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Abstract

Online learning, which gained traction in the 1980s, has expanded access to
education by offering flexible, interactive, and effective learning opportunities
through web-based platforms and learning management systems. The suc-
cess of online learning is heavily influenced by factors such as self-motivation,
student engagement, and interaction between students and instructors. In-
creased engagement can boost self-motivation and foster more effective inter-
actions, ultimately enhancing the quality and experience of online education.
Therefore, improving learner engagement is crucial in overcoming challenges
like the digital divide, limited face-to-face interaction, and issues related to
self-motivation.

However, in engagement estimation research, due to factors like the Hawthorne
effect, existing public datasets often suffer from class imbalance, with rela-
tively few data points representing low engagement levels. This imbalance
presents a significant challenge in accurately training and validating machine
learning models for engagement estimation. We introduce an original prepro-
cessing approach called ”Skipped Moving Average,” which not only preserves
the integrity of the original video data but also captures its temporal dy-
namics and variations to address the imbalance issue.

First, to enrich the existing computer vision features and better interpret
learners’ facial and body language during online learning, we adopted a series
of features that can represent facial and body information. Additionally, to
further enhance our input features, we experimented with features such as
standard deviation and extreme values. We then introduced our proposed
Skipped Moving Average data processing method, which includes selecting
an appropriate skipping window based on the current data distribution, as
well as how to reasonably choose oversampled data segments using cosine
similarity. We also experimented with different normalization methods to
evaluate their effectiveness in processing video sequence data.

In the experimental phase, we divided the work into two major parts.
Experiment 1 used LSTM and LSTM-FCN models to verify whether the pro-
posed SMA preprocessing method could address the issue of imbalance in the
current video sequence data. Ultimately, the combination of Skipped Moving
Average Oversampling and Standard Deviation for training and validation
produced the best outcomes. For engagement estimation with different la-
bels, it achieved Recall/Precision/F1 scores of 0.462/0.157/0.234 for the low
label, 0.449/0.504/0.475 for the high label, and 0.456/0.501/0.477 for the
very high label. To further validate our proposed method, we also compared



it with the SMOTE oversampling method, which further demonstrated the
superiority of our approach.

In Experiment 2, we used transfer learning to verify that the proposed
SMA data processing method could be applied to different datasets. The
three datasets used in the experiment had varying sample time spans and
were quite irregular. Our proposed method achieved Recall/Precision/F1
scores of 0.635/0.720/0.675 for the low engagement label, which is an im-
provement of nearly 0.25 in the F1 score compared to the results before
applying transfer learning.

In this study, we tackled the challenge of class-imbalanced time-series
video data in the context of engagement estimation and detection by in-
troducing a novel approach: Skipped Moving Average oversampling. This
approach not only mitigates the effects of class imbalance but also preserves
the continuity and authenticity of the time-series data, leading to more pre-
cise and consistent results in engagement detection.

Keyword: emotional engagement estimation, time-series data, oversam-
pling, online learning, class imbalances data
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Chapter 1

Introduction

Online learning started to gain traction in the 1980s with the advent of com-
puters and the internet[1]. Both Benson[2] and Conrad[3] point out that
online learning has improved access to educational opportunities for learners
who are described as both nontraditional and disenfranchised. Additionally，
online learning has gained popularity due to its potential for providing more
flexible access to content and instruction at any time and from any place [4].
This flexibility is enhanced by its connectivity, allowing for varied interac-
tions and making it a versatile mode of education[5]. In this context, the
1990s saw the introduction of web-based training and learning management
systems (LMS), which allowed for more structured and interactive learning
experiences online[1, 6]. LMS reinforces the learning process through online
classroom environments, enabling students to retain their autonomy, enthu-
siasm, and motivation[1], and allowing anyone with an internet connection
to enroll in courses from top universities for free or at a low cost. Research
indicates that the efficacy of online learning is comparable to, if not greater
than, traditional face-to-face learning when courses are well-designed[7].

1.1 Challenges in Online Learning
The COVID-19 pandemic in 2020 accelerated the adoption of online learn-
ing across the globe[9]. With schools and universities being forced to stop
courses, institutions rapidly transitioned to online platforms. This period
highlighted the importance of digital literacy, the need for robust online
infrastructure, and the potential for online learning to provide flexible, ac-
cessible education. While online learning offers many benefits, the rapid
shift to online learning during COVID-19 also highlighted several challenges.
These include the digital divide, the need for self-motivation and student en-
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gagement, and the lack of face-to-face interaction. The digital divide refers
to the gap between individuals who have access to modern information and
communication technology and those who do not[8]. This divide significantly
impacts online learning, particularly in terms of access to devices, internet
connectivity, a variance in technological skills among students and instruc-
tors, and the availability of support and resources.

Self-motivation is crucial for student engagement, especially in online
learning. Students who are self-motivated are more likely to take initia-
tive, stay focused, and persist through challenges, leading to higher levels of
engagement[10]. Engaged students often find the learning process more re-
warding, which in turn boosts their intrinsic motivation[11]. Activities that
capture students’ interest and provide meaningful interaction can enhance
their motivation to learn[10]. There is a reciprocal relationship between self-
motivation and engagement. Motivated students engage more deeply with
content, and engaging content helps sustain and increase student motiva-
tion[10, 11]. Regarding self-motivation, the reduced instruction in online
learning means students may struggle to stay motivated[12]. Additionally,
The flexibility of online learning offers students the convenience of not hav-
ing to consider time and location, but it also has the potential to lead to
procrastination[12]. Moreover, due to the impact of COVID-19, students
cannot participate in a traditional educational environment[69]. This isola-
tion can lead to feelings of loneliness, which can diminish self-motivation[12].
Student engagement is a crucial factor influencing the effectiveness of online
learning[13]. The lack of face-to-face interaction dramatically alters tradi-
tional educational dynamics, impacting engagement levels[9]. Additionally,
online education’s reliance on technology means that technical issues, such as
connectivity problems and platform malfunctions, can disrupt the learning
experience and reduce engagement[9]. Furthermore, creating interactive and
engaging content is essential but challenging, as it requires consistent efforts
to capture and maintain students’ attention and participation[9, 19]. Ad-
dressing these challenges is crucial for enhancing the effectiveness of online
learning.

