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Abstract

In recent years, generative models, especially diffusion models, have made sig-
nificant advancements, pushing the boundaries of traditional image synthesis
and addressing various application-specific demands in fields such as virtual
reality, film production, and fashion design. These technologies enable the
automated generation of characters with precise specifications, dramatically
improving workflow efficiency and reducing production costs.

One of the most transformative advancements in generative models is
multimodal generation, which leverages diverse inputs like text prompts,
image references, and spatial guidance (e.g., sketches or segmentation maps).
This approach opens up broader creative possibilities, enabling flexible design
workflows and improving model robustness and adaptability across tasks. As
technology evolves, multimodal inputs are poised to revolutionize character
design, enhancing both efficiency and creativity in various industries.

Building on multimodal generation, this dissertation investigates char-
acter creation and design through generative models incorporating diverse
inputs like text, stroke data, and structural maps. The core challenge lies in
balancing manipulability, convenience, and precision—three essential
yet often competing elements in the design process:

e Manipulability refers to the level of control users have over the
generative outputs, allowing flexibility in shaping design details.

e Convenience emphasizes the efficiency of the design workflow, stream-
lining the process to reduce repetitive tasks and focus on higher-level
decisions.

e Precision indicates the model’s ability to produce outputs that accu-
rately align with user inputs, such as text descriptions or sketches.

Achieving an optimal balance among these factors is complex, as enhanc-
ing one often limits the others. This study addresses this trilemma by
identifying the primary contradiction in each design scenario and resolving
it according to user needs, guided by Marx’s theory of contradictions. This
approach enables tailored solutions across three design applications, each
focusing on different primary tensions within the trilemma:

e Drawing Multi-Age Facial Features for Anime Characters:
This task primarily balances precision and manipulability. De-
signing lively, age-specific facial features in anime characters demands
both detailed control and real-time interactivity. I developed an inter-



active painting assistance system that leverages user-inputted strokes
to create facial features with age-specific characteristics. This system
ensures continuous interaction between the user’s design intent and the
generative model, effectively balancing user creativity and model-driven
generation.

e Character Pose Design: This task requires balancing precision and
convenience. Quickly generating character images that align with
specific descriptions is crucial in fields such as advertising and poster
design. Building upon conditional diffusion models like ControlNet,
I developed an enhanced end-to-end text-to-image (T2I) generation
framework that enables efficient, accurate pose creation. Users can
generate custom character poses by combining text inputs with spa-
tial conditions, such as skeletons, facial landmarks, and sketches, to
produce diverse and precise poses.

e Character Head Motion Design: Here, the primary focus is
balancing convenience and manipulability for video-based motion
design. Traditional frame-by-frame animation is often labor-intensive,
especially for designing head movements in character animation. I
introduced a head motion prediction model, integrated into an image-
to-video (I2V) generative framework, to streamline the workflow. This
model uses multimodal inputs—trajectory strokes, audio, and reference
images—to predict head movements, allowing for intuitive user control
over the motion trajectory while reducing the manual effort required
for animation.

In conclusion, this dissertation uniquely contributes to advancing multi-
modal generative models in character design, optimizing user-customizable
workflows across varied scenarios. By carefully balancing manipulability, con-
venience, and precision, this research enhances the applicability of generative
models in creative domains, fostering both efficiency and creativity.

Keywords: Character Design, Generative Models, Multimodal Genera-
tion, Computer Vision, Human-Computer Interaction.
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Chapter 1

Introduction

The director of my favorite childhood animated film, Toy Story, John
Lasseter, once said, ” Art challenges technology, and technology inspires art.”
This quote perfectly captures the dynamic relationship between the evolution
of generative models and human creativity. This paper delves into the core
challenges that arise from the intersection of generative models and the
character design process, employing a philosophical methodology to harness
the full potential and adaptability of generative models in character creation.

1.1 Background and Significance

In recent years, generative models have made significant strides, transforming
content creation and design workflows. Early models like Variational Autoen-
coders (VAEs) [4] laid the groundwork by learning latent representations,
but often struggled with producing sharp, high-quality images. Generative
Adversarial Networks (GANs) [5] further advanced the field by generating
more realistic and detailed images through adversarial training, although
challenges such as mode collapse and instability in training limited their
effectiveness in complex tasks like character design. The most recent
breakthrough has come with diffusion models [6], which generate highly
detailed and consistent images by iteratively refining noisy data, making
them particularly suited for tasks requiring precision and control, such as
character creation.

A notable development in the field is the rise of cross-modal generation,
exemplified by models like CLIP (Contrastive Language-Image Pre-Training)
[7], which bridges the gap between textual and visual data. This advancement
has fueled further progress in multimodal generation. In single-modal genera-
tive models, representation learning encodes information as numerical vectors
or abstracts it into higher-level feature vectors. As shown in Figure 1.1,
multimodal representation learning leverages the complementarity between
different modalities, reducing redundancy, and enhancing the dimensionality
of the generated object’s representation. This enables the model to learn



more robust and enriched feature representations. This greatly expands
the scope of creative possibilities, allowing users to combine multiple inputs
in innovative ways, resulting in more detailed, accurate, and customizable
outputs. In character design, these multimodal inputs make the creative
process more intuitive and adaptable, enabling designers to achieve specific
outcomes while maintaining creative flexibility and efficiency.

The evolution of these technologies is poised to radically transform human
content creation in the near future, shifting from the previous experience-
driven and data-driven methods to a generation-driven creative framework.
As these technologies continue to reshape creative processes, it is crucial
to explore how generative models and Al-driven systems can be effectively
integrated into user workflows to address the opportunities and challenges
posed by these advancements. In the subsequent sections of this chapter,
I will delve deeper into this issue and outline our research objectives and
methodology.

Multimodal
representations

Importance

/ \ weight
m ------
Bl ]|l o

Figure 1.1: Multimodal representation learning through complementary
modalities.

‘="=’ A—A—J

1.2 Motivation

Traditional character design workflows are often time-consuming and require
extensive manual effort, with tasks like creating distinct facial features,
designing expressive poses, and animating character movements demanding



significant labor and expertise. Designers typically go through multiple
drafts, adjusting proportions and expressions, which can be inefficient. The
integration of generative models, such as VAEs, GANs, and diffusion models,
offers significant benefits by automating many of these repetitive tasks. In
particular, multimodal generative models can reduce manual workload by
generating high-quality characters from various input types—sketches, text
descriptions, or reference images—allowing designers to focus on higher-level
creative decisions while the models handle the more technical aspects of
character creation. However, as generative models are increasingly explored
in various creative processes, a prominent challenge has emerged—the grow-
ing discrepancy between the generated outcomes and the designer’s creative
intent. This discrepancy highlights the need for more effective frameworks
that bridge the gap between the technical capabilities of generative models
and the creative intent of designers. As generative models become more
prominent, it is crucial to strike a balance between automation and user
control, ensuring that these advanced tools do not overshadow the designer’s
vision but instead complement and enhance it.

The motivation behind this thesis is to explore reasonable frameworks
for integrating generative models into various character design workflows in
today’s era, where generative models are gaining prominence. The goal is
to ensure that technological advancements are fully utilized in the creative
process, rather than limiting the creative output of designers or the powerful
capabilities of generative models. This requires a careful examination of
the interaction between human creativity and machine-generated outputs,
focusing on how these technologies can be structured to support, rather than
hinder the creative flow.

1.3 Challenges

The foundation of this study is built upon a trilemma that characterizes
the relationship between design and generative models, framed by three
key elements: manipulability, convenience, and precision. This trilemma
serves as a theoretical framework for understanding how to balance human
creativity with automated generative processes in character design.

e Manipulability refers to the degree of control that designers main-
tain during the creative process. Generative models should empower
designers by allowing flexible manipulation of outputs, ensuring that
the creative vision is not overshadowed by automation.

e Convenience emphasizes the efficiency generative models bring to the
design workflow. Automation should simplify the process, reducing



repetitive tasks and allowing designers to focus on higher-level decisions
without becoming bogged down in technical details.

e Precision refers to the consistency between the outputs generated by
the model and the user’s creative intent. High precision ensures that
the model consistently produces outputs that accurately capture the
user’s intent, such as faithfully reflecting input like text descriptions,
sketches, or structural maps.

These three elements represent different but equally important aspects
of the creative process. However, inherent conflicts and contradictions exist
among them. Enhancing one element may inadvertently compromise the
others, creating a challenging balance for integrating generative models into
character design workflows.

The core challenge lies in how the introduction of automation in gen-
erative models can disrupt traditional creative workflows. For instance,
increasing convenience through automation might reduce the level of control
(manipulability) a designer has over the final output. Similarly, striving for
high precision in the generated outputs could complicate the process, di-
minishing convenience or limiting the designer’s ability to make spontaneous
adjustments.

Recognizing these conflicts is crucial for developing generative models
that effectively support the creative process without undermining any essen-
tial aspect. The trilemma underscores the need for a balanced approach that
carefully considers how improvements in one area might impact the others.

1.4 Methodological Framework

To address the challenges posed by the trilemma, the study adopts a
methodological approach focused on identifying and resolving the primary
contradictions between these elements. According to dialectical materialism,
particularly Karl Marx’s theory of contradictions, every process or system
contains internal contradictions, with one primary contradiction playing a
decisive role.

By focusing on the primary contradiction in each specific scenario, I can
develop strategies that effectively balance the elements of manipulability,
convenience, and precision. To further elucidate these relationships, I employ
a mathematical perspective based on Bayesian probability theory.

As illustrated in Equation 1.1, the Bayesian marginal likelihood function
provides a framework for understanding the trade-offs among the three
elements:



P | y) = / P | 4.0)P(6 | y)db (11)

Here, P(x | y,0) represents the conditional probability of generating x
given user input y and model parameters 6, capturing the model’s capacity
for detailed control through adjustments to both y and 6.

P(6 | y) denotes the posterior distribution of § conditioned on y, reflecting
the model’s level of automation. A concentrated distribution minimizes user
input, enhancing convenience, while a broader distribution supports more
user control, increasing manipulability.

P(x | y) represents the probability of achieving accurate outputs under
input y, encapsulating the overall precision of generated results, which is
influenced by both P(z | y,0) and P(0 | y).

The trade-offs among these elements are as follows:

1. Enhancing Convenience and Precision: By strengthening the
posterior P(f | y) directly through user input y, the model can infer
0 automatically, thereby enhancing P(x | y)’s precision. However, this
automation reduces designer control over ¢, limiting manipulability in favor
of higher convenience and precision.

2. Enhancing Manipulability and Precision: By allowing multiple
interventions through y (indirectly) or adjusting 6 directly, P(x | y,6) more
closely aligns with the designer’s intent, increasing P(z | y)’s precision. This,
however, adds complexity and increases user workload, thereby reducing
convenience.

3. Enhancing Manipulability and Convenience: A loose distribu-
tion P(6 | y) combined with detailed user input can support manipulability
but might sacrifice convenience. Alternatively, a more constrained P(6 | y)
could simplify automation but lack robustness to nuanced inputs y. Bal-
ancing both manipulability and convenience often requires more streamlined
inputs y and broader distributions for P(6 | y), which may compromise the
precision of P(z | y,0), leading to outputs that may not fully meet the
designer’s expectations.

By applying this mathematical perspective, I can see that improving two
elements often impacts the third. The key is to identify which contradiction
is primary in a given scenario and develop methods to address it without
excessively compromising the other elements.

To operationalize this approach, I explore three distinct character design
scenarios, each representing a different balance within the trilemma:

e Facial feature design for anime characters of different ages: Here, the
primary contradiction lies between precision and manipulability. The



user’s main need is for the generative model to continuously provide
precise, real-time facial feature references aligned with their design
intent. To address this, I employ an iterative generation process that
allows for multiple feedback loops throughout the design, even if it
comes at the cost of reduced convenience in a one-time generation.

e Pose design for character creation: In this scenario, the primary con-
tradiction is between precision and convenience. Users aim to generate
accurate character poses using simple prompts and abstract conditions
such as skeletons and sketches. Text and spatial signals, serving
as input conditions, reflect a more global focus on the target’s pose
accuracy rather than fine details. To ensure the consistency between
user input and system output, as well as maintaining ease of use, I
implemented an end-to-end multimodal generative model framework,
optimized specifically for output accuracy.

e Head motion design for characters: In this scenario, the primary tension
is between manipulability and convenience. This task involves editing
tons of video frames, which can be highly time-consuming and labor-
intensive for users. To simplify this, generative models allow users
to create head movements using simple inputs (trajectory strokes &
reference images). The focus is on generating motion that reasonably
follows the trajectory, rather than on achieving precise motion details.
The key challenge is balancing the convenience of automated motion
generation with the level of control needed for users to design the
motion. To address this, I developed a trajectory-based head motion
prediction model, integrated into a state-of-the-art 12V framework.

The selection of these three tasks is primarily because each represents
a distinct main contradiction within the trilemma and each is a common
and representative design scenario in character design. These three scenar-
ios—static facial features, dynamic poses, and animated head motions—are
essential and representative in the character design process. FEach ad-
dresses different aspects of precision, manipulability, and convenience in the
trilemma. By focusing on these widely encountered design challenges, the
study ensures that the generative models developed are highly relevant and
effectively support the diverse needs of character designers.

By focusing on the primary contradictions and understanding the trade-
offs through a mathematical lens, the study aims to establish a framework
where generative models support and enhance the designer’s creative process
in the most reasonable and user-concerned way. By doing so, I can develop
generative models that effectively align with the designers’ needs, providing
the right mix of manipulability, convenience, and precision tailored to each



specific design scenario.

Figures 1.2 illustrate the key perspectives of this paper. Guided by the
methodology of resolving primary contradictions, I identified the core user
demands in various character design scenarios and used this understanding
to construct an appropriate generative model framework that supports
the creative process. Through extensive experimentation, I validated the
effectiveness of the workflows, benchmarking the performance of our designed
models against SOTA frameworks. The results confirm that our pipeline
effectively addresses core design needs and provides substantial support for
users in their creative endeavors. From my perspective, the principles and
methodologies proposed here are not only applicable to the tasks discussed
in this paper but can also be extended to a wide range of generative model-
driven creative scenarios. Therefore, I believe that this work offers valuable
theoretical foundations and methodological insights for future research and
exploration in the field.

. é{.@.{,@(
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Figure 1.2: Primary contradictions in the trilemma across various design
scenarios.



1.5 Organization of the Thesis

In Chapter 1, I discuss the influence of generative models on creative fields,
introducing the "trilemma” of balancing manipulability, convenience, and
precision in character design applications. Using the theory of primary
contradictions, I identify key challenges in integrating generative models
into design workflows. This study explores various design scenarios, demon-
strating how tailored frameworks can effectively support designers’ creative
intentions while addressing inherent conflicts within the trilemma.

In Chapter 2, reviews fundamental theories and recent advancements in
generative Al, with a focus on multimodal generation using diffusion models
in human-centered design. By discussing key approaches, I establish the
basis for our research and situate it within the current field of multi-modal
generation.

In Chapter 3, I introduce a drawing support system aimed at assisting in
the creation of anime characters with distinctive age-related facial features.
This system, built on a Transformer generative model, encompasses its model
architecture, drawing assistance strategies, and a specialized facial sketch
dataset. A series of usability and effectiveness experiments confirm the
system’s ability to enhance character design.

In Chapter 4, I introduce our approach for more accurate Human Image
Generation(HIG) conditioned on text and structure annotations, such as
pose, landmarks, and sketches, which is particularly beneficial for appli-
cations like posters and advertisements. This chapter presents a Spatial
Guidance Injector(SGI) and a Diffusion Consistency Loss(DCL) module
designed to enhance pose accuracy within a text-to-image diffusion frame-
work. Experimental results and ablation studies underscore the system’s
effectiveness in achieving accurate and consistent pose generation.

In Chapter 5, I focus on designing head movements for animated char-
acters, introducing the Diff Transformer model to achieve trajectory-based
head pose prediction, which is integrated into a diffusion model-based video
generation framework. Our approach allows users to guide head pose
dynamics using simple trajectories, resulting in realistic head movements.
Comparative studies demonstrate the model’s effectiveness in producing
coherent and lifelike head animations.

In Chapter 6, I first validate the ”trilemma” proposed in our thesis
through a user study. Next, by summarizing quantitative and qualitative
analyses from previous chapters, I highlight the effectiveness of our proposed
strategies across diverse design tasks. Finally, I discuss the challenges en-
countered and limitations of the current models and propose future research



directions to advance the application of generative Al in creative character
design.
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Chapter 2

Related Works

Section 2.1 delves into the technical pathways and current research on mul-
timodal generation, providing relevant examples and studies. In Section 2.2,
I briefly outline the existing paradigms of generative models, analyzing their
respective advantages, limitations, and differences. 1 then explore their
impact on creative endeavors. In Section 2.3, I introduce applications and
framework optimizations based on state-of-the-art diffusion models within
user-centered creative fields. Finally, in Section 2.4, I described the challenges
associated with generative models in design workflows from the perspective
of artistic creation and, based on this foundation, proposed our theoretical
framework.

2.1 Multimodal Generation with Transform-
ers

Looking at a photo and describing it, or interpreting a complex scene and
explaining its context, are relatively simple tasks for humans but can be
significantly more challenging for computers. In recent years, however, nu-
merous studies based on Transformer models have made remarkable progress
in various multimodal tasks. Particularly, the success of large language
models and their multimodal extensions [8-11] has further highlighted the
potential of Transformers in multimodal generation tasks. Like other deep
neural network architectures, Transformers also have substantial data re-
quirements. With the introduction of increasingly large multimodal datasets,
the combination of advanced models and multimodal big data has accelerated
the development of multimodal generation techniques.

2.1.1 Multimodal Big Data

In the field of multimodal generation, especially for image and video synthe-
sis, a diverse range of large-scale multimodal datasets has emerged, providing
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critical resources for enhancing generative model capabilities across varied
subjects.

