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Abstract

This dissertation addresses the optimization of product assortment in vending machines under conditions

of uncertain information. In the retail industry, decision-making processes often require handling incomplete

or noisy data, making it essential to develop methods that account for such uncertainties. This research

formulates the vending machine assortment problem using Partially Observable Markov Decision Processes

(POMDPs), enabling dynamic decision-making under limited observations.

The proposed methodology integrates a product selection model that captures consumer purchasing behav-

ior and a POMDP-based optimization framework to improve vending machine operations. The study provides

a comprehensive framework for modeling the state transitions, observation functions, and reward structures

involved in assortment optimization. It also introduces practical strategies for assortment exchange that agents

can implement in real-world scenarios. Numerical simulations are conducted to evaluate the performance

of the proposed approach, demonstrating its effectiveness in maximizing expected rewards and improving

vending machine operations.

The key contributions of this research are as follows: (1) the formulation of the assortment optimization

problem as a decision-making process under uncertainty, (2) the development of a novel method for solving

this problem in vending machine settings, and (3) an exploration of its applicability to other business sectors

with similar decision-making challenges.” The findings suggest that the proposed method offers a solution to

the assortment optimization problem and provides valuable insights for improving decision-making processes

in uncertain environments.

Keywords: Decision-making under uncertain information, Assortment optimization problem, Vending

machine, Partially Observable Markov Decision Processes, Product selection model, Numerical simulation
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Chapter 1

Introduction

1.1 Background

Decision-making in industrial practice is often based on judgments made under

conditions of uncertain information.

For example, Traffic Alert and Collision Avoidance system (TCAS), it is an

onboard collison avoidance system for airclafts [1]. TCAS provides pilots with

ascent or descent instructions to avoid collisions with other aircraft through both

audio and visual alerts. It receives replies from other aircraft via radio and

estimates distance and bearing by measuring the delay of those replies. The

system determines the optimal advice based on observed range, bearing, and

altitude, while accounting for sensor imperfections and uncertainties in the future

trajectories of the aircraft. It is designed to ensure high safety while not disrupting

normal air traffic procedures.

Another example is attribute-based person search in surveillance video [1].

Attribute-based search refers to identifying a person based on noticeable features

such as clothing, hair color, and carried items, without relying on facial recog-

nition or biometric data. This method has the advantage of being able to search

for individuals even without existing biometric data. However, accurate search

becomes challenging due to variations in appearance caused by factors like cloth-

ing, lighting, and pose, which can result in different visual representations of the
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same attributes. A probabilistic modeling approach is effective in handling such

uncertainty. This approach probabilistically models the relationship between the

attribute profile and the surveillance video, taking into account hidden factors like

body orientation and clothing position. This allows for more accurate identifi-

cation of individuals under varying conditions. Experimental results show that

probabilistic models perform better than traditional methods, demonstrating their

effectiveness in interactive searches at locations like airports. However, the ac-

curacy of the search depends on factors such as scene resolution, lighting, and

crowd density. To address these challenges, it is necessary to select appropriate

video analysis targets and re-train the dataset. Additionally, this approach can be

extended to search for other scene components, such as vehicles or luggage.

1.2 Aim and Contribution of this study

This study focuses on the decision-making process under uncertain information,

and in particular deals with the optimization problem of product assortment in

the retail industry. The product assortment problem is the problem of selecting

products to place in a limited product display space (shelf), and a solution is sought

that provides an assortment that maximizes or minimizes a specific index value.

In particular, this study addresses the problem of product assortment optimiza-

tion under conditions where only uncertain information is available and where

there are special constraints, such as limitations on the available products and

actions. A specific example is the beverage vending machine (hereafter, vending

machine). The product assortment optimization problem in vending machines is

more complex than in typical retail stores due to unique constraints such as limited

available information, a limited number of shelves, restricted stock levels for each

product, and limitations on the frequency of assortment changes.

This problem requires the implementation of an appropriate assortment ac-

cording to each situation based on information such as past sales data, product

features, inventory status, consumer preferences, and changes in the environment.
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At the same time, it is necessary to consider the next assortment based on the

information obtained from the implemented assortment.

In this study, the following contributions will be made to address the assortment

optimization problem under uncertain environments.

(1) Formulate the product assortment optimization problem as a decision-

making process under uncertainty.

(2) Propose a unique optimization method for the product assortment optimiza-

tion problem in the context of vending machines under uncertain infor-

mation. Conduct numerical simulations to verify the effectiveness of the

proposed method.

(3) Consider the possibility of a unified approach for product assortment prob-

lems in other business sectors by taking into account observable states and

constraints, and provide a discussion on this.

1.3 Vending Machine Business in Japan

Here, we review the overview of the vending machine business, particularly the

current situation and challenges in Japan.

1.3.1 Overview

The total number of vending machines and automated service machines (hereafter

simply referred to as vending machines) in Japan is approximately 3.9 million. Of

these, beverage vending machines make up the largest proportion, at approximately

2.20 million, or 56.4% of the total. By beverage vending machine type, soft drinks

are the most common, accounting for approximately 89.1% of the total in terms of

number, followed by cup-type machines selling coffee, cocoa, etc. (5.6%), milk

beverage (4.4%), and alcoholic beverages and beer (0.9%) ( [2], Fig.1.1).
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1.3.2 Stakeholders

Nunokawa et al. [3] have summarized the current state of the vending machine

business in Japan as follows:

The beverage vending machine business involves stakeholders on both the

supply and demand sides.

On the supply side, there are vending machine manufacturers, beverage man-

ufacturers, and operators who manage and restock the vending machines. On the

demand side, there are location owners who provide the space for the vending

machines and consumers who purchase the beverages from the machines. The

vending machine business is mainly driven by the collaboration of vending ma-

chine manufacturers, beverage manufacturers, and operators.

Operators are generally divided into two types: specialized operators and

diversified operators. Specialized operators are companies that focus solely on

vending machine operations and typically handle products from multiple beverage

manufacturers. On the other hand, diversified operators are companies that manage

vending machines alongside other business activities. These operators are often

beverage manufacturers themselves, running vending machines to promote their

own products.

The practical work of vending machine operations is carried out by agents, also

known as ”route men.” (Although Nunokawa and others refer to them as ”route

men”, this study will refer to these workers as ”agents” for consistency.)

An agent works for an operator company and is responsible for restocking and

maintaining the vending machines [4]. Specifically, agents load beverages into

trucks from warehouses, then travel to different locations to refill and perform

maintenance checks on the vending machines. After completing these tasks, they

return to the depot to dispose of any waste and handle products. Since each agent is

typically assigned to specific vending machines in a given area, the same vending

machine is generally handled by one agent.

The workload of a agent varies depending on the number of vending machines
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they are responsible for. On average, a agent manages 5 to 10 machines per day.

During a single round of work, they may visit multiple vending machines, and if

they work five days a week, they are responsible for about 25 to 50 machines. The

tasks are often adjusted according to the agent’s judgment, and there is no fixed

route they follow every week. Additionally, the amount of work and frequency of

visits can vary based on the location and number of machines, requiring a flexible

approach.

1.3.3 Visit and Replenishment Operations

In conducting this study, we investigated how operators and agents in Japan manage

the workload – visit and replenishment operations of vending machines.

Agents are typically responsible for managing several dozen to approximately

100 vending machines individually, adjusting the visit frequency based on the

sales trends of each machine. Machines with high sales volumes are visited

more frequently, while those with lower sales volumes are visited less frequently.

High-frequency machines are often visited on a near-daily basis, whereas low-

frequency machines may only be visited approximately once a month. In some

cases, operators consider sales volume solely in terms of the number of units sold,

without taking product prices into account.

Visit frequency is determined by considering the balance between sales revenue

and visit costs, as well as the risk of stockouts. More frequent visits reduce the

risk of stockouts but incur higher visit costs relative to revenue. Conversely, less

frequent visits improve cost efficiency but increase the likelihood of lost sales

opportunities due to stockouts. To optimize operational efficiency, operators tend

to instruct agents to adjust visit frequency so that sales per visit remain relatively

constant across machines. However, this calculation also considers the machine’s

storage capacity, i.e., the maximum inventory it can hold. Additionally, during

each visit, the most common practice is to replenish the sold inventory in full. By

adopting this approach, agents can stabilize both sales and replenishment quantities
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per visit, provided that visit timing is appropriately aligned with sales trends.

In recent years, visit support systems that utilize past sales data to predict sales

and suggest optimal visit frequencies to agents have been adopted by multiple

companies.

1.3.4 Product Assortment Work

Regarding product assortment exchange, agents must first follow general instruc-

tions provided by the operator. The instructions from the operator typically involve

seasonal considerations. For example, from spring to summer, the assortment is

centered around cold beverages, while in the fall and winter, some items may be

replaced with hot beverages. Additionally, new products are added, and discon-

tinued products are removed. Moreover, the time and labor that can be devoted to

a single visit are limited. For instance, due to physical, temporal, and endurance

constraints, it is often infeasible to replace all products at once. In most cases, the

exchange is limited to only two or three products.

Following these guidelines, agents have the discretion to adjust the product

assortment for each vending machine. However, the results can vary significantly

depending on the agent. Experienced agents take into account factors such as the

location and sales trends for each product at specific vending machines, as well

as the preferences of the location owner, to construct an appropriate assortment.

They are able to improve sales by adapting the assortment in response to changes

in sales trends.

On the other hand, for less experienced agents, adjusting product assortments

is a challenging task. The operator typically provides a standard assortment,

which, if followed, will ensure minimum sales. However, it is difficult for less

experienced agents to perform flexible assortment changes based on various types

of information, as experienced agents do.
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1.4 Structure of our Proposal Method

Based on the industry situation described in the previous section, the main objective

of this study is to model and propose the product assortment method that can help

even less experienced agents achieve a certain level of sales performance.

An overview of the model structure for the proposed method addressing the

vending machine product assortment optimization problem, as discussed in Section

1.2, will be provided here (Fig. 1.2). Further details will be explained in later

chapters.

(1) A customized POMDP model is applied to represent agent decision-making.

(2) A product selection model is introduced to capture consumer purchasing

behavior.

(3) For the vending machine model, a state transition model is applied to the

vending machines state over time for simulation.

(4) Time in relation to purchasing behavior and restocking operations is handled

flexibly, as purchases do not occur at fixed intervals.

1.5 Organization of this Dissertation

The structure of this dissertation is as follows.

In Chapter 1 (this chapter), we describe the research background and objectives,

as well as an overview of the vending machine business in Japan. Chapter 2 dis-

cusses the fundamentals and basic methodologies for addressing decision-making

under uncertainty.

In Chapter 2, related study is reviewed. It highlights key studies on assortment

optimization problems, vending machines, and consumer behavior in product

selection. Furthermore, it compiles and organizes representative solutions for

POMDPs from existing literature.
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Chapter 3 focuses on the general formulation of assortment optimization prob-

lems and explains the foundational concepts behind the proposed solutions.

Chapter 5 explains the details of our proposed POMDP-based method for

addressing the vending machine assortment problem.

In Chapter 6, the proposed approach is applied to numerical simulations.

Results from simulations conducted under various scenarios and conditions are

presented to evaluate the performance of the method.

Chapter 7 provides a discussion of the proposed method, reflecting on the

outcomes and findings presented in earlier chapters.

Finally, Chapter 8 concludes the work with a summary and an exploration of

potential future research directions.
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Figure 1.1: Deployment Status of Vending Machines (Compiled based on [2])
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Figure 1.2: Structure of Proposal method
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Chapter 2

Decision Making Under Uncertainty

2.1 Decision Making

In considering decision-making, we define the agent and the environment. An

agent is an entity that makes decisions and takes actions based on its observations

of the environment. Agents can be humans or robots, or they could be software,

such as decision-support systems. The environment changes its state according to

the agent’s actions and other factors, while also providing information to the agent

through observations.

Fig. 2.1 represents the interaction between the agent and the environment

through actions and observations. At time 𝑡, the agent observes the environment

and receives an observation 𝑜(𝑡). Observations may come from human senses,

such as vision or hearing, from electrical signals like radar or sensors, or from

numerical data, such as that from a point-of-sale (POS) system.

Observations are often incomplete or contain noise. Additionally, the observed

values may change probabilistically. Through the decision-making process, which

will be explained later, the agent selects an action 𝑎(𝑡). This action can potentially

affect the environment. Our goal is to develop intelligent agents that interact with

the environment over time to achieve specific objectives. Given a sequence of

past observations 𝑜(0), . . . , 𝑜(𝑡), the agent must consider its knowledge of the

environment and select the optimal action 𝑎(𝑡) to achieve its goals.
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Figure 2.1: Interaction between the agent and the environment

2.2 Methods for Designing Decision Agents

There are various methods for designing decision agents. It is necessary to select

an appropriate method depending on the task at hand. This section provides a

brief overview of these methods.

2.2.1 Explicit Programming

The most direct method for decision-making is for the designer to anticipate various

environments and states and explicitly pre-program the most desirable actions for

the agent according to each situation. While this approach can be effective for

simple environments or problems, it is challenging to achieve an optimal strategy

for all possible states in complex problems.
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2.2.2 Supervised Learning

One method for decision-making involves using supervised learning, a type of

machine learning algorithm. This approach provides numerous training examples

as learning data, where actions are selected based on observations, allowing the

algorithm to learn these patterns. It is effective when the designer knows the

optimal actions for representative states. However, when faced with new states

not present in the training data, it can be difficult to achieve the desired level of

performance.

2.2.3 Optimization

In addition, there are optimization methods. For optimization, the designer needs to

specify a performance measure for decision-making. The optimization algorithm

runs a series of simulations based on a decision strategy within the space of

possible strategies and searches for the strategy that maximizes the performance

measure. If the space of possible strategies is relatively low-dimensional and

the performance measure does not have many local optima, it may be possible

to explore appropriate local or global strategies. On the other hand, in complex

problems, effectively utilizing knowledge of the dynamic model can often lead to

better strategies. This is because, in complex problems, many factors are involved,

and simply running simulations may make it difficult to find the optimal strategy.