The lack of interaction in online education impacts teaching quality not
only by reducing student engagement but also by leading to feelings of iso-
lation[13]. Students may feel less motivated to participate actively in dis-
cussions and activities without the immediate feedback and encouragement
that in-person interactions provide, potentially resulting in lower academic
performance. Providing immediate feedback is another challenge due to less
interaction[14]. Online education often lacks the immediacy of feedback that
in-person education offers, making quick clarification of doubts and instant
responses to queries harder to achieve, which can hinder the learning pro-
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cess. Additionally, collaborative learning activities, such as group projects
and discussions, can be less effective online due to communication barriers
and lack of real-time interaction, which also significantly affects the quality
of online education[15].

From the above related research, it is evident that self-motivation, stu-
dent engagement, and interaction between students and instructors, as well
as among students, are interrelated and complementary. Self-motivated stu-
dents are more likely to actively participate, complete assignments, and en-
gage with course materials, thereby increasing overall engagement. Enhanced
engagement can directly impact online educational performance, which in
turn influences levels of self-motivation. Interaction between students and
instructors can stimulate student enthusiasm, which is essential for main-
taining high levels of engagement and motivation. In other words, both
self-motivation and interaction in online learning are effective means of main-
taining high student engagement. They represent unavoidable challenges in
online education but also serve as methods to sustain high levels of partici-
pation. Therefore, student engagement is a crucial research topic in the field
of online learning. If we can enhance and maintain student engagement, we
will have identified a key factor in improving the quality of online learning.

1.2 Challenges in Engagement Researches
Engagement, defined as a state of mind that helps learners feel positive and
realize quality learning[9], is crucial for maintaining motivation and con-
nection throughout their educational journey. According to Kage’s work[16],
engagement directly affects the effectiveness of online learning and self-paced
courses. High levels of engagement ensure that students remain actively in-
volved, leading to better academic performance and a more fulfilling learning
experience. In addition, engaged students are more likely to absorb course
material, perform better academically, and retain information longer. Con-
sequently, fostering student engagement is essential for the success of online
education programs.

Research into engagement helps understand how students perform in var-
ious educational environments and with different instructional content. It
aids in identifying effective strategies for maintaining engagement, such as
interactive content, regular feedback, and peer collaboration, which are cru-
cial for online learning environments[11, 12]. By addressing challenges like
technological barriers, diverse motivational needs, and the quality of interac-
tion, engagement research provides solutions to improve the overall quality
of online education[11, 12].
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However, unlike traditional in-person classes, where instructors can gauge
student understanding and engagement through body language, facial ex-
pressions, and eye contact, online learning lacks this immediate feedback
mechanism. Instructors find it challenging to assess students’ states and lev-
els of engagement during online classes, making it harder to adjust teaching
strategies in real-time based on student responses[17]. This limitation can
impact the effectiveness of teaching and the overall learning experience in
online education. Moreover, the difficulty in gauging learner engagement
in online learning prevents instructors from adjusting their teaching strate-
gies to match students’ current understanding[17, 18]. This misalignment
can make the content seem either too boring or too difficult for students.
As a result, learners can quickly lose their engagement, making it challeng-
ing to maintain a high level of participation and interest in online classes.
Furthermore, empirical studies[11, 19, 20, 21] highlight that learners often
have difficulty maintaining a consistent level of engagement, in part due to
limited interaction opportunities and a lack of diverse, compelling engage-
ment strategies. Besides, students have different motivational drivers, so
personalization in online learning is a crucial development direction. Due
to individual differences, understanding how to get student engagement in
various online learning scenarios has become increasingly important.

The aforementioned issues in engagement research are all tied to under-
standing how to estimate and enhance high levels of learner engagement in
online learning. Research on engagement is crucial for improving learning
outcomes in online education. It helps in identifying effective strategies for
adjusting instructional content, facilitating collaboration and feedback be-
tween students and instructors, and providing solutions to enhance the over-
all quality of online education. By understanding how to maintain high levels
of engagement, instructors can better tailor their teaching methods to suit
students’ learning levels and keep them motivated and interested throughout
the learning process. Therefore, it is essential that instructors understand
and obtain learner engagement in online learning. Although many studies
using external devices have achieved some success in estimating student en-
gagement[30, 34, 35, 36], challenges remain in online education environments
due to the nature of distance/online learning. Specifically, accurately cap-
turing student engagement without disrupting learners, while staying within
budget constraints, continues to be a significant challenge in the field of
engagement research.
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1.3 Challenges in Engagement Estimation
Estimating and detecting low learner engagement during online learning is
a critical challenge for providing appropriate support to students. This dif-
ficulty arises from the lack of physical cues and real-time feedback typically
available in online classroom settings. To address these issues, researchers
have proposed various machine learning approaches to estimate learner en-
gagement, treating it as a complex and challenging task[22]. Such research
typically utilizes public datasets for engagement estimation and detection,
such as “in the wild”[23] datasets or DAiSEE[24]. The use of these datasets
is due to the high cost of constructing datasets annotated with engagement
during training and the difficulty of making fair performance comparisons
with closed datasets. These datasets, collected in natural settings, present
challenges such as estimating engagement from low-illumination face images
and dealing with facial occlusions, which complicate accurate engagement
detection.

Additionally, as known from the Hawthorne effect, participants may alter
their behavior and maintain good engagement when they are aware they are
being recorded as part of an experiment[25]. Consequently, such datasets
often suffer from class imbalance, with relatively small amounts of data re-
flecting low engagement levels. This imbalance poses a significant challenge
in accurately training and validating machine learning models for engage-
ment estimation. Overcoming these issues is crucial for developing reliable
methods to detect and address low learner engagement in online learning en-
vironments. Because of the high complexity of low-engagement data[26, 27],
it is challenging to model these minority classes during the machine/deep
learning process. As a result, minority data are often not effectively classi-
fied due to the influence of majority data[26], which affects the accuracy of
engagement estimation in this research area[27].

1.4 Challenges in Class Imbalance for Time-
Series Data

In this study, we define emotional engagement as the emotional feedback
learners exhibit towards learning content and instructors in an online educa-
tion setting. Emotional feedback from online learners is a reaction expressed
through emotions, facial expressions, or physiological signals in response to
external stimuli or activities[60, 63]. It is an external manifestation of an
internal psychological state, characterized by dynamic changes and exter-
nal observability. Engagement shares similar characteristics with time-series
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data. In the context of insufficient data, oversampling and data augmenta-
tion are key research directions for addressing class imbalance in datasets.