The HumanArt dataset [12], for example, offers high-quality multimodal
annotations for human faces and bodies, including pose keypoints, segmen-
tation masks, and textual descriptions, making it highly useful for tasks in
character design and stylized artistic generation. Datasets like FFHQ (Flickr-
Faces-HQ) [13], although primarily focused on high-resolution facial images,
provide a solid basis for face synthesis and editing with annotations on age,
ethnicity, and expressions.

In video generation, AIST++ [14] combines 3D dance motion capture
data with musical accompaniment, enabling synchronization between dance
and music in generative tasks. Meanwhile, the YouTube-360 dataset [15]
includes 360-degree video content with corresponding audio, which provides
a valuable multimodal foundation for immersive and spatially aware gener-
ative tasks. Kinetics-700 [16] offers video clips paired with action labels,
supporting action synthesis and human activity recognition across diverse
scenarios.

The AVA (Atomic Visual Actions) dataset [17] includes multimodal data
in the form of video clips annotated with action categories and temporal
markers, targeting fine-grained generation and recognition of human actions
in complex scenes. Finally, the Laion-5B dataset [18], with billions of
image-text pairs, offers massive-scale multimodal resources that facilitate
text-guided image generation across diverse visual themes, reinforcing cross-
modal learning in generative models, MultiGen20M Dataset [19] provides
more than 20M image-prompt-condition triplets. It includes 12 common
control conditions(Canny, HED, Sketch, Depth, Normal, Skeleton, Bbox,
Seg, Outpainting, Inpainting, Deblurring, Colorization).

These multimodal datasets provide not only the foundational data needed
for generative tasks but also specialized multimodal annotations—Ilike key-
points, segmentation, and synchronized audio-visual pairs—ensuring robust
training for models across various creative domains.

2.1.2 Transformers

The Transformer architecture is a flexible and powerful framework that shares
similarities with a generalized graph neural network. Its self-attention mech-
anism enables the processing of inputs by treating them as fully connected
graphs, emphasizing global and non-local interactions. This characteristic
allows the Transformer to handle diverse modalities in a modality-agnostic
way, effectively representing the embedding of each token as a node in the
graph.
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Figure 2.1: CLIP’s shared embedding space for cross-modal text and image
guidance.

Building on the success of Transformers, VideoBERT [20] pioneered
the adaptation of Transformer architectures for multimodal applications,
showcasing their extensive potential in multimodal domains. Following this
breakthrough, several pre-training models based on Transformers—such as
VIiLBERT [21], LXMERT [22]|, VisualBERT [23], Pixel-BERT [24], Act-
BERT [25], and ImageBERT [26] quickly became focal points in machine
learning research. A significant milestone in this field was achieved with
CLIP [27], which redefined multimodal pre-training by framing classifica-
tion as a retrieval task, effectively enabling zero-shot recognition. CLIP
leveraged large-scale multimodal pre-training to perform zero-shot learning
successfully, demonstrating the robust application of Transformers in real-
world tasks. Beyond CLIP, models like ALIGN [28] and Florence [29] have
furthered the integration of Transformers in multimodal generation. ALIGN
(A Large-scale ITmage and Noisy-text embedding model) extends CLIP’s
approach by training on vast, noisy datasets, improving model robustness
in zero-shot image recognition and retrieval tasks. Its large-scale image-
text pairing approach allows it to generalize effectively to diverse visual
categories and concepts without specific fine-tuning. Florence expands on
this by incorporating dense vision-specific modules that better align visual
and textual information across more detailed semantic hierarchies, resulting
in improved performance on complex multimodal tasks, including image
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generation and scene understanding.

These Transformer-based frameworks excel not only in multimodal rep-
resentation learning but also as key components in generative model appli-
cations. In models like Stable Diffusion, for example, CLIP embeddings play
a critical role in conditioning the diffusion process to align generated images
with the semantics of the text input. As illustrated in Figure 2.1 By mapping
text and image modalities into a shared embedding space, CLIP enables
seamless guidance of generative models through textual inputs, producing
coherent and contextually relevant outputs. This integration of Transformer
frameworks marks a major advancement in multimodal generative modeling,
where self-attention mechanisms effectively learn from diverse data inputs.
The capacity of these models to handle large multimodal datasets lays a
robust foundation for sophisticated Al applications that demand nuanced
cross-modal understanding and generation.

Leveraging the superior performance of Transformer models, they have
been widely applied to various sketch-related tasks, such as sketch gestalt
[30], sketch-to-image translation [31], and sketch-based retrieval [32]. How-
ever, these models often lack the cross-modal integration of pixel-level
features and stroke mid-point coordinates when processing sketches, which
is crucial for ensuring spatial similarity between the input and output. This
spatial alignment is particularly necessary for facial sketch generation, as the
output must maintain a certain degree of similarity to the input sketch. To
address the above issues, I proposed AgeFace in Chapter 3, which enhances
the alignment between generated sketches and the user’s design intent.

2.2 Generative AI Models

Generative Al has consistently been a central area of inquiry within the
field of artificial intelligence, and in recent years, various generative model
paradigms have rapidly evolved. Models such as VAEs [4], GANs [5],
flow-based models [33], and DMs [6] have greatly improved the quality
of media generation across text, images, and video. The frameworks of
these generative models are illustrated in Figure 2.2. VAEs (Variational
Autoencoders) were among the first generative models, using a probabilistic
encoder-decoder framework to learn latent representations of data [34]. They
optimize a lower bound on the log-likelihood of data via variational inference,
enabling efficient sampling from the latent space. GANs (Generative Adver-
sarial Networks) introduced a game-theoretic approach to training, where
a generator and discriminator are trained in opposition. This adversarial
process allows the generator to learn data distributions and produce highly
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realistic images. Flow-based models use invertible transformations and
exact likelihood maximization, enabling efficient sampling and exact density
estimation of data distributions [35]. DMs (Diffusion Models) leverage
iterative denoising processes based on Markov chains to generate samples
from noise. Their ability to progressively refine noisy data into high-quality
samples has positioned them as state-of-the-art in image generation [36,37].
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Figure 2.2: Generative model frameworks.

2.2.1 Diffusion Model

Most state-of-the-art diffusion models (DMs) are based on the Denoising
Diffusion Probabilistic Model (DDPM), which constructs the image gener-
ation process through an iterative denoising sequence formulated within a
probabilistic framework. In DDPM, a data point x is gradually corrupted by
adding Gaussian noise across a sequence of time steps t = 1,..., T, resulting
in a noisy latent representation xr close to pure noise. The reverse process,
defined as pg(xi—1 | x4), iteratively denoises this representation back to x,
reconstructing the original data. This reverse diffusion process is defined by
the posterior probability:

pe(.ﬁlft_l | l't) = N(xt—l; ,u9<xt7t)7 01521)7
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where pg(x;,t) and o, represent learnable parameters, optimized to align
the model’s generative path with the observed data distribution. Through
this iterative process, DDPM captures high-dimensional, complex distribu-
tions with remarkable fidelity, albeit at the cost of computational efficiency
due to its multi-step generation process.

Building on this foundation, Latent Diffusion Models (LDMs) [37] operate
within a perceptually compressed latent space, reducing dimensionality by
projecting data into a lower-dimensional latent space, thus significantly
enhancing sampling efficiency. In the LDM framework, the diffusion and
denoising steps occur in this latent space, and the model decodes the latent
representation back to the original data space for output, effectively recon-
structing the high-quality image while retaining computational efficiency.
The generation process in LDM can be expressed as follows:

Po(zi-1 | 2) = N (2615 o (2, 1), 071),

Where z represents the latent space variables, enabling efficient genera-
tion while maintaining high fidelity. Expanding from this base, DMs have
seen development in several conditional diffusion models that enhance control
and precision during generation.

2.3 Diffusion Models in Human-Centered De-
sign

With the rapid advancement of diffusion models, numerous conditionally
guided diffusion models have emerged in recent years. Among these, text-
guided generative models are particularly prevalent, enabling high-quality,
customizable outputs based on textual prompts. Leveraging the power-
ful generative capabilities of diffusion models, task-specific models have
been developed for applications such as sketch-based, layout-based, and
other visual cue-based generation, broadening diffusion models’ applicability
in targeted creative tasks. Additionally, multimodal-guided image/video
editing techniques using text-to-image (T2I) diffusion models have become
widely adopted tools for enhancing editing performance by allowing content
modification guided by multimodal inputs. Together, these multimodal
generation and editing technologies offer users a versatile design space for
various creative scenarios.
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2.3.1 Classifier Guidance

The Denoising Diffusion Probabilistic Model (DDPM) and its variants have
demonstrated strong capabilities in generating realistic images. Building on
these foundations, [38] introduced explicit classifier guidance, which enhances
model control by injecting class label information during the generation
process to enable conditional image synthesis. The key to diffusion models is
the denoising step, where the probability p(z;—; | ;) is modeled by a neural
network to reconstruct data at each time step t. Classifier guidance modifies
this by transforming the original p(x;_; | z;) in an unconditional model into
a conditional version, p(x;_1 | x4, y), where y represents the given label, as
shown in the equation below:

_ p(y | ze1)p(ea | @)
Pl o) = T

This approach applies Bayes’ rule, effectively allowing an unconditional
model to produce conditional outputs without retraining the entire model.
While classifier guidance is computationally efficient, it introduces some
limitations: (1) An additional classifier must be trained, increasing the
model’s overall complexity. (2) The classifier performance influences the
quality of generation, yet optimizing it can be challenging. (3) Classifier
guidance may reduce the diversity of generated results by constraining the
model to specific class-driven outputs.

To address these issues, [39] proposed classifier-free guidance. Unlike
explicit classifier guidance, classifier-free guidance defines p(x;—; | 24, y) as a
Gaussian distribution:

p(xt—l | xtuy) = N(xt_l;u(xt,y),atQI),

Allowing conditional generation by training both conditional and un-
conditional models. During training, the conditional input y is randomly
dropped (replaced with null values), which simplifies training while increasing
flexibility. This technique has been widely adopted in large-scale image
generation models such as GLIDE, Stable Diffusion, DALLE-2, and Imagen
due to its remarkable performance and adaptability.

2.3.2 Text-Guided Diffusion Models

Diffusion models have shown substantial potential in text-to-image gener-
ation, leading to the development of large-scale models like GLIDE [40],
Stable Diffusion [37], DALLE-2 [41], and Imagen [42]. These models achieve
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high image quality by integrating advanced techniques and progressively
increasing parameter sizes.

GLIDE was one of the pioneering models in this space, using a cascaded
architecture with classifier-free guidance. It generates an initial 64x64
image based on textual input and then upscales it to 256x256 with a text-
conditioned super-resolution model, thereby improving output quality and
alignment with prompts.

Stable Diffusion addresses the high computational cost typical of diffusion
models by conducting diffusion in a latent space rather than directly on im-
ages. This method uses an encoder-decoder pair for perceptual compression,
encoding text conditions into vectors with a text encoder. Cross-attention
layers map these vectors into the latent space, streamlining the process and
reducing computational demands.

DALLE-2 follows a two-stage approach. It first encodes text descriptions
using CLIP (Contrastive Language-Image Pre-Training) [7] and generates
corresponding image encodings with an autoregressive or diffusion model.
Then, a decoder produces the final image, gradually upscaling it from an
initial 64x64 to a high-resolution 1024x1024 image through super-resolution.
Unlike typical diffusion models, DALLE-2 focuses on image features rather
than noise prediction in its reverse process, yielding highly detailed results.

In contrast, Imagen adopts a single-step approach, favoring simplicity
and high performance. Rather than modifying U-Net structures, Imagen
improves text-to-image quality by using a powerful 11-billion-parameter
text encoder, highlighting the importance of robust text representation in
achieving superior image quality.

2.3.3 Subject-Guided Diffusion Models

While existing large-scale text-to-image models generate highly realistic
and diverse images, they often struggle to create nuanced variations of
subjects within reference images. To address this, IP-Adapter [43] facilitates
image editing by fine-tuning keys and values in the cross-attention layers
of pre-trained text-image generation models. This approach enables fine-
grained control based on specific text prompts without altering the essential
properties of the subject.

DreamBooth [44] enables synthesizing new images of a given subject in
varied contexts from only 3-5 subject images and a text prompt. Its core
approach links the subject and its identifier within a pre-trained text-to-
image model, mapping this relationship to the output domain. This method
maintains high fidelity, even for complex subjects, such as animals or specific
objects.
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LoRA (Low-Rank Adaptation) [45] takes a different approach, achieving
flexibility across multiple tasks by adding low-rank matrices to specific layers
of a model, which adapt without requiring full re-training. This adaptation
mechanism offers efficient customization for varied downstream tasks.

However, both IP-Adapter and DreamBooth face limitations in diver-
sity and controllability. DreamArtist [46] addresses these constraints by
introducing a dual learning strategy in which the model learns expressive
latent vectors from both forward and reverse processes using a text encoder
and denoising network. This strategy improves both feature retention from
reference images and output controllability, enhancing detail and diversity in
generated images.

2.3.4 Sketch-Guided Diffusion Models

Conditional image generation based on diffusion models has proven effective
in producing images with notable diversity and realism. However, most
existing methods limit control over the final output to adjustments of labels
or text prompts, thus constraining the degree of customization. In response,
several sketch-based conditional image generation methods have emerged
[47-51].

PITT [47] builds upon Glide, leveraging image layouts or sketches as input
conditions. This model maps the input condition to the latent space of a pre-
trained model, which is then decoded to generate the final image. Sketch-
Guided Diffusion [48], on the other hand, directly uses sketches to guide a pre-
trained text-to-image generation model, bypassing the need for retraining.
The key innovation here is the introduction of a trainable latent vector
predictor, based on a multilayer perceptron, which maps the latent features
of a noisy image to a spatial map. Trained over thousands of images, this
predictor operates on each latent pixel, offering flexibility and adaptability.

Generating high-quality facial images from sketches introduces a unique
challenge: the need to construct high-dimensional facial features while
preserving the visual detail within the sketch. Many current models treat
sketches as auxiliary information, guiding the generation process but often
sacrificing critical sketch details. DiffFaceSketch [51] addresses this by using
sketches as the sole input, training in two stages for both sketch encoding
and image generation. It also employs data augmentation techniques to syn-
thesize varying degrees of facial abstraction from the input sketch, ensuring
that sketch details are accurately preserved and effectively translated into
the final output.

19



2.3.5 Multi-Condition Guided Diffusion Models

With the development of diffusion models, the limitations of using single
or restricted conditioning methods have become increasingly apparent. To
improve the practicality and controllability of image generation, various
conditional guidance forms have been widely adopted. ControlNet [52], for
instance, guides image generation with multiple conditions by locking the
parameters of a pre-trained Stable Diffusion network and then duplicating
the locked network to incorporate conditioning information. This process
effectively fine-tunes the pre-trained network, enabling high-quality image
generation based on detailed edge maps, abstract sketches, human poses,
and more.

Composer [53] further expands the range of input conditions, including
text descriptions, depth maps, sketches, color maps, style references, and
masks, allowing for refined control over image generation. This model
effectively integrates local and global information, supporting tasks like style
transfer and other image transformation operations.

To more seamlessly combine the internal knowledge of pre-trained models
with external control signals, T2I-Adapter [54] explores the use of lightweight
adapter models. This approach introduces plug-and-play adapters that, while
minimally impacting the original network structure, can flexibly combine
different types of conditioning inputs. T2I-Adapter is therefore highly
adaptable and efficient, offering versatile generation options through a range
of composable conditions.

Although diffusion-based controllable frameworks have achieved remark-
able progress recently, they still face limitations in control precision due
to inherent conflicts between text and image control. The precision issue
often requires multiple iterative generations in practical design workflows,
increasing process complexity. To address these challenges, I proposed ECNet
in Chapter 4, which significantly improves the accuracy of controllable SD-
based models and enhances the application’s convenience.

2.3.6 Diffusion Models for Editing

For image editing tasks, instruction-based editing built upon T2I models pro-
vides an intuitive approach for human image manipulation, where users input
command-style text instead of detailed descriptions. Researchers [55-57]
emphasize the necessity of collecting sufficient training triplets comprising
instructions, source images, and corresponding edited images. Instruct-
Pix2Pix [55] optimized this approach by leveraging GPT-3 [58] to enable zero-
shot editing, transforming images based on source and target descriptions.
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Additionally, some studies [59,60] have incorporated traditional visual tasks
into instruction-based editing frameworks. For instance, InstructDiffusion
[59] introduced the IEIW (Image Editing in the Wild) dataset to unify diverse
tasks such as segmentation and keypoint detection. SmartEdit [61], tackling
more complex challenges, introduced a Bidirectional Interaction Module
(BIM) designed to process image features extracted from the LLaVA visual
encoder [62], which incorporates detailed information essential for refined
visual transformations.

Integrating objects from reference images into a source image is another
challenging task, requiring a coherent composition of distinct elements.
Paint-by-Example (PbE) [63] achieves this by using a CLIP encoder to
extract the global semantics of the reference image, which are subsequently
aligned within the base model using cross-attention layers. ObjectStitch
[64] enhances this process by introducing a content adapter that processes
and fuses reference images with the source, ensuring coherence during each
denoising step to retain background content. Additionally, Reference-based
Image Composition (RIC) [65] utilizes sketch-based structural control within
masked regions, enabling improved compositional alignment.

For video editing tasks, the challenge of temporal inconsistency arises
because T2I models are trained on static images, and editing each frame
individually often results in inconsistencies. To address temporal coherence,
some studies utilize pre-trained video diffusion models (VDMs) [66, 67],
while others train video editing models from scratch [68,69]. Works like
MagicVideoEV [67] and AnyV2V [70] use pre-trained VDMs to guide motion
consistency. Dreamix [71], for example, feeds scaled-down noise videos along
with text prompts into a cascaded VDM [66], yielding temporally consistent
edited videos. Meanwhile, AnyV2V edits the first frame and generates the
entire video through an image-to-video model [72].

