruction method SCANN in capturing the dynamic phenomena
and structure-property relationship overtime

All the supplementary movies referenced in this study have been uploaded and
are accessible at the following link: https://jstorage.box.com/v/VsinhThesisSuppl

• File Name: Appendix fullerene op homo

Description: This is a time-series of Fullerene dynamics molecules with the
visualization of GA score for HOMO property over time. The molecules are
optimized to the stable structure over 20 steps.

• File Name: Appendix fullerene op lumo

Description: This is a time-series of Fullerene dynamics molecules with the
visualization of GA score for LUMO property over time. The molecules are
optimized to the stable structure over 20 steps.

• File Name: Appendix ptgp op u

Description: This is a time-series of Pt/graphene dynamics with the visualiza-
tion of GA score for ∆U property over time. The molecules are optimized to
the stable structure over 20 steps.

https://jstorage.box.com/v/VsinhThesisSuppl
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Appendix B

Setups of CXDI for experiments

B.1 CXDI experiments settings

Experimental CXDI: The experimental setup included a source that delivered an
incident 5 keV monochromatic X-ray beam, which was shaped by a triangular aper-
ture (side length: 10 µm). The triangular apertures were fabricated using focused
ion beam processing on a 15-µm-thick platinum foil polished on both sides. A Fres-
nel zone plate was installed to reduce the triangular aperture size by a factor of
two, resulting in a triangular X-ray beam of approximately 5 µm per side, which
illuminated the sample. To inhibit X-ray scattering in air, all the optical elements,
the sample, and the detector were enclosed in a vacuum chamber maintained at a
pressure less than 1 Pa. The temperature increase owing to X-ray absorption in the
solution was estimated to be less than 0.2 K s−1. Given that the solution conducted
heat via convection, the temperature increase due to X-ray irradiation was consid-
ered negligible.

In the first experiment, the probe functions were reconstructed using the mixed-
state method (Takazawa et al., 2021; Li et al., 2016) via scanning CXDI with an expo-
sure time of 10 s at each scan position. The sample was exposed to 15×15 overlap-
ping fields of view, separated by 500 nm in the horizontal and vertical directions. As
shown in Figure 3a, the probe functions are divided into five orthogonal modes. All
probes feature a half-sized triangular aperture imaged using the FZP, with the first
mode capturing 89.6 % of all photons. The intensities of the five modes probe were
distributed as follows: 89.6, 4.4, 2.4, and 1.7 %. Subsequently, the model was applied
to image the Ta test chart that was continuously translated against the same X-ray
beam for single-shot CXDI. During these translations, the diffraction images gener-
ated from the illuminated area were continuously recorded at intervals of 7 ms for
15 s at 340 nm s−1. The incident photon flux on the sample surface was maintained
at 3 × 107 photons s−1. The diffraction intensity images were recorded using an
in-vacuum pixelated detector (CITIUS detector)(Takahashi et al., 2023; Ozaki et al.,
2023) with a pixel size of 72.6 µm. The detector was positioned 3.30 m downstream
from the sample.

In the third experiment, we reused four modes of the probe function, which were
introduced in our previous study to image the dynamics of the gold nanoparticles in
the solution (Takazawa et al., 2023). These probe functions are reconstructed through
scanning CXDI. The distribution of these four modes accounted for 90.9, 5.4, 2.2, and
1.5 % of all the photons, which were orthogonal to each other in a single exposure. In
the experiment, we used the gold to fabricate probe particles due to its chemical in-
ertness, biocompatibility, and resistance to deformation, making it safe for biological
systems and suitable for studying mechanical stress and strain in materials and cells.
The AuNPs are fabricated with a diameter of 150 nm. A constant incident photon
flux of approximately 3 × 106 photons s−1 was maintained on the sample surface.
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TABLE B.1: The detailed settings of the simulation and experimental
optical systems were used in first evaluation experiments. FZP stands

for Fresnel zone plate.

Experimental Ta chart

Optical

X-ray energy (keV) 5.0

Focal length of FZP (mm) 60.49

Aperture-FZP offset (µm) 100

Aperture-FZP distance (mm) 181.47

FZP-sample distance (mm) 90.74

Sample-detector distance (m) 3.30

Detector resolution (µm) 72.6

Detector CITIUS

FZP manufacturer XRnanotech

Measurement

Number of frames 1755

Exposure time (ms) 7

Velocity (nm s−1) 340

Pixel resolution (nm pixel−1) 29.8

The diffraction intensity images were recorded using an in-vacuum pixelated detec-
tor (EIGER 1M, Dectris) with a pixel size of 75 µm. The detector was positioned 3.14
m downstream from the sample.