Basic data augmentation methods are typically based on transformation-
based techniques, such as those applied in the time domain, frequency do-
main, and time-frequency domain[81, 82, 83]. These include processes like
cropping, flipping, jittering, and Fourier transforms, which achieve effects
such as video clipping, frame flipping, periodic motion enhancement, and
video signal strengthening. Transformation-based methods for video over-
sampling and data augmentation also include techniques like frame jittering
and noise injection[81, 82, 83]. These methods add random noise or Gaussian
noise to the original video, aiming to augment the dataset. However, such
methods can result in the alteration of the temporal dynamics of the original
video, reducing its authenticity. In cases where excessive noise is added, it
may even negatively impact the performance of the model.

Advanced methods for oversampling and augmenting time series data in-
clude pattern-based methods and generative methods. Pattern-based meth-
ods include techniques such as Dynamic Time Warping (DTW), Pattern
Mining, and Time Series Mixing[81, 82, 83]. These methods reconstruct the
original video to generate new samples, preserving the motion characteris-
tics of the video while enhancing the diversity of the data. However, these
methods also face challenges, such as loss of the original video’s authenticity
and high computational costs. Generative Methods based on deep learn-
ing include approaches like Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs)[81, 82, 83]. These methods address issues
such as video distortion and the stability of generated samples. Combin-
ing GANs with sequence modeling techniques allows high-quality synthetic
time series data to be generated, ensuring temporal dependency and distri-
bution consistency. VAEs learn the latent space distribution of the video to
produce samples similar to the original, ensuring the stability of the gener-
ated videos. However, generative models generally have drawbacks, such as
complex training processes, high demands on computational resources and
dataset size, and potential limitations in fully capturing the dynamic char-
acteristics of complex time-series data.

Other time series oversampling and data augmentation methods, such
as decomposition-based methods, automated data augmentation methods,
and trend and seasonality decomposition, often have issues with losing the
inherent characteristics of time series data and introducing distortion to some
extent[82, 83].

All the aforementioned data oversampling and augmentation methods
have issues, such as the loss of time-series characteristics, the introduction
of noise that affects the training models, and the reduction of the original
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data’s authenticity. Model-based generative methods also have high train-
ing complexity and significant computational resource demands. Research in
engagement estimation requires high-quality data that include both the dy-
namic nature of students’ engagement and the authenticity of facial and body
features. This is because humans are inherently complex. External facial and
bodily expressions are not merely reflections of internal emotions; they are
also influenced by personal habits, individual personality, cultural and soci-
etal norms, and religious characteristics. If current datasets are augmented
by adding excessive noise or sacrificing data authenticity to improve model
accuracy, it could limit future research on personalized student engagement
and engagement prediction.

1.5 Research Objectives
Based on our investigation of engagement estimation research, the objective
of this study is to improve the accuracy of estimating low engagement in
learner videos during online learning. To achieve this, we have summarized
the following research questions.

• RQ1: How can we address the issue of class imbalance in datasets like
DAiSEE?
Class imbalance often introduces variability in experimental outcomes
for engagement classification, making it challenging to accurately de-
tect and estimate different levels of learner engagement in real-time
online learning environments. Specifically, low engagement, which is
crucial for assessment in real-world contexts, is underrepresented in
publicly available datasets. This lack of disengagement data results
in prediction inaccuracies, posing a significant challenge to advancing
research in this field[71].

• RQ2: How does the proposed method influence the accuracy of engage-
ment estimation?
Other research challenges include limited data availability and the over-
simplification of training samples. These issues often result in subop-
timal training outcomes, as models tend to overfit the training and
validation datasets. This overfitting negatively impacts the model’s
ability to generalize effectively, reducing overall performance[43, 72].

• RQ3: Can the proposed method with fine-tuning adapt to different
video datasets? In the research on the engagement of learners in online
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education, the data is often irregular, as the duration of the classes is
not fixed. The length of video data in publicly available engagement
estimation/detection datasets also varies[22]. This adds complexity to
processing time-series data and directly impacts the accuracy of the
model’s detection results.

This article introduces an original preprocessing approach called a ”Skipped
Moving Average”, which not only preserves the integrity of the original video
data but also captures its temporal dynamics and variation to address this
problem. This method aims to mitigate the problems caused by video data
imbalances in time-series analysis.

1.6 Structure of the Dissertation
In this dissertation, we first introduce the definition of engagement within the
context of our research in Chapter 2, along with a review of related studies
in the field of engagement estimation. Chapter 3 provides a detailed ex-
planation of our proposed method for preprocessing imbalanced class video
time series data in deep learning, known as the Skipped Moving Average
method. Additionally, it describes the body and facial features for deep
learning inputs, which are tailored for online learning students. Chapter 4
presents the experiments related to SMA oversampling methods used to ad-
dress the issue of data imbalance. It includes an introduction to the LSTM
and LSTM-FCN models, a comparison of the SMOTE oversampling method
in our experiments, as well as the data processing methods and the choices
made for various data handling techniques. Additionally, the relevant ex-
perimental results are presented. In Chapter 5, we present the experiments
conducted on video datasets with different time spans using our proposed
SMA method. We also used transfer learning to validate the effectiveness
of our approach. This chapter includes details about the experimental mod-
els, the parameters used, and the data processing techniques. Finally, we
also present the experimental results. In Chapter 6, we discuss in detail the
significance of the results from each comparative experiment and outline pos-
sible directions for future improvements. Finally, Chapter 7 concludes our
research and offers prospects for future work.
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Chapter 2

Related Works

2.1 Engagement
2.1.1 Definition of Engagement
Engagement in education refers to the degree of attention, curiosity, inter-
est, optimism, and passion that students show when they are learning or
being taught. Defined as a state of mind that helps learners feel positive and
realize quality learning, engagement is crucial for maintaining motivation
and connection throughout their educational journey[16]. It encompasses
their level of participation, willingness to learn, and the investment of their
time and energy in the learning process. According to Kage’s work[16], en-
gagement directly affects the effectiveness of online learning and self-paced
courses, influencing students’ motivation, persistence, and overall academic
performance.

Engagement is commonly defined in educational terms as encompassing
three aspects: cognitive, behavioral, and emotional[17]. Cognitive engage-
ment refers to the depth of thoughtfulness and the willingness of students to
expend the effort necessary to understand complex ideas and master difficult
skills[7, 28]. This type of engagement involves actively processing informa-
tion, making connections between new and existing knowledge, and applying
critical thinking skills. It is characterized by a student’s commitment to
learning, problem-solving, and perseverance in the face of challenging tasks.
Behavioral engagement is centered around the concept of active participation
in both classroom and extracurricular activities[29]. This includes staying
focused during lessons, completing assigned work on time, and adhering to
an instructor’s directions. It reflects a student’s involvement in the learn-
ing process, demonstrated through consistent attendance, active participa-
tion in discussions, and engagement in school-related activities outside the
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classroom. Emotional engagement encompasses both positive and negative
reactions to instructors, classmates, and learning content[11]. These emo-
tional responses are crucial because they help foster connections with the
instructor and classmates, influencing a learner’s willingness to participate
in learning activities. Positive emotions such as enjoyment and interest can
enhance a student’s engagement and motivation, while negative emotions like
frustration or anxiety can hinder their involvement.