2.2.4 Planning

Planning is an optimization method that utilizes a dynamic model to guide the

search, and much research focuses on deterministic problems. For some prob-

lems, approximating the dynamic model with a deterministic model makes it

easier to handle high-dimensional issues, but in other cases, accounting for future

uncertainty is crucial.
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2.2.5 Reinforcement Learning

In planning, it is assumed that the dynamic model is known, but reinforcement

learning relaxes this assumption, allowing the agent to learn its decision-making

strategy through interaction with the environment. The designer only provides a

performance measure, and the optimization of the agent’s behavior is left to the

learning algorithm. One of the complexities of reinforcement learning is that the

choice of action affects not only the achievement of goals but also the agent’s

ability to learn about the environment and discover features of the problem.
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Chapter 3

Related Work

3.1 Assortment Optimization Problem

Assortment optimization problem (AOP) has been widely studied. Here, an

overview of some of its aspects is presented.

The existing literature on assortment optimization is centered around two

major themes: (1) static and dynamic substitution mechanisms, and (2) consumer

behavior models.

Static substitution assumes that if the initially selected product is out of stock,

then the consumer will not purchase another item instead [5]. In contrast, dynamic

substitution assumes that if the product is out of stock, then the consumer purchases

another item as an alternative [6, 7].

In [8], three models are shown for describing consumer behavior: exogenous

demand, locational choice and multinomial logit. The exogenous demand model

gives a method for describing consumer behavior from observable sales data of

each product, such as Kök and Fisher [9]. The locational choice model was

developed by Lancaster [10]. This model introduces multi-dimensional vectors

where each dimension corresponds to a product characteristic and consumer’s

demand. The consumer’s selection of products is determined by the proximity

of the consumer’s ideal vector to the Resear’s vector. The multinomial logit

(MNL) model is a random utility model that represents the selection probability
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of each product as functions of consumer’s utility. The basic MNL model was

established by McFadden [11]. The MNL model has limitations because it assumes

independence of irrelevant alternatives in the selection probabilities of products.

To reduce these limitations, the nested MNL model was proposed by Williams [12].

3.1.1 Solutions for AOP

AOP involves various methods, each with distinct characteristics. The simplest

approach is heuristic methods, such as ABC analysis and the 80/20 rule, which

prioritize high-revenue products. These methods allow for quick decision-making

with minimal computation, but they lack adaptability to market changes, often

leading to suboptimal selections.

A more precise approach is mathematical optimization, which uses linear

programming (LP) and integer linear programming (ILP) to determine the optimal

assortment while considering constraints such as budget and shelf space. These

methods provide high accuracy but can be computationally expensive, making

them difficult to implement in large-scale environments.

Machine learning-based methods analyze past sales data to predict future de-

mand. For example, collaborative filtering identifies customer purchasing trends

and recommends high-demand products. However, these models require large

datasets for accurate predictions and must be updated regularly to maintain effec-

tiveness.

Another approach involves simulation and A/B testing. Monte Carlo simulation

tests various demand scenarios virtually to evaluate the effectiveness of different

assortments, while A/B testing compares different product lineups using real-world

sales data. These methods offer realistic insights but require significant time and

cost to implement effectively.

Finally, reinforcement learning adapts dynamically to market changes by learn-

ing the best assortment strategies through trial and error. Techniques like Q-

learning and Multi-Armed Bandit algorithms refine decision-making over time.
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Although reinforcement learning is highly flexible, it demands extensive compu-

tational resources and long training periods, making implementation challenging.

Each method has its strengths and weaknesses, and selecting the right one

depends on data availability, computational capacity, and market volatility. A

combination of multiple techniques can often yield the best results, allowing

businesses to optimize their product assortment effectively.

3.2 Vending Machines

Research on vending machines has been conducted in various fields, with this

discussion focusing primarily on issues related to the tasks of operators and man-

agement of agent’s work.

3.2.1 Inventory Distribution Planning

There are studies addressing inventory distribution planning to enable efficient

rounds across multiple vending machines. Many of these studies have taken an

operations research perspective, with Miyamoto et al. [13] being a representative

example.

3.2.2 AOP on Vending Machine

Studis on assortment planning for vending machines are progressing.

A column refers to a storage location within a vending machine, and through

optimal allocation and inventory management of products within these limited

columns, increased sales and reduced stockouts can be achieved. Miyamoto et

al. [14] and Ito et al. [15] formulated the column allocation problem in vending

machines as a combinatorial optimization problem, aiming to minimize total costs

and reduce stockouts through integer programming. In contrast, Takeuchi et

al. [16] modeled consumer purchase demand as following a Poisson process,

differing from Miyamoto et al. by adopting long-term profitability as the objective
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function. Anupindi et al. [17] proposed a demand estimation method that models

consumer behavior in choosing substitute products when a stockout occurs.

Grzybowska et al. [18] proposed a model to optimize product allocation in

vending machines under fixed restocking constraints. Using genetic algorithms,

they evaluated revenue through simulation. A case study based on real-world data

showed a 3.4% improvement in overall net revenue, with a maximum increase of

6% for highly popular vending machines.

Watanabe et al. [19] proposed a system for reducing the costs associated with

product supply and release in next-generation vending machines. They improves

the placement algorithm by utilizing a parameter-free genetic algorithm, aiming

to enhance efficiency and reduce operational costs in vending machine systems.

The reasons why the assortment optimization problem for vending machines

has not been well discovered are considered to be (i) demand for solving this

problem was small because the assortment is usually decided by agents using

their knowledge and experience on sales, and (ii) complexity of the problem. The

complexity arises from the following notable characteristics of the problem:

• Sales of products can be observed only when the replenishment is done.

• The replenishment work is done on a regular basis. Therefore, solution to the

problem is a decision making process based on past history of observations.

• Nature of customers is not observable and needs to be estimated.

Recently, beverage companies try to introduce information systems that support

route men’s work. Proposing a method that helps the route men’s decision making

is the main contribution of this study.

3.3 Consumer Product Selection Behavior

A representative recent study in the field of marketing on consumer product se-

lection behavior when faced with a wide variety of products is the work of Sato
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et al. [20] [21] [22], which formalized consumer product selection behavior using

Bayesian modeling based on retail store sales performance data (point of sales:

POS data). Fujita et al. [23] also formalized consumer utility for products in a

logit model for restaurants, and attempted to forecast demand using parameters es-

timated from POS data using statistical methods. Another study is by Matsumura

et al. [24], which used a multi-agent model to simulate consumer behavior when

products are out of stock in convenience stores.

Both studies involve building statistical models based on sales data from re-

tailers and restaurants and verifying their validity, but they only aim to predict

consumer choice behavior for a fixed product lineup (shelf allocation in a retail

store). There are still only a few studies that go as far as improving product lineups

to increase store sales.

Vending machines differ from retail stores in that sales results are not known

at the time of sale (data can only be obtained during the round visit), and because

each machine is installed in a different environment, it is difficult to set uniform

parameters. In addition, the route man himself is required to make appropriate

judgments regarding the timing of product changes and the selection of target

products. For this reason, a different approach from previous research is needed

to model product selection behavior from vending machines.

3.3.1 Product Selection Model

In order to give the gain function, we introduce a consumer’s product selection

model. Based on MNL model, utility values give the probabilities that a consumer

selects one from plural selectable products [25, 26]. Let 𝑃𝑞𝑖 ,𝑠 𝑗 ,𝑘 denote the prob-

ability that consumer 𝐶𝑘 tries to purchase product 𝑞𝑖 in state 𝑠 𝑗 . The utility value

when consumer 𝐶𝑘 tries to purchase product 𝑞𝑖, denoted by 𝑉𝑞𝑖 ,𝑠 𝑗 ,𝑘 , is given by a

linear regression model

𝑉𝑞𝑖 ,𝑠 𝑗 ,𝑘 := 𝛼
𝑗 ,𝑘
𝑖 +

∑
𝑙

𝛽
𝑗 ,𝑘
𝑖,𝑙 𝑌

𝑗
𝑙 , (3.1)
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where we assume product 𝑞1 is the reference, 𝛼 𝑗 ,𝑘
𝑖 is a constant, and 𝛽

𝑗 ,𝑘
𝑖,𝑙 is the

coefficient of each explanatory variable 𝑌
𝑗
𝑙 . Then the probability that consumer

𝐶𝑘 selects product 𝑞𝑖 in state 𝑠 𝑗 is given by

𝑃𝑞𝑖 ,𝑠 𝑗 ,𝑘 =
exp(𝑉𝑞𝑖 ,𝑠 𝑗 ,𝑘 )∑𝑛
𝑙=1 exp(𝑉𝑞𝑙 ,𝑠 𝑗 ,𝑘 )

. (3.2)

Remark that utility values and the selection probabilities are defined not only for

products in the assortment, but also for products not in the assortment.

3.3.2 Multinomial Logit Model

Using the probability Eq. (3.2), we give the purchase probability of product 𝑞𝑖 by

each consumer. Let 𝑁 be the number of consumers and let 𝑋𝑖 denote the stochastic

variable representing the number of sales for product 𝑞𝑖 without any restriction

on the assortment. The purchase probability Pr(𝑋𝑖 = 𝑟 | 𝑠 𝑗 ), where the sales of

product 𝑞𝑖 amount to 𝑟 as a result of 𝑁 consumers attempting to purchase under

state 𝑠 𝑗 , follows Poisson binomial distribution [27]. Poisson binomial distribution

is explained as follows. We consider 𝑁 independent trials each of which has

its own success probability. Then Poisson binomial distribution is the discrete

probability distribution of the number of successes from the 𝑁 trials that can be

computed recursively by

Pr(𝑋𝑖 = 𝑟 | 𝑠 𝑗 ) =



𝑁∏
𝑘=1

(1 − 𝑃𝑞𝑖 ,𝑠 𝑗 ,𝑘 ) if 𝑟 = 0

1
𝑟

𝑟∑
𝑙=1

(−1)𝑙−1 Pr(𝑋𝑖 = 𝑟 − 𝑙 | 𝑠 𝑗 )Υ(𝑙) if 𝑟 > 0

, (3.3)

where 𝑃𝑞𝑖 ,𝑠 𝑗 ,𝑘 represents the probability that the 𝑘-th consumer purchases product

𝑞𝑖 under state 𝑠 𝑗 , defined by Eq. (3.2), and

Υ(𝑙) =
𝑁∑
𝑘=1

(
𝑃𝑞𝑖 ,𝑠 𝑗 ,𝑘

1 − 𝑃𝑞𝑖 ,𝑠 𝑗 ,𝑘

) 𝑙
. (3.4)
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Expected value of 𝑋𝑖 under state 𝑠 𝑗 is

𝐸 [𝑋𝑖 | 𝑠 𝑗 ] =
𝑁∑
𝑘=1

𝑃𝑞𝑖 ,𝑠 𝑗 ,𝑘 . (3.5)

3.4 POMDP

Partially Observable Markov Decision Processes (POMDPs) are widely recognized

as a powerful framework for modeling sequential decision-making problems under

partial observability. Notable recent applications include clinical decision-making,

dialogue management, and robot control policies.

However, despite their strengths, POMDPs face significant challenges. Solving

large-scale POMDPs, even approximately, is notoriously difficult. This complexity

arises primarily from the curse of dimensionality, where the computational cost

increases exponentially with the size of the belief state space, and the curse of

history, due to the vast number of possible state-observation-action sequences.

The foundational work by Kaelbling et al. [28] introduced key approaches for

addressing infinite-horizon problems, focusing on maximizing the value function.

Their methods form the basis of many modern solutions. While challenges remain,

recent advancements, including Monte Carlo methods, deep reinforcement learn-

ing, and Point-Based Value Iteration (Value Iteration, PBVI), have significantly

expanded the practical applicability of POMDPs in various domains.

Notation

POMDP is a model of an agent that synchronously interacts with environment.

Given a discrete set 𝑍 , let Π(𝑍) denote the set of all discrete probability distribu-

tions on 𝑍 . Formally, POMDP is defined as a tuple 𝑃𝑂𝑀𝐷𝑃 = (S,A, 𝛿,R,Ω,O),
where S is the finite set of states, A is the finite set of actions, 𝛿 : S × A → Π(S) is

the state transition function, R : S × A → R is the reward function, Ω is a finite set

of observations, and O : S × A → Π(Ω) is the observation function.

Since the state has to be estimated through the observation function, Kaelbling’s
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method introduces a belief. A belief is a variable that represents what the current

state is, and it is estimated from the history of observations.

At each time step, the agent choose an action to maximize the expected reward

depending on the belief. A policy is a description of the behavior of the agent.

3.4.1 General Solution to POMDPs: Value Iteration

In POMDP, the agent cannot directly observe the true state of the system. Instead,

it maintains a belief state 𝑏(𝑠), which represents a probability distribution over all

possible states.

For a given belief state 𝑏, the POMDP policy is represented as a conditional

plan structured as a tree. This conditional plan specifies rules for selecting actions

based on observations received, allowing the agent to account for the uncertainty

and dynamically adjust its behavior.

This approach enables the agent to operate effectively under partial observabil-

ity by leveraging probabilistic reasoning about its environment.

The goal in a POMDP is to identify a policy 𝜋 that maximizes the value

function, defined as the expected sum of discounted rewards over a finite horizon

ℎ, starting from an initial belief state 𝑏0:

𝑉 ℎ
𝜋 (𝑏) = E

[
ℎ∑
𝑡=0

𝛾𝑡𝑟𝑡 | 𝑏0 = 𝑏

]
, (3.6)

where 𝑟𝑡 is the reward received at time 𝑡, 𝛾 is the discount factor (0 < 𝛾 < 1), and

𝑏0 is the initial belief state.

Characteristics of the Value Function and Policy

For a finite horizon ℎ :

• The optimal policy can be expressed as an ℎ-step conditional plan (𝜋ℎ).

• The value function for a finite horizon is piecewise linear and convex with

respect to the belief state 𝑏. It can be represented as the maximum over a
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finite set of 𝛼-vectors:

𝑉 ℎ (𝑏) = max
𝛼ℎ
𝑖 ∈Γℎ

(𝛼ℎ
𝑖 · 𝑏), (3.7)

where 𝑏 and each 𝛼ℎ
𝑖 are vectors of dimension |𝑆 | (the number of states).