Simulation of CXDI: A wave-optical simulation of the illumination optics was
conducted in the second experiment, using an off-axis configuration FZP under the
specified experimental conditions. This simulation was employed to evaluate the
efficacy of our proposed phase retrieval method in imaging the motion of AuNPs
before applying it in a real scenario. Thus, all simulation settings were aligned with
those of the actual experiment described previously. AuNPs were simulated with
a diameter of 300 nm, and their quantity was determined based on a 0.1 ratio for
the entire simulated area. The simulation used an optical configuration featuring
a photon energy of 5 keV and a photon flux of 3 × 106 photons s−1, similar to the
actual experiment. The diffraction intensity images were captured using consecutive
images with an exposure time of 100 ms. Photon-counting noise with the Poisson
statistics was also added to the diffraction images. In our previous study (Takazawa
et al., 2023), the average velocity of AuNPs was reported as approximately 200 nm
s−1 in the actual experiment, estimated using X-ray photon correlation spectroscopy
(XPCS). Consistent with the aforementioned experimental observations, a controlled
particle velocity of approximately 200 nm s−1 was applied in the simulation.
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TABLE B.2: The detailed settings of the simulation and experimental
optical systems were used in the second evaluation experiments. FZP

stands for Fresnel zone plate.

Simulation AuNPs

Optical

X-ray energy (keV) 5.0

Focal length of FZP (mm) 48.38

Aperture-FZP offset (µm) 100

Aperture-FZP distance (mm) 145.1

FZP-sample distance (mm) 72.6

Sample-detector distance (m) 3.14

Detector resolution (µm) 75

Detector –

FZP manufacturer –

Measurement

Number of frames 1000

Exposure time (ms) 100

Velocity (nm s−1) 200

Pixel resolution (nm pixel−1) 27.03

B.2 Impact of temporal block and measurement-informed re-
finement block

In this section, we studied the impact of the Temporal Block (TB) and the Refine-
ment Block (RB) on phase retrieval in the CXDI experiment. Firstly, we analyzed the
convergence of the phase retrieval process using our method PID3Net-P by deacti-
vating the RB. The modified version is referred to as PID3Net-NR-P (No Refinement
Block). We compared the performance of PID3Net-NR-P with AutoPhaseNN and
PtychoNN. The PtychoNN model used a supervised learning approach with a tradi-
tional 2D CNN architecture to reconstruct the ground truth amplitude and phase
from a single diffraction image without temporal information. Meanwhile, Au-
toPhaseNN employed X-ray Bragg coherent diffraction imaging with 3×3×3 CNN
layers to reconstruct 3D gold crystals. On the other hand, PID3Net-NR-P learned
the temporal information on multilevel through different kernels in temporal block
(1×3×3, 3×3×3 and 5×3×3 CNN). Since the original designs of PtychoNN and Au-
toPhaseNN did not include the probe function with forward Fourier transformation,
we customized these models to align the amplitude and phase decoder output with
the self-supervised learning strategy and optics systems in the examination. The de-
coder outputs were utilized to calculate the numerical diffraction intensity and loss
function.

Appendix Figure 1 showcases the reconstructed phase information from the mea-
sured diffraction of the Ta test chart using PtychoNN, AutoPhaseNN, PID3Net-
NR-P, and PID3Net-P. Despite learning only from data without prior knowledge or
mathematical constraints, these models captured the main patterns of the test chart.



100 Appendix B. Setups of CXDI for experiments

TABLE B.3: The detailed settings of the simulation and experimental
optical systems were used in the third evaluation experiments. FZP

stands for Fresnel zone plate.

Experimental AuNPs

Optical

X-ray energy (keV) 5.0

Focal length of FZP (mm) 48.38

Aperture-FZP offset (µm) 100

Aperture-FZP distance (mm) 145.1

FZP-sample distance (mm) 72.6

Sample-detector distance (m) 3.14

Detector resolution (µm) 75

Detector EIGER 1M

FZP manufacturer NTT-AT

Measurement

Number of frames 2000

Exposure time (ms) 1000

Velocity (nm s−1) –

Pixel resolution (nm pixel−1) 27.03

However, the PtychoNN method exhibited relatively poor performance, resulting in
distorted and twisted line patterns. In contrast, the AutoPhaseNN method, which
employed 3×3×3 CNN layers to capture temporal relationships between three time-
evolving sequence of images, produced more stable reconstructions of the large fab-
ricated lines. However, it still struggled with the tiny lines and central area due to
complex symmetry patterns and multiple solutions of the phase retrieval problem.