Given the significance of learner-to-instructor interactions and the ex-
tended time required to assess cognitive and behavioral engagement, this
study focuses on estimating emotional engagement during online learning.
Additionally, emotional engagement has the characteristics of immediacy
and real-time variability[16] and can be analyzed through students’ facial
expressions and body information[71]. Therefore, emotional engagement is
a key point that is currently more feasible to address among the three types
of engagement. We define emotional engagement as the emotional feedback
learners exhibit towards learning content and instructors in an online ed-
ucation setting. This includes assessing whether students are actively and
positively focused on the learning process.

2.1.2 Approaches in Emotional Engagement Estima-
tion

In recent studies, several prevalent methods have been used to acquire data
to analyze student engagement. These methods include analyzing learning
log files, tracking clickstream data, administering self-report surveys, using
external devices, and employing computer vision techniques.

The use of log files[30], tracking clickstream data[31, 32], and self-report
surveys[33] are complementary methods that, when combined, can provide a
robust approach to measuring and enhancing student engagement in online
learning environments. However, the aforementioned studies are particu-
larly suitable for cognitive and behavioral engagement analysis because of
their relatively long periods of relevance. In contrast, analyzing emotional
engagement requires methods that can capture real-time and immediate feed-
back, making it a more dynamic and challenging aspect to study.

The analysis methods for sensor data from external devices, such as EEG,
blood pressure, heart rate, or galvanic skin response, have been shown to
achieve high accuracy in detecting physiological and emotional states[34, 35,
36]. These methods leverage advanced signal processing and machine learn-
ing algorithms to interpret the raw data from sensors, leading to precise
measurements of cognitive load, stress levels, and emotional responses. De-
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spite their high accuracy, these methods face significant challenges in terms of
generalizability. The data collected in controlled laboratory settings often do
not translate well to real-world educational environments, where numerous
variables and uncontrolled conditions can affect the measurements. Further-
more, the use of such devices in everyday educational settings is impractical
due to the need for specialized equipment, the potential discomfort for stu-
dents, and the complexity of data interpretation. As a result, while promising
in research contexts, these sensor-based methods are currently unsuitable for
widespread application in real educational settings.

In addition, using keyboard and mouse activity[37] as a measure of on-
line learning engagement has significant limitations. This approach does not
apply to learners who participate in online classes using iPads, tablets, or
mobile phones. A key feature of online learning is its flexibility with respect
to device and location, enabling students to take online courses from virtu-
ally anywhere using a variety of devices. By focusing solely on keyboard and
mouse activity, these methods overlook a substantial portion of the online
learner population and fail to capture engagement data from these widely
used devices. This highlights the advantages of computer vision-based meth-
ods in engagement research.

Psychological research has shown that facial expressions and body pos-
ture are important channels for conveying emotions and thoughts[38, 39].
Computer vision can analyze visual inputs, such as facial expressions and
gaze direction, to infer a learner’s engagement level. These methods are
device-agnostic and can be applied across various platforms, including tablets
and smartphones. Moreover, computer-vision-based approaches can provide
richer and more nuanced insights into learner engagement by capturing subtle
cues that traditional activity tracking might miss, such as micro-expressions
and changes in attention. This makes them particularly suitable for the flex-
ible and diverse environments characteristic of modern online learning. Con-
sequently, studying external expressions constitutes an important approach
to estimating/detecting learners’emotional engagement. In this study, we
adopt a computer-vision-based approach to extract external features that
enable the analysis of learners’engagement.

2.2 Computer-Vision-Based Features
In computer-vision-based studies of engagement in online learning, several
features are commonly analyzed to assess student engagement. The primary
features include facial expressions, gestures, posture, and eye movements. For
facial-expression recognition and engagement estimation, techniques such as
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Action Units (AUs)[40], Local Binary Patterns (LBPs)[41], and Histogram
of Oriented Gradients (HOGs)[42] are widely used and have achieved no-
table success in related research. Action Units (AUs) are a concept from the
Facial Action Coding System (FACS), which breaks down facial expressions
into individual components related to muscle movements. These units help
in identifying specific emotions and engagement levels based on the combi-
nation of activated AUs. Local Binary Patterns (LBPs) are used for texture
description and are effective in recognizing facial expressions by analyzing the
texture and appearance of different regions of the face. Histogram of Ori-
ented Gradients (HOGs) captures the gradient orientation of facial features,
which is useful for detecting subtle changes in facial expressions.

Despite the success of these methods, relying solely on facial expression
features has limitations. Facial expressions can sometimes be ambiguous or
not fully indicative of a student’s engagement level. For instance, a stu-
dent might show a neutral or bored expression while still being mentally
engaged with the material. To address these limitations, some studies have
incorporated gestural and postural features into the engagement detection
process[17, 43]. Gestures, such as hand movements and body language, can
provide additional context about a student’s engagement. For example, fre-
quent nodding can indicate understanding and agreement, while fidgeting
might suggest restlessness or distraction.