Infinite horizon approximation For discount factors (𝛾 < 1), the value function

for an infinite horizon can be approximated arbitrarily closely using a sufficiently

large finite horizon ℎ [28].

Computation via Dynamic Programming

Initialization : At ℎ = 0, the value function is initialized as 𝑉0(𝑏) = 0 with

Γ0 = {𝛼0
1 = 0}.

Inductive computation : Using dynamic programming, the set of 𝛼-vectors for

stage ℎ, Γℎ, is computed from Γℎ−1 through a backup operation. This operation

updates the value function based on actions, observations, and transitions in the

belief space.

This formulation provides a foundation for solving POMDPs by leveraging

the structure of the belief space and the convexity of the value function, enabling

efficient computation of optimal or near-optimal policies despite the problem’s

inherent complexity.

3.4.2 Other Solutions

Several solution methods have been proposed for solving POMDPs, in addition

to Value Iteration. Bellow, we will illustrate the characteristics of these methods,

including Value Iteration, and explain which types of problems each method is

effective for.
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Value Iteration is a method that iteratively updates the value function to de-

termine the optimal policy. It represents the belief-state value function using

𝛼-vectors and guarantees an optimal solution. However, its computational cost is

extremely high, making it impractical for large-scale problems.

Policy Iteration directly optimizes the policy through alternating evaluation and

improvement steps. It can sometimes converge faster than Value Iteration, but it

requires solving large linear programs, which can make it infeasible for problems

with many states or observations.

Monte Carlo methods use random sampling to estimate the optimal policy.

These methods are well-suited for large-scale problems because they approximate

the solution without explicitly computing the full belief-state space. However, they

do not guarantee an optimal solution, and their accuracy depends on the number

of samples used [29].

POMCP (Partially Observable Monte Carlo Planning) improves upon stan-

dard Monte Carlo methods by integrating Monte Carlo Tree Search (MCTS) with

belief-state updates. It is particularly effective for large and dynamic problems, as

it can efficiently update its decisions based on new observations. While POMCP

significantly reduces computational complexity, it only provides approximate so-

lutions and does not guarantee global optimality [30].

Value Iteration and Policy Iteration are theoretically optimal but are only

feasible for small problems due to their high computational cost. On the other hand,

Monte Carlo methods and POMCP sacrifice optimality for efficiency, allowing

them to handle large-scale and complex problems more effectively. Among them,

POMCP is particularly useful for real-time decision-making in constantly changing

environments.
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Ultimately, the choice of a solution method depends on the problem size,

computational resources, and the need for an exact solution.
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Chapter 4

General Formulation for Assortment
Optimization Problems (AOP)

Before discussing assortment optimization problem, we outline the general for-

mulation. The assortment optimization problem for vending machines is defined

by a 7-tuple 𝐴𝑂𝑃 = (A, 𝑆, 𝛿, 𝐺,𝑂, 𝜋, C), where A is the set of assortments, 𝑆 is

the set of states, 𝛿 is the state transition function, 𝐺 is the gain function, 𝑂 is the

observation function, 𝜋 is the policy, and C is the assortment constraints. Details

are described in this chapter.

4.1 Products and Assortment

Consider 𝑛 kinds of products 𝑞𝑖 (𝑖 = 1, ..., 𝑛) and 𝑚 columns (𝑚 > 0, normally

𝑛 > 𝑚), where columns of a vending machine are containers for stocking products.

An assortment is a combination of selecting 𝑚 products from 𝑛 kinds of products

allowing duplication. Such a combination is represented by a multiset. Multiset

is a concept of set that combines the degree of duplication of how many elements

are included when the set contains multiple elements of the same value. #𝑋 [𝑒]
represents the number of 𝑒 included in the multiple set 𝑋 . We denote 𝑒 ∈ 𝑋 if

#𝑋 [𝑒] > 0.

Let A = {a1, . . . ,a𝐿} denote the set of all assortments, where 𝐿 is the total

number of assortments. The assortment given at time 𝑡 is denoted by a(𝑡). Note
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that a(𝑡 + 1) takes effect on sales between time 𝑡 and 𝑡 + 1.

It should be noted that time 𝑡 does not represent conventional time but rather

a sequence of individual visit opportunities by the agent. As a result, the interval

between visit opportunities 𝑡 and 𝑡 + 1 is not constant in actual time.

As discussed in Section 1.3, agents can only obtain information at each visit,

and in practice, they schedule visits when sales remain relatively stable. Consid-

ering this assumption, we adopt this approach.

Hereafter, we refer to these visit opportunities as time.

We assume that every column has the same capacity, and let cap denote the

capacity of each column. Then the number of product 𝑞𝑖 in the assortment a(𝑡) is

stk(a(𝑡), 𝑞𝑖) := #a(𝑡) [𝑞𝑖] · cap, (4.1)

where #a(𝑡) [𝑞𝑖] is the number of occurrences of 𝑞𝑖 in the multiset a(𝑡) and we

assume each column is full after replenish work.

4.2 State Space

Let 𝑆 = {𝑠1, . . . , 𝑠𝑣} be the set of states, where each state 𝑠𝑖 is a 𝑢-dimensional

vector and each component of a sate can be a real number, an integer or a dis-

crete value. The states of vending machines consists of environment, weather,

background population for the purchase at the vending machine, etc.

4.3 State Transition Function

The state at time 𝑡 is denoted by 𝑠(𝑡). We define the state transition probability as

a function 𝛿: N × 𝑆 × 𝑆 → [0, 1], where

∀𝑡, 𝑠 𝑗 :
∑
𝑗 ′

𝛿(𝑡, 𝑠 𝑗 , 𝑠 𝑗 ′) = 1. (4.2)

It means that the probability that 𝑠(𝑡) = 𝑠 𝑗 and 𝑠(𝑡 + 1) = 𝑠 𝑗 ′ is 𝛿(𝑡, 𝑠 𝑗 , 𝑠 𝑗 ′).
When the state transition probability depends on time 𝑡, it is called time variant,
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otherwise it is called time invariant. In the time invariant case, 𝛿 is defined as

𝛿 : 𝑆 × 𝑆 → [0, 1].

4.4 Gain Function

The gain function for assortments is defined as a function𝐺 : 𝑆×A → N that gives

the total sales (amount or unit) under a given state and an assortment. 𝐺 (𝑠 𝑗 ,a𝑙) is

given by the sum of the sales of all products:

𝐺 (𝑠 𝑗 ,a𝑙) :=
∑
𝑞𝑖∈a𝑙

𝑔𝑖, (4.3)

where 𝑔𝑖 is the sales of product 𝑞𝑖. The vector g := [𝑔1, . . . , 𝑔𝑛] is called the gain

vector. Note that we implicitly assume all products have the same price. How to

derive the gain function is explained in the next section.

4.5 Observation Function

The observation function is defined as 𝑂 : 𝑆 → 𝑊 , where 𝑊 is some set. The

observation at time 𝑡 is denoted by 𝑜(𝑡) := 𝑂 (𝑠(𝑡)). As we have defined, each state

𝑠 is represented by a 𝑢-dimensional vector 𝑠𝑖 := [𝑠1
𝑖 , . . . , 𝑠

𝑢
𝑖 ]. In this study, we

assume that the observation function masks some of the substates, e.g., for state

𝑠𝑖 = [𝑠1
𝑖 , 𝑠

2
𝑖 , 𝑠

3
𝑖 , 𝑠

4
𝑖 ], 𝑂 (𝑠𝑖) = [𝑠1

𝑖 , 𝑠
4
𝑖 ], it means that the function masks the second

and the third substates. Here the masked substates imply unobservable substates

and the others imply observable ones.

4.6 Policy

At time 𝑡, given all past information about a vending machine, a function that

outputs a(𝑡) is called a policy 𝜋:

a(𝑡) = 𝜋(𝑜(𝑡),a(𝑡), g(𝑡)), 𝑡 = 0, . . . , 𝑡 − 1, (4.4)

28



A policy is a description of the behavior of the agent. Here, 𝑡 = 0, . . . , 𝑡 − 1

represents all past time steps, and 𝑜(𝑡),a(𝑡), g(𝑡) denote the sequences of all past

observations, actions, and rewards, respectively.

4.7 Assortment Constraint

The assortment constraint is a set C ⊆ A×A. For any time 𝑡, (a(𝑡),a(𝑡+1)) ∈ C
has to be satisfied. The reason why this constraint arises is that the number of

products the route man can exchange at each time is limited. This constraint

characterizes the assortment optimization problem for vending machines.

4.8 Assortment Optimization Problem

We now define the assortment optimization problem in this study.

Find a policy that satisfies the assortment constraint and maximizes the total

gain during time 𝑡 = 0, . . . , 𝑇 .

We can also classify the problem by the following characteristics: The state

space is known / unknown for the agent, complete / incomplete observation, gain

function is known / unknown, and transition probability is known / unknown.

Examples are

• Stores (such as convenience stores, supermarkets): state is known, complete

observation, gain function is known.

• Vending machines: state is known (or unknown), incomplete observation,

gain function is known.
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Chapter 5

Proposal method for AOP

This chapter describes the details of our proposed method for solving the vending

machine assortment optimization problem. The method consists of two compo-

nents. The first is the Product Selection Model, which models how consumers

choose products from the vending machine, specifically by calculating the selec-

tion probability for each product. The second is the model for how the agent selects

assortments, where we adopt a model based on POMDP.

5.1 Product Selection Model: Selection Probability

Next we consider the probability under a given assortment. We assume the static

substitution. Since the amount of actual sales 𝑔𝑖 is constrained by the assortment,

the probability under state 𝑠 𝑗 and assortment aℎ is obtained as follows

Pr(𝑔𝑖 = 𝑟 | 𝑠 𝑗 ,aℎ) =



0 if 𝑟 > stk(aℎ, 𝑞𝑖)

𝑁∑
𝑙=𝑟

Pr(𝑋𝑖 = 𝑙 | 𝑠 𝑗 ) if 𝑟 = stk(aℎ, 𝑞𝑖)

Pr(𝑋𝑖 = 𝑟 | 𝑠 𝑗 ) if 𝑟 < stk(aℎ, 𝑞𝑖)

. (5.1)
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Due to the capacity constraint, all cases 𝑟 ≤ 𝑋𝑖 ≤ 𝑁 reduce to 𝑋𝑖 = 𝑟 . Also, the

expected value of the gain function under state 𝑠 𝑗 and assortment aℎ is given by

𝐸 [𝐺 (𝑠 𝑗 ,aℎ)] =
∑
𝑞𝑖∈aℎ

min
{
stk(aℎ, 𝑞𝑖), 𝐸 [𝑋𝑖 | 𝑠 𝑗 ]

}
. (5.2)

In other words, it is the sum, across all products, of the smaller value between the

expected sales in state 𝑠 𝑗 and the inventory quantity for assortment aℎ.

5.2 POMDP model for AOP

Following Kaelbling et al. [28], we propose a POMDP-based method that select

a good assortment policy from a given set of policies. POMDP is a stochastic

process that deals with situations where the state can be partially observed, and

these observations do not necessarily satisfy Markov process.

The POMDP model for the assortment optimization problem is described as

follows.

5.2.1 State

The set of states in POMDP is given as the set of states in 𝐴𝑂𝑃. The state at time

𝑡 is denoted by 𝑠(𝑡).
The change in state depending on 𝑡 is referred to as “state transition”, denoted

as 𝑠(𝑡) → 𝑠(𝑡 + 1). It is assumed that the state transition 𝑠(𝑡) → 𝑠(𝑡 + 1)
occurs immediately after the agent completes the assortment 𝑎(𝑡). In other words,

𝑠(𝑡 + 1) can be considered as the external environment (such as consumers and

temperature) during the period (𝑡, 𝑡 + 1], while 𝑎(𝑡) represents the initial product

assortment immediately after time 𝑡. The internal state of the vending machine,

which depends on 𝑠(𝑡 + 1) and changes over time.

As a result, the state remains 𝑠(𝑡 + 1) throughout the period (𝑡, 𝑡 + 1], and

consumers are assumed to make purchasing decisions based on 𝑠(𝑡 + 1) during

this period.
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5.2.2 Action

The action at time 𝑡 is given as the assortment a(𝑡) resulting from the exchange

operations performed by the agent. Let us reiterate that a(𝑡 + 1) takes effect on

sales between time 𝑡 and 𝑡 + 1.

5.2.3 State Transition Probability

The state transition probability from time 𝑡 to 𝑡 + 1 is denoted by 𝛿(𝑡, 𝑠(𝑡), 𝑠(𝑡 +
1)). We assume that assortments do not affect state transitions, and that the

state transition probabilites are time invariant. So we denote the probabilites by

𝛿(𝑠(𝑡 + 1) | 𝑠(𝑡)). We define the state transition probability for 𝑛 time steps,

denoted by 𝛿𝑛, as

𝛿1(𝑠′ | 𝑠) := 𝛿(𝑠′ | 𝑠)

𝛿𝑛 (𝑠′ | 𝑠) :=
∑
𝑠′′∈𝑆

𝛿𝑛−1(𝑠′ | 𝑠′′)𝛿(𝑠′′ | 𝑠). (5.3)

5.2.4 Observation

The possible observed state 𝑜(𝑡) and the sales vector g(𝑡) = [𝑔1(𝑡), · · · , 𝑔𝑛 (𝑡)] at

time 𝑡 are stochastically given depending on the state 𝑠(𝑡) and the assortment a(𝑡).
Suppose that g(𝑡) = [𝑟1, . . . , 𝑟𝑛]. Then the probability is given by

O(𝑠(𝑡),a(𝑡 − 1), 𝑜(𝑡), g(𝑡)) := Pr(𝑜(𝑡), g(𝑡) | 𝑠(𝑡),a(𝑡 − 1))

=
𝑛∏
𝑖=1

Pr(𝑜(𝑡), 𝑔𝑖 (𝑡) = 𝑟𝑖 | 𝑠(𝑡),a(𝑡 − 1))

=
𝑛∏
𝑖=1

Pr(𝑔𝑖 (𝑡) = 𝑟𝑖 | 𝑠(𝑡),a(𝑡 − 1)). (5.4)

Note that the observation 𝑜(𝑡) and gain 𝑔(𝑡) at time 𝑡 are probabilistically deter-

mined by the state 𝑠(𝑡) at the same time and the assortment 𝑎(𝑡 −1) at the previous

time 𝑡 − 1. The last equality follows from the fact that 𝑜(𝑡) is uniquely determined

from 𝑠(𝑡) as described in Section 4.5, i.e., the observation masks some substates.
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Pr(𝑔𝑖 (𝑡) = 𝑟𝑖 | 𝑠(𝑡),a(𝑡 − 1)) is computed by Eq. (5.1).