Current diffusion-based video editing frameworks primarily focus on the
global motion of the target while overlooking the natural coherence of
accompanying local motions. This limitation often results in unnatural
inconsistencies within the overall motion, diminishing the rationality of the
design outcomes. To address this issue, I proposed a novel framework in
Chapter 5 that focuses on generating natural and coherent character head
motion videos based on trajectories. This framework effectively resolves
the shortcomings of current methods, ensuring improved rationality and
consistency in design outcomes.
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Figure 2.3: User insights on the Al-assisted character creation process.
Subfigure (a) illustrates the proportion of users employing Al assistance at
different stages of the creative process, while Subfigure (b) presents user
satisfaction levels with Al-assisted design, the figure is from [1].

2.4 Creation With Generative Al

Artistic creation is inseparable from the innovation of human thoughts,
emotions, and inspiration. When Al painting becomes a method with broad
application prospects and value, people will adjust their creative practices
and languages [73].

With rapid advancements in Al technology, generative models have
become deeply integrated into modern art and design, providing users with
fresh inspiration, reducing repetitive tasks, and fostering a seamless fusion
between art and technology. In today’s creative workflows, Al tools primarily
serve as supportive assets, assisting artists in generating images while leaving
the core inspiration and decision-making to the human creator. However,
most existing research focuses on the technical effectiveness of Al-generated
outputs, with less attention paid to how these tools impact the broader
design process. Therefore, a more in-depth understanding of character
creation with Al tools—and how these tools align with various design goals-
is crucial to advancing this field. Identifying these distinctions allows us to
enhance efficiency and quality across industries and tap into new commercial
possibilities.

Prior research has shown that Al systems, such as text-based models like
ChatGPT, can be leveraged for imaginative art creation, with their extensive
artistic knowledge contributing to diverse forms of creative generation [74].
Additionally, studies have examined the limitations and challenges of tools
like ChatGPT and Al-based art generation in design, exploring generative
AT’s potential impact on creative processes and the development of design
systems [75]. Simultaneously, other scholars have been investigating the use
of Al image generation techniques in personalized cultural product design,
presenting new avenues for creativity in this domain [76]. In another study,
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researchers conducted in-depth surveys with 14 designers from various fields,
analyzing Al-based character creation methods and gathering insights on
diverse user needs for generative Al, as illustrated in Figure 2.3. These
studies highlight the varying demands users have for generative Al, forming
the basis of our proposed “trilemma” theory.
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Chapter 3

Drawing Multi-Age Facial Fea-
tures for Anime Characters

Drawing anime characters with facial features of different ages is a challenging
task. The characters’ facial features vary significantly with age, making
it especially difficult for beginners to depict age-specific anime characters
accurately. This task highlights the critical contradiction between Precision
and Manipulability: designers require precise, age-specific facial features
while retaining control over artistic adjustments. This scenario exemplifies
character design in the context of customization.

To address these challenges, I propose AgeFace, a drawing support system
that integrates interactive drawing guidance with generative models to help
users balance the demands of precision and manipulability throughout the
creative process. AgeFace can provide a combination of local and global
user guidance in the drawing process to enhance both detailed facial features
and overall aging features. Local guidance assists users in drawing detailed
facial features, while global guidance provides hints for the overall layout of
the face and additional features, such as wrinkles. During the local guidance
stage, [ apply an image retrieval approach to provide detailed instructions on
facial features. In the global guidance stage, I propose the Transformer-based
sequential generation model to create entire anime faces from drawn stroke
sequences. The proposed framework of AgeFace combines a data-driven
retrieval method and the generation model to provide users with inspiration
during the drawing process. To verify the effectiveness of our guidance,
I conducted user studies and comparison experiments with existing sketch
generation models. The results demonstrated that AgeFace can significantly
help users create multi-age anime faces and validate the effectiveness of our
proposed generative model.
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3.1 Introduction

Drawing facial age features is an important part of creating anime characters.
However, the current process of creating facial features at different ages
mainly relies on users’ personal drawing experiences. As a result, it is chal-
lenging for novices to accurately and meticulously draw each facial feature of
different ages. Additionally, it has been observed that users without sufficient
experience in drawing anime characters, even those with basic drawing
skills, find it challenging to create satisfactory age features. Prior work in
data-driven support for drawing dynamically provides drawing guidance for
users, such as ShadowDraw [77]. This approach furnishes the user with
comprehensive information regarding the subject matter throughout the
drawing process. While this may enhance the user’s drawing proficiency,
it is likely to alter the user’s original design intentions. In addition, due to
the limited number of references in the database, relying solely on database
retrieval for drawing guidance can restrict users’ creative diversity. Therefore,
I aim to develop an advanced drawing support system that combines a
generative model with data-driven methods to provide both local and global
guidance, helping users accurately create facial features for different ages
while preserving their original design intentions. Additionally, the lack of
a database for the facial features of anime characters across different age
groups makes it challenging to implement data-driven methods to support
the drawing process.

To address the above concerns, I propose a user interface (UI) designed to
support users in drawing facial features for multiple ages. To this end, I have
developed a stroke-based sketch dataset comprising age-specific freehand
facial sketches. This dataset aids users in producing high-quality facial
representations for three distinct age categories and genders: male/female
child, male/female middle-aged (including young and adult), and male/female
elderly. 1 observed significant differences in facial features when drawing
children(around 5-12 years old), middle-aged adults(around 16-45 years old),
and elderly characters(above 60 years old) in anime. Within the middle-
aged category, as shown in Figure 3.1, while youth and adult characters have
differences in detail, they are not as pronounced as the differences between
children and the elderly. Therefore, to simplify classification, I combined
youth and middle-aged into a single group.

Furthermore, to better uphold the user’s original design intentions, I
developed an innovative drawing guidance strategy. This strategy integrates
feature-focused guidance, which 1 call "local guidance”, with traditional
guidance based on all facial features, which I call ”global guidance”.
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Figure 3.1: Differences between anime faces of four different age groups.

To address the constraints imposed on drawing results by database
retrieval, I utilized a collected dataset to train a generative model, thereby
enhancing the diversity of the drawn sketches. Considering that sketch
images are sparse matrices, treating sketches as stroke sequences rather
than pixel-based representations increases the stability of the generated
results. Therefore, I propose a sketch sequence generation model using the
Transformer architecture. This model encodes stroke sequences into tokens
to learn deep representations of the complex structures in face sketches.
Simultaneously, to minimize discrepancies between the generated results
and the user’s input sketches, I incorporated a ResNet module within the
Transformer structure to extract image features. The structural information
extracted by the convolutional layers allows the generated sketches to retain
identity information from the input sketches and improves the robustness of
their spatial structure.

Using our multi-age anime face dataset, I combine retrieval and gen-
eration methods to guide the drawing process. Specifically, during the
local guidance stage, I retrieve matching facial features from the dataset for
drawing assistance. During the global guidance stage, I offer both retrieved
and generated whole-face sketches, allowing users to select their preferred
candidate as the global guide. This approach enables users to complete the
drawing process with combined local and global guidance, the framework of
AgeFace is shown in Figure 3.2.

The main contributions of this research are as follows:

e [ developed a Ul to establish a database that collects freehand sketches,
including stroke information. This interface features an interactive
system that enables users to quickly categorize strokes based on facial
features, such as eyes and noses. I hired expert designers to utilize this
interface, constructing a stroke-based sketch database comprising 120
freehand sketches of male and female subjects across three distinct age
groups (with 20 sketches per gender/age group).
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Figure 3.2: Framework of the proposed AgeFace, which includes three
parts: data construction, drawing guidance interface, and Transformer-based
generation model.

e Building on previous drawing guidance methodologies, I propose a
novel strategy that combines global guidance, which encompasses all
facial features, with local guidance focused on individual characteris-
tics, thereby better respecting the user’s design intentions during the
guidance process.

e To enhance the diversity of drawing guidance, I designed a generative
model based on the Transformer architecture, trained using our col-
lected database. I integrated this model into the drawing guidance
system to provide users with richer guidance and further inspire their
creative process.

3.2 Related Works

3.2.1 Data-Driven Drawing Support System

Many data-driven interaction systems have already been introduced for
sketching and drawing [78,79]. For example, ShadowDraw [77] and Sketch
Helper [80] search candidate results based on real-time drawing strokes to
generate shadow guidance for users. DrawFromDrawings [81] assists users
with 2D drawings by providing the retrieved sketch image from its dataset as
a reference. DualFace [82] provides a human-Al co-creative drawing system
that proposes two-stage drawing guidance to assist the user in completing
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better freehand portrait sketches. However, the references provided by the
systems mentioned above are based on the overall image. These drawing
assistance systems provide complete visual guidance by displaying entire
facial features based on retrieved or pre-generated references. While these
systems enhance drawing accuracy, they often override users’ creative intent
by imposing fixed design patterns, ultimately compromising Precision in
terms of user-driven artistic control.

Therefore, to preserve the user’s original creative intent, I provide the
user with a partial guide to the currently drawn facial features by identifying
the facial feature attribute of the current stroke.

3.2.2 Sketch datasets of faces

To accommodate the growing demands of deep learning, numerous large-
scale sketch datasets have been assembled. The Quick, Draw! dataset
[83], for example, comprises over 50 million freehand sketches spanning 345
categories. Sketches within this dataset were amassed by instructing users
to draw specified objects within a brief time frame. Consequently, the face
subcategory, which includes 148,436 drawings, mainly exhibits oversimplified
facial features with restricted expressions. FaceX [84] accumulated a vast
dataset consisting of over 200,000 face sketches by amalgamating thousands
of sketches of facial features drawn by adept designers. The CUFS dataset
[85] collected 606 pixel-based portrait sketches, which artists created based
on neutral expression photographs taken in a frontal pose.

However, no currently available dataset includes face sketches of varying
ages, particularly in vector format. Furthermore, extracting line drawings
from existing face databases, such as the Anime Face Dataset [86] and
CelebA( a face attributes dataset) [87], as drawing references pose significant
challenges. The resulting line drawings are ill-suited for use as drawing
references due to an excessive number of lines. Some works [88,89] have
managed to extract sketches from images, but the results tend to be simple
line drawings rather than detailed and refined sketches.

To address the lack of an aging face sketch dataset, I recruited a group of
expert designers—comprising graduate students specializing in fine arts and
seasoned illustrators—to create facial sketches. These sketches were then
utilized to construct a stroke-based dataset. This dataset meets our needs
for retrieval-based drawing support and training generative models, filling
the gap in aging face sketch datasets.
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3.2.3 sketch-based generative models

Using deep learning models for sketch generation has long been a popular
research direction. Early research, such as DoodleGAN [90], treated sketch
strokes as pixel information and used generative adversarial networks (GANs)
for image generation. Thanks to the impressive generative capabilities
of diffusion models [37,91-93], some interesting projects [94] have also
attempted to generate sketches from images. However, since sketches differ
from typical RGB images or photographs in their sparse data and lack of
color information, traditional image generation methods often fail to produce
high-quality sketches. This inherent characteristic of sketches necessitates
exploring alternative generation models, moving away from traditional pixel-
based methods.

In recent years, researchers have proposed and developed sequential
generation models specifically designed for sketch data. These models focus
on the temporal properties of stroke sequences. By training on these stroke
sequences, the models can learn the underlying structures and patterns in
sketch data. Consequently, the generated sketches exhibit higher consistency
and fidelity, closely resembling hand-drawn sketches.

Several variations of sequential generation models have been proposed
[95-99], including those that leverage recurrent neural networks (RNNs),
long short-term memory (LSTM) networks, and transformer architectures.
However, for the specific task of face sketch generation, existing models still
possess certain shortcomings. The LSTM-based model SketchRNN [100]
exhibits limitations, such as insufficient sketch generation quality and inferior
performance for sketches with longer strokes. Sketchformer [31] demonstrates
that, for complex sketches with long stroke sequences, the Transformer
architecture significantly improves reconstruction quality compared to LSTM
structures. Nonetheless, existing Transformer models related to sketch data
are primarily employed for tasks such as sketch gestalt, sketch-to-image
translation, and sketch-based retrieval. These models do not incorporate
pixel-level features of sketches to ensure spatial similarity between input and
output, which is essential when employing generated results for face sketch
drawing assistance, as the output face sketch must maintain a certain level
of similarity to the input.

These generative models, including pixel-level and sequence generation
frameworks, introduce automation into drawing tasks. However, designing
facial features in anime requires Manipulability for precise artistic adjust-
ments, which these highly automated models often fail to provide. Their
black-box nature reduces designers’ ability to control fine details, restricting
the dynamic interaction needed for character manipulability. Our proposed
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method addresses this contradiction through a Transformer-based stroke-
sequence generation model that ensures precise age-specific facial features
while maintaining interactive sketch adjustments. This dual-guidance ap-
proach resolves the Precision-Manipulability conflict by balancing accurate
feature representation with real-time customization capabilities.

3.3 Proposed Method

In this section, I introduce AgeFace, our proposed drawing support system
designed to assist users in creating anime faces of multiple ages. The system
combines retrieval and generative methods to offer both local and global
guidance, effectively enhancing users’ drawing experiences and maintaining
their original design intents. I explain the UI, dataset construction, genera-
tion model, and integration of shadow guidance to demonstrate the system’s
functionality and effectiveness.

3.3.1 User interface

The UI of our proposed system is divided into three primary sections:
canvas, function area, and reference sub-windows. The canvas allows users to
draw sketches, display background images, and view shadow guidance. The
function area contains buttons for common actions, such as brushing and
saving. The two areas are illustrated in Figure 3.3(a). The “Shadow Number
Control” slider enables users to adjust the number of shadows displayed, with
a range from 1 to 3. The “Stroke Thickness” slider allows for the adjustment
of brush thickness. The “Drag” checkbox enables users to select and move
strokes, while the “Stop” checkbox halts guidance updates. Label buttons
facilitate switching between background images to accommodate different
gender or age characteristics. Users can also choose between three navigation
modes by checking the “Global” and “Local” boxes. The “Generate” button
allows users to create high-quality facial feature sketches using the generative
model.

To enrich the reference options, I provided six sub-windows on the right
side of the drawing board, as shown in Figure 3.3(b). The three on the
left display generated sketches, and the three on the right display retrieved
sketches. This setup offers users a variety of reference choices. Users can
select their preferred sketches as global guidance (highlighted with a red
shadow) to assist with their drawing. Notably, users can enter stroke editing
mode by pressing the “Edit” button; the details are described in the Dataset
Construction section.
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Figure 3.3: Combined view of Canvas, Function Area, and sub-windows.

Users can draw on the canvas and initially enable local guidance by
checking the “Local” checkbox. This guidance continuously updates to
match the user’s drawing (it can be turned off using the “Stop” checkbox)
and provides shadow hints synthesized from three retrieved sketches. For
additional creative inspiration, users can click the “Generate” button, which
prompts the system to provide six reference sketches (three generated and
three retrieved) in sub-windows on the right side of the canvas. Users
can then enable global guidance by checking the “Global” checkbox, which
overlays the selected reference sketch as a red shadow, merging it with the
local guidance’s black shadow. This combined guidance helps users complete
their drawings more effectively.

3.3.2 Dataset construction

I developed a specialized interface for collecting data on anime characters’
facial features, as illustrated in Figure 3.4. This interface stored strokes
as vector information and efficiently categorized stroke data according to
distinct facial features. I enlisted five expert designers to create 120 freehand
sketches of facial features for two genders and three age groups (six different
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Figure 3.4: Stroke classification according to facial features: (a) the input
face sketch, (b) the result of automatic stroke classification by region (gray
dashed rectangle), with different colors representing different features, and
(c) the final result after manual modification by the user. Strokes within
the red rectangle have been corrected from incorrectly classified colors to the
appropriate colors.

categories in total).

The data collection process occurred in two stages. During the drawing
stage, designers completed facial feature sketches for specific gender/age
characters using graphics tablets. After completing the sketch, designers
moved on to the stroke editing stage, in which they classified the strokes of
the drawn sketches with the assistance of the system’s editing mode, as shown
in Figure 3.4. The system automatically sorted all strokes by predefined
regions for each facial feature. I established six facial features (eyebrows,
eyes, nose, mouth, forehead, and face) and divided the corresponding regions
on the canvas (the gray dashed areas in Figure 3.4). Label(s) represents
the automatic classification function for discriminating the label of stroke s,
determined by the majority vote algorithm for each dot d € s. As calculated
by Eq. (3.1), the function Cyes accumulates the number of dots in each
stroke shared by the same facial feature. I employed the ray casting function
R(d, F) [101] to ascertain the facial feature region in which a single dot d is
situated. F' denotes the set of predefined rectangular areas in facial features.

label(s) = argmaxCycs(R(d, I)) (3.1)

Designers were tasked with identifying miscategorized strokes and manually
modifying them. Ultimately, the edited data were saved to our database.
Consequently, I constructed a freehand sketch database based on the strokes
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of various facial features. Sample sketches from the dataset are shown in
Figure 3.5.
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Figure 3.5: Examples of sketches in the database: The first row illustrates
sketches including all facial features for global guidance, while the second
row illustrates sketches of single facial features for local guidance.

3.3.3 Generation model for sketches

First, I randomly combined the six different facial features from the same
age/gender category in our database, resulting in the synthesis of over 100,000
facial sketch training samples. I adopted the stroke-3 format, as proposed by
Quick Draw, which represents a stroke sequence using x and y coordinates
and drawing states (boolean values).

Then, I preprocessed the stroke-based sketch data, converting it into
a format suitable for input into the Transformer model. This involved
normalizing the stroke coordinates and encoding the sketches as sequences of
tokens. To accommodate the variable-length nature of the stroke sequences,
[ employed positional encoding to inject positional information into the input
tokens.

The model aims to combine the strengths of Transformer architecture and
convolutional neural networks, leveraging the Transformer’s ability to handle
long-range dependencies and inherent parallelism, along with the convolu-
tional network’s capability to extract local image features. I concatenate the
embedded tokens with image features extracted by a ResNet-18 network to
create conditional vectors as input for the Transformer encoder, achieving
feature fusion and ensuring that the generated output remains similar to the
input image.
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The model architecture consists of a Transformer encoder, as shown in
Figure 3.6, with multiple self-attention layers and a multi-layer perceptron
(MLP) decoder. I optimized the model’s performance in sketch generation
by increasing the number of layers and attention heads. To manage memory
consumption, I employed ReZero Transformer (RZTX) layers [102]. Finally,
a multi-layer MLP decoder is used to obtain the predicted tokens.