Chang et al.[43] conducted a study utilizing OpenPose to track detailed
information about head, body, and hand movements, capturing dynamic
changes in subjects’body postures. OpenPose[44], a real-time multi-person
detection library, provided precise tracking of body parts, allowing the re-
searchers to measure engagement through physical activity. Specifically, the
frequency of hand appearances and the distance between the nose and neck
were used as indicators of hand and body movements, respectively. Their
findings indicated that fewer restless movements correlated with higher en-
gagement intensity, while more restless movements suggested lower engage-
ment intensity. Regarding eye information, some studies have used eye track-
ers and existing libraries such as OpenFace to gather data on eye move-
ments[17]. Eye trackers, though highly accurate, were excluded from our
study due to their nature as external devices, which could introduce variabil-
ity and inconvenience in real-world settings. Instead, OpenFace was used
to obtain eye information[17], focusing on fixed parameters provided by the
library[73]. Additionally, it has been shown in various studies[45] that spe-
cific eye-related actions, such as brow raising, brow lowering, and eyelid
tightening, are strongly correlated with learner engagement. These micro-
expressions offer valuable insights into a learner’s cognitive and emotional
state, which can be critical for accurately assessing engagement levels.
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Based on our preliminary research[48, 49] and related psychological stud-
ies[38, 39], distinct patterns in body posture have been revealed, correlating
with varying levels of learner engagement. When engagement is low, the
learner’s body appears tightly closed, with limbs and torso drawn in. As
engagement increases, the body posture becomes more open and stretched,
indicating a higher level of alertness and involvement. Similarly, head poses
vary with engagement levels; a tilted head is often seen at low engagement,
while an upright head with a serious expression is common at high engage-
ment. These observations suggest that relying solely on the frequency of
hand and body movements does not provide a complete picture of student
engagement. In online learning environments, students exhibit a variety of
actions that can signal their level of engagement. These include leaning to-
ward or away from the screen, turning their bodies, shoulders, and faces,
and using their hands to support their face or adjust their hair. Such diverse
behaviors necessitate more sophisticated computer-vision-based features to
accurately reflect students’ engagement. Advanced techniques in computer
vision can address these complexities. For instance, combining the analysis
of posture, gesture, and facial expressions provides richer features for assess-
ing engagement. However, existing facial expression recognition libraries,
such as OpenFace, provide fixed features that lack flexibility. An important
research direction in engagement estimation is analyzing the relationship be-
tween facial and bodily features and learners’ engagement. Relying solely
on existing feature extraction libraries may hinder exploring the relationship
between external expressions and internal psychological activities. Moreover,
the features of emotional engagement may differ from those used in tradi-
tional facial expression recognition. Therefore, building on existing feature
extraction research, we adopted facial and bodily expression features that
are hypothesized to be strongly correlated with engagement estimation. Uti-
lizing tools like OpenPose to track head, body, and hand movements, and
capturing nuanced facial key points offers a more holistic view of engagement.
We can select features that better align with our research, such as brow rais-
ing, brow lowering, and eyelid tightening, which are strongly correlated with
emotional engagement states.

This comprehensive approach ensures that various physical and facial in-
dicators are considered, leading to more accurate and effective measurements
of student engagement.
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2.3 Dataset
Due to the specificity and complexity of measuring learner engagement,
datasets in this area of research require high-quality labels, extensive video
durations, large data volumes, and detailed descriptions of learning content.
These stringent requirements pose significant challenges. Many successful
studies have relied on non-public datasets, which are often curated under
controlled conditions and tailored to specific research objectives. However,
collecting such large-scale datasets that meet all these criteria within a short
time frame is not only challenging but also costly. Public datasets are es-
sential for advancing research in learner engagement because they provide a
shared resource that researchers can use to validate findings, compare meth-
ods, and build upon each other’s work. Despite their importance, maximizing
the utility of these public datasets poses significant challenges.

Specific literature reviews[17] identify several publicly available and an-
notated datasets for engagement estimation and detection using computer
vision. The most commonly utilized public datasets include ”in the wild”
datasets and DAiSEE (Dataset for Affective States in E-Environments).
These datasets have been extensively used in various related studies, serving
as foundational resources for developing and testing engagement detection
models.

Kaur et al.[23] developed a new ”in the wild” dataset, published in 2018,
featuring video recordings of participants watching stimulus videos. This
dataset includes 264 videos, each about five minutes long, with engagement
levels labeled by a team of five annotators. The videos were captured using a
Microsoft Lifecam wide-angle F2.0 camera at the other end of a Skype video
call, simulating real-world conditions like frame drops, network latency, and
interference. The dataset comprises 91 subjects (27 females and 64 males)
recorded in various settings such as computer labs, dorm rooms, and open
spaces. Engagement levels in the videos are categorized from 0 to 3: (0) not
engaged, (1) less engaged, (2) engaged, and (3) highly engaged.

Gupta et al.[24] introduced the DAiSEE dataset, which comprises video
recordings of learners engaged in online courses, annotated with crowdsourced
engagement labels. To collect this data, a high-definition webcam mounted
on a computer was used to capture the students’ states as they viewed online
learning content. The dataset includes 112 participants of Asian ethnicity,
with 32 females and 80 males, aged between 18 and 30. It contains 9,068
video snippets, each 10 seconds long, recorded in six different locations under
three varying lighting conditions to mimic the diverse environments students
might experience during online learning. Each video snippet is assigned a
unique identification number and labeled with engagement, frustration, con-
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Figure 2.1: Examples of video data from the ”in the wild” dataset [23]. The
level of engagement increases from left to right.

fusion, and boredom levels. However, in this research, only the engagement
labels were utilized, categorized into four levels: (1) very low, (2) low, (3)
high, and (4) very high. This dataset aims to reflect the real-world variabil-
ity in online learning settings, providing a robust foundation for studying
learner engagement.

Table 2.1: Overview of ”in the wild” [23] and DAiSEE [24] datasets.

Dataset Subjects Video Snippets Snippets Time Total Time
”in the wild” 78 (male/female 53/25) 197 5 min 59,100 s

DAiSEE 112 (male/female
80/32) 9068 10 s 90,680 s

Table 2.1 compares the basic information of the “in the wild”[23] and
DAiSEE[24] datasets. The DAiSEE dataset has several advantages, including
a larger number of subjects, greater data volume, and a longer total duration.
A key distinction between the two datasets is that the “in the wild”dataset
consists of five-minute videos, whereas the DAiSEE dataset comprises 10-
second videos. For estimating engagement in online learning, which can
fluctuate from moment to moment, it is crucial to derive meaningful insights
from short video snippets. This makes the DAiSEE dataset particularly
valuable for capturing the dynamic nature of learner engagement.

The ”in the wild” [23] and DAiSEE [24] datasets are commonly used
public datasets for engagement estimation and detection research. However,
these datasets have some limitations. Both datasets are based on participants
from a single race, and there is a gender imbalance between female and male
participants. Additionally, the DAiSEE and ”in the wild” datasets are la-
beled through crowdsourcing. The DAiSEE dataset was annotated using
votes from 10 different annotators on CrowdFlower for each video clip, clas-
sifying them into four affective labels: boredom, confusion, engagement, and

15



Figure 2.2: Examples of video data from the DAISEE dataset [24]. The level
of engagement increases from left to right.