5.2.5 Reward

At time 𝑡, the agent obtains the possible observed state 𝑜(𝑡) and the sales 𝑔𝑖 (𝑡) of

each product 𝑞𝑖. The total sales of products is regarded as the reward. Let rw(𝑡)
denote the reward at time 𝑡, so

rw(𝑡) := 𝐺 (𝑠(𝑡),a(𝑡 − 1)) =
∑

𝑞𝑖∈a(𝑡−1)
𝑔𝑖 (𝑡). (5.5)

Here,𝐺 (𝑠(𝑡),a(𝑡−1)) represents the gain function obtained at the end of consumer

purchasing behavior during the period (𝑡 − 1, 𝑡), given the state 𝑠(𝑡) and the initial

product assortment a(𝑡 − 1).

5.2.6 Policy

A policy on assortment exchange is a function that gives the assortment at each

time. We assume that the policy 𝜋 depends only on the latest state 𝑠(𝑡), the

observed values 𝑜(𝑡), and the latest assortment a(𝑡 − 1). Also, it is assumed that

the agent can select one policy from a finite set of policies Π := {𝜋1, . . . , 𝜋𝑀}.

5.2.7 Belief

The belief is represented by a function 𝑏 : 𝑆 → R such that 0 ≤ 𝑏(𝑠) ≤ 1, and∑
𝑠 𝑗∈𝑆

𝑏(𝑠 𝑗 ) = 1. (5.6)

Let 𝑏𝑡 denote the belief at time 𝑡. For each state 𝑠 ∈ 𝑆, 𝑏𝑡 (𝑠) is the strength that

the agent believes 𝑠(𝑡) = 𝑠.

At each time, the policy on assortment exchanges is decided by the current

belief. Given a belief 𝑏𝑡−1 at time 𝑡 −1, the belief that 𝑠(𝑡) = 𝑠′ under the observed

33



state 𝑜(𝑡) and the sales g(𝑡) is given by

𝑏𝑡 (𝑠′) = Pr(𝑠′ | 𝑜(𝑡),a(𝑡 − 1), g(𝑡), 𝑏𝑡−1)

=
Pr(𝑜(𝑡), g(𝑡) | 𝑠′,a(𝑡 − 1), 𝑏𝑡−1) Pr(𝑠′ | a(𝑡 − 1), 𝑏𝑡−1)

Pr(𝑜(𝑡), g(𝑡) | a(𝑡 − 1), 𝑏𝑡−1)

=
Pr(𝑜(𝑡), g(𝑡) | 𝑠′,a(𝑡 − 1))

Pr(𝑜(𝑡), g(𝑡) | a(𝑡 − 1), 𝑏𝑡−1)

×
∑
𝑠∈𝑆

Pr(𝑠′ | a(𝑡 − 1), 𝑏𝑡−1, 𝑠) Pr(𝑠 | a(𝑡 − 1), 𝑏𝑡−1)

=
O(𝑠′,a(𝑡 − 1), 𝑜(𝑡), g(𝑡))

Pr(𝑜(𝑡), g(𝑡) | a(𝑡 − 1), 𝑏𝑡−1)
×

∑
𝑠∈𝑆

𝛿(𝑠′ | 𝑠)𝑏𝑡−1(𝑠), (5.7)

where the denominator Pr(𝑜(𝑡), g(𝑡) | a(𝑡 − 1), 𝑏𝑡−1) can be treated as a normal-

izing factor.

Based on the notation above, the state transition diagram for this model is

illustrated in Fig. 5.1.

At time 𝑡, the vending machine is in state 𝑠(𝑡). At this time, the agent selects

a policy 𝜋𝑡 for the vending machine, which determines the assortment a(𝑡) to be

implemented.

During the transition from 𝑡 to 𝑡+1, the state changes to 𝑠(𝑡+1) according to the

transition probability 𝛿(𝑠(𝑡+1) | 𝑠(𝑡)). After the transition to 𝑠(𝑡+1), consumers’

purchasing behavior occurs at the vending machine. The sales of products depend

on 𝑠(𝑡 + 1) and a(𝑡) and are represented by the gain function 𝐺 (𝑠(𝑡 + 1),a(𝑡)).
Following the purchasing behavior, the agent visits the vending machine to

obtain an observation 𝑜(𝑡+1) and receives a reward 𝑟𝑤(𝑡+1) = 𝐺 (𝑠(𝑡+1),a(𝑡)).
Using 𝑜(𝑡 + 1), the agent estimates the current state 𝑠(𝑡 + 1) through the belief

𝑏𝑡+1(𝑠(𝑡 + 1)). The agent then selects a new policy 𝜋𝑡+1 and implements the

assortment a(𝑡 + 1).
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Figure 5.1: State Transition Diagram in the POMDP model

At time 𝑡, the vending machine is in state 𝑠(𝑡), and the agent executes
assortmenta(𝑡) according to the policy 𝜋𝑡 . When time 𝑡 progresses to 𝑡+1,
the state transitions to 𝑠(𝑡+1) based on the transition probability 𝛿(𝑠(𝑡+1) |
𝑠(𝑡)). The agent receives a reward 𝑟𝑤(𝑡 + 1) and observes 𝑜(𝑡 + 1), from
which it estimates 𝑠(𝑡 + 1) using the belief 𝑏𝑡+1(𝑠(𝑡 + 1)). Based on the
calculated belief, the agent selects the next policy 𝜋(𝑡 + 1) and executes
assortment a(𝑡+1). This process of state transitions, observations, policy
selection, and assortment execution is repeated iteratively.

5.3 Strategy for Assortment Exchange

Based on the previous section, we describe the procedure for determining the

strategy for assortment exchange at time 𝑡. In this strategy, the agent determines

the policy for assortment exchange according to the following steps:

(1) Calculate the belief of the current vending machine state based on the ob-

servation obtained at time 𝑡.

(2) For each possible policy, calculate the expected rewards for the future states

at time 𝑡 + 1, 𝑡 + 2, . . . , 𝑡 + 𝜏 assuming the assortment corresponding to the

policy is implemented. Sum these expected rewards, applying a discount

factor to account for the diminishing value of future rewards.
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(3) Perform the calculation in step (2) for all possible policies and select the

policy that maximizes the total expected reward.

Estimate Beliefs

At time 𝑡 = 0, we assume that 𝑠(0) = 𝑠 𝑗 is equally likely for all possible states

𝑠 𝑗 ∈ 𝑆. In other words, the belief 𝑏0(𝑠(0)) is

𝑏0(𝑠1) = 𝑏0(𝑠2) = · · · = 𝑏0(𝑠𝑣) =
1
𝑣
. (5.8)

At time 𝑡 > 0, the observed value 𝑜(𝑡) and the sales g(𝑡) are obtained. Using Eq.

(5.7), we update the belief by

𝑏𝑡 (𝑠 𝑗 ) = O(𝑠 𝑗 ,a(𝑡 − 1), 𝑜(𝑡), g(𝑡)) ×
∑
𝑠∈𝑆

𝛿(𝑠 𝑗 | 𝑠)𝑏𝑡−1(𝑠). (5.9)

After the update, 𝑏𝑡 is normalized so that∑
𝑠 𝑗∈𝑆

𝑏𝑡 (𝑠 𝑗 ) = 1. (5.10)

Calculate Expected Reward at time 𝑡 + 1

The reward obtained at time 𝑡 is determined by the gain function based on the

assortment a(𝑡 − 1) at time 𝑡 − 1 and the state 𝑠(𝑡) at time 𝑡, as shown in Eq.

(5.5). The expected reward 𝐸 [𝑟𝑤(𝑡)] is calculated as the product of the belief for

all possible states 𝑠(𝑡) and the expected value of the gain function when each state

𝑠(𝑡) is realized.

𝐸 [𝑟𝑤(𝑡)] =
∑
𝑠∈𝑆

𝑏𝑡 (𝑠)𝐸 [𝐺 (𝑠,a(𝑡 − 1))] . (5.11)

The policy on assortment exchanges 𝜋𝑘0
𝑡 (𝑘0 = 1, . . . , 𝑀) ∈ Π is decided based

on the expected reward obtained in the future. First, we consider the expected value

of the reward 𝑟𝑤(𝑡 + 1) at time 𝑡 + 1. In the case where 𝜋𝑘0
𝑡 : a(𝑡 − 1) → a𝑘0 (𝑡) is
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Figure 5.2: Sample process for expected reward at time 𝑡 + 1
Consider the agent’s policy selection at time 𝑡. For simplicity, the set 𝑆 is
limited to three states: {𝑠1, 𝑠2, 𝑠3}.
At time 𝑡, the agent selects policy 𝜋𝑘0

𝑡 and executes assortment a𝑘0 (𝑡).
The expected reward obtained at time 𝑡 + 1 is the sum of the expected
rewards 𝐸 [𝐺 (𝑠′,a𝑘0 (𝑡))] for all possible combinations of paths 𝑠(𝑡) = 𝑠
and 𝑠(𝑡+1) = 𝑠′. In this calculation, the transition probabilities and beliefs
for each path are multiplied and summed to obtain the final value.

selected, the expected reward at time 𝑡 + 1 is given as follows:

𝐸
𝜋
𝑘0
𝑡
[𝑟𝑤(𝑡 + 1)] =

∑
𝑠′∈𝑆

{∑
𝑠∈𝑆

𝛿(𝑠′ | 𝑠)𝑏𝑡 (𝑠)
}
𝐸 [𝐺 (𝑠′,a𝑘0 (𝑡))] . (5.12)

An example of the process described so far, for the case where 𝑆 = {𝑠1, 𝑠2, 𝑠3}, is

illustrated in Fig. 5.2.

Calculate Expected Reward at time 𝑡 + 2

Next, we consider the case that 𝜋𝑘1
𝑡+1(𝑘1 = 1, . . . , 𝑀) is selected at time 𝑡 + 1.

The expected value of the reward 𝑟𝑤(𝑡 + 2) is calculated for the each assortment

a𝑘0 (𝑡),a𝑘1 (𝑡+1). Note that the assortment at time 𝑡+1 depends on the assortment
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Figure 5.3: Sample process for expected reward at time 𝑡 + 2

Continuing with the consideration of the agent’s policy selection at time
𝑡, as shown in Figure 5.2, the agent is assumed to select policy 𝜋𝑘1

𝑡+1 and
execute assortment a𝑘1 (𝑡 + 1) at time 𝑡 + 1.
The expected reward obtained at time 𝑡 + 2 is the sum of the expected
rewards 𝐸 [𝐺 (𝑠′,a𝑘1 (𝑡 + 1))] at time 𝑡 + 2 for 𝑠(𝑡 + 2) = 𝑠′, calculated
over all possible combinations of paths 𝑠(𝑡 + 1) = 𝑠 and 𝑠(𝑡 + 2) = 𝑠′. In
this calculation, the transition probabilities and beliefs for each path are
multiplied and summed.

at time 𝑡 because of the assortment constraints.

𝐸
𝜋
𝑘0
𝑡 ·𝜋𝑘1

𝑡+1
[rw(𝑡 + 2)]

=
∑
𝑠′∈𝑆

{∑
𝑠∈𝑆

𝛿(𝑠′ | 𝑠)𝑏𝑡+1(𝑠)
}
𝐸 [𝐺 (𝑠′,a𝑘1 (𝑡 + 1))]

=
∑
𝑠′∈𝑆

{∑
𝑠∈𝑆

∑
𝑠′′∈𝑆

𝛿(𝑠′ | 𝑠′′)𝛿(𝑠′′ | 𝑠)𝑏𝑡 (𝑠)
}
𝐸 [𝐺 (𝑠′,a𝑘1 (𝑡 + 1))]

=
∑
𝑠′∈𝑆

{∑
𝑠∈𝑆

𝛿2(𝑠′ | 𝑠)𝑏𝑡 (𝑠)
}
𝐸 [𝐺 (𝑠′,a𝑘1 (𝑡 + 1))] (5.13)

Here, Eq. (5.3) is applied. An example of this process is illustrated in Fig. 5.3
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Total Expected reward from 𝑡 + 1 to 𝑡 + 𝜏

Similarly at time 𝑡 + 𝜏 (𝜏 > 0), we can obtain the expected value of the reward as

follows:

𝐸
𝜋
𝑘0
𝑡 ···𝜋𝑘𝜏−1

𝑡+𝜏−1
[rw(𝑡 + 𝜏)] =∑

𝑠′∈𝑆

{∑
𝑠∈𝑆

𝛿𝜏 (𝑠′ | 𝑠)𝑏𝑡 (𝑠)
}
𝐸 [𝐺 (𝑠′,a𝑘𝜏−1 (𝑡 + 𝜏 − 1))] . (5.14)

Therefore, we can calculate the maximum expected reward in the future when the

policy 𝜋𝑘0
𝑡 is selected at time 𝑡. When the policy 𝜋𝑘0

𝑡 is selected, the total expected

reward 𝐸𝑡→𝑡+𝜏 (𝜋𝑘0
𝑡 ) is calculated as the sum of them from 𝑡 + 1 to 𝑡 + 𝜏. As usual

in POMDP, in order to make recent rewards more effective, we multiply the future
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expected reward by the discount rate 𝛾(0 < 𝛾 < 1).