N x

S | ! Token |»! Embedding | 5 Multi-Head Add & L Feed Add &
Lookup Attention Norm Forward Norm

Positional
Encoding

Transfomer Encoder

Figure 3.6: Architecture of Transformer encoder; S denotes the stroke
sequences in sketch.

During the training process, 1 jointly trained the Transformer-based
model and the ResNet-18 network, updating the model parameters con-
currently. I utilized cross-entropy loss as the optimization objective for
the Transformer-based model and employed a low-weight MSE loss as the
objective function for the ResNet-18 network to constrain the similarity
between the generated facial sketch and the input. The overall objective
function is shown in Eq. (3.2):

L=Lcg+ X Lyusk, (32)

where Lcg is the cross-entropy loss, and Lysg is the mean squared error
(MSE) loss between the input and output images of the ResNet-18 network.
A is a constant weight; based on experience, I set it to 0.5 during training.
The total loss, £, is the sum of the two components, each weighted by their
respective coefficients.

During the inference process, I used nucleus sampling, also known as
top-p sampling, to sample from the predicted logit sequence. This method
adaptively selects a subset of tokens based on cumulative probability, balanc-
ing diversity and coherence. For our task, nucleus sampling ensures sketch
quality while providing more diverse strokes. Extensive experiments have
shown that setting the cumulative probability threshold to 0.7 achieves the
best balance between generation quality and robustness.

In summary, I developed a Transformer model specifically designed for
sketch generation and trained it on a pen-position sequence dataset. This
approach enabled us to leverage the unique properties of the Transformer
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architecture and the rich information contained in the collected data to
create high-quality, diverse sketches while maintaining the required spatial
similarity with the input sketches.

3.3.4 Drawing guidance

I integrated shadow guidance into our drawing interface. As the user draws a
stroke on the canvas, the system retrieves or generates reference images and
creates a shadow by blending the candidate sketches. Initially, I employed the
Sketch-Based Image Retrieval (SBIR) algorithm proposed by Eitz et al. [103]
to obtain images with contours most similar to the input line drawings.
Subsequently, I utilized the shadow generation method of ShadowDraw. Key
points from the drawing strokes and candidate images were extracted, and
individual weights were assigned to each pixel according to the similarity
between key points. By multiplying these weights by pixel values, the
similarity between the image and the stroke could be expressed through pixel
grayscale levels, with darker pixels denoting a higher degree of similarity to
the stroke. Lastly, I overlapped the grayscale values of multiple images to
produce a guidance shadow image blended from reference sketches.

As demonstrated in Figure 3.7, I combined two types of shadow guidance:
global guidance, which displays all facial features, and local guidance, which
shows the currently drawn facial feature. These were represented in red
and black, respectively. For local guidance, I obtain references by retrieving
sketches from the dataset. For global guidance, in addition to retrieval, I
generate sketches to increase the diversity of reference sketches.

According to our assumptions, local guidance can reorganize different
facial features, preventing premature interference during the creative process.
Adding global guidance can further enhance the user’s creativity by inspiring
ideas for subsequent facial features. To implement local guidance, I needed to
determine the category of facial features to which the current stroke belongs.
This required designing a facial feature classification algorithm.

I divided the collected 540 labeled facial part stroke sequences into a
training set and a validation set, with 440 strokes for training and 100 strokes
for validation. Then, I processed all stroke data for the same facial feature
as a single vector V using Eq. (3.3):
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Figure 3.7: Shadow image created for global guidance and local guidance.
The gray shadow is local guidance; the red shadow is global guidance.
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where S represents all strokes of one facial feature sketch, and s represents
each stroke in S, with S = {s; | ¢ = 1,2,..., K'}. The term ||d;xz + d,y||2
denotes the Euclidean distance from the point in the stroke to the origin
of coordinates O, where d;x and d;y represent the z-coordinate and y-
coordinate values of the dots. N denotes the number of dots in one stroke,
and K represents the number of strokes in a facial feature sketch.

I then employed a supervised learning algorithm, the support vector
machine (SVM), to predict the facial feature classification of the strokes. The
validation results demonstrated that this classification method is reliable for
categorizing facial features, with an accuracy rate of 96%.

3.4 Experiment

In this section, I evaluated the effectiveness of our proposed guidance method
through user studies. Additionally, I designed comparative experiments to
verify the performance of the generative model, ensuring its suitability for
sketch generation tasks.
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3.4.1 User Study

Table 3.1: User Study Questions and Results

System Usability Scale (SUS) Questions Mean | SD

Q1 | I think that I would like to use this system frequently. 4.2 0.98
Q2 | I found the system unnecessarily complex. 1.7 0.85
Q3 | I thought the system was easy to use. 4.2 0.91
Q4 | I think that I would need the support of a technical person to be able to use this system. 1.9 1.45
Q5 | I found the various functions in this system to be well integrated. 4.4 0.73
Q6 | I thought there was too much inconsistency in this system. 2.1 1.06
Q7 | I would imagine that most people would learn to use this system very quickly. 4.3 0.87
Q8 | I found the system very cumbersome to use. 1.9 0.68
Q9 | I felt very confident using the system. 4.2 0.83
Q10 | I need to learn a lot of things before I can get going with this system. 1.3 0.60
System Evaluation Questions Mean | SD

Q1 | I think it is useful for improving my drawing skills. 4.2 0.77
Q2 | I think the guidance helps draw facial features of different ages. 4.2 0.56
Q3 | I think this system is helpful for adding details of facial features. 4.3 0.59
Q4 | Compared to global guidance only, I think that combining global and local guidance interferes less with my creative intentions. | 4.1 0.83
Q5 | I think the Generate function is useful for the creation process. 4.4 1.50
Q6 | I think the generated references inspire my creation process. 4.8 1.87
Q7 | I think the quality of generated references is acceptable. 3.9 0.96
Q8 | Compared to retrieved results, generated results better align with my design intentions. 4.1 1.53

I invited 15 participants to join our user study. Based on their self-
assessments, 6 participants reported high-level drawing skills, while 9 par-
ticipants identified as having low-level drawing skills. All participants were
required to draw portraits using Surface Pro 7. Before the user study, I
explained how to use AgeFace with a user manual and allowed participants to
try some warm-up exercises to familiarize themselves with the interface. Each
participant was required to complete two sets of experiments: the guidance
strategy evaluation experiment and the generative guidance evaluation ex-
periment. Each set of experiments included three comparative tests. During
the same set of experiments, participants had to maintain the same creative
intent.

In the guidance strategy evaluation experiment, participants used three
different Uls to draw facial features: one that employed our proposed
guidance strategy integrating both local and global guidance, another that
only incorporated global guidance to indicate the guiding methods of previous
research, and a third with no guidance, as shown in Figure 3.8(a).

In the generative guidance evaluation experiment, the UI that partic-
ipants used included a drawing board integrated with local and global
guidance, along with right-side sub-windows displaying reference sketches.
I designed three experiments to evaluate the impact of generative sketches
by adding the following to the right side of the drawing board: three retrieved
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Figure 3.8: Interfaces provided for guidance strategy and generative guidance
evaluation experiments.

references, three generative references, and a mixed set of three retrieved and
three generative sketches, as shown in Figure 3.8(b).

After completing the sketches, the participants were asked to complete
a system evaluation questionnaire and the System Usability Scale (SUS)
questionnaire. The system evaluation questionnaire aimed to confirm the
effectiveness of the guidance strategy and the generative system, while the
SUS questionnaire assessed the system’s usability. The questions on both
questionnaires are listed in Table 3.1. Most of the questions are rated using
a b-point Likert scale, with only two questions in the system evaluation
questionnaire being single-choice, which ask about usage preferences.

Finally, I invited three evaluators who did not participate in the user
study (one had high-level drawing skills, and the other two had low-level
drawing skills) to conduct subjective ratings of all sketches (a total of 90
sketches) based on two aspects: sketch quality and sketch similarity. For
sketch quality, I asked the evaluators to rate each sketch using a 5-point Likert
scale (1 = "very poor”; 5 = "very good”). For sketch similarity, I set up four
groups of sketch comparisons across the two experiments: no guidance vs.
global guidance, no guidance vs. local-global guidance, generative references
vs. mixed references, and retrieved references vs. mixed references. The
evaluators rated the similarity of facial features in each comparison group
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using a 5-point Likert scale (1 = ”completely different”; 5 = "exactly the
same”). The results of these two evaluations are shown in Figures 3.9
and 3.10.

I also illustrate some representative results of the user study. The first
set of results, illustrating the effectiveness of the guidance strategy, is shown
in Figure 3.11. The second set of results, validating the effectiveness of the
generative model, is shown in Figure 3.12.

3.4.2 Comparative Experiments

I conducted comparative experiments to validate the superiority of our
generative model against three classic baselines: SketchRNN [100], Sketch-
former [31], and Pix2Pix [104]. SketchRNN, a sequential generation model
based on an RNN architecture, uses the same input format as our model.
Sketchformer is another sequential generation model based on the Trans-
former architecture. Pix2Pix is a classic conditional image generation model
based on GANs. I validated the superiority of our model by conducting a
quantitative evaluation, comparing the diversity and similarity of sketches
generated by the three different models to the input sketches.

To ensure experimental fairness, all models were preprocessed and trained
using the same dataset. Specifically, since Pix2Pix is a pixel-level generative
model, T preprocessed the data by masking parts of the stroke sequences
and converting them into pixel images. These paired images, consisting of
masked and complete sketches, formed the training set.

All training was performed on a single NVIDIA 3090 GPU. The objective
function’s hyperparameter A was set to 0.1, and the maximum token length
was configured to 512. Under these settings, the models achieved an optimal
balance between robustness and generation quality. I extracted two sketches
from untrained data and removed some strokes, as shown in Figure 3.13.
These modified sketches were used as inputs to generate 100 sketches each
with three different models (a total of 300 sketches), forming a validation set.
For SketchRNN and Sketchformer, which do not require an input sketch, I
used the category labels ”child&male” and ”elderly&male” as conditions for
generation. For Pix2Pix, I converted the stroke sequences into pixel images
to use as inputs for generation.

I utilized a traditional perceptual hashing algorithm to calculate the
pairwise distances (PD) between sketches to evaluate the diversity of the
generated results. A larger average distance indicates greater diversity. On
the other hand, I used the F1 score as a metric to evaluate sketch similarity.
This metric is well-suited for evaluating the similarity of binary data. Due
to the sparse matrix nature of sketches, with a large amount of white
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background causing minimal result differences, background pixels were set
to 0, and foreground pixels were set to 1. This way, the white background
was treated as non-informative, focusing only on the black sketch parts of the
image. By calculating the F1 score of these pixels, I assessed the similarity
between the input sketches and the generated sketches.

3.4.3 Result Analysis

3.4.3.1 User Study Analysis

I analyzed the results of the two user studies described above. In the
guidance strategy evaluation experiment, subjective rating scores for sketch
quality are shown on the left side of Figure 3.9. The results indicate that
using our proposed global and local guidance strategy significantly improved
the sketch quality for all participants compared to no guidance and global
guidance only. The subjective ratings for sketch similarity are shown on the
left side of Figure 3.10. The results demonstrate that sketches created with
global and local guidance were more consistent with the initial drawing intent
(facial expressions and features) than those without guidance. In contrast,
global guidance only interfered with the creative process. This confirms our
hypothesis that adding local guidance better maintains the user’s creative
intent. Lastly, by using the local guidance strategy, features from different
sketches were fused to generate more diverse character images.

In the generative guidance evaluation experiment, the subjective ratings
for sketch quality are shown on the right side of Figure 3.9. The results indi-
cate that sketches drawn using a mix of generative and retrieved references
were of higher quality than those with a single reference type. Although
sketches drawn with generative references were of slightly lower quality
compared to those with retrieved references, the subjective ratings for sketch
similarity (right side of Figure 3.10) show that the similarity of sketches
drawn with mixed and generative references was higher than those drawn
with retrieved references. This suggests that users preferred using generative
references, as they provided better support for their creative intent.

The qualitative analysis of user sketches also yielded similar results. In
Figure 3.11, users achieved more detailed sketches with drawing guidance
compared to those with no guidance; furthermore, they retained the original
intent more effectively when using local-global guidance compared to using
global guidance only. Figure 3.12 illustrates how sketches created with
generative guidance closely resembled those created with mixed references.

For the results of the SUS questionnaire in Table 3.1, according to the
standard SUS calculation method, the scores for odd-numbered questions
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Figure 3.9: Subjective scores for sketch quality. The vertical axis represents
evaluation scores, and the horizontal axis represents different experimental
groups, listed from left to right as follows: No Guidance, Global Guidance
Only, Global-Local Guidance, Sub-window with Retrieved References Only,
Sub-window with Generated References Only, and Sub-window with Both
Retrieved and Generated References.

were reduced by 1, and the scores for even-numbered questions were sub-
tracted from 5. All converted scores were then summed and multiplied
by 2.5. The system’s SUS score was 81, indicating good usability. For
the system evaluation questionnaire in Table 3.1, the average score for the
eight rating questions was 4.25, with a median score of 4.2. This shows
that most users found that incorporating generative sketches as references
effectively supported their design process. In the other two single-choice
questions (Which guidance do you prefer as the reference while drawing?
During the drawing process, which sketches do you prefer to refer to?),
three users preferred using global guidance, three users preferred using local
guidance, and nine users preferred using both global and local guidance.
For sketch references, three users preferred retrieved sketches, six preferred
generated sketches, and six preferred using both retrieved and generated
sketches equally during the drawing process. This also demonstrates that
our proposed guidance strategy and generative model were the most favored
during the user’s creation process.
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Figure 3.10: Subjective scores for sketch similarity. The vertical axis
represents similarity scores between sketches, and the horizontal axis rep-
resents comparisons of different experimental groups, listed from left to
right as follows: No Guidance vs. Global Guidance Only, No Guidance vs.
Global-Local Guidance, Retrieved References Only vs. Both Retrieved and
Generated References, and Generated References Only vs. Both Retrieved
and Generated References.

3.4.3.2 Comparative Experimental Analysis

All models were trained and evaluated on an identical dataset comprising
multi-age anime face sketches, ensuring consistency and fairness in the
comparison. The models were classified into two categories: sequence-to-
sequence and pixel-level models, with each type undergoing supervised train-
ing using paired data. For sequence-to-sequence models, partial sequences
were masked and provided as inputs, while the complete sequences served as
the ground truth. Conversely, pixel-level models received partially occluded
images as inputs and were trained to generate the full images as outputs.
To maintain equitable evaluation across different model architectures, all
validation metrics were based on pixel-level calculations, ensuring that the
performance assessments were fair and comparable across both model types.

The experimental results are shown in Table 3.2. By comparing pairwise
distances, I found that SketchRNN produced the highest diversity in its
generated results. However, as illustrated in Figure 3.13, these results often
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Figure 3.11: Drawing results from participants with different drawing skills.
Each column displays sketches from the same participant.
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Figure 3.12: The second set of user study results showcasing participants’
drawings. The left column displays sketches created with generated refer-
ences. The middle column shows sketches guided by retrieved references.
The right column presents sketches drawn using a mix of generative and
retrieved references.
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Figure 3.13: Generated results from the four models compared with the input
sketches under the categories of male child and elderly male; for the sequential
generation model, I used different colors to represent different strokes.

suffered from poor quality and failed to ensure a reasonable spatial stroke
structure. Sketchformer’s generation quality was better, but it faced similar
issues as SketchRNN. In contrast, our model achieved a good balance between
quality and diversity.

According to the F1 score, Pix2Pix’s generated results showed the highest
similarity to the input sketches. However, its low pairwise distances indicated
a lack of diversity in the generated sketches, and the overall quality of its
generated images was also poor.

The experimental results demonstrate that our model achieved the best
balance among generation quality, diversity, and similarity to the input. This
makes it the most suitable generative model for drawing guidance.
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Table 3.2: Comparative Experimental Results

Model PD 1 F1 Score 1
SketchRNN 27.11 0.05
Sketchformer 23.21 0.13
AgeFace 17.86 0.24
Pix2Pix 10.3 0.60

3.4.3.3 Additional Experimental Results

In this section, I provide further details on our model design.

Our experiments showed that deeper ResNet architectures like ResNet50
and ResNet101 did not significantly improve performance. Therefore, I chose
the more efficient ResNet18, which reduces parameters while maintaining
accuracy, serving as the backbone for feature extraction to ensure streamlined
learning and faster processing. In addition to the ResNet backbone, I
incorporated the RZTX transformer layer into our model’s architecture. The
RZTX layer, known for its lightweight design and improved convergence
properties, replaces the standard transformer layers typically used in vision
transformer models. As illustrated in Figure 3.14, the combination of
ResNet18 and the RZTX transformer layer results in faster convergence
compared to models utilizing deeper ResNet architectures or standard trans-
former layers. This design choice allows the model to achieve better training
efficiency while maintaining strong performance in various tasks.

Training Loss Over Time (up to Iteration 2000)

8 —— RZTX Layer
Transformer Layer
74

Loss
v

w
L

0 250 500 750 1000 1250 1500 1750 2000
Iteration

Figure 3.14: The loss variation over the first 2000 iterations when using the
RZTX layer and the standard transformer layer.
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3.5 Conclusion

In this paper, I propose AgeFace, a drawing support system to help users
sketch facial features for multiple ages. I constructed an age-related facial
feature dataset based on stroke data and introduced a novel drawing guidance
strategy to support users’ design intents. Additionally, I trained a generative
model based on a Transformer architecture on our dataset. By incorporating
CNN image feature extraction techniques, I supported a broader range of
anime character facial features and generated results that preserved the
identity features of the input sketches. The effectiveness and advancement of
our model were validated through user experiments and baseline comparison
experiments.