Figure 2.3: Distribution of engagement levels in the “in the wild”and DAiSEE
datasets. (We have used the number of downloaded data [75, 76] as the basis
for our study).
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Figure 2.4: Examples of video data from the newly created dataset [72]. The
level of engagement increases from left to right.

frustration, with applicability scores ranging from 0 to 3 [84]. The dataset
was then split into training, validation and test sets. Each video collected
”in the wild” was annotated by five annotators and classified into four lev-
els, ranging from 0 (complete disengagement) to 3 (high engagement). The
dataset was divided into three parts, similar to the DAISEE dataset [84].
The crowd-sourcing data annotation method may result in ambiguous label-
ing due to variations in annotators’ cultural backgrounds, knowledge, and
subjective judgments, which can introduce bias. Additionally, annotators
often lack the specific expertise required for complex tasks like engagement
estimation, further contributing to ambiguity in the labeled data[17]. There-
fore, crowd-sourcing leads to another limitation: the ambiguity in labeling
frames with the appropriate engagement levels[17]. Ambiguity in labeling
often arises from the lack of clear guidelines on how to map facial indicators
to various affective states or engagement levels of online learners. Another
issue with the current datasets is data bias. Figure 2.3 illustrates the dis-
tribution of the four engagement levels across the ’in the wild’ and DAiSEE
datasets. Both datasets exhibit significant class imbalance, particularly in
the number of data points for each engagement level. Specifically, instances
of low engagement are notably underrepresented.

Given the limitations of existing engagement research datasets, we cre-
ated a time-series dataset[48, 72] of online tasks involving 19 participants. As
shown in Figure 2.4, the videos were recorded using built-in PC cameras dur-
ing the test-taking process. The online learning content comprised the Cogni-
tive Assessment Battery (CAB) test, which assesses cognitive speed/attention,
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episodic memory, visuospatial functions, language, and executive functions.
Participants completed up to 30 questions within a 12-minute timeframe.
Due to varying individual speeds, the recorded video lengths differed among
participants. Upon completing the CAB test, participants submitted self-
reports regarding their mental state to confirm engagement levels. The
self-reports from participants serve as subjective feedback, allowing them
to directly reflect their true psychological states, aligning with their actual
emotions and cognitive conditions. This also avoids potential biases that
could arise from relying solely on external observations, providing a funda-
mental guarantee for the engagement data labels. At the same time, self
reporting may lead to unstable results due to factors such as social desirabil-
ity bias, recall bias, and interference from learners’ subjective consciousness.
To ensure the accuracy of engagement labels, we combined self-reports from
the 19 participants with external observations from several study members.
As a supplement to external observations, these self-reports also ensure that
certain internal details and feelings might not be captured through external
observation. This dataset captures the regularity of engagement changes and
addresses the need to evaluate the effectiveness of our proposed methods with
videos of different lengths.

2.4 Architectures in Emotional Engagement
Estimation

In this section, we review previous studies that utilized class-imbalanced
datasets to estimate or detect engagement through computer-vision-based
methods. Chang et al.[46], in their 2018 study on the “in the wild”dataset,
proposed an ensemble framework that combines three cluster-based conven-
tional models and an attention-based neural network (NN) model enhanced
with heuristic rules to predict learners’ engagement levels while watching
Massive Open Online Course (MOOC) videos. Their study applied regres-
sion techniques to represent the classification task, reporting class-wise mean
square error (MSE) results for engagement levels 0 to 3, which were 0.263,
0.079, 0.032, and 0.136, respectively. The model performed best at Level 2
with an MSE of 0.032 and worst at Level 0 with an MSE of 0.263, primarily
due to the imbalanced nature of the dataset that favored the majority classes.

In their 2022 study using the DAiSEE dataset, Villaroya et al.[47] de-
veloped an automated engagement detection system that leveraged facial
features such as head position, gaze direction, facial expressions, and the dis-
tance from the user to the recording RGB camera. The system was primarily
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built using the Random Forest algorithm. The classifier’s evaluation yielded
F1 scores of 0.671, 0.742, 0.890, and 0.860 for engagement levels ranging from
very low to very high, respectively. They estimated engagement from shorter
decomposed video segments rather than 10-second videos. The discrepancy
in results may be due to the unbalanced nature of the DAiSEE dataset used
in their study.

Dresvyanskiy et al.[27] utilized a variety of augmentation and class-balancing
strategies along with a fusion of emotion-based and attention-based deep em-
beddings to create a reliable engagement recognition system using facial im-
agery. They modeled these fused features over time and introduced a novel
baseline metric, advocating for performance assessment using the unweighted
average recall (UAR) metric. The model’s overall performance achieved an
accuracy of 39.02% and a UAR metric of 44.27%.

In the aforementioned investigations and review papers[17], class imbal-
ances and insufficient data emerged as common challenges across many stud-
ies. Although Villarroya’s results are better in low engagement estimation,
their study’s input is static images. Engagement is characterized by being
dynamic and continuously changing[16], so capturing students’ facial and
bodily expression variations during online classes is also fundamental for fu-
ture predictive research. Time series features can capture information about
an object’s actions, changing trends, and temporal patterns in videos[78]. In
tasks requiring a deep understanding of time-varying patterns, time series
features provide more meaningful information compared to static features.
However, utilizing temporal models (such as RNNs, LSTMs, and Transform-
ers) is necessary to capture time dependencies. These models require more
complex training processes and demand larger datasets[79]. Additionally, if
the extraction of temporal features in videos is inaccurate or affected by noise
(e.g., jitter, motion blur), it may impair the model’s ability to learn critical
temporal information[80]. Static images are temporally independent and are
less affected by noise[79]. Additionally, current research on feature extraction
and classification models for static images is generally more advanced. While
classification based on static images often achieves higher accuracy than time
series data, it cannot reflect critical information such as motion trajectories
and behavioral dynamics in videos, which are essential for engagement es-
timation research. Considering the dynamic nature of engagement, relying
solely on static images is insufficient for future research. Therefore, while
research on engagement classification using images from videos has shown
good results, studies on time-series classification have even greater long-term
importance.

To address class imbalances issue in our preliminary experiments[48, 49],
we employed long short-term memory (LSTM) and quasi-recurrent neural
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network (QRNN) sequence models to estimate engagement using time-series
facial and body key point information. Utilizing the DAiSEE dataset, we
combined very low and low engagement into a single label to mitigate class
imbalance. The LSTM model achieved accuracies of 0.050, 0.740, and 0.410
for the three engagement levels, while the QRNN model achieved accuracies
of 0.000, 0.930, and 0.070. The F1 scores for the three engagement levels
were 0.090, 0.640, and 0.470 for the LSTM, and 0.000, 0.660, and 0.120 for
the QRNN, respectively. These results highlight the challenges and potential
strategies for improving engagement estimation in class-imbalanced datasets.