𝐸𝑡→𝑡+1(𝜋𝑘0
𝑡 ) = 𝐸

𝜋
𝑘0
𝑡
[rw(𝑡 + 1)]

𝐸𝑡→𝑡+2(𝜋𝑘0
𝑡 ) = 𝐸

𝜋
𝑘0
𝑡
[rw(𝑡 + 1)] + 𝛾 max

𝜋
𝑘1
𝑡+1∈Π

{
𝐸
𝜋
𝑘0
𝑡 ·𝜋𝑘1

𝑡+1
[rw(𝑡 + 2)]

}
𝐸𝑡→𝑡+3(𝜋𝑘0

𝑡 ) = 𝐸
𝜋
𝑘0
𝑡
[rw(𝑡 + 1)] + 𝛾 max

𝜋
𝑘1
𝑡+1∈Π

{
𝐸
𝜋
𝑘0
𝑡 ·𝜋𝑘1

𝑡+1
[rw(𝑡 + 2)]

+ 𝛾 max
𝜋
𝑘2
𝑡+2∈Π

{
𝐸
𝜋
𝑘0
𝑡 ·𝜋𝑘1

𝑡+1·𝜋
𝑘2
𝑡+2
[rw(𝑡 + 3)]

}}
...

𝐸𝑡→𝑡+𝜏 (𝜋𝑘0
𝑡 ) = 𝐸

𝜋
𝑘0
𝑡
[rw(𝑡 + 1)]

+ 𝛾 max
𝜋
𝑘1
𝑡+1∈Π

{
𝐸
𝜋
𝑘0
𝑡 ·𝜋𝑘1

𝑡+1
[rw(𝑡 + 2)]

+ 𝛾 max
𝜋
𝑘2
𝑡+2∈Π

{
𝐸
𝜋
𝑘0
𝑡 ·𝜋𝑘1

𝑡+1·𝜋
𝑘2
𝑡+2
[rw(𝑡 + 3)]

+ 𝛾 max
𝜋
𝑘3
𝑡+3∈Π

{
𝐸
𝜋
𝑘0
𝑡 ·𝜋𝑘1

𝑡+1·𝜋
𝑘2
𝑡+2·𝜋

𝑘3
𝑡+3
[rw(𝑡 + 4)]

· · · + 𝛾 max
𝜋
𝑘𝜏−1
𝑡+𝜏−1∈Π

{
𝐸
𝜋
𝑘0
𝑡 ···𝜋𝑘𝜏−1

𝑡+𝜏−1
[rw(𝑡 + 𝜏)]

}
· · ·

}}}
(5.15)

Note that the expected sales in far future is not very important in vending machines,

we consider rewards within a finite horizon.

Select the Ppolicy on the Assortment

According to the above procedure, we obtain the total expected rewards

𝐸𝑡→𝑡+𝜏 (𝜋1
𝑡 ), . . . , 𝐸𝑡→𝑡+𝜏 (𝜋𝑀

𝑡 ) by the policies 𝜋1
𝑡 , . . . , 𝜋

𝑀
𝑡 . Then, the policy on the

assortment exchange 𝜋𝑡 is decided as one that maximizes the expected reward:

𝜋𝑡 = arg max
𝜋
𝑘0
𝑡 ∈Π

𝐸𝑡→𝑡+𝜏 (𝜋𝑘0
𝑡 ). (5.16)

40



However, the 𝜋𝑡 chosen here must ensure that the assortment implemented based

on 𝜋𝑡 satisfies the assortment constraint. That is,

𝜋𝑡 : a(𝑡 − 1) → a(𝑡), (a(𝑡 − 1),a(𝑡)) ∈ C. (5.17)

Equation (5.16) represents the decision-making policy of the agent at time 𝑡.

Specifically, the agent first selects one policy 𝜋𝑘0
𝑡 = 𝜋0 ∈ Π from the available

policies and assumes that the assortment based on this policy is executed. The

agent then (mentally) calculates the expected future reward 𝐸𝑡→𝑡+𝜏 (𝜋𝑘0
𝑡 ) over the

period from 𝑡 + 1 to 𝑡 + 𝜏 using Eq. (5.16). Next, the agent calculates the

expected reward 𝐸𝑡→𝑡+𝜏 (𝜋𝑘0
𝑡 ) for another policy 𝜋𝑘0

𝑡 = 𝜋1 ∈ Π. Similarly, the

agent evaluates 𝐸𝑡→𝑡+𝜏 (𝜋1
𝑡 ), . . . , 𝐸𝑡→𝑡+𝜏 (𝜋𝑀

𝑡 ). The agent then selects the policy

𝜋max
𝑡 that maximizes the expected reward 𝐸𝑡→𝑡+𝜏 (𝜋max

𝑡 ) and determines it as the

policy to execute at time 𝑡.

5.4 Baseline model

Thus far, we have explained our proposed model and the strategy selection policy

for optimal assortment. In the next chapter, we will simulate and evaluate these

models. However, before proceeding, we will discuss the metrics used for model

evaluation.

Various approaches can be considered for model evaluation. In this study, we

compare the performance of our model against that of an ideal agent executing the

best possible assortment actions. Specifically, we assume an agent with perfect

knowledge of all information

This ideal agent is assumed to have prior knowledge of the vending machine’s

state and state transitions at every time step, including unobservable factors, with

100% certainty. Additionally, the agent is assumed to know precisely which

assortment yields the highest sales in each state. Such an agent can select the

assortment that maximizes the reward at each time step based on the current and

subsequent states, ensuring that the total expected reward across all time steps is
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theoretically maximized.

It should be noted that for the evaluation of the proposed model, ideally, data

should be collected from actual agents’ product assortment processes and com-

pared accordingly. However, as discussed in the Section 1.3, product assortment

exchange by agents is largely unstructured, making it difficult to obtain data that

would allow for a robust evaluation.

Therefore, in this study, we assumed an ideal agent and set the theoretically

optimal assortment exchange they could achieve as the upper benchmark. The pro-

posed model was then evaluated by comparing its results against this benchmark.

In this section, we examine two metrics based on the expected reward of such

an ideal agent.

5.4.1 Theoretical Upper bound

First, we can derive the theoretical upper bound on the expected sales. If the agent

explicitly knows the state 𝑠(𝑡) of the vending machine at time 𝑡, the agent can

maximize the expected total sales by choosing an appropriate assortment from the

set of the entire assortment A at time 𝑡−1. We can give the following upper bound

of expected sales at each time 𝑡, without considering assortment constraint.

𝐸
Upper bound
𝑡 = max

a(𝑡−1)∈𝐴
𝐸 [𝐺 (𝑠(𝑡 + 1),a(𝑡))] (5.18)

Figure 5.4 illustrates the concept of the theoretical upper bound. In this figure,

for simplicity, the assortmenta𝑘0 (𝑡) implemented at time t according to the selected

policy 𝜋𝑘0
𝑡 (𝑘0 = 1, . . . , 𝑀) is denoted as a𝑘0 .

In the calculation of the Theoretical Upper ound, it is assumed that an ideal

agent “knows” the assortment that will maximize sales in the next time step and

can select it accordingly. When considering the assortment at time 𝑡 + 3 in the

diagram, the next optimal assortment a𝑘2 may not be selectable due to assortment

constraints. However, for the calculation of the theoretical upper bound, this

constraint is ignored, and it is assumed that a𝑘2 can be realized and the reward
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Figure 5.4: Sample process for Theoretical Upper bound

𝑟𝑤(𝑡 + 3) = 𝐺 (𝑠4,a
𝑘2) is obtained. As a result, the expected reward obtained is

maximized among all possible state transitions.

5.4.2 Feasible Maximum Value

By the assortment constraint, selection of the assortment at time 𝑡 is constrained by

the assortment at time 𝑡 − 1. We consider the feasible maximum value of expected

sales under the assortment constraint. Let a𝑙 , a𝑚 be two assortments and let

C(a𝑙 ,a𝑚) denote a Boolean variable such that C(a𝑙 ,a𝑚) = 1 if (a𝑙 ,a𝑚) ∈ C and

0 otherwise. Then the expected sales considering assortment constraint at time 𝑡

is given by

𝐸𝑡 (a(0), . . . ,a(𝑡 − 1)) =(
𝑡−1∏
𝑖=1

C(a(𝑖 − 1),a(𝑖))
)
· 𝐸 [𝐺 (𝑠(𝑡),a(𝑡 − 1))], (5.19)

and the feasible maximum value at each time 𝑡 is

𝐸Feasible max
𝑡 = max

a(0),...,a(𝑡−1)∈A
𝐸𝑡 (a(0), . . . ,a(𝑡 − 1)). (5.20)
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Figure 5.5: Sample process for Feasible max

In Fig. 5.4, consider the case where assortments that do not satisfy the
assortment constraints cannot be implemented. The ideal agent selects
the feasible assortment a𝑘2 within the constraints. The expected reward
obtained in this case represents the maximum achievable value when the
agent exerts its best effort under the given constraints.

An example of the feasible naximum value is shown in Fig. 5.5. In Fig. 5.4,

consider the case where assortments that do not satisfy the assortment constraints

cannot be implemented. But, for feasible maximum value, the ideal agent selects

the feasible assortment a𝑘2 within the constraints. The expected reward obtained

in this case represents the maximum achievable value when the agent exerts its

best effort under the given constraints.

By comparing equations (5.18) and (5.20), it is clear that

𝐸Feasible max
𝑡 ≤ 𝐸

Upper bound
𝑡 . (5.21)

5.4.3 Assortment Constraints in Vending Machines

In the process of exchanging products in a vending machine, there are certain

assortments that cannot be realized due to various constraints. For example, even
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if the sales are good and the intention is to increase stock, there are limitations

on the types and quantities of products that can be transported during restocking.

Some columns cannot physically accommodate certain products due to their size,

and the number of product swaps or columns that can be exchanged is limited by the

employees’ working hours. These are constraints that are specific to optimization

problems when applied to vending machines.

Ignoring these constraints, the theoretical maximum expected reward is rep-

resented by 𝐸
Upper bound
𝑡 , while the maximum expected reward within the feasible

range, considering the constraints, is 𝐸Feasible max
𝑡 .

In the next chapter, these expected rewards will be used as baselines, and

the rewards achieved by the model will be evaluated based on how closely they

approach 𝐸
Upper bound
𝑡 and 𝐸Feasible max

𝑡 .
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Chapter 6

Simulation model and Numerical
Results

In this chapter, we present the numerical results obtained from computer simula-

tions of assortment optimization problem for vending machines.

6.1 Models for Vending Machine

Based on the discussion in Chapter 5, we give the specific formulation of the

assortment optimization problem for vending machines. In order to simplify the

problem, we introduce some assumptions on products, agents and consumers.

6.1.1 Products and Agents

All products have the same shape and price, and the number of products that can

be replenished in one column is also the same. The agent replenishes the vending

machine with products and can exchange the assortment at its own discretion. The

agent checks sales for each assortment at the next replenishment work. Vending

machines have several states (e.g. environment, weather, background population

for the purchase at the vending machine), and sales fluctuate depending on the

state. The agent makes it possible to observe the state of all or part of the vending

machine.

Note that these assumptions are based on the discussion in Section 1.3.
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6.1.2 Consumer’s Purchasing Behavior

We introduce simple assumptions on consumers who are purchasing products at

the vending machine. A consumer has several attributes (gender, age, occupation,

etc.), and the preferences for product selection probabilistically depend on these

attributes together with the current state.

At time 𝑡, 𝑁 consumers try to purchase products at the vending machine.

Suppose that the 𝑘-th consumer 𝐶𝑘 (𝑘 = 1, . . . , 𝑁) tries to purchase one of 𝑛

kinds of products. The products the consumer 𝐶𝑘 tries to purchase are determined

probabilistically. We assume that the probabilities are determined by the attributes

of the consumer 𝐶𝑘 and the state of the vending machine 𝑠(𝑡). If the product to

be purchased is present in the assortment a(𝑡) and the inventory is sufficient, the

consumer𝐶𝑘 purchases it. Otherwise (including in case of sold out), the consumer

do not purchase any alternative products in that case, i.e., we assume the static

substitution.

In the computer simulation, we assume that the attribute of the consumer is

only gender: male or female. Other conditions and attributes are not considered.

6.2 Parameters and Assumptions

We show the parameters for the simulation and some assumptions.

6.2.1 Agent

In the simulation, we assume that the agent knows all attributes and parameters

including transition probabilities between states. The agent cannot know the entire

information on the current state and estimates it from the history of observations

as the belief. Based on the belief, the agent selects the next policy.

47



6.2.2 State of Vending Machine

Originally, the state of vending machines can be considered to have many param-

eters and factors. The states can be classified into two types: observable and

unobservable. In this simulation, we consider three states: location, temperature

and gender ratio.

Location is observable and classified by three types: office, outdoor and school.

In practice, the location is observable and fixed in the simulation targeting a single

vending machine. In this study, the location functions as a factor that characterizes

the elements defined later, such as products, utility values, other states, and state

transitions.

Temperature is an external factor for vending machines. It is observable and is

selected from one of {ℎ𝑖𝑔ℎ, 𝑚𝑖𝑑𝑑𝑙𝑒, 𝑙𝑜𝑤} at each time.

The gender ratio is an internal factor for vending machines, and it means the

ratio of males and females among consumers who are going to purchase at the

vending machine. In the simulation, three patterns are assumed: {8 : 2, 5 : 5, 2 :

8}. The ratio is selected from one of them at each time. The ratio is unobservable

and it cannot be known to the agent. The image of the vending machine states is

shown in Fig.6.1.

6.2.3 Products and Assortment

All products have the same shape and price, and the number of products that can be

replenished in one column is also the same. Products that can be in the assortment

are 15 kinds: A, . . . ,O. The vending machine has 10 columns, and the capacity

of each columns is 20 for any kind of products. It is possible to assign the same

kind of products to multiple columns. Fig. 6.2 depicts an assortment and stocks.
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Figure 6.1: State of Vending Machine

A vending machine has three types of states: location, temperature, and
gender ratio, each of which can be divided into three levels. Location is
an observable and static state that does not change. Temperature is an
observable and dynamic state influenced by external factors, while the
gender ratio is an unobservable and dynamic state that changes over time.
At each time step, the vending machine’s state is assumed to move (or
remain stationary) within a fixed 2D space defined by temperature and
gender ratio at a given location, following a state transition probability.
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Figure 6.2: Products and Assortment

An illustration of vending machine columns and products. This figure
depicts a case with 10 types of products and 6 columns. When products
A, . . . , F are assigned to the 6 columns, these products are considered
“available for sale”. The remaining 4 products G,H, I,K, which are not
assigned to any column, are regarded as “not available for sale”. Moreover,
even for products that are available for sale, if their stock reaches zero (as
in the case of D in the figure), they are considered “sold out”. While
consumer purchase intentions, as modeled by the utility function, may
still exist for products that are either not assigned to a column or sold out,
these products cannot actually be purchased.