Additionally, Designing multi-age facial features for anime characters

presents a key challenge in balancing Precision and Manipulability,
where users require detailed, accurate facial features while retaining creative
control.
The interactive drawing interface supports real-time user adjustments through
continuous input and feedback loops, enhancing system manipulability.
Experimental evaluations highlight the effectiveness of this design: results
from the System Usability Scale (SUS) and functionality questionnaires
show that users found the system highly interactive and supportive of their
creative process. User study assessing sketch similarity demonstrate that the
generated outputs closely align with user inputs, significantly outperforming
retrieval-only methods in output precision. Additionally, metrics such
as F'1 scores and visualizations confirm that the system produces facial
sketches with high similarity and design fidelity. This seamless integration
of retrieval-based detail precision and model-driven generative adaptability
enables AgeFace to resolve the inherent contradiction between precision
and manipulability, supporting both creative freedom and professional-level
design quality.

3.6 Limitations and Future Works

Despite its strengths, AgeFace has limitations. The system struggles to sup-
port certain features, such as hair and glasses, due to the limited scope of the
dataset. Additionally, the lack of multi-view sketches in the database hinders
the generation of consistent facial sketches from different angles. Future work
will focus on expanding the database with more diverse features and multi-
view sketches, optimizing the model architecture to reduce inference time,
and enabling real-time, responsive guidance through enhanced adaptability
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to user interactions, such as zooming, rotating, and screen adjustments.
These enhancements aim to further reconcile precision and manipulability,
empowering users in their creative workflows.
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Chapter 4

Character Pose Design

In recent years, the widespread application of conditional diffusion models
in image generation has led to significant advancements in controllable
human image generation (HIG), including both face and whole-body
generation. Despite these improvements, existing conditional diffusion mod-
els, such as ControlNet and T2I-Adapter, still face challenges of ambiguous
condition inputs and insufficient conditional guidance when utilizing a single
denoising loss. These limitations result in issues with condition recognition
and accuracy in HIG tasks. Consequently, current methods often require
extensive iterative trial-and-error processes in character design workflows,
making it difficult to achieve a satisfactory balance between the key elements
of Convenience and Precision in these application scenarios.

To address these challenges, I introduce two innovative solutions specif-
ically designed for parametric signal-guided generation tasks, such as those
involving pose keypoints and facial landmarks. Firstly, I propose the
Spatial Guidance Injector (SGI), which enhances conditional details
by encoding text inputs with parametric signals. This approach provides
clear, annotated guidance, thereby resolving issues associated with using
only image features as ambiguous control inputs. Secondly, to overcome the
limitations of conditional supervision, I introduce Diffusion Consistency
Loss (DCL). DCL applies supervision to the denoised latent code at any
time step, promoting consistency between the latent code at each step
and the input signal. This method improves the robustness and accuracy
of the output. The combination of SGI and DCL forms our Effective
Controllable Network (ECNet), which offers more precise conditioning
input and stronger controllable supervision within an end-to-end text-to-
image generation framework.

Additionally, DCL, as a general method, can extend to other structural
conditions, such as Canny and segmentation, and enhance the control ac-
curacy effectively. Extensive experiments conditioned on human skeletons
and facial landmarks demonstrate that ECNet significantly enhances the
controllability and robustness of generated images.
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Figure 4.1: The core work of this paper is to design a general framework for
supervised training of diffusion models, and enhancing the controllability of
text-to-image diffusion models. The figures show three categories conditions:
skeleton, facial landmark, and canny. Each category includes: (I) the
original image used for reference; (II) the conditional image derived from
the original image; (III) results generated by ControlNet; (IV) comparison
results generated by the state of the art model, HumanSD(skeleton and
landmarks) and ControlNet++-(canny); (V) results generated by ECNet (our
model). Compared to other SD-based models, our model ECNet exhibits
superior capabilities and robustness in image generation with control across
all categories. In Canny Edge results, the areas within the orange boxes
highlight regions with low control precision.

4.1 Introduction

Controllable Image Generation is a critical area of research in computer vision
and deep learning, with significant recent advancements [52, 54, 105-108].
The capacity to synthesize images that conform to predetermined conditions
not only extends the frontiers of conventional image synthesis methodologies
but also serves an array of application-specific demands. Such technological
advancements are of paramount importance in disciplines such as virtual
reality, film production, and fashion design, where automating image cre-
ation tailored to particular themes can substantially augment efficiency and
mitigate expenses.

Due to the unparalleled performance of diffusion models in text-to-
image generation, they have outperformed the results generated by Genera-
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tive Adversarial Networks (GANs) [109-111] and Variational Autoencoders
(VAEs) [112,113] in image generation. The forefront of controllable diffusion
models, epitomized by ControlNet [52] and T2I-Adapter [54], has realized
a measure of control in image generation. These models incorporate vari-
ous constraints, throughout the generation process, significantly improving
the controllability of the base SD model. Recent advancements like Hu-
manSD [105] and Composer [114] further refine this approach by integrating
additional conditions into the noisy latent embeddings used by the SD U-Net
module. This leads to more stable training and enhanced model robustness

Despite these improvements, current diffusion models still face challenges.
For instance, the leading skeleton-guided diffusion model, HumanSD, strug-
gles with generating images in intricate scenes, dynamic actions, and nuanced
details. This limitation primarily stems from the limited controllability in-
herent in the end-to-end training methodology, which includes issues such as
the ambiguity of condition inputs and the lack of comprehensive conditional
supervision beyond a singular denoising loss. Our contemporaneous work,
ControlNet++ [115], introduces an approach that explicitly optimizes pixel-
level cycle consistency between the denoised model output and the ground
truth. However, due to limitations in the denoising method, it is restricted
to a smaller range of time steps (timestep<200), making it difficult to
achieve consistent supervision throughout the range of time steps. To resolve
the main issues of the state-of-the-art models, I introduce two innovative
solutions.

First, the Spatial Guidance Injector (SGI) incorporates precise annotation
information as a condition, complementing the condition image, as shown in
Figure 4.2. Annotations serve as an effective means to define human postures
and facial orientations, providing detailed context that, when combined
with the global structure from the condition image, offers a comprehensive
understanding of these features. Our approach integrates image conditions
with annotation and text conditions, where the image is processed through a
U-Net for global feature extraction, while annotations and text are combined
via the SGI architecture to enrich contextual detail.

Second, I propose Diffusion Consistency Loss (DCL), which uses the
denoised latent code for loss calculation instead of focusing solely on noise, as
illustrated in Figure 4.2. This approach provides more accurate guidance by
comparing the model output to a closer approximation of the ground truth.
Existing methods struggle to maintain high fidelity across all diffusion process
time steps, as shown in Figure 4.3, making it difficult to apply consistent
supervision. Our DCL introduces a dual-stage loss formulation, adaptable
throughout the denoising process, enhancing supervision and contributing to
a more stable training process.
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The main contributions of this paper are:

e [ proposed ECNet, an innovative framework for controllable human
image generation. I first identified that parametric signals provide a
clearer condition for HGI compared to the ambiguous manipulation of
image features alone. I introduced a Spatial Guidance Injector (SGI)
architecture, enhancing input control and improving contextual depth
and image controllability.

e The development of a novel Diffusion Consistency Loss (DCL) within
ECNet. DCL is the first to utilize denoised latent code for supervision
and incorporates dual loss formulations tailored for different stages of
the training process. This significantly boosts the model’s controllabil-
ity and robustness of its outputs.

e The efficacy and efficiency of the ECNet framework are validated
through various evaluation metrics across multiple domains, including
skeletons, landmarks, sketches, and Canny, shown in Figure 4.1. The
performance of ECNet surpasses previous state-of-the-art models in a
fair experimental setting.

4.2 Related Works

4.2.1 Text-to-Image Diffusion Model

Diffusion models have established themselves as state-of-the-art in deep gen-
erative modeling, outperforming Generative Adversarial Networks (GANs)
[116] in image synthesis tasks. Benefiting from the remarkable ability of
large-scale language models, such as CLIP [27], to encode textual inputs into
latent vectors, diffusion models have demonstrated astonishing capabilities
in text-to-image generation tasks. For instance, one of the earliest text-to-
image diffusion models, Glide [117], is a text-guided diffusion model that
also supports image super-resolution generation and editing. Imagen [42],
a text-to-image architecture, discovered significant improvements using a
pre-trained large-scale text-only encoder and introduced a new Efficient U-
Net structure. Latent Diffusion Model(LDM) [118] was the first to propose
conducting diffusion and reverse diffusion in feature space, significantly
enhancing efficiency, and introduced the use of cross-attention to embed
conditional information, allowing for more flexible incorporation of condi-
tions. Stable Diffusion, a large-scale implementation of latent diffusion, was
developed for text-to-image tasks. However, all these models typically only
take text as input, making it challenging for precise image control, such
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Figure 4.2: The framework and its loss design are illustrated using the task of
skeleton control as an example. our model encodes the skeleton image into a
latent code via a VAE to obtain a pose latent code. This code combines with
diffusion’s noise code as input for a U-Net. Additionally, Our SGI module
further combines corresponding pose annotations and text, integrating them
into the U-Net layers. During the training phase, I enhance the conditional
generation capabilities of the diffusion model by introducing DCL. DCL
targets heatmap disparities between estimated and input images, using dual-
stage loss to impose consistency supervision throughout the diffusion process.
z represents the latent code and x denotes the image decoded from 2. Please
refer to 4.4 for more details

as target positioning and posture control. Consequently, subsequent works
have seen the emergence of numerous studies focusing on controlled image
generation using diffusion models.

4.2.2 Controllable Diffusion Model Generation

In this section, I primarily focus on controllable diffusion model generation,
specifically on how to incorporate additional conditions into text-to-image
models, such as bounding boxes, human poses, and sketches. Among the
most influential works in this area are ControlNet [52] and T2I Adapter [54].
Both of them fix the original weights of Stable Diffusion and use an additional
trained branch to modify the embeddings in the U-Net for guiding generation.
I refer to this approach as the dual-branch diffusion model. This method
supports a variety of conditions, including human poses, Canny Edge Maps,
and more, enabling flexible image generation control.

Additionally, there has been a surge of recent works targeting different
tasks. Uni-ControlNet [119] and Composer [114] address image generation
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control under multiple conditions, considering the interrelations between dif-
ferent conditions. They categorize conditions into local and global, adopting
different methods of integration depending on the type of condition. Both
LayoutDiffusion [120] and GLIGEN [121] use bounding boxes (bbox) as
conditions for controllable generation. LayoutDiffusion integrates encoded
bbox information into the U-Net, merging image and layout features for
controllable generation. In contrast, GLIGEN adds new attention layers to
handle the fusion of bbox and text without altering the original weights
of Stable Diffusion, endowing the model with the capability to control
generation using bbox.

4.2.3 Conditional Human Image Genteration

Conditional HIG involves creating realistic human images conditioned on
specified body or facial guidance images. Traditional approaches utilized
GANs [122,123] and Variational Autoencoders(VAEs) [124, 125]. These
models offered foundational advancements but often struggled with main-
taining fine-grained details and variability in condition adherence. Diffusion
models have emerged as a powerful alternative in image synthesis due to
their inherent capabilities for producing detailed and high-resolution images.
Controllable diffusion models are now widely applied in HIG [105,126-128],
achieving significant improvements in image quality and fidelity compared to
previous methods.

HumanDiffusion [126] introduced a coarse-to-fine alignment diffusion
framework to enhance the alignment quality from the image level to the
feature level and from low to high resolution. This approach achieves good
performance even in complex tasks with diverse details and uncommon poses.
However, the model relies on high-quality pose pairing as a condition, making
it difficult to apply to in-the-wild datasets. HumanSD [105] proposed an
alternative approach for adding conditions. This work combined the pose
image embedding with the noisy image embedding as the input to the U-Net
for training, showing superior pose control capabilities compared to dual-
branch diffusion models. Additionally, it also optimized the original SD loss
by incorporating a weight more focused on human posture to generate results
more aligned with the pose conditions. Although the loss was optimized, this
method essentially still achieves control by adjusting the input method.

Current pose-guidance frameworks like ControlNet, HumanSD, and
sketch-guided diffusion models frequently encounter challenges in generation
accuracy, especially when interpreting complex spatial prompts or multi-
character scenarios. This limitation reflects a struggle to achieve Precision
while retaining the Convenience for existing methods.
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Text-guided models like Stable Diffusion and DALLE-2 provide a high
level of convenience by using simple text prompts, yet they often fall short
in generating spatially accurate poses. Their reliance on textual descriptions
alone can lead to mismatches between the intended and generated poses due
to limited pose-specific representation learning.

Our method resolves this Precision-Convenience contradiction through
two key innovations: the Spatial Guidance Injector (SGI), which efficiently
integrates structural guidance into the diffusion process, and the Diffusion
Consistency Loss (DCL), which ensures precise pose generation by enforcing
powerful supervision. This framework allows efficient and accurate pose
generation without additional input requirements, offering a well-balanced
between precision and convenience.

4.3 Preliminaries and Motivation

This section discusses the issues of existing methods and the inspiration
of ECNet. These methods uniformly adopt the Latent Diffusion Model
(LDM) as their foundational framework, capitalizing on its high trainability
and exceptional generative quality, while employing various control schemes.
These methods are introduced in Section 4.3.1. Subsequently, Section 4.3.2
elucidates the problems present in these methods and the motivation behind
designing ECNet.

4.3.1 Preliminary Introduction

The training process of the Diffusion model is conceptualized as a standard
diffusion process, where an input latent code zy incrementally acquires noise
over t time steps, transitioning into a latent code close z; approximating
random noise. This process is mathematically articulated as:

Zt:\/O_é_t20+ \/1—O_dt€, ENN(O,[) (41)

where a; denotes a predetermined noise level coefficient, € represents noise
drawn from a standard normal distribution, and ¢ signifies the time step.

During the denoising phase, the model learns to predict the input latent
code zy from diffused latent code z;, a process achieved by optimizing the
following objective function:

£=E [lle—eo(z.t)I] (4.2)

1<y

Where ¢y is the noise predicted by the model, to minimize the discrepancy
between the predicted noise and the actual noise. Through this mechanism,
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the Stable Diffusion Model effectively learns the data distribution and
generates high-quality images.

Inspired by previous work [129], a novel method controls diffusion model
inference via sketches, differing from typical condition-based control. It
utilizes a pre-trained edge predictor during training for mapping noisy
image features to edge maps. At each denoising step t, features are input
into a latent edge predictor to estimate edge maps, with the similarity
gradient between predicted and true edges guiding denoising, as shown in
Equation 4.3. This edge guidance ensures synthesized images closely align
with the target edges.

Z, 4 =%_1+k-V,Loss (4.3)

where Z;_; represents predicted latent code at time step ¢t — 1, Z;_; denotes
the predicted latent code after guided by the gradient, Loss denotes the
calculated edge loss, and k governs the intensity of the guidance exerted by
the loss.

4.3.2 Motivation

Existing SD-based control models predominantly use condition images as
their primary input for control. However, relying entirely on image features
for control conditions does not provide adequate guidance, leading to certain
details in the generated images being controlled imprecisely. In contrast to
images, annotations include sequences and coordinates, complementing the
global control provided by textual conditions, and giving a more detailed
guide for image generation. Therefore, I suggest that incorporating image
annotation information into traditional textual conditions can significantly
improve the controllability of the generated outcomes.

Beyond the issue of insufficient conditional inputs, existing diffusion
models also suffer from a lack of supervision on conditions or from employing
ineffective supervisory methods. For instance, ControlNet uses traditional
stable diffusion loss without any condition-based supervision. While Hu-
manSD uses a heatmap-guided weighted loss to strengthen the new structure-
aware condition by weighting the original diffusion loss with an estimated
noise difference heatmap. However, it still applies to the supervision of noise
without direct supervision over the latent code. To develop supervision on
the denoised latent code at any time steps of the diffusion model, I explore
a novel method to estimate the image during the denoising process.

The diffusion process is typically fixed and employs a predefined variance
schedule, allowing for the sampling of z; at any time step t directly from
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20, as illustrated by Equation 4.1. Consequently, I can deduce the result as
shown in Equation 4.4.

. T — /1 — @é
o — — (44)
Vi
Go= Vo T E V1= e (4.5)

Vo

Equation 4.4 describes the derivation process for the denoised image,
while Equation 4.5 describes the noise difference image. In both equations:
Zo represents the derived initial sample, ¢ denotes the model-predicted noise,
¢ refers to Gaussian noise. Note that in our paper, z is used to represent the
latent code, and x denotes the image decoded from the latent code.

In Equation 4.4, T derive an approximate Z, directly fromz, at any
timestep t. For the noise difference image in Equation 4.5, Gaussian noise
replaces the model-predicted noise, and x; is substituted with the predicted
noise. At larger timesteps, £ better approximates z; and noise level similar
to Gaussian noise. Gaussian noise, allowing Equation 4.5 to align with
Equation 4.4 under these conditions. Note that using idealized Gaussian
noise instead of model-predicted noise at larger timesteps results in a derived
Zo from Equation 4.5 that is closer to the target than from Equation 4.4.

As shown in the third row of Figure 4.3, it is observed that global image
features, such as foreground-background separation and pose structure, are
primarily generated in the initial phases of the denoising process, while local
features predominantly occur during the later stages.

Therefore, An intuitive approach involves supervising the heatmap fea-
tures of the derived image z, against the input image, with supervision
intensity dynamically adjusted based on time steps. Specifically, during the
early time steps, the predicted image more closely resembles the original
image, leading to a reduced error in heatmap detection. However, due to the
lower quality of the derived images Z, at larger time steps, significant errors
occur in keypoint detection results, as shown in Figure 4.3 for images derived
at steps 800 and 900, thereby diminishing the accuracy of the supervision.