PID3Net-NR-P, incorporating multilevel temporal learning, yielded more rea-
sonable phase images with smooth transitions but also exhibited tiny twisted errors,
particularly at frames 1000th and 1200th as shown in Appendix Figure 1 and Ap-
pendix Movie C5. This subpar performance can be attributed to the intrinsic am-
biguity of the phase origin and the remarkably short exposure time in the phase
problem. Notably, the quality of these reconstruction results was surpassed by those
obtained using the full model PID3Net-P, underscoring the advantage of employing
the RB layer with a measurement-informed process.
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FIGURE B.2: (a) Right plots show phase information retrieved from
diffraction intensity images measuring the moving of Ta test chart at
the 400th frame with a 7 ms exposure time using the PtychoNN and
AutoPhaseNN methods. The frame index of each image is indicated
in the top row. Left plots show the magnified views of the areas en-
closed by the green squares at the 400th frame along with profiles of
two circular arcs. The horizontal mark at the middle of each arc indi-
cates its zero position. (b) Analysis of the profiles of these two circu-
lar arcs in phase information retrieved from the measured diffraction
intensity image at the 400th frame. The phase shifts at different po-
sitions in these curved lines are monitored. (b) The phase retrieval
transfer function (PRTF) analysis of the phase images reconstructed
using the four phase retrieval methods. Dashed horizontal lines indi-
cate the spatial resolutions at which the PRTF value falls below 1/e,
marking the threshold below which phase retrieval is less reliable. (c)
The distribution of estimated velocity from the acquired phase im-
ages for the first 400 frames. The dashed line indicates the velocity
is set in measurement at 340 nm/s, and the white bar represents the

median of the distribution.
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Appendix C

Description of additional appendix
movies for phase retrieval

The supplementary materials include additional movies that provide dynamic visu-
alizations of the reconstructed over time. These movies demonstrate the capabili-
ties of our proposed reconstruction method, PID3Net-PO, in capturing the temporal
evolution of the sample with enhanced accuracy and clarity.

All the supplementary movies referenced in this study have been uploaded and
are accessible at the following link: https://www.nature.com/articles/s41524-025-01549-x

• File Name: Appendix Movie 1

Description: This is a time-series of reconstructed frames of the Ta test chart ob-
served using single-shot coherent diffraction imaging. The frames have been
enlarged without interpolation for easier viewing. The white bar indicates the
scale of the image. The movie has a frame rate of 30 Hz and consists of 1755
frames for a total 15 s. The read-out time when collecting frames is 15.677 µs,
which is negligible compared to the effective exposure time of 7.2 ms.

• File Name: Appendix Movie 2

Description: This is a time-series of diffraction intensity and reconstructed
frames of the modified Ta test chart dataset. Following each set of 400 frames,
the diffraction data was reversed for total 200 frames before being input into
the model for reconstruction. The model subsequently proceeds to reconstruct
the motion of the test chart in both forward and backward directions. The
movie has a frame rate of 30 Hz.

• File Name: Appendix Movie 3

Description: Time-series of reconstructed frames for numerical demonstration
of single-shot coherent diffraction imaging. Details of the ground truth data
are provided in the main text. The number of frames and exposure time were
1,000 and 100 ms, respectively. The movie has a frame rate of 30 Hz with 27.03
nm pixel−1 spatial resolution.

• File Name: Appendix Movie 4

Description: Movie of gold colloidal particles in an aqueous polyvinyl alcohol
solution reconstructed from diffraction patterns. The images are magnified for
easier viewing. The scale bar size in the image is 2 µm. The recording consists
of 2,000 frames with an exposure time of 1000 ms. The frame rate of the movie
is 30 Hz and the resolution is 27.03 nm pixel−1.

• File Name: Appendix Movie 5

https://www.nature.com/articles/s41524-025-01549-x
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Description: Reconstructed frames by PID3Net-NR-PO models for the Ta test
chart observed using single-shot coherent diffraction imaging. The frames
have been enlarged without interpolation for easier viewing. The white bar
indicates the scale of the image. The movie has a frame rate of 30 Hz and
consists of 1755 frames for a total 15 s.
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