6.2.4 Selection Probability of Products

In the simulation, the utility value 𝑉𝑞𝑖 ,𝑠 𝑗 ,𝑘 of product 𝑞𝑖 ∈ {A, . . . ,O} by the 𝑘-th

consumer in state 𝑠 𝑗 is defined as:

𝑉𝑞𝑖 ,𝑠 𝑗 ,𝑘 = 𝑉0
𝑞𝑖 +𝑉𝑀

𝑞𝑖 + 𝛽𝑀𝑞𝑖𝑇𝑗 for male (6.1)

𝑉𝑞𝑖 ,𝑠 𝑗 ,𝑘 = 𝑉0
𝑞𝑖 +𝑉𝐹

𝑞𝑖 + 𝛽𝐹𝑞𝑖𝑇𝑗 for female, (6.2)

where𝑉0
𝑞𝑖 is the gender-independent constant of utility value,𝑉𝑀

𝑞𝑖 , 𝑉
𝐹
𝑞𝑖 is the gender-

dependent constant, 𝛽𝑀𝑞𝑖 , 𝛽
𝐹
𝑞𝑖 is the gender-dependent coefficient, and 𝑇𝑗 is the

temperature parameter in state 𝑠 𝑗 , such as ℎ𝑖𝑔ℎ → 1, 𝑚𝑖𝑑𝑑𝑙𝑒 → 0, 𝑙𝑜𝑤 → −1.

These parameters are decided by characteristics of locations and products.

Each product is classified into types of drink (coffee, green tea, etc.) with attribute

COLD or HOT, and the feature of each product is reflected in the values of

parameters. For example, the utility value for men is higher for coffee, more

COLD products are sold as the temperature rises, etc. The parameter 𝑉0
𝑞𝑖 is
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independent of the location, but 𝑉𝑀
𝑞𝑖 , 𝑉

𝐹
𝑞𝑖 , 𝛽

𝑀
𝑞𝑖 , 𝛽

𝐹
𝑞𝑖 are decided by characteristics of

the location. 𝛽𝑀𝑞𝑖 , 𝛽
𝐹
𝑞𝑖 are coefficients of temperature’s contribution to the utility

values. When these values are positive, they indicate that these products become

easy to be sold as the temperature rises. The Sample of the parameter values we

adopted for the simulation are shown in Table 6.1-6.3. (Note that in these tables,

the 5 products K, . . . ,O are assigned the same values as F, . . . , J. This is based

on the assumption that there are two different products within the same category.

In later simulations, these will be assigned different values to test the effect of

including products that are more strongly influenced by the state.)

Parameter estimation of the multinominal logit model can be done indepen-

dently of the assortment optimization. In simulations, we use artificial values for

parameters determined by the following way. We first consider a variety of real

products that are for summer/winter, indoor / outdoor, and male / female. Next

we assign values to each parameter that seem reasonable from qualitative point of

view.

6.2.5 Transition Probability

The transition probabilities 𝛿(𝑠(𝑡 + 1) | 𝑠(𝑡)) are decided by characteristics of

locations. However, we assume that a transition of gender ratio and temperature

are independent in any location. At outdoor, the transition probability of gender

ratio to other states is large so that the variation of the ratio is increased. While

at school, the probability of staying in the current state is increased because

we consider that the variation is small. The probability in office is adopted an

intermediate value. The parameter values for the simulation are shown in Table

6.4, 6.5.

Similarly to parameters in the multinominal logit model, the state transition

probabilities should be estimated from empirical data. However, we here assume

that the probabilities are already known. In this study, we aim to show the proposed
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Table 6.1: Parameters of utility value: office

These are the utility value parameters for each product. They reflect the
tendency for products to be purchased or not purchased depending on
factors such as gender and temperature. For example, G (soda, COLD)
is more likely to be purchased at higher temperatures (𝛽 > 0), but this
tendency is stronger for men than for women (𝛽𝑀 > 𝛽𝐹).
The “office” location has been set with parameters that suggest a more
neutral influence of gender and temperature compared to other locations.

item type COLD / HOT 𝑉0 𝑉𝑀 𝑉𝐹 𝛽𝑀 𝛽𝐹

A coffee COLD 1.0 1.0 0.5 0.0 0.5

B coffee HOT 0.5 0.5 0.5 -0.5 -0.5

C café au lait COLD 0.0 -0.5 0.5 0.0 -0.5

D green tea COLD 1.0 1.0 1.0 0.0 0.0

E tea COLD 0.5 0.5 1.0 0.0 0.5

F enegy drink COLD -0.5 0.0 -1.0 0.0 0.0

G soda COLD 0.5 0.5 0.0 1.0 0.5

H mineral water COLD 1.0 0.0 0.0 0.0 0.0

I tea HOT -0.5 -1.0 0.5 -1.0 -0.5

J sports drink COLD 0.5 0.5 0.0 0.0 0.5

K enegy drink (2) COLD -0.5 0.0 -1.0 0.0 0.0

L soda (2) COLD 0.5 0.5 0.0 1.0 0.5

M mineral water (2) COLD 1.0 0.0 0.0 0.0 0.0

N tea (2) HOT -0.5 -1.0 0.5 -1.0 -0.5

O sports drink (2) COLD 0.5 0.5 0.0 0.0 0.5
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Table 6.2: Parameters of utility value: outdoor

The “outdoor” location is set with parameters that reflect a stronger influ-
ence of temperature compared to the “office” location.

item type COLD / HOT 𝑉0 𝑉𝑀 𝑉𝐹 𝛽𝑀 𝛽𝐹

A coffee COLD 1.0 0.5 -0.5 0.5 0.5

B coffee HOT 0.5 0.5 -1.0 -0.5 -1.0

C café au lait COLD 0.0 -1.0 0.0 0.5 1.0

D green tea COLD 1.0 0.5 0.5 0.0 0.5

E tea COLD 0.5 0.0 1.0 1.0 0.5

F enegy drink COLD -0.5 -0.5 -1.0 0.0 0.5

G soda COLD 0.5 0.5 0.0 1.0 1.0

H mineral water COLD 1.0 -0.5 0.0 0.5 0.0

I tea HOT -0.5 -1.0 0.5 -0.5 -1.0

J sports drink COLD 0.5 1.0 0.5 0.5 1.0

K enegy drink (2) COLD -0.5 -0.5 -1.0 0.0 0.5

L soda (2) COLD 0.5 0.5 0.0 1.0 1.0

M mineral water (2) COLD 1.0 -0.5 0.0 0.5 0.0

N tea (2) HOT -0.5 -1.0 0.5 -0.5 -1.0

O sports drink (2) COLD 0.5 1.0 0.5 0.5 1.0
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Table 6.3: Parameters of utility value: school

The “school” location is set with parameters that result in a higher pur-
chase intention for products aimed at younger consumers compared to
the “office” location. Additionally, there are products where the gender
influence is reversed compared to the office. For example, for 𝑉 , J (sports
drink, COLD) has a higher utility, while A,B (coffee, COLD / HOT) have
lower utilities. Also, for E (tea, COLD), in the office, 𝛽𝑀 < 𝛽𝐹 , but in the
school, 𝛽𝑀 > 𝛽𝐹 .

item type COLD / HOT 𝑉0 𝑉𝑀 𝑉𝐹 𝛽𝑀 𝛽𝐹

A coffee COLD 1.0 0.0 -0.5 0.0 0.5

B coffee HOT 0.5 -1.0 -1.0 -1.0 -1.0

C café au lait COLD 0.0 0.0 0.5 -0.5 0.0

D green tea COLD 1.0 1.0 1.0 0.0 -0.5

E tea COLD 0.5 0.5 1.0 0.5 0.0

F enegy drink COLD -0.5 -0.5 -1.0 0.0 0.0

G soda COLD 0.5 0.5 0.0 1.0 0.5

H mineral water COLD 1.0 0.0 -0.5 0.0 0.5

I tea HOT -0.5 -1.0 0.5 -0.5 -1.0

J sports drink COLD 0.5 1.0 0.5 1.0 0.5

K enegy drink (2) COLD -0.5 -0.5 -1.0 0.0 0.0

L soda (2) COLD 0.5 0.5 0.0 1.0 0.5

M mineral water (2) COLD 1.0 0.0 -0.5 0.0 0.5

N tea (2) HOT -0.5 -1.0 0.5 -0.5 -1.0

O sports drink (2) COLD 0.5 1.0 0.5 1.0 0.5
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approach works if all the parameter values are known. If this is not true, then there

is no sense to incorporate estimation of unknown factors in the model. Estimating

unknown factors during the assort optimization process remains as future work.

6.2.6 Policy

In this simulation, we define the policy set Π includes 𝑀 = 8 policies in Table 6.6.

The assortment constraint is the most strict one that allows all of these policies.

As explained so far, a policy is a means of generating the next assortment

from the previous one. If the agent had access to all the information, it would

theoretically be possible to swap all products and columns at each operation,

always maintaining the best possible state at any given time. However, However,

as stated in Section 1.3.4, replacing a large number of products at once is often

physically and temporally impossible. There are many hidden constraints on the

exchange process.

Furthermore, even if a best-selling product is found and the agent were to only

set that product in the columns, sales would drastically drop if the environment

changes and the product no longer sells. Additionally, products that are not selling

well now may become bestsellers in different environments.

Thus, the assortment policy needs to be determined by considering a wide

range of factors, including physical constraints and marketing requirements. In

this simulation, taking these factors into account, 8 policies were defined with the

following principles: (i) A maximum of two products can be replaced at a time.

(ii) The general policy is to place products with high sales potential in the columns

and remove products with low sales potential. (iii) To avoid biasing the assortment,

a policy that randomly selects which products to replace is also included. (iv) If

sales are expected, one product can be set in more than one column.

By determining assortments based on these policies, while it may be difficult to

immediately achieve the optimal assortment in response to environmental changes

or sudden sales fluctuations, the aim is to gradually adjust the assortment over time
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Table 6.4: Transition probability of gender ratio

These tables show the transition probabilities for the gender ratio by lo-
cation. In the “outdoor” location, the probability of transitioning to a
different state is higher, while in the “school” location, the probability of
staying in the same state is higher. The “office” location has transition
probabilities set in between these two extremes.

office 𝑠(𝑡 + 1)

𝛿(𝑠(𝑡 + 1) | 𝑠(𝑡)) {8 : 2} {5 : 5} {2 : 8}

𝑠(𝑡)
{8 : 2} 0.60 0.30 0.10

{5 : 5} 0.25 0.50 0.25

{2 : 8} 0.15 0.35 0.50

outdoor 𝑠(𝑡 + 1)

𝛿(𝑠(𝑡 + 1) | 𝑠(𝑡)) {8 : 2} {5 : 5} {2 : 8}

𝑠(𝑡)
{8 : 2} 0.45 0.35 0.20

{5 : 5} 0.30 0.40 0.30

{2 : 8} 0.20 0.30 0.50

school 𝑠(𝑡 + 1)

𝛿(𝑠(𝑡 + 1) | 𝑠(𝑡)) {8 : 2} {5 : 5} {2 : 8}

𝑠(𝑡)
{8 : 2} 0.80 0.15 0.05

{5 : 5} 0.15 0.70 0.15

{2 : 8} 0.10 0.15 0.75
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Table 6.5: Transition probability of temperature

The transition probabilities for temperature are the same across all loca-
tions. Regardless of the previous state, the probability of transitioning to
the intermediate state {𝑚𝑖𝑑𝑑𝑙𝑒} is set to be the highest.

𝑠(𝑡 + 1)

𝛿(𝑠(𝑡 + 1) | 𝑠(𝑡)) {ℎ𝑖𝑔ℎ} {𝑚𝑖𝑑𝑑𝑙𝑒} {𝑙𝑜𝑤}

𝑠(𝑡)
{ℎ𝑖𝑔ℎ} 0.35 0.50 0.15

{𝑚𝑖𝑑𝑑𝑙𝑒} 0.20 0.60 0.20

{𝑙𝑜𝑤} 0.25 0.45 0.30

to get closer to the appropriate one. In other words, we expect to achieve a robust

assortment that can withstand changes in the environment.

6.2.7 Models and Evaluation

For evaluations, we have performed simulations with baselimodels, comparative

models, and POMDP models.

Baseline models are showned in Section 5.4. We have calculated the “theoret-

ical upper bound” Eq. (5.18) and the “feasible maximum value” Eq. (5.20).

A comparative model C𝑘 (𝑘 = 1, . . . , 𝑀) is a model that selects the same

policy 𝜋𝑘 at each time step. For example, 𝜋1 for model C1 is a policy that the

agent exchanges one product with the lowest utility value and one product with

the highest utility value, and 𝜋7 for C7 is that the agent exchanges the lowest two

products and the highest two products. The same way, C2 to C6 are defined with

𝜋2 to 𝜋6. In this study, we have adopted four models: C0, C1, C2, and C7. In

these cases, it is assumed that the agent considers the gender ratio of the vending

machine to be constant at {5 : 5} in the initial state. Since other policies showed

lower performance than that by 𝜋1, 𝜋2, 𝜋7, we have picked up these policies in the

presentation of graphs and tables.
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Table 6.6: Policy set Π

This table defines specific policies and shows how the assortment, or
product exchanges, will be implemented based on each policy. Policy
𝜋0 represents doing nothing (maintaining the current state), 𝜋1 to 𝜋4 are
policies for swapping products within the columns and between columns,
𝜋5 and 𝜋6 are policies for setting or removing one product across two
columns,and 𝜋7 is a policy for swapping two products at a time (a total of
4 products).

Policy Detail

𝜋0 Do nothing.