To mitigate this challenge, I introduce noise difference code, as shown in
the first row of Figure 4.3. The principle behind the noise difference code
and derived latent code is the same, as both use Equation 4.1 to obtain the
initial image from the predicted noisy image. The key difference is that the
noise difference code uses random Gaussian noise instead of the noisy latent
code at the current time step. This means that at larger time steps (the
noisy latent code is closer to Gaussian noise), the predicted image is closer
to the original image, which provides more accurate keypoint heatmaps at
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Figure 4.3: The decoded images of pose and face at different time steps. The
first row shows the decoded images obtained from the noise difference code.
The second row displays the denoised results derived from the predicted
noise latent code. The white points indicate keypoints detected using the
pre-trained detector provided by MMPosee [2].

larger time steps. Noise difference code ensures more effective and robust
conditional supervision during these later stages of the denoising process.

4.4 Method

4.4.1 Diffusion Consistency Loss

Inspired by existing studies, I propose the integration of additional latent
code supervision into the general loss structure applicable for classifier-free
guidance, to enhance the generation accuracy. The entire loss L., as depicted
in Equation 4.6, is divided into two primary components, termed the original
SD loss Lsp and Diffusion Consistency Loss Lpc.

L.=Lsp+ alpc (46)

According to Section 4.3.2, the construction of Lpc adopts distinct
supervision strategies during two phases of the diffusion process, as illustrated
in Equation 4.7. This loss design harnesses the high fidelity of the noise
difference image and the derived image xy at different timesteps, providing
precise supervision for the training process.

»CDC = Lg ift < ]{Z, else ,Cdff
Edrv = |H2np - Hd’rv|7 Ldff = |Hznp - def|

Where H represents the heatmap features of images decoded from latent
code. Hipp, Hgpy, and Hgrp mean the heatmap features of the input images,
the derived images Zy, and the noise difference images. Lg, and Ly are
both L1 losses, L4, is active for ¢ < k, emphasizing the alignment between
input image and Z, at earlier time steps. Lg is relevant for ¢t > k, focusing

(4.7)
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on mitigating the negative impact caused by keypoint detection errors in
lower-quality %, in later time steps k. The value of k is set as different time
steps for different tasks. More details are provided in the Supplementary
Material, and « is a constant item to control the supervision intensity. The
working principle of Lp¢ is the same as Equation 4.3.

Notably, our approach to the noise difference method was developed
independently through mathematical derivation, resulting in a significantly
different understanding and application compared to HumanSD:

1. Comparing with HumanSD performs é — ¢ intuitively, I provide a
mathematically rigorous explanation of its underlying principles, yielding a
much clearer image quality of noise difference images.

2. Unlike HumanSD, which does not leverage this method for direct
supervision of control conditions, our approach introduces the consistency
loss specifically designed for supervising SD-based control models, which
significantly enhances the performance of our method.

4.4.2 Spatial Guidance Injector

Previous Sd-based pose control models employed skeletal images to incor-
porate pose conditions, utilizing a VAE module to process these skeletal
images for positional information, ensuring alignment of pose conditions with
the latent embedding of input images. However, I suppose that extracting
image features to derive pose information is rather indirect. In contrast,
the keypoint annotation embedded within skeletal images offers more direct
spatial information for pose representation. Moreover, I observed that textual
conditions typically do not encompass specific details such as the number of
objects or joint positions. Given those, I propose integrating the keypoint
annotations as an additional condition to the existing posture image and
textual conditions. Specifically, each image is processed to extract keypoint
annotations, which are then padded to a shape of “batch size, the maximum
number of objects, the number of keypoints, coordinate dimensions”. A
mask is applied to the padded positions. I then flatten the coordinates of all
keypoints for each detected object and embed them into the same dimension
as the text embeddings generated by the CLIP encoder. To synthesize the
visual and textual information, I employ a self-attention mechanism along
the dimension of the detected objects and integrate the results with the text
embeddings via a cross-attention module. This integrated module is called
Spatial Guidance Injector(SGI), as the Equation 4.8. The SGI facilitates a
more sophisticated understanding of the multimodal annotation data.
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Model Pose Performance Metrics Face Performance Metrics

AP(%)t CAP(%)t PCE] CLIPSIM?t FID)|NME| CLIPSIMt FIDJ
ControlNet(SD2.1)  22.06 62.38 1.45 33.53 4.59 | 0.37 30.13 6.09
HumanSD(SD2.1)  33.15 63.48 1.43 32.63 4.74 | 0.46 29.89 3.95
ControlNet(SDXL) 20.49 64.33 1.89 33.67 4.13| 0.24 30.91 3.75
ECNet(SD2.1) 43.31 65.76 1.35 32.28 4.89 | 0.33 29.46 3.21
ECNet(SDXL) 46.30 66.70 1.32 32.93 4.88 | 0.20 30.84 4.11

Table 4.1: Quantitative comparisons between ECNet and other SD-based
models. T conduct experiments on ECNet for two primary tasks: human
skeleton control and facial landmark control. The results indicate that ECNet
outperforms previous SD-based models in both tasks.

WoC () (Wi A(a)"
Vdy,

Softmax < ) (WyA(a)) + C(t) (4.8)

Where, A(a) symbolizes the self-attention mechanism applied to the
annotations. C(t) denotes the frozen CLIP encoder that extracts meaningful
textual features from prompts. Wg, Wk, and Wy are the weight matrices
for the Query, Key, and Value in the attention mechanism, respectively.
These matrices transform the inputs into representations suitable for gen-
erating attention scores, and dj is the dimension of the key vectors. The
softmax function applied to the cross-attention result between A(a) and C(t),
produces a distribution representing the attention weights. The final output
is derived by multiplying the result of the softmax function with the value
matrix (WyA(a)) and adding it to C(¢). This process effectively merges
contextual information from both annotations and text, thereby providing a
more semantically rich input to the model.

4.5 Experiments

In this chapter, I evaluate the performance of the ECNet framework across
skeleton control and facial landmark control tasks. Additionally, I demon-
strate the generality of DCL through its application in Canny control tasks.
In Section 4.5.1, the results indicate that our method surpasses the state-of-
the-art methods based on SD for the multiple conditional control tasks. In
Section 4.5.2, I further conducted ablation studies on SGI and DCL.
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4.5.1 Comparison with SD-based Methods

4.5.1.1 Skeleton Control Task

I utilize two state-of-the-art SD-based models as the foundation for train-
ing ECNet: HumanSD (SD2.1) [105] and pose-conditioned ControlNet
(SDXL) [52]. The objective function similarly employs L1 loss, here measur-
ing the distance between facial landmarks in the generated and input images
to enforce accurate facial feature generation. The training process is as
follows: (1) I train HumanSD-based ECNet (ECNet (HumanSD)) using the
LAION-Human dataset introduced in HumanSD; (2) I fine-tune ControlNet-
based ECNet (ECNet (SDXL)) on high-resolution images (greater than
1024 pixels) selected from both the LAION-Human and HumanArt [12]
datasets, ensuring the data quality aligns with our fine-tuning objectives. 1
benchmark ECNet models against HumanSD (SD2.1), ControlNet (SD2.1),
and ControlNet (SDXL). For the sake of fairness, I retrain HumanSD on the
LAION-Human dataset. The reported metrics are based on the Human-Art
validation set, which contains 4,750 images.

I validate the performance of the ECNet in terms of posture generation
quality and semantic association. I employ five metrics to evaluate the model:
the distance-based Average Precision (AP), representing the similarity in
human keypoint distances; the Pose Cosine Similarity-Based AP (CAP),
indicative of human posture similarity; the People Count Error (PCE),
reflecting the accuracy of generated human figures; CLIPSIM, measuring
the relevance between image information and textual descriptions; and the
Fréchet Inception Distance (FID), which evaluates the quality of image
generation.

The results are shown in the left part of Table 4.1. ECNet demonstrates
the highest similarity in human keypoint distances, reflected in its AP and
CAP scores, surpassing ControlNet and HumanSD. This indicates ECNet’s
superior ability to capture and replicate the spatial configuration of human
figures. Additionally, its lowest PCE value highlights its precision in generat-
ing multi-human figures. Our method does not supervise image quality and
semantic relevance, it is likely that FID and CLIP scores may not improve.
However, I achieved a significant improvement in control metrics with only a
minor sacrifice in the FID and CLIP scores, demonstrating that our method
is reasonable and effective. More qualitative comparisons with HumanSD
and ControlNet are illustrated in Figure 4.4. The figure displays ECNet’s
adaptability in single and multiple-pose conditional generation.
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a group of people standing around a stage

(a) Original (b) Condition (c) ControlNet (d) HumanSD (e) Ours

Figure 4.4: Generated images using various SD-based models on the skeleton
control task.

4.5.1.2 Facial Landmarks Control Task

Similar to the skeleton control task, I adopt ECNet (HumanSD) and ECNet
(SDXL) for the facial landmark control task. The objective function is
constructed using L1 loss on the landmark heatmaps from both the generated
and the input images, providing supervision during the training process.
I train both ECNet (HumanSD) and ECNet (SDXL) on the high-quality
FFHQ [130] facial dataset. Typically, since there is no publicly available
landmark-based ControlNet SDXL pre-trained model, I first trained a Con-
trolNet (SDXL) on the FFHQ and then used it as the base model to fine-
tune ECNet (SDXL). I benchmark ECNet models against HumanSD (SD2.1),
ControlNet(SD2.1), and ControlNet(SDXL). To ensure fairness, HumanSD
is retrained on the FFHQ dataset. The metrics are based on the WFLW [131]
validation set containing 2,500 images.

I evaluated the performance of ECNet in terms of accuracy of landmarks,
semantic relevance, and image quality. The model’s performance is assessed
using three evaluation metrics: Normalized Mean Error (NME) based on
distance for assessing the accuracy of generated faces, CLIPSIM for semantic
relevance, and FID for image quality. As illustrated in the right part of 4.1,
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the NME scores indicate that ECNet achieves significantly higher accuracy
in the facial landmarks than the baseline, suggesting our training strategy
is equally effective for controlling facial generation tasks. Moreover, the
reduction in FID scores in the SD2.1-base models highlights the enhanced
generation quality achieved by ECNet. More qualitative comparisons are
shown in Figure 4.5, comparing with ControlNet and HumanSD, ECNet
showcases superior performance in facial landmarks control tasks, balancing
precise control with high-quality generation.

human face, a man wearing a turban and holding a fist

o

(a) Original (b) Condition (c) ControlNet (d) HumanSD (e) Ours

Figure 4.5: Generated images using various SD-based models on facial
landmarks control task.

4.5.1.3 Sketch Control Task

In this section, I validate the effectiveness of the ECNet in the sketch control
task. I extract 90 points from strokes per sketch as annotations to serve as
input for the SGI module. Finally, I sample 90 points from the attention
distribution of the image generated by the model, aligned with the shape of
the input annotations, used for DCL calculation in ECNet training. Quali-
tative comparisons with ControlNet and HumanSD, as shown in Figure 4.6,
demonstrate that ECNet outperforms previous SD-based models in sketch-
control generation.
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(a) Original (b) Condition (c) ControlNet (d) HumanSD (e) Ours

Figure 4.6: Generated images on the sketch control task. The comparison of
generated results based on sketch control validates ECNet surpasses former
SD-based models in this task.

4.5.1.4 Canny Control Task

In this section, I validate the versatility of the DCL loss in a control task
without parametric signals, specifically using the Canny task.

I fine-tuned ECNet (SD1.5) & ECNet (SDXL) based on ControlNet
(SD1.5) and ControlNet (SDXL) separately. The objective function calcu-
lates the difference between the generated and input Canny edge magnitude
maps using L1 loss. I fine-tuned the ECNet (SD1.5) using a publicly available
subset of the MSCOCO dataset [132], and ECNet (SDXL) using a high-
resolution subset (greater than 1024 pixels) from the Laion dataset. I
benchmark ECNet models against T2i-Adapter, ControlNet (SD1.5), Con-
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Model F1 Score(%)1 CLIPSIM?T FIDJ]

T2i-Adapter(SD1.5) 19.16 32.36 1.75
ControlNet(SD1.5) 25.52 32.29 2.19
ControlNet++(SDL5)  28.15 3216  3.72
ControlNet(SDXL) 40.24 31.93 4.64
ECNet(SD1.5) 30.96 3172 3.21
ECNet (SDXL) 47.13 31.64  4.69

Table 4.2: Quantitative comparisons of Canny control tasks across different
SD-based models.

trolNet++ (SD1.5), and ControlNet (SDXL). To ensure fairness, the Control-
Net++ model was retrained on the same training set. For validation, I use a
set of 1,800 randomly selected image-text pairs from the MultiGen20M [133]
dataset.

I evaluate the performance of DCL in terms of edge accuracy, semantic
relevance, and image quality. I use the standard metrics F1 score to assess
edge accuracy, CLIPSIM to measure semantic relevance, and FID to evaluate
image quality. As shown in Table 4.2, the qualitative comparison with other
SD-based models demonstrates that DCL significantly improves the accuracy
of Canny-controlled image generation, outperforming other models while
maintaining strong image-text correlation and generation quality. Additional
qualitative comparisons, as shown in Figure 4.7, demonstrate that ECNet
exhibits superior accuracy in edge-controlled tasks compared to other SD-
based models.

4.5.2 Ablation Study

In this section, I demonstrate the effectiveness of SGI and DCL, which
comprise Lgr, and Ly ¢, through the skeleton control task.

4.5.2.1 Impact of Annotation Addition

To validate the effectiveness of the annotation addition module, I jointly
trained the SGImodule with our baseline model, HumanSD. As illustrated in
the second row of Table 4.3, the integration of the SGI module enhances AP,
CAP, and PCE scores, compared to the baseline model. This improvement
underscores the effectiveness of incorporating such information in boosting
the performance of human pose generation tasks. Furthermore, a reduction
in the FID score suggests a slight improvement in the quality of images gen-
erated following the integration of the SGI module. Although incorporating
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(a) Original (b) T2I-Adapter (¢) ControlNet  (d ) ControlNet++ (e) ControlNetXL (f) Ours

Figure 4.7: Generated images using various SD-based models on the canny
control task, the areas within the orange boxes highlight regions with low
control precision.

Model  AP(%)tT CAP(%)t PCE] CLIPSIM{ FID|

Base 33.15 62.38 1.43 32.63 4.74
SGI 37.90 63.27 1.37 32.08 4.58
SGI&L gy 38.51 64.43 1.35 32.29 4.72
Full 43.31 65.76 1.35 32.28 4.89

Table 4.3: Metrics for the ablation study, performances of the base model,
annotation addition, and guidance loss impact.

annotation information into text conditions does have a minor adverse effect
on text features, leading to a slight decrease in the CLIPSIM index, this
impact is not substantial.

4.5.2.2 Impact of different losses

In this section, I conduct validation experiments under identical conditions
for the two losses proposed in the previous section: Lg., and Lgr. As
shown in the third row of Table 4.3, the human pose metrics of Ly,
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a man in a wmilitary uniform is walking down a hallway

ing on a rope

(a) Original (b) Pose (c) Base (d) w/ Anno. (e) Full

Figure 4.8: Ablation study results of base model, using the SGI module
alone, and entire ECnet.

surpass the model with SGI module. It is demonstrated that supervision on
denoised latent code achieves more precise control in human pose generation.
Following the incorporation of L4, as shown in the fourth row of Table 4.3,
there is a further improvement in the metrics assessing human pose accuracy.
This demonstrates that our proposed dual-stage loss, DCL, can effectively
mitigate the issue of larger errors at larger time steps encountered by L.,

Figure 4.8 illustrates the effect of applying SGI module and DCL in
skeleton-based image generation. The images in the first and second rows
illustrate ECNet’s exceptional capability in handling scenarios involving
multiple persons and in accurately generating images of rare poses. The
images in the third and fourth rows highlight the efficacy of the SGI module
in tackling the complex task of recognizing pose orientations and demonstrate
how the DCL contributes to more precise pose control.

67



4.5.3 Experiment Details

All training tasks were conducted on eight NVIDIA A100 GPUs, with
configurations adjusted according to the specific base models used. For
HumanSD and ControlNet (versions SD1.5 and SD2.1), a batch size of 2
was employed. In contrast, ControlNet (SDXL), which has higher memory
requirements, was trained with a batch size of 1. Additionally, the number
of training epochs varied based on the task and dataset size. Specifically,
the skeleton control task, which utilized a larger dataset, was trained for 3
epochs. Meanwhile, the facial landmarks and canny control tasks, both of
which involved smaller datasets, were trained for 7 and 8 epochs respectively.
This tailored approach ensured optimal utilization of computational resources
and accommodated the varying complexities and data volumes of each task.

4.5.3.1 Dataset Details

In this section, I present more details of the training datasets for four tasks:
skeleton control, facial landmark control, canny control, and sketch control.

Skeleton Control Task: In the experiment using HumanSD as the base
model, I utilized the LAION-Human dataset curated from LAION [134],
focusing on images of the highest quality that received strong approval from
human evaluators. This dataset comprises 760k human image-text pairs. In
the experiment using ControlNet (SDXL) as the base model, to maintain
performance in generating high-resolution images, I fine-tuned the model
using images from the training dataset with resolutions exceeding 1024. To
augment the training data, I supplemented the LAION-Human dataset with
the HumanArt dataset [12], which includes images from both natural and
artificial scenes, along with clear pose and text annotations. After filtering,
the combined dataset provided 4.4k image-text pairs that met the required
criteria.

Facial Landmark Control Task: For this task, I used the FFHQ
dataset [130] as our training set, comprising 70k high-definition facial images
at a resolution of 1024*1024, representing a diverse range of ages, ethnicities,
and facial attributes. For validation, I employed the WFLW dataset [131],
which includes 2,500 images. I used the MMPose [2] detector to annotate each
image with 98-point landmarks, and the corresponding text descriptions were
generated using a pre-trained Bootstrapped Language-Image Pretraining
(BLIP) model [135].