We replicated the study by Ai et al.[50], converting their regression re-
sults into classification outcomes. Ai et al. proposed an advanced end-to-end
framework, Class Attention in Video Transformer, to predict engagement in-
tensity. This architecture relies on self-attention between patches and class
attention between class tokens and patches. To address the issue of insuffi-
cient training samples, they introduced a binary order representative sam-
pling method, which significantly improved the model’s predictive capabili-
ties. The study achieved state-of-the-art mean squared error (MSE) scores of
0.049 for the ”in the wild” dataset and 0.037 for the DAiSEE dataset. In our
replication, after converting regression results into classification and merging
very low and low engagement labels, we obtained classification accuracies of
0.571, 0.789, and 0.667 for the ”in the wild” dataset, with F1 scores of 0.696,
0.682, and 0.690, respectively. For the DAiSEE dataset, the classification ac-
curacies were 0.068, 0.732, and 0.421, with corresponding F1 scores of 0.122,
0.625, and 0.489. These results underscore the effectiveness of the proposed
framework in predicting engagement intensity across different datasets.

Considering the characteristics of the dataset, the results for the “in the
wild”dataset were relatively good even for low engagement levels, whereas
the outcomes for the DAiSEE dataset were not as favorable. This aligns
with the findings from related studies[17, 43, 47, 50] and corroborates the
observations from our preliminary experiments[48, 49], as shown in Table
2.2. These findings underscore the persistent challenge of class-imbalanced
data in recent research. This ongoing issue highlights the need for further
investigation and the development of robust solutions in this area.

20



Table 2.2: Preliminary experiments and reproduced results from [33].

Engagement
Label Dataset Low (Recall/F1) High (Recall/F1) Very High

(Recall/F1)
LSTM [31, 32] DAiSEE 0.050/0.090 0.740/0.640 0.410/0.470
QRNN [31, 32] DAiSEE 0.000/0.000 0.930/0.660 0.070/0.120

LSTM [33] DAiSEE 0.068/0.122 0.732/0.625 0.421/0.489
LSTM [33] ”in the wild” 0.571/0.696 0.789/0.682 0.667/0.690
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Chapter 3

Proposed Methods

3.1 Sampling Method
The issue of class imbalance is a significant challenge in many research areas,
particularly in machine learning and data analysis. Resampling techniques
are commonly employed to balance datasets and mitigate this problem. Over-
sampling techniques, in particular, are used to increase the representation of
the minority class by replicating existing instances or generating new ones,
thereby achieving a balanced dataset[51]. One widely used method is the
Synthetic Minority Over-sampling Technique (SMOTE)[52]. SMOTE works
by generating synthetic samples for the minority class based on the fea-
ture space similarities between existing minority instances. While effective,
SMOTE has several disadvantages, such as the potential for oversampling
uninformative samples, introducing noise, and the indiscriminate selection of
neighbors, which can negatively impact the model’s performance[53].

To address these issues, we propose a novel oversampling method tailored
for video time-series data, called “Skipped Moving Average”[70]. A moving
average is a statistical technique commonly used to smooth time-series data
by calculating the average of subsets of data points within a fixed-length
sliding window[85]. It effectively reduces noise and highlights underlying
trends in the data, which is particularly beneficial for regression analysis
and forecasting tasks. However, traditional moving averages may not fully
address the specific needs of our research context. To overcome this limi-
tation, we have developed the Skipped Moving Average approach. Inspired
by traditional moving averages, this method is specifically modified to en-
hance dataset balancing by addressing the unique characteristics of video
time-series data. The Skipped Moving Average method smooths out fluc-
tuations and reduces noise, leading to more informative and representative
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samples for the minority class. This approach is designed to improve the
accuracy and robustness of engagement detection models in video-based re-
search. Since we are not reconstructing a video based on SMA, but rather
dealing with frame features selected based on SMA, we are not regenerating
the video itself. Therefore, by preserving the parameters generated after pro-
cessing the data a skipped moving average, we not only avoid issues related
to personal information leakage but also reduce the computational cost of
generating new video data.

3.1.1 Skipped Moving Average and Video Frame Un-
dersampling

The Skipped Moving Average is a data preprocessing technique specifically
developed to address the issue of data imbalances in video time-series datasets.
This innovative method aims to enhance the quality and utility of video data
by reducing redundancy and smoothing fluctuations within the video frames.
The process involves applying a moving average to the original video frames,
which helps in averaging out the variations and noise that can obscure the
underlying patterns in the data. In detail, the moving average is calculated
by taking the average of every few frames rather than consecutive ones, hence
the term ”skipped.” This approach helps in maintaining the temporal coher-
ence of the video while effectively reducing the noise and redundancy that
often plague video time-series data. The result is a cleaner, more balanced
dataset that better represents the true distribution of engagement levels or
other metrics of interest. By addressing the class imbalance problem and en-
hancing the dataset quality, the Skipped Moving Average method can lead to
more accurate and robust models, ultimately improving the insights derived
from video-based analyses.

Considering the data volume, total duration, and the number of subjects,
the DAISEE dataset is more suitable for testing our proposed oversampling
method. Therefore, in this section, we use the DAISEE dataset as an example
to explain and demonstrate our proposed method.

In the DAiSEE dataset, each video sample spans ten seconds with a
resolution of 1920 × 1080 pixels at a frame rate of 30 frames per second
(fps)[24]. This results in each sample containing a total of 300 frames. Given
that engagement is understood as a sustained affective state rather than a
series of fleeting expressions[16], it may not be necessary to capture data at
such a high frame rate. Furthermore, the computational latency involved
in processing high-frame-rate data with deep learning models must also be
considered[54]. As a result, having 30 fps and 300 frames per ten-second
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sample might be excessive both in terms of frequency and time span for
real-time estimation of student engagement in online courses.