𝜋1 Exchange one of products in columns which has the lowest
utility value for one of products not in columns which has
the highest utility value.

𝜋2 Exchange one of products in columns which has the lowest
utility value for one of products not in columns selected
randomly.

𝜋3 Exchange one of products in columns selected randomly for
one of products not in columns which has the highest utility
value.

𝜋4 Exchange one of product in columns selected randomly for
one of products not in columns selected randomly.

𝜋5 Add one column for one of products in columns which has
the highest utility value, and remove one of that which has
the lowest utility value.

𝜋6 Reduce one column from the multi-column products has the
lowest utility value, and add one of products not in columns
which has the highest utility value.

𝜋7 Exchange two products in columns which have the lowest
utility values for two products not in columns products which
have the highest utility values.
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As POMDP models, we have prepared three models M𝜏 based on how far into

the future 𝜏 is to be predicted in the total expected reward 𝐸𝑡→𝑡+𝜏 (𝜋𝑘0
𝑡 ) at each time

𝑡 by Eq. (5.15). However, as 𝜏 increases, the computational complexity becomes

enormous. In this study, for computational feasibility, simulations are limited to

three cases: 𝜏 = 1, 2, 3, and the improvement in accuracy when 𝜏 is larger is also

evaluated.

Based on the above, in the following sections, simulations will be conducted

under the same conditions for the models listed below, followed by analysis of the

results and evaluation of their accuracy.

• Upper bound: 𝐸Upper bound
𝑡

• Feasible max: 𝐸Feasible max
𝑡

• Fix action = 0 C0: Leave the initial assortment unchanged at all.

• Fix action = 1 C1: (policy: 𝜋1)

• Fix action = 2 C2: (policy: 𝜋2)

• Fix action = 7 C7: (policy: 𝜋7)

• Proposed model M1: 𝐸𝑡→𝑡+1(𝜋𝑘0
𝑡 ) (𝜏 = 1).

• Proposed model M2: 𝐸𝑡→𝑡+2(𝜋𝑘0
𝑡 ) (𝜏 = 2).

• Proposed model M3: 𝐸𝑡→𝑡+3(𝜋𝑘0
𝑡 ) (𝜏 = 3).

6.3 Basic case: 10 items, N=100

For the 2 baselines, 4 comparative models and 3 proposed models, 50 simulations

were conducted at each of the 3 location. The length of each simulation is 20

steps, the number of consumers is 𝑁 = 100 and the discount rate is 𝛾 = 0.9 in

Eq. (5.15). For simplicity, in this case, the number of products is limited to 10

(A, . . . , J),and the vending machine is assumed to accommodate only 6 columns.
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Examples of simulation results at outdoor are shown in Fig. 6.3

Note: In Fig. 6.3, there are cases where the sales of the proposed models exceed

that of the theoretical upper bound at some time steps. This is because the sales

of proposed models are calculated by stochastic simulation at each time step while

that of the theoretical upper bound is summed up the expected value of sales.

Therefore, the proposed models are evaluated by the average values of the total

sales in 50 simulations.

Table 6.7, 6.8, and 6.9 show the summary of “sales” and “sold out” in 50

simulations for each model. Here, the amount of “sold out” cases are counted for

the number of consumers who wanted to purchase a product but could not because

of sold out in columns.

In these tables, improvement efficiency of assortment for models are evaluated

by “Achievement rate: Sales(Ave.) / UB”, where UB is the theoretical upper

bound. This means the rate of how close the expected sales value is to the upper

bound. In all locations, these rates of “Feasible max” are almost close to 100%.

It means that if the agent knows all the state in the future and can make the best

exchange of products based on the information, the expected sales that the agent

can obtain is almost close to the upper bound.

In comparative models, the rates of fix action C0 is around 68-86%, and that of

fix action = 1, 2, 7 are around 90% on each locations. On the other hand, the rates

of the proposed models 1 to 3 are over 90% in all locations, especially at office and

school the rates are 92-94%. Therefore, we can conclude that the proposed models

are effective in improving sales compared to the comparative models. Moreover,

when state probabilities of state transitions are small like in school, we observe

that the performance increases as the future time steps 𝜏 in estimation increases.

However, the improvement is not very large. For office and outdoor, 𝜏 = 1 seems

enough.
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Table 6.7: Result summary: Basic case, office

Baseline
or Model

Sales
(Ave.)

Sales
(Std.)

Sold out
(Ave.)

Achievement rate:
Sales / Sales of UB(*)

Upper bound 77.81* 2.45 - 100.0%

Feasible max 77.81 2.45 - 100.0%

C0 67.28 5.62 1.22 86.5%

C1 72.34 6.61 1.49 93.0%

C2 70.53 6.27 1.31 90.6%

C7 71.21 6.83 1.43 91.5%

M1 73.55 6.71 1.52 94.5%

M2 73.49 6.85 1.52 94.4%

M3 73.43 6.59 1.48 94.4%

Table 6.8: Result summary: Basic case, outdoor

Baseline
or Model

Sales
(Ave.)

Sales
(Std.)

Sold out
(Ave.)

Achievement rate:
Sales / Sales of UB(*)

Upper bound 79.24* 3.23 - 100.0%

Feasible max 78.94 3.41 - 99.6%

C0 54.20 5.37 0.99 68.4%

C1 70.50 8.73 2.69 89.0%

C2 67.87 8.91 2.58 85.6%

C7 70.15 8.16 2.90 88.5%

M1 72.54 6.73 3.18 91.5%

M2 72.15 6.19 3.34 91.1%

M3 72.05 6.30 3.11 90.9%
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Table 6.9: Result summary: Basic case, school

Baseline
or Model

Sales
(Ave.)

Sales
(Std.)

Sold out
(Ave.)

Achievement rate:
Sales / Sales of UB(*)

Upper bound 80.39* 3.19 - 100.0%

Feasible max 80.25 3.25 - 99.8%

C0 55.30 7.52 2.68 68.8%

C1 73.63 7.54 5.16 91.6%

C2 70.82 7.51 4.78 88.1%

C7 72.53 7.31 5.10 90.2%

M1 74.40 6.72 4.96 92.5%

M2 75.50 6.28 5.05 93.9%

M3 75.51 6.55 4.92 93.9%

6.4 Secondary case: 15 items, N=150

As next simulations, we adopt the parameters as follows: the number of consumers

is 𝑁 = 150, the number of vending machine columns is 10, sum of stocks is 200,

time steps is 𝑇 = 20 and the discount rate is 𝛾 = 0.9. The number of kinds

of products is 𝑛 = 15 (A,B,C, . . . ,O). Other parameters and conditions follow

Section. 6.3.

We assume that outdoor is a location where temperature changes easily and

school is a location where changes in gender ratio greatly affect selection behavior,

and office is assumed as intermediate. In this study, we have added stadium, which

has extremely high transition probabilities of gender ratio. That probabilities are

shown Table 6.11.

The results of comparative models C1, C7 and POMDP models M1, M2,

M3 are summarized in the Table 6.12. The simulations have been evaluated by

achievement rate, that means the rate of proximity to the upper bound: “Sales
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Table 6.10: Parameters of utility value: stadium

A stadium is parameterized such that the overall sales for each product are
generally higher.

item type COLD / HOT 𝑉0 𝑉𝑀 𝑉𝐹 𝛽𝑀 𝛽𝐹

A coffee COLD 1.0 0.5 -0.5 0.5 0.5

B coffee HOT 0.5 0.5 -1.0 -0.5 -1.0

C café au lait COLD 0.0 -1.0 0.0 0.5 1.0

D green tea COLD 1.0 0.5 0.5 0.0 0.5

E tea COLD 0.5 0.0 1.0 1.0 0.5

F enegy drink COLD -0.5 -0.5 -1.0 0.0 0.5

G soda COLD 0.5 0.5 0.0 1.0 1.0

H mineral water COLD 1.0 -0.5 0.0 0.5 0.0

I tea HOT -0.5 -1.0 0.5 -0.5 -1.0

J sports drink COLD 0.5 1.0 0.5 0.5 1.0

K enegy drink (2) COLD -0.5 -0.5 -1.0 0.0 0.5

L soda (2) COLD 0.5 0.5 0.0 1.0 1.0

M mineral water (2) COLD 1.0 -0.5 0.0 0.5 0.0

N tea (2) HOT -0.5 -1.0 0.5 -0.5 -1.0

O sports drink (2) COLD 0.5 1.0 0.5 0.5 1.0
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Table 6.11: Transition probability of gender ratio: stadium

The transition probabilities for the stadium are set to be more dynamic
compared to other locations, allowing for more frequent state transitions.

stadium 𝑠(𝑡 + 1)

𝛿(𝑠(𝑡 + 1) |𝑠(𝑡)) {8 : 2} {5 : 5} {2 : 8}

𝑠(𝑡)
{8 : 2} 0.10 0.30 0.60

{5 : 5} 0.30 0.10 0.60

{2 : 8} 0.60 0.30 0.10

/ Sales of UB”, where UB is the theoretical upper bound in (5.18), that means

the ratio of how close the expected sales value is to be upper bound. For all

locations, the POMDP models perform few points higher achievement rate than

the comparative models. In particular, stadium shows clearly C1, C7 < M1 <

M2,M3, and sales increased when the future is predicted. On the other hand,

other locations show C1, C7 < M1,M2,M3, but the effect of future prediction is

not so much.

6.5 In case when the initial stock is biased

Next, we have verified whether the model can respond to changes in the condition.

Specifically, a simulation has been performed for the case that the initial inventory

is biased to 100 units each for two products (A and B).

The example of simulation result is shown in Fig.6.5. When 𝑡 is small, the

assortment does not meet consumer’s demand, so sales of all models are low.

Here, the POMDP models have a fast increase in sales, and can achieve sales close

to UB at an earlier time step.

The summary of results are shown in the Table 6.13. Compared to the com-

parative models, the POMDP models have increased the achievement rate by more
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than 10 points at office and about few points at outdoor and school.

6.6 In case the demand for the products varies sig-
nificantly

As another case, we have simulated the case where the popularities of products

are biased and these demands are greatly different. In this simulation, we varied

the utility parameter significantly. In the Basic case, the parameters of the utility

value 𝑉0, 𝑉𝑀 , 𝑉
𝑀 , 𝛽𝑀 , 𝛽𝐹 are in the range from -1 to 1, but in this simulation, the

values are set from -4 to 4. So, this simulation is conducted in which the utility

value of a product changes greatly depending on the location, temperature, and

gender ratio, and this affects sales.

The example of simulation result is shown in Fig.6.6 When the assortment

does not match the demand for the product, the sales drop significantly, but the

POMDP model reduces the drop.

The summary of results are shown in the Table 6.14. Compared to the compar-

ative models, the POMDP models have increased the ac rate by more than 10-15

points at office and outdoor, and 3-5 points at school.

6.7 In case of alternative selection allowed

We examined the alternative selection for products when there is a sellout. So

far, consumers have assumed that if their first selection was already sold out, they

wouldn’t purchase it. As a new simulation, if the first-selection product is sold

out, a consumer will reselect a product with a high utility value other than the

first-selection (second-selection product), and if it is in stock, he/she will purchase

it.

Table 6.19 shows the results when alternative selection is allowed under the

same conditions as before. In all locations, sales are higher than expected value for

UB (not assuming second selection). The comparative models and the POMDP
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models have almost the same value. We introduced the first-selection ratio as a

new indicator. Even if the sales are the same, the higher the first-selection ratio,

the higher the consumer satisfaction. According to this rate, the POMDP model is

1-2 points higher than the comparative model.

Table 6.21 shows the results when the initial stock is reduced (200 → 60) to

make it easier for sold out to occur. Sales of the POMDP models have increased

by 2-3 points compared to the comparative models. And the first-selection ratio

has increased by 2-3 points, which shows the effect of future prediction.
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Figure 6.3: Example of Simulation: Basic case, outdoor

The horizontal axis represents time steps, and the vertical axis represents
sales. Each model was simulated 50 times, and the average sales for each
time step is plotted. In the top figure, Baseline and Comparative models
are compared, while in the bottom figure, Baseline and Proposed models
are compared. Among the Comparative models, all except C0 exhibit
similar trends. In the Proposed models, M3 shows behavior relatively
close to the Baseline. There are certain days when the model revenues
exceed the Baseline. This phenomenon is discussed further in the main
text.
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Figure 6.4: Example of Simulation in Stadium

Due to the high transition probabilities, the Comparative model struggles
to adapt to state changes, resulting in significantly lower sales on certain
days. In contrast, the Proposed model maintains relatively stable sales
even on such days.
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Table 6.12: Summary in basic case

Location
Sales of

UB
Achievement rate: Sales / Sales of UB

C1 C7 M1 M2 M3

office 122.47 92.2% 92.7% 93.5% 93.2% 93.4%

outdoor 125.35 90.0% 90.6% 92.1% 92.6% 92.9%

school 125.81 92.6% 91.7% 93.3% 93.2% 93.5%

stadium 126.26 87.2% 85.5% 89.1% 91.3% 91.1%

Table 6.13: summary in case of biased stock at the initial

Location
Sales of

UB
Achievement rate: Sales / Sales of UB

C1 C7 M1 M2 M3

office 122.47 63.1% 74.1% 87.2% 87.0% 87.5%

outdoor 125.35 71.4% 84.0% 87.0% 87.3% 87.0%

school 125.81 79.3% 85.7% 87.5% 87.0% 87.7%

Table 6.14: Summary in case the demand for the products varied significantly

Location
Sales of

UB
Achievement rate: Sales / Sales of UB

C1 C7 M1 M2 M3

office 128.49 70.1% 69.2% 78.5% 78.9% 78.5%

outdoor 135.67 56.0% 55.3% 69.6% 69.8% 69.2%

school 129.34 75.0% 73.3% 78.7% 78.7% 78.8%
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Figure 6.5: Example of Simulation: The initial stock is biased

At earlier stages when 𝑡 is small, none of the models achieve high sales,
but the Proposed model adapts to the environment more quickly and is
able to increase sales.

Figure 6.6: Example of Simulation: The products varies significantly

When the assortment does not match the demand for the products, sales
drop significantly, but in the Proposed model, the decline is less pro-
nounced.
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Table 6.15: Result summary of office
6.19

Baseline
or Model

Sales
(Ave.)