Canny Control Task: For the SD1.5-based training, I utilized a publicly
available subset of the MSCOCO dataset [132], containing approximately
12k image-text pairs along with corresponding Canny edge images. For the
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SDXL-based training, I selected a high-resolution subset from the LAION
dataset, consisting of approximately 52k image-text pairs, and extracted
Canny edge maps as the conditional images. For validation, I constructed
a set of 1,800 randomly selected image-text pairs with Canny edge images
from the MultiGen20M dataset [133], which comprises 20 million image-text
pairs, each meticulously paired with descriptive text that encapsulates both
the visual details and contextual nuances.

Sketch Control Task: In this task, I constructed a dataset using the
SketchyCOCO [136] dataset. I employed CLIPasso [88], a model capable
of converting images into sketches, to generate paired sketches for 5,000
image-text pairs across ten categories: airplane, bench, boat, cow, dog,
elephant, horse, giraffe, train, and zebra. Dataset is a small annotated sketch-
paired image-text dataset, comprising 4,000 samples for training and 1,000
for validation.

4.5.3.2 DCL detalils

In DCL, as shown in Equation 4.9, different loss functions are applied at
various timesteps, ensuring consistent supervision across the entire diffusion
process. Since different conditional control tasks have varying requirements
for image fidelity, such as human keypoint detection needing only a rough
pose structure, while Canny edge detection demands finer image details, the
value of £ is adjusted accordingly to meet these specific needs.

ﬁDC = /:dm ift < k, else ﬁdff

(4.9)
Edrv = |Hznp - Hdrv|7 ‘Cdff = |Hmp - def|

I analyze the effects of the hyperparameter k. In different tasks, k£ has

varying optimal values. For the facial landmark control task, the model
performs best when k is set to 800. For the skeletal control task, the optimal
performance is achieved when k is set to 700.
In the Canny control task, the required image fidelity for edge detection is
significantly higher than that for keypoint detection. As a result, at certain
ranges of timesteps, neither loss function can accurately capture the necessary
edge structure, as illustrated in Fig 4.9. Through extensive validation, we
found that the model achieves the best performance when Ly, is applied
during timesteps 0-300, L4 during timesteps 750-1000, and the original loss
function is used in the intermediate range.
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(a) Original Image (b) Derived Image (t=600) (c) Noise Difference (t=600)

Figure 4.9: In the Canny control task, the derived image (b) and the noise
difference image (c) fail to accurately extract Canny edges over a range of
timesteps.

4.5.3.3 SGI Module Details

The uniqueness of SGI does not stem from its structural design but from
its innovative incorporation of parametric signals derived from control condi-
tions. Positioned behind the CLIP encoder, the SGI module integrates text
features with parameter signal features through a cross-attention mechanism.
In the ControlNet(SD2.1) base model, this module contains 65.2M parame-
ters, occupying 249.8MB of memory. In the ControlNet(SDXL) base model,
it expands to 201.9M parameters, with a memory footprint of 385.10MB.
Despite its minimal computational overhead, the SGI module significantly
enhances the model’s controllability.

4.6 Conclusion

In this work, I introduce a novel framework, ECNet, built upon a pre-
trained Stable Diffusion (SD) model, consisting of two main components:
Spatial Guidance Injector and Diffusion Consistency Loss. 1 enhance the
model’s ability to handle ambiguities in input conditions through the in-
troduction of SGI. Additionally, DCL is a versatile method for applying
consistency supervision to the denoised latent code of the diffusion model,
preserving the generative capabilities of the pre-trained SD model while
amplifying the influence of various input conditions on the outputs.

One of the key challenges addressed in this work is achieving a balance
between Convenience and Precision in controllable human image genera-
tion tasks. Building on the existing end-to-end SD-based framework, I
developed ECNet to ensure precise alignment between model outputs and
input conditions, such as poses and facial landmarks. This is accomplished
through SGI, which mitigates condition ambiguity, and DCL, which enforces
consistency in generation without requiring extensive iterative corrections.
By maintaining high output precision while streamlining the control process,
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Figure 4.10: Some failure cases with lower semantic relevance. In the
facial landmark case, the generated results do not include the red balloon
mentioned in the prompt; in the sketch case, the generated results lack the
highway semantic.

ECNet effectively resolves this inherent tension, enabling users to achieve
accurate results with minimal effort.

In our comparative analysis with base models, using diverse evalua-
tion metrics such as posture and facial landmark accuracy, image quality,
and text relevance, ECNet consistently outperforms existing state-of-the-art
models across different controllable human image generation tasks. Metrics
such as Average Precision (AP), Normalized Mean Error (NME), and F1
scores demonstrate significant improvements in structural accuracy and pose
realism. Additionally, qualitative assessments of image quality and text
relevance confirm that ECNet consistently produces contextually coherent
and visually accurate character poses. These results highlight ECNet’s ability
to maintain high output precision while simplifying the user interaction
process, making it an effective tool for creative tasks requiring precise yet
effortless manipulability.

4.7 Limitation and Future Work

Despite our proposed ECNet enhancing controllability, it also faces certain
limitations: (1) The model’s supervision relies partly on detector per-
formance, meaning annotation detection failures can impede supervisory
capabilities. (2) The framework utilizes annotations as extra information
added to the textual condition. This approach boosts control but lowers
the relevance between image and prompt, some failure cases as illustrated in
Figure 4.10. I plan to explore more robust methods of inserting annotations
that balance both the model’s control capabilities and semantic relevance. (3)
The evaluation process remains limited, lacking thoroughness across various
conditions and scenarios.

71



72



Chapter 5

Head Motion Design for Char-
acters

Recent advances in diffusion models have greatly enhanced image and video
generation quality, finding applications in virtual reality, gaming, and digital
media. A key challenge in this field is generating realistic and expressive
animated portraits with controlled motion, which existing methods often
lack. This task highlights the contradiction between Convenience and Ma-
nipulability: achieving intuitive control overhead poses often complicates
the generation process. To address this, I propose a framework that combines
a trajectory-guided head pose prediction module, the Diff Transformer,
with AniPortrait for generating high-quality animations driven by audio,
static images, and user-defined trajectories. The Diff Transformer maps
trajectory inputs to head pose sequences using Differential Attention, while
AniPortrait ensures temporal consistency and visual quality. Evaluations
show that our framework significantly improves pose prediction accuracy
and maintains high video quality, as confirmed by user studies that highlight
strong satisfaction with motion coherence and video quality. This approach
enhances controllability and expressiveness, making it ideal for applications
in personalized character animation, interactive media, and dynamic story-
telling.

5.1 Introduction

The recent advent of diffusion models [37,40,42] has significantly advanced
high-quality image generation. Building on this progress, several studies
[72,137-139] have integrated temporal modules, enabling diffusion models to
excel in creating compelling videos. This has spurred a wave of exploration in
various fields, from virtual reality and gaming to digital media, seeking new
application possibilities. Among these, generating realistic and expressive
portrait animations from static images has emerged as a particularly promis-
ing task. Recent research [140-142] has made notable progress in creating
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smooth and natural portrait animations that maintain temporal coherence
and identity consistency. However, motion control for animated characters
has received limited attention within video generation. This task requires
complex coordination of user inputs, identity consistency, and natural head
movements to achieve visually compelling results—challenges that current
methods often struggle to fully address.

To address these challenges, I propose a new framework that builds on
existing diffusion models, introducing a trajectory-guided pose prediction
module, the Diff Transformer, to generate high-quality animated portraits
driven by multiple modalities, including audio, static character images,
and user-defined trajectories. Our framework is composed of two main
components. As illustrated in Figure 5.1, In the first component, I employ
a Transformer-based model trained to predict head pose sequences from
trajectory inputs, projecting the head movements into a 2D facial landmark
sequence. The second component uses the advanced portrait video generation
model, AniPortrait [140], to produce temporally consistent and realistic
character animations. AniPortrait, inspired by the network architecture
of AnimateAnyone [143], leverages the powerful Stable Diffusion 1.5 model
to generate smooth, lifelike videos based on audio inputs, facial landmark
sequences, and reference images.

Our experimental results show that this framework effectively creates
character animations with natural, seamless pose transitions, high visual
quality, and strong temporal consistency. By explicitly using Euler an-
gles as intermediate features, I can seamlessly integrate custom motion
sequences into the AniPortrait framework, leveraging the powerful generative
capabilities of diffusion models without additional training. This approach
significantly enhances our framework’s versatility in facial motion editing
tasks.
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Figure 5.1: The framework of our proposed method.
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5.2 Related Works

5.2.1 Video Generation with Diffusion Models

In recent years, diffusion models have achieved significant breakthroughs in
text-to-image (T2I) generation [37,40, 144, 145], which has fueled interest
in extending these capabilities to text-to-video (T2V) generation [146-149],
where research has increasingly focused on leveraging diffusion models for
video synthesis. VideoLDM [146]introduced a motion module that employs
3D convolutions and temporal attention to capture inter-frame correlations.
AnimateDiff [150] enhanced the motion modeling capability of pre-trained
T2I diffusion models by fine-tuning a set of dedicated temporal attention
layers on a large video dataset, allowing seamless integration with the original
T2I generation process.

With advancements in powerful cross-modal encoders [27,151], diffusion
models have also been adapted in latent spaces to extend their applications
to image animation tasks [37,152]. Mahapatra et al [153] transferred
estimated optical flow into artistic renderings using a pre-trained text-image
diffusion model, while Li et al. [154] used diffusion models to simulate natural
oscillatory motion. Several other diffusion-based approaches [72,137,139,155]
have leveraged the strong generative priors of pre-trained diffusion models
to achieve unprecedented open-domain animation performance. However,
these models often require substantial data and time to learn complex image-
to-video mappings, making the large training costs a barrier to broader
accessibility.

The framework proposed in this paper offers a novel integration of custom
motion cues to address the challenges of motion modeling, producing realistic
and coherent video sequences without requiring model fine-tuning. This
approach reduces the reliance on extensive training, making high-quality
video generation more accessible to a broader range of users.

5.2.2 Controllable Video Generation with Diffusion Mod-
els

Building on the successful integration of additional conditioning signals for
controlled image generation [52,53,133,156], a substantial body of research
[148,157-159] has focused on incorporating diverse control signals into gen-
eral video generation. These control signals include conditions on the initial
video frame [148], motion trajectory [157], motion regions [158], and moving
objects [159]. For instance, VideoComposer [155] introduced motion control
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through the addition of motion vectors, while DragNUWA [157] generated
videos conditioned on an initial image, a provided trajectory, and a text
prompt. Additionally, in pursuit of high-quality video customization, some
studies have explored reference-based video generation, using the motion
from real videos to guide the creation of new video content [160,161].

In current controllable video generation models, text-based controls are
relatively broad and lack fine-grained control, while action-guided generation
based on reference videos offers limited support for user-specific motion edit-
ing. Similarly, trajectory-based control in most approaches treats trajectories
as visual features processed through CNN-based feature extraction, which
primarily captures overall object motion. However, this method fails to
achieve a deep coupling between the trajectory and specific motion, often
leading to unnatural and disjointed movements of the subject. On the
other hand, these models only focus on generating visually coherent motion
sequences but lack interactive controllability, emphasizing Convenience at
the expense of Manipulability.

To address these issues, I propose a Transformer-based head pose predic-
tion module that leverages motion trajectories as spatial signal sequences, ex-
tracting attention features that dynamically relate the trajectory to the head
pose sequence via a cross-attention mechanism. This approach strengthens
the model’s understanding of the dynamic relationship between trajectories
and pose variations, enabling natural and coherent head pose adjustments
driven by user-defined motion trajectories. This approach simplifies motion
design while preserving interactive user control over motion trajectories,
balancing Convenience and Manipulability.

5.3 Mothod

The proposed framework comprises two main modules: the Diff Transformer
and a Diffusion-based video generation module. The Diff Transformer is
designed to predict head pose sequences from trajectory inputs, subsequently
projecting the complete head motion onto a 2D facial landmark sequence.
The Diffusion-based module utilizes the state-of-the-art animated portrait
generation model, AniPortrait, to produce high-quality, temporally stable
character portrait videos. An overview of this framework is provided in
Figure 5.1, with further details discussed in the following sections.
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5.3.1 Diff Transformer

The Diff Transformer module is designed to predict head pose sequences
based on input motion trajectories. This task requires the model to analyze
both the motion trajectory and the preceding pose sequence, making it a
natural fit for the cross-attention mechanism in Transformer models. Since
the task involves understanding both broader motion trends and fine-grained
details, I tailored the Diff Transformer to meet these specific demands.
Inspired by prior work [3], I incorporated a specialized attention mechanism,
called Differential Attention (DiffAttn), to effectively allocate attention
weights across different parts of a long sequence.

In computing cross-attention between the motion trajectory and head
pose sequences, I use the DiffAttn module. This module splits the input
features into two distinct query-key (QK) pairs to calculate attention weights
and then computes the difference between these weights. By doing so,
DiffAttn selectively enhances certain attention components while diminishing
others, allowing the model to focus on local motion trends and details and
thus produce natural and coherent head pose transitions. Specifically, the
input X is mapped into two query sets, Q1 and ()2, and two key sets, K1
and K2, , each with d dimensions. Each query-key pair is multiplied, scaled
by s =1/ Vd, and processed separately to produce two attention matrices,
Al and A2. The final attention result is derived by taking the softmax-
normalized difference between Al and A2, scaled by a parameter A. The
structure of this module and its core operations are shown in Figure 5.2.

For the self-attention computation, where both sequences contribute
equally in cross-attention score calculations, I retain the standard attention
mechanism instead of replacing it with DiffAttn. The complete structure of
the Diff Transformer is illustrated on the right side of Figure 5.1.

5.3.2 Diffusion-based Video Generation

In the diffusion-based video generation process, the model uses head poses
predicted by the Diff Transformer to map facial landmarks, which serve
as conditional inputs. This approach aligns head movements with audio
and other input signals, enabling coherent and fluid motion throughout the
animation. Reference images further ensure that each generated frame ad-
heres to the character’s identity, maintaining consistency and recognizability
throughout the animation.

To enhance this approach, I integrate the AniPortrait framework, intro-
ducing a novel approach for producing high-quality animations guided by
audio and a reference portrait image. The workflow involves two primary
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def DiffAttn(X, W_q, W_k, W_v, A):

Linear
Q1, Q2 = split(X @ W_q)
4 xa-o K1, K2 = split(X @ W_k)
GroupNorm V=XeWyv

# Qi, Ki: [b, n, d]; V: [b, n, 2d]
s =1 / sqrt(d)

[ [ (10~ (2 2] J A1 = Q1 @ Kl.transpose(-1, -2) * s
A2 = Q2 @ K2.transpose(-1, -2) * s
return

(softmax (A1) - X\ softmax(A2)) @ V

def MultiHead(X, W_q, W_k, W_v, W_o, A):
0 = GroupNorm([DiffAttn(X, W_qi, W_ki,
W_vi, A) for i in range(h)])
0 =0 * (1 = Ainit)
return Concat(0) @ W_o

Figure 5.2: Structure and pseudo-code of the attention module in Diff
Transformer. Right-side figure adapted from [3].

stages: first, 3D intermediate deformations are derived from the audio input
and mapped into a series of 2D facial landmarks. Following this, a refined
diffusion model integrated with a motion module processes these landmarks,
converting them into realistic and temporally coherent portrait animations.
Experimental evaluations underscore AniPortrait’s advantages in delivering
natural facial expressions, diverse poses, and superior visual quality, enriching
the overall perceptual experience. Furthermore, AniPortrait offers flexibility
and control, making it suitable for applications such as facial motion editing
and face reenactment. However, while AniPortrait includes a module for
inferring head movements from audio, the resulting head poses tend to be
limited, lacking significant movement. This audio-driven head pose control
also struggles to fully capture and represent the user’s specific intent in the
animation.

In our proposed framework, the audio-driven head movement is replaced
by the head pose predictions from the Diff Transformer, effectively com-
bining audio-driven lip movements with trajectory-guided head positioning.
Specifically, the predicted head pose change sequence (Euler angle sequence)
is merged with an expression transformation sequence derived from audio
features in AniPortrait. These transformations are applied to 3D facial
landmarks extracted from the reference image and then projected onto a
2D facial landmark sequence, creating an image sequence that captures the
intended facial pose variations. This sequence serves as conditional input
for video generation, ensuring coherent and expressive head motion in the
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final animation. This integration significantly enhances the controllability
and expressiveness of the generated output, aligning it closely with the
intended context of the animation. Moreover, this explicit incorporation
of motion information into the model is highly flexible, leveraging pre-
trained diffusion-based video generation models and thus avoiding the need
for extensive additional training tasks. Through the integration of various
conditioning signals, the diffusion-based video generation module achieves
a balance between character identity preservation and natural movement
flow. This combination of flexibility and controllability makes the framework
highly applicable to personalized character animation, interactive media, and
dynamic storytelling applications.

5.4 Experiments

In this chapter, I evaluate the performance of the proposed framework,
divided into two main sections: Transformer-based head pose prediction and
AniPortrait-based video generation. The results indicate that our method
outperforms the standard Transformer model baseline in head pose prediction
guided by trajectory input. Additionally, our approach maintains high video
quality and robustness in the video generation segment.

Table 5.1: Comparison of Pose Accuracy and FVD Scores

Pose Accuracy Comparison
Model Metric Error |

Standard Transformer ~ Mean Angle Error (MAE) 1.53
Differential Transformer Mean Angle Error (MAE)  0.61

FVD Score Comparison

Method FVD Score |
Aniportrait 1614.88
Ours 1710.17

5.4.1 Transformer-based Head Pose Prediction

I employed an optimized Transformer model, referred to as the Differential
Transformer, for head pose prediction. The objective function utilizes Mean
Squared Error (MSE) loss to measure the L; distance between the predicted
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Euler angles and the ground truth, ensuring the model accurately captures
head pose changes. I adopted the Mean Angle Error (MAE) as the evaluation
metric to assess the accuracy of the predicted poses. The MAE is calculated
as the average difference between the predicted and ground truth Euler angle
sequences, defined by the formula:

N

1
MAE:NZ

i=1

pred gt
Qi - 0@

)

where N is the number of frames, #”°® is the predicted Euler angle at
frame ¢, and Qigt is the ground truth Euler angle at frame .