Sales
(Std.)

Sold out
(Ave.)

Achievement rate:
Sales / Sales of UB(*)

Upper bound 122.47* 3.54 - 100.0%

C0 107.26 6.06 3.19 87.6%

C1 112.93 9.22 3.41 92.2%

C2 110.17 8.45 3.26 90.0%

C7 113.58 9.37 3.46 92.7%

M1 114.47 8.10 3.28 93.5%

M2 114.16 8.56 3.47 93.2%

M3 114.38 7.51 3.31 93.4%

Table 6.16: Result summary of outdoor

Baseline
or Model

Sales
(Ave.)

Sales
(Std.)

Sold out
(Ave.)

Achievement rate:
Sales / Sales of UB(*)

Upper bound 123.4* 3.79 - 100.0%

C0 96.89 6.50 3.63 77.3%

C1 112.78 11.41 5.16 90.0%

C2 109.85 11.99 5.22 87.6%

C7 113.56 10.84 5.27 90.6%

M1 115.42 8.25 6.38 92.1%

M2 116.08 8.81 6.22 92.6%

M3 116.41 8.28 6.00 92.9%
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Table 6.17: Result summary of school

Baseline
or Model

Sales
(Ave.)

Sales
(Std.)

Sold out
(Ave.)

Achievement rate:
Sales / Sales of UB(*)

Upper bound 125.81* 3.88 - 100.0%

C0 96.66 7.09 6.13 76.8%

C1 116.52 9.82 8.69 92.6%

C2 111.89 10.65 8.07 88.9%

C7 115.31 10.81 8.57 91.7%

M1 117.43 8.93 8.69 93.3%

M2 117.30 9.34 8.69 93.2%

M3 117.67 8.28 8.73 93.5%
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Table 6.18: Parameters of utility value: office, varies significantly

Compared to Table 6.1 and others, the range of values is set larger to
amplify the impact of state changes on sales.

item type COLD / HOT 𝑉0 𝑉𝑀 𝑉𝐹 𝛽𝑀 𝛽𝐹

A coffee COLD 2.0 4.0 0.5 -2.0 0.5

B coffee HOT 0.5 0.5 0.5 -0.5 -0.5

C café au lait COLD 0.0 -0.5 0.5 0.0 -0.5

D green tea COLD 1.0 1.0 1.0 0.0 0.0

E tea COLD 2.0 0.5 2.0 0.0 2.0

F enegy drink COLD -2.0 0.0 -2.0 0.0 -1.0

G soda COLD 0.5 0.5 0.0 1.0 0.5

H mineral water COLD 1.0 0.0 0.0 0.0 0.0

I tea HOT -4.0 2.0 0.5 -2.0 -0.5

J sports drink COLD 0.5 0.5 0.0 0.0 0.5

K enegy drink (2) COLD -2.0 0.0 -4.0 0.0 1.0

L soda (2) COLD 0.5 0.5 0.0 1.0 0.5

M mineral water (2) COLD 2.0 1.0 0.0 2.0 0.0

N tea (2) HOT -4.0 -2.0 0.5 -2.0 -0.5

O sports drink (2) COLD 2.0 0.5 1.0 0.0 4.0
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Table 6.19: Summary in case of alternative selection

Location
Sales of

UB
Achievement rate: Sales / Sales of UB

C1 C7 M1 M2 M3

office 122.47 112.5% 112.4% 112.9% 113.1% 113.1%

outdoor 125.35 109.2% 109.5% 109.8% 110.1% 110.1%

school 125.81 108.7% 108.7% 109.1% 109.4% 109.5%

Table 6.20: First-selection ratio in case of alternative selection

Location
First-selection ratio

C1 C7 M1 M2 M3

office 71.9% 71.9% 72.4% 72.7% 72.5%

outdoor 71.5% 71.6% 73.3% 73.5% 73.3%

school 72.2% 72.3% 73.4% 74.1% 73.4%
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Table 6.21: Summary in case of alternative selection in less stock

Location
Sales of

UB
Achievement rate: Sales / Sales of UB

C1 C7 M1 M2 M3

office 89.15 116.7% 114.8% 117.3% 117.0% 116.9%

outdoor 93.52 110.2% 109.1% 112.1% 112.5% 113.4%

school 94.95 109.7% 108.4% 110.8% 110.7% 111.2%

Table 6.22: First selection ratio in case of alternative selection in less stock

Location
First-selection ratio

C1 C7 M1 M2 M3

office 45.2% 44.0% 45.2% 45.5% 45.5%

outdoor 45.0% 44.2% 46.4% 46.6% 46.8%

school 46.3% 45.9% 47.1% 47.5% 47.5%

75



Chapter 7

Discussion

In the previous chapters, we proposed a method for product optimization in vending

machines and analyzed and evaluated the results through simulation. In this

chapter, we will discuss the accuracy evaluation of the proposed method, as well

as the assessment of the proposed model and potential areas for improvement.

7.1 Evaluation of the Proposed model

In Chapter 6, the POMDP models slightly outperform the comparative models in

terms of sales across various conditions. This suggests that sales can be enhanced

by adopting a policy that accounts for future state transitions from the current state,

rather than relying on a simple, uniform policy. This effect is particularly notable

in locations such as outdoor and stadium environments, where sales fluctuate

significantly based on the state (see Fig. 6.3, Fig. 6.4, and Table 6.12). The results

also demonstrate that when the current assortment is mismatched with the location

or state ― such as when the initial inventory is skewed―faster adaptation to the

appropriate assortment can be achieved.

However, the impact of predicting future states is not as significant, with

noticeable effects only in the stadium scenario (Table 6.12). We believe that

additional validation is required for situations where the transition probability is

higher or the utility value has a substantial impact.
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A limitation of this simulation is that the agent is aware of various parameters,

such as transition rates and utility values, and the number of possible states is

finite and small. As a result, the agent can quickly identify the optimal assortment

for each state, and the corresponding actions can be executed within short time

steps. Therefore, it is believed that even if future states are predicted, they will not

significantly contribute to an increase in sales.

In the simulations where consumers are offered alternative selection, the

POMDP models have been able to achieve higher sales (Table 6.19 and Table

6.21). We evaluated the first-selection rate as an index of consumer satisfaction,

and it has been higher than the comparative models. On the other hand, the effect

of predicting more future states was not significant.

7.2 Comparison with Existing Methods

In this study, we propose a method based on POMDP while employing an approach

that differs from existing methods. When compared with general POMDP solu-

tions such as Value Iteration, Policy Iteration, Monte Carlo methods, and POMCP

(Section 3.4.2), we consider that our method exhibits the following characteristics:

• The search time into the future is finite; hence, optimization is not guaran-

teed.

• It does not involve any learning. Instead, at each time step, it estimates the

future based solely on the observations obtained at that moment to search

for an optimal policy.

• It is capable of flexibly handling parameters such as transition probabilities

and consumers’ utility functions; however, in this study, these parameters

are fixed.

• The computational cost is not particularly high when the number of states is

small, but it becomes enormous as the combinations of states increase.
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Overall, we believe that our method offers a realistic solution at a relatively low

computational cost for problems of moderate size. Moreover, the advantage of

our approach is that it can build a flexible model structure independent of various

parameters and the environment ’s structure.

On the other hand, compared to existing AOP methods (Section 3.1.1), the

proposed method has the following characteristics:

• It does not guarantee an exact optimal solution.

• It can flexibly adapt to and track changes in the environment.

• It allows for the free configuration of consumer product selection behav-

ior; however, somewhat arbitrary assumptions were adopted in the current

simulation.

• It does not require past learning data for model construction.

• Its computational cost is relatively high.

Compared to existing methods, the proposed method is particularly notable for

its focus on maximizing expected future sales. As discussed in Chapter 1, agents’

visits are constrained by time and labor, and there are limitations on the number and

variety of products that can be exchanged in a single product assortment exchange.

Even if the optimal product assortment could be determined using mathematical

methods, it would be ineffective if it could not be practically implemented. In

the proposed method, despite these constraints, a forward-looking approach is

employed to gradually converge toward an optimal product assortment through

multiple product assortment exchanges. Indeed, the simulation results presented in

the previous chapter demonstrate that even suboptimal initial assortments gradually

adapt over time.

Future work should involve conducting similar simulations with existing meth-

ods to verify whether the observed differences in effectiveness can be detected.
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Moreover, the influence of the agent’s actions on consumer behavior is limited.

Factors such as the impact of past assortments on current product selection (e.g.,

consumers avoiding purchases due to frequent stockouts) are not incorporated into

the model. It is important to assess the impact of these assumptions on the sim-

ulation results and to determine whether they introduce significant discrepancies

from real-world scenarios.

For comparison with real-world problems, the following validation methods

are considered: To validate the model against real-world scenarios, the following

methods are proposed:

• Performing simulation-based validation using real-world POS data.

• Implementing the proposed method in real-world assortment operations

and comparing its performance with existing methods or the agents own

assortment policies through A/B testing.Applying the proposed method to

actual assortment operations and comparing it with existing methods or the

agent’s own assortment policies using A/B testing.

Through these validations, it is necessary to further evaluate the effectiveness

and practicality of the proposed method. These validation steps will be essential

for further evaluating the effectiveness and practical applicability of the proposed

method.

7.3 Improvements of the Proposed Model

If the proposed model works properly, we expect that sales approaches the upper

bound. One of possible improvements in the proposed model is to increase 𝜏 in

Eq. (5.15), that is, the future time steps for summing up expected rewards. In

this study, we have used 𝜏 = 1, 2, 3, but we expect that sales approaches to the

upper bound by increasing 𝜏 to 4, 5, . . .. However, as 𝜏 increases, the number of

states that must be calculated increases exponentially. By this reason, we could
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not try to use larger numbers for 𝜏 in the simulation. There are other ways for the

improvements, such as increase in the types and patterns of policies.

One of the challenges of the proposed model is the effect of 𝜏 in Eq. (5.15),

where 𝜏 represents the future time steps over which the expected rewards are

summed. In this study, we conducted simulations for the cases 𝜏 = 1, 2, 3.

Although we anticipated that increasing 𝜏 would lead to sales approaching the

upper bound, this was not demonstrated in the current study. As a future research

direction, it is necessary first to theoretically examine the effect of increasing 𝜏, and

subsequently, to reexamine the simulation results when 𝜏 is increased. However,

since the number of states that must be computed increases exponentially with 𝜏,

innovative simulation techniques will be required. Other potential improvement

areas include verifying the simulation results for an increased variety and patterns

of policies.

Next we consider conditions in which the proposed model performs more

effectively. The conditions may include the case that the numbers of products and

columns are large enough, since when the numbers are small, the effect of future

estimation reduces because the assortment reaches the optimal one immediately.

When the absence of IoT devices and the current sales data cannot be obtained in

real time, it is necessary to estimate the current state based on the limited data and

to make accurate plans for stock replenishment and assortment exchanges. In this

case, the proposed methods are reasonable and effective. When the environment

and the consumer preferences of vending machines frequently change, methods

based on demand forecasting from past history on sales can not keep up with the

changes. Since the proposed method works adaptively to the current state, it works

well even in such cases.

On the other hand, one of less effective cases is that the optimal assortment

does not differ significantly on the environment and the consumer preferences. In

such a case, the calculation of future expected reward does not necessarily work

well.

As mentioned in the previous section, another issue is that the proposed model
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assumes the agent has detailed information about consumer utility values and

vending machine state transition probabilities, even though the state is only partially

observable. The information may be unknown in actual situations and has to be

estimated through past history of observations. Incorporating this factor into the

model remains as future work.

What we have shown in this study is that there is a case in which the proposed

method outperforms simple policies. Of course, the results will change when the

parameter values are changed. From the above discussion, however, we can claim

the following properties hold. Compared to simple policies,

• if the diversity of products increases, then the POMDP-based method works

well;

• if the volatility of state change increases, then the POMDP-based method

works well.
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Chapter 8

Conclusion

8.1 Summary

This research investigates decision-making methods under uncertain information,

focusing on assortment optimization for vending machines. The study addresses

the unique challenges of making assortment decisions under constraints such as

limited shelf stock, infrequent restocking opportunities, and uncertain consumer

preferences.

Key contributions include:

Problem Formulation The vending machine assortment optimization problem

is modeled as a decision-making process under uncertainty, using a Partially

Observable Markov Decision Process (POMDP) framework. This formulation

incorporates constraints and variability in vending machine states, consumer pref-

erences, and sales patterns.

Proposed Method A POMDP-based method is proposed, allowing optimal as-

sortment policies to be determined by observing consumer behavior, sales data,

and the current state of the vending machine. The model emphasizes adaptability

to changes in the environment and consumer demand.
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Simulations and Results Numerical simulations are conducted to evaluate the

effectiveness of the proposed model compared to baseline methods. Results show

that the POMDP-based method achieves up to 2-3 points (in archievement rates to

the theoretical upper bound) compared to comparative methods sales and adapts

more effectively to changes in consumer preferences, particularly in dynamic and

uncertain environments.

Implications The research highlights conditions where the POMDP model ex-

cels, such as environments with high state transition variability or significant

product diversity.

8.2 Future work

There are several directions for future work. First, simulations under identical

conditions using existing methods such as PODMP and AOP need to be con-

ducted, and a quantitative comparison and evaluation with the proposed method

is necessary. Next, it is important to evaluate the effects of simulations under

various conditions, such as different numbers of products, columns, stock levels,

and consumers. Additionally, to better reflect real-world assortment problems, the

model should be extended to handle cases where the agent has limited information.

Future work should also involve conducting simulations under more realistic

conditions. This includes developing methods where the agent determines ac-

tions by estimating unknown transition probabilities and utility values, as well as

performing simulations with more diverse states and observational data.

Additionally, future research topics include the introduction of models that

consider inventory and ordering conditions, as well as refining consumer choice

models using sales data from other vending machines and stores. Furthermore,

it is necessary to explore the application of the model to retail environments,

particularly supermarkets and bookstores, which differ from vending machines.

These research efforts are also expected to yield promising results.
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