I trained the model on a single A100 GPU, Optimal performance was
achieved after 100 epochs and 2 GPU hours of training. The model
hyperparameters were inherited from the standard Transformer, with the
maximum token length set to 150. To evaluate our model’s performance, I
trained both the Differential Transformer and a standard Transformer model
on the same dataset comprising 1,000 videos selected from the CelebV-HQ
dataset, focusing on distinct identities with clear head motion trajectories.
The validation set consisted of an additional 100 video samples from the same
dataset. As presented in Table 5.1, our Differential Transformer achieved an
MAE of 0.61, outperforming the standard Transformer, which achieved an
MAE of 1.53. This corresponds to an improvement of approximately 60% in
pose prediction accuracy, demonstrating the effectiveness of our approach.

In addition to the quantitative evaluation, I conducted a qualitative
analysis by visualizing the predicted head poses overlaid on the original
video frames. As shown in Figure 5.3, the Differential Transformer provides
head pose estimations that are more closely aligned with the ground truth,
especially in sequences with rapid head movements. This demonstrates the
effectiveness of our model in capturing dynamic head pose changes more
accurately than the standard Transformer.

5.4.2 AniPortrait-based Video Generation

Given the specificity of this task, there is currently a lack of directly
comparable evaluation metrics. Therefore, I used Fréchet Video Distance
(FVD) as an evaluation metric to assess the quality of the generated videos,
and I also conducted a user study where participants rated their satisfaction
with the coherence and rationality of the pose changes in the generated videos
using a five-point Likert scale. I compared our model against the baseline
method, AniPortrait, video inference was conducted on a single NVIDIA
A100 GPU, with an average inference time of approximately 70 seconds for
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Ground Truth Poses

Figure 5.3: Qualitative comparison of head pose estimations from Differential
Transformer and standard Transformer.

a single 4-second, 30-frame video. As indicated in Table 5.1, AniPortrait
achieved a lower FVD score of 1614.88 compared to our model’s score of
1710.17, suggesting that AniPortrait produces videos with slightly better
overall quality as measured by FVD. In existing generative models, conflicts
often emerge between geometric control and generation quality. This occurs
because the introduced conditions can shift the latent space predicted by
the generative model. While enhancing geometric precision may lead to a
decline in F'VD scores, our visual results demonstrate that the overall image
quality remains high. Furthermore, the significant improvements in control
achieved by our method make the minor reduction in quality an acceptable
trade-off. Compared with AniPortrait, our method effectively preserves video
quality and generates realistic user-controlled pose transitions, significantly
enhancing the controllability of the generated animations.

To assess whether the animations generated by our proposed framework
meet user expectations, I conducted a user study involving 15 participants.
Each participant rated their satisfaction based on two criteria: video quality
and the rationality of pose transitions. As shown in Figure 5.4, the results
reveal the distribution of satisfaction ratings for both pose rationality and
video quality. Most users rated the pose rationality favorably, with the
highest frequency at a rating of 4, where 6 users expressed satisfaction. For
video quality, the majority of users also provided positive ratings, with the
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Figure 5.4: User study results on pose rationality and video quality.

peak at a rating of 3, where 5 users expressed satisfaction. Only a few
participants gave lower ratings, with average scores for pose rationality and
video quality at 3.6 and 3.5, respectively. This suggests that our method is
generally well-received, producing coherent pose transitions and maintaining
an acceptable level of video quality.

The user feedback aligns with our qualitative observations, further sup-
porting our model’s strength in generating pose transitions that appear
smoother and more natural. Some examples of the generated results are
shown in Figure 5.5. This balance of quantitative and qualitative evaluations
highlights the effectiveness of our approach in creating videos that are not
only high-quality in terms of FVD but also more engaging and satisfying
from the perspective of user experience.

5.5 Conclusion

In this study, I introduced a novel framework for generating high-quality,
controlled animated portraits by integrating a trajectory-guided head pose
prediction module, the Diff Transformer, with AniPortrait’s advanced video
generation capabilities. The Diff Transformer leverages Differential Attention
to translate user-defined trajectories into natural head poses, while Ani-
Portrait maintains temporal consistency and visual fidelity. Our approach
demonstrates significant improvements in pose prediction accuracy and en-
ables seamless, expressive animations, as validated through both quantitative
metrics and user studies. The feedback underscores high satisfaction with
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Figure 5.5: Character animations generated with varying trajectory inputs.
The green curve indicates the cumulative trajectory over time, and the red
point indicates the current trajectory position at the current time.

the generated motion coherence and video quality, affirming the model’s
capability to meet user expectations in dynamic character animation.

One of the primary challenges addressed in this work is balancing Conve-
nience and Manipulability. While enhancing user control (Manipulability)
through trajectory-guided inputs, I ensured that the system remains intuitive
and efficient (Convenience) by eliminating the need for additional training
or highly complex inputs. By using Euler angles and combining audio,
visual, and trajectory cues, our framework achieves substantial flexibility
and user control without compromising usability, effectively resolving the
tension between these two elements.

The experimental results further verify the effectiveness of the system.
Automated frame-by-frame head motion generation removes the need for
manual animation, greatly simplifying the design process. Comparative
evaluations using Mean Absolute Error (MAE) and user feedback on motion
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realism confirm that generated results are both natural and reliable. Intro-
ducing trajectory point sequences as a control input extends the system’s con-
trollability within the generative framework. Metrics such as Fréchet Video
Distance (FVD) and video quality scores from user evaluations demonstrate
that increased control over motion trajectories does not compromise output
quality or consistency.

5.6 Limatation and Future Works

Future research will explore the implicit integration of head pose predictions
into the video diffusion model. Our current framework explicitly conditions
on head poses, which relies on the robustness and performance of pre-trained
models like AniPortrait. By embedding the head pose implicitly within
the model, I aim to achieve smoother, more cohesive animations with fewer
constraints tied to external model characteristics.

Additionally, our framework currently focuses on head motion control,
and future extensions will investigate the application of this approach to
full-body motion and other objects. Expanding beyond head movements to
encompass more complex, holistic character dynamics—or even generalized
object motion control-—would enhance the versatility and potential applica-
tions of our framework, enabling broader use in areas such as virtual avatars
and interactive media.
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Chapter 6

Conclusion

In this chapter, I show additional user study results and analyze the ex-
perimental outcomes of the entire dissertation to validate the effectiveness
and advancement of our research in character design across various design
scenarios. By examining each scenario, I demonstrate that our proposed
methods meet the core needs of users, enhance model performance, and make
significant contributions to the field of multimodal character generation.

6.1 User Study on the methodology

While Chapter 1 provided a theoretical explanation of our proposed ” trilemma”
using Bayes theorem, I sought to further validate this framework from the
user’s perspective to establish a more comprehensive theoretical foundation.
To this end, I conducted a user study involving direct feedback from potential
end-users.

I invited eight evaluators with backgrounds that include art and design
majors or experience in game character design to participate in in-depth
interviews. In these sessions, I outlined the application scenarios for each
design task to ensure that participants had a clear understanding of the
context. I then introduced three key factors—Manipulability, Convenience,
and Precision—and asked the participants to rate their level of concern for
each factor based on their personal preferences and priorities in design tasks,
with scores ranging from 0 to 10 representing low to high levels of concern.

The aggregated data were visualized using radar charts, as depicted in
Figure 6.1. The visualization reveals that participants’ preferences in each
design scenario align closely with our optimization objectives. Specifically,
users tended to prioritize the factors that our methods aim to enhance.
This alignment between user preferences and our optimization goals provides
empirical support for the validity of our theoretical framework.

The results of the user study significantly demonstrate the existence of
the trilemma from the users’ perspective and highlight the practical relevance
of my research. By aligning my methodological developments with user
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priorities, I ensure that the proposed solutions are both theoretically sound
and practically impactful.

Convenjerice Convenjerice Convenjerice

Manipulability

Pose design for character creation I Facial feature design for anime characters Head motion design for characters

Figure 6.1: Evaluator priorities for Manipulability, Convenience, and Preci-
sion in various design tasks, visualized through radar charts. Darker regions
indicate higher overlap between filled areas, highlighting the consistency and
agreement in user selections.

6.2 Analysis for Performance Verification

The quantitative experiments conducted on all selected projects have strongly
confirmed the improvements introduced by our methods. The significant
enhancements observed in the target metrics demonstrate the effectiveness
of our proposed strategies across different design tasks.

e Drawing Multi-Age Facial Features for Anime Characters: The
highly interactive framework I developed allows users to adjust their
design intentions in real-time during the creative process, significantly
enhancing both Precision and Manipulability. This feature makes
the framework exceptionally suitable for drawing guidance applications.
Experimental results demonstrate that our model achieves an opti-
mal balance among generation quality, diversity, and input similarity.
Through autoregressive generation, it provides detailed facial features
for characters of different ages, closely aligning with the user’s creative
intent. Consequently, our method effectively assists users in the design
process of animated faces, enabling them to produce higher-quality
character designs. Multi-dimensional evaluations in user studies further
validate the system’s effectiveness, confirming its capability to generate
age-specific facial features that meet users’ expectations.
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e Character Pose Design: Based on high-precision generation re-
sults and an end-to-end framework, our approach ensures maximum
Precision and Convenience—the two most critical factors for rapid
character design. As evidenced by the results in Table 4.1 and 4.2, our
method significantly improves the accuracy of controllable Stable Dif-
fusion (SD)-based models across multiple control tasks. Comparative
experiments and ablation studies consistently confirm the substantial
enhancement in pose controllability achieved by our approach. More-
over, since our method does not rely on a specific framework, it can be
flexibly integrated into various SD-based systems, further enhancing
its convenience. This method offers an accurate and swift character
design process, allowing users to obtain precise and vivid generated
results using only simple descriptions and cross-modal input controls.
Consequently, it not only elevates the quality of the generated poses but
also streamlines the design workflow, enabling users to create complex
character poses with minimal effort.

e Character Head Motion Design: Our proposed framework offers
a convenient method for dynamic character animation, effectively ad-
dressing the core requirements of Convenience and Manipulability
in this design scenario. By automatically generating natural and
plausible motion sequences, it eliminates the need for users to engage in
complex inter-frame motion editing. Simultaneously, the incorporation
of trajectory input ensures that users maintain control over motion
editing. As evidenced by Table 5.1, our method significantly enhances
the accuracy of trajectory-based head pose predictions. Additionally,
the user study results illustrated in Figure 5.4 reflect a high level
of user satisfaction with the generated animations, underscoring the
practicality and user acceptance of our approach in dynamic character
motion design. Consequently, the framework enables the creation of
natural and temporally consistent character animations using only a
reference character image, thereby simplifying the design process.

6.3 Analysis for Qualitative Results

To qualitatively assess the practicality and robustness of our proposed
methods, I present additional outputs from various tasks. These examples
demonstrate the adaptability of our approaches to different design scenarios
and highlight their potential for real-world applications. The qualitative
evaluations reinforce our quantitative findings, showcasing the methods’
effectiveness in producing high-quality, personalized character designs that
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align with users’ creative intentions.

6.3.1 Drawing Multi-Age Facial Features for Anime
Characters

I conducted extensive qualitative analyses to evaluate our model’s ability
to generate anime characters with facial features corresponding to different
ages. As shown in Figure 6.2, our model produces highly detailed and age-
appropriate facial characteristics that closely adhere to the input conditions
and user expectations. The generated images exhibit a natural progression
of age-related features, such as changes in facial proportions and expressions,
demonstrating the model’s nuanced understanding of age variations in anime
characters.

The comparative results highlight our model’s superiority in maintaining
consistency and diversity across different age groups. Unlike existing meth-
ods, our approach effectively balances the trade-off between adhering to input
conditions and introducing creative variations, resulting in more authentic
and engaging character designs. Users can interactively adjust inputs to
fine-tune the age-specific features in real time, enhancing both precision and
manipulability in the design process.
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Figure 6.2: More results in comparative experiments.
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6.3.2 Character Pose Design

I further assessed the qualitative performance of our method in character
pose design through a series of visual comparisons. Figures 6.3, 6.4, and 6.5
illustrate our model’s effectiveness in accurately replicating complex poses,
facial expressions, and edge features from input conditions.

In the skeleton control task (Figure 6.3), our model consistently gener-
ates characters that precisely match the input poses, including challenging
scenarios like pose orientation recognition and multi-person interactions.
The generated images maintain high levels of detail and stylistic coherence,
outperforming existing models in both accuracy and visual appeal.

cartoon, a man in uniform stands in desert with smoke coming out of the ground

(a) Original (b) Condition (c) ControlNet (d) HumanSD (e) Ours

Figure 6.3: Comparison results with ControlNet and HumanSD in pose
orientation recognition and multiple people scenario.

For the facial landmark control task (Figure 6.4), our method excels in
capturing subtle facial expressions and nuances, resulting in highly expressive
and realistic character renderings. The qualitative improvements are evident
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when compared to other models, demonstrating our approach’s capability to
produce more lifelike and emotionally resonant characters.

human face, a man in a suit and tie smiling

S 1
NN p /

human face, a man in a suit and tie is laughing

»

(a) Original (b) Condition (c) ControlNet (d) HumanSD (e) Ours
Figure 6.4: More quantitative comparison results with ControlNet and
HumanSD in facial landmark control task.

In the sketch control task (Figure 6.5), our model demonstrates superior
performance compared to other SD-based models. The qualitative com-
parisons show that our method effectively interprets and reconstructs input
sketches, generating images that closely align with the user’s intended design.
The improved adherence to the input sketches not only elevates the quality
of the generated images but also streamlines the design process by allowing
for intuitive and direct control over the output through sketching.

6.3.3 Character Head Motion Design

To evaluate our method’s qualitative performance in dynamic character
animation, I generated additional examples in both realistic and Manga styles
of character head motion designs. As depicted in Figure 6.6, our framework
produces smooth and natural head movements that are temporally consistent
and visually coherent.

The generated animations accurately follow the input trajectories, pro-
viding users with precise control over the motion while alleviating the need
for intricate frame-by-frame editing. The qualitative assessments highlight
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(a) Original (b) Condition (c) ControlNet (d) HumanSD (e) Ours

Figure 6.5: More quantitative comparison results with other SD-based
models in Sketch control task.

the model’s ability to maintain character identity and stylistic features
throughout the animation sequence, ensuring that the motion appears both
realistic and artistically pleasing.

Through the three studies presented in this dissertation, I have revealed
the pervasive presence of the ”trilemma” in generative models for creative
design applications, highlighting the inherent tensions between Manipulabil-
ity, Convenience, and Precision. By applying the methodology of primary
contradictions, I demonstrated how these challenges can be systematically
addressed across diverse design scenarios. Each study showcased tailored
methodologies that prioritize user intent while resolving the primary conflicts
unique to each application. Compared to conventional methods, our methods
systematically balance the competing demands through multimodal input
integration, advanced guidance strategies, and architecture-specific enhance-
ments. This approach allows for scalable and adaptable design solutions
across diverse creative tasks.

Furthermore, empirical results across three sub-tasks validate the trilemma’s
analysis through Bayesian marginal likelihood. Balancing accuracy and
controllability in caricature generation outperformed models that were overly
focused on either aspect. Similarly, achieving optimal precision in pose-
controlled image synthesis required task-specific training, sacrificing gener-
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Figure 6.6: More generated character animations.
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alizability. Finally, enhanced control in motion-controlled video generation
negatively impacted temporal consistency due to increased generative prob-
ability distribution.

The proposed ”Trilemma” thus serves as a robust methodological frame-
work, offering valuable insights for future generative Al research in creative
and design-oriented applications.

6.4 Challenges and Future Works

Despite the significant advancements achieved in this thesis, several chal-
lenges remain that present opportunities for future exploration. Enhancing
the capabilities of generative models in creative design processes necessitates
addressing these challenges to further bridge the gap between user intentions
and generated outputs.

Firstly, while prioritizing the primary conflicting factors has been effec-
tive in resolving the "trilemma”, secondary elements—though considered
less critical—also play a crucial role in the overall design experience and
significantly influence the user’s interaction with generative models. Future
research should explore methods to enhance these secondary factors without
compromising the primary objectives. By finding a balance that increases
the weight of secondary elements, I can develop more versatile models that
offer a richer and more intuitive design experience.

Secondly, the current evaluation metrics for generative models are in-
sufficient for accurately assessing the alignment between design intent and
generated outputs. This limitation hinders the ability to quantitatively
measure the performance of generative models in creative design applications,
often relying on user studies with limited sample sizes, which may not
yield reliable conclusions. Future work should focus on developing robust
quantitative metrics that effectively evaluate the congruence between creative
intent and generated results. A deeper analysis of the creative process is
necessary to establish meaningful criteria and benchmarks that reflect the
true effectiveness of generative models in meeting design objectives. Such
metrics would facilitate more objective assessments and drive improvements
in model development.

Thirdly, although this research has significantly enhanced the depth of
user interaction with generative models and improved the robustness of model
outputs based on creative inputs by integrating multiple modalities, the
modalities considered are currently limited to digital expressions (e.g., text,
audio, images). In reality, users’ imagination and creative concepts are often
grounded in the physical laws of the real world, which are not inherently
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represented in existing generative models. This discrepancy can lead to a
gap between design concepts and generated results. Future research should
focus on incorporating the physical principles of the real world as a new
modal within generative models. By integrating physical rules, I can more
accurately reflect users’ intentions and bridge the gap between virtual designs
and real-world expectations, thereby enhancing the fidelity and applicability
of generated outputs.

Addressing these challenges is essential for advancing the field of multi-
modal character generation. By exploring ways to enhance secondary factors,
developing reliable evaluation metrics, and incorporating real-world physical
laws into generative models, future research can significantly improve the
integration of these models into creative design workflows. This will not
only expand theoretical foundations but also enhance practical applications,
ultimately leading to more robust and user-aligned generative systems.
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