First, considering that the video duration is 10 seconds, we set the se-
quence timesteps to 10. To ensure that the sampled data remains an integer
multiple, the potential moving average windows that can be used are 2, 3,
5, 6, and 10 frames. These windows correspond to oversampling the low en-
gagement data by 15-fold, 10-fold, 6-fold, 5-fold, and 3-fold sampling rates,
respectively. Among these options, averaging 2 frames with a 15-fold sam-
pling rate results in 7,800 samples after sampling, which is too high and
leads to excessive oversampling. Conversely, averaging 10 frames with a 3-
fold sampling rate results in only 1,560 samples after sampling, which is too
low and fails to adequately balance the data. Both extremes would likely
reintroduce data imbalance issues. Therefore, we focused on averaging win-
dows of 3, 5, and 6 frames, which correspond to 10-fold, 6-fold, and 5-fold
sampling rates, respectively. During our preliminary experiments, detailed
in Table 3.1, we found that averaging 3 frames with a 10-fold sampling rate
led to slight overfitting in low-engagement outcomes, causing unstable recall
and F1 scores during testing. Given the need to achieve a balanced sampling
rate, we decided to avoid averaging 6 frames and instead opted for averaging
5 frames with a 6-fold sampling rate. This setting provided a more balanced
approach and was used as the moving window value in our study. However, it
is important to note that while this study identified the optimal parameters
for the LSTM model using the DAiSEE dataset, the 5-frame average win-
dow may not be universally applicable. Our approach is designed to identify
the best settings under the given conditions, and it can serve as a reference
point for other researchers working with similar datasets and objectives. The
goal is to provide a methodology that can be adapted and refined based on
specific dataset characteristics and research requirements.

Table 3.1: Testing results for different Skipped Moving Average windows
with 32-D features.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

LSTM (3 frames
average) 0.295/0.079/0.125 0.490/0.508/0.499 0.381/0.507/0.435

LSTM (5 frames
average) 0.346/0.090/0.142 0.523/0.521/0.522 0.373/0.537/0.440

LSTM (6 frames
average) 0.192/0.066/0.098 0.544/0.501/0.521 0.354/0.500/0.414
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Figure 3.1: Application of the Skipped Moving Average method on a 300-
frame video.

We have set the moving average window to 5 frames. By averaging ev-
ery 5 frames from the 300 frames available in each sample video from the
DAiSEE dataset, we obtain 60 average values per sample video. This effec-
tively segments a sample video containing 300 frames into 60 sequences, sig-
nificantly reducing the amount of data while retaining essential information.
The Skipped Moving Average method, as illustrated in Figure 3.1, demon-
strates this resampling process applied to video frames from the DAiSEE
dataset. By averaging every 5 frames, this method condenses 300 frames
into 60 sequences. This approach not only helps mitigate the redundancy
present in high-frame-rate videos but also optimizes the dataset for more
efficient processing and analysis. This reduction in data size is crucial for
real-time engagement estimation, as it decreases the computational load on
deep learning models, thereby enhancing their performance and responsive-
ness.

3.1.2 Average Oversampling Input Videos
In the DAiSEE dataset, there are four levels of engagement labels: (1) very
low, (2) low, (3) high, and (4) very high. In Table 3.2, the ”Original Labels”
row shows the number of video data for the four original engagement labels
provided by the dataset. We observed a significant imbalance, with the
proportions of very-low and low engagement labels being excessively small.
This imbalance posed a challenge for our research, which primarily aims
to identify when learners disengage. Given that the four-level classification
appeared overly detailed for our purposes, we noted that videos labeled as
very-low and low were often very similar[55]. Therefore, we combined the
very-low and low labels into a single low-level engagement label, shown as
”Relabel” in Table 3.2. This approach simplifies the classification and helps
in addressing the data imbalance issue. There are several other examples in
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Table 3.2: Engagement labels overview: original labels, data consolidation
and oversampling results.

Affective State Very Low/Low High Very High
Original Labels 61/459 4477 4071
Relabel 520 4477 4071
Oversample 2764 4009 3286

the literature of integrating very-low and low labels in this way to improve
classification performance[48, 49, 56].

From the previous step, we obtained 60 sequences from each sample video.
Given that the sample videos are 10 seconds long, we set the timesteps to
10, resulting in 6 sequences per second. We then sampled 1 sequence from
each second to represent the data for that second. After completing this
process, each sample video was divided into 6 segments, with each segment
consisting of 10 timesteps. To resample the video data, all 6 segments from
videos labeled as ”low” were retained in their entirety. In contrast, for videos
labeled ”high” and ”very high,” one appropriate segment obtained from each
second was preserved to form the sample.

Figure 3.2 illustrates the process of oversampling the DAiSEE dataset by
segmenting videos into 6 segments. During the data processing phase, some
video samples and labels were lost, which resulted in the data presented in
the ”Oversample” row in Table 3.2. Table 3.2 summarizes the number of
original labels, the combined data from the ”very low” and ”low” labels, and
the sample numbers after oversampling. This table provides a clear overview
of the distribution of engagement levels in the dataset at different stages:
the original distribution, after relabeling, and after applying oversampling
techniques to address class imbalances.

3.2 Feature Extraction Method
In related research[17], the terms ”emotional” and ”affective” are often used
interchangeably to describe different aspects of engagement. Affective en-
gagement refers to an emotional response towards learning, which includes
feelings such as interest, excitement, and enjoyment in a subject matter[57].
This type of engagement is characterized by the positive emotional connec-
tion a learner feels towards the content they are studying, which can signif-
icantly influence their motivation and persistence in learning tasks. On the
other hand, emotional engagement encompasses a broader range of feelings,
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Figure 3.2: Oversampling of the DAiSEE dataset into 6 segments.

both positive and negative, towards instructors, peers, and academic ma-
terial[11]. This type of engagement includes how students feel about their
relationships within the educational environment and their emotional reac-
tions to the instructional content and teaching methods. Positive emotional
engagement might manifest as a sense of belonging and enthusiasm, while
negative emotional engagement could involve feelings of anxiety, frustration,
or alienation. Understanding the nuances between affective and emotional
engagement is crucial for instructors and researchers aiming to foster a sup-
portive and motivating learning environment.

3.2.1 Emotional Engagement in Our Study
Bond et al.[58] conducted a comprehensive analysis of 243 studies and identi-
fied the five most frequently noted indicators of affective engagement. These
indicators, ranked in order of prevalence, are: positive interaction with teach-
ers and peers, enjoyment, a positive attitude towards learning, interest, and
motivation. These factors highlight the importance of fostering a support-
ive and engaging educational environment to enhance students’ affective en-
gagement. Conversely, Bond et al. also identified the top five indicators of
disengagement, which include frustration, disappointment, worry and anxi-
ety, boredom, and disinterest. These negative emotional responses can sig-
nificantly hinder a student’s ability to engage with the material and achieve
academic success. The theory that people’s psychological states are expressed
through their facial expressions, body language, and the tone and intensity of
their voices is widely recognized in the field of psychology[39, 59]. This the-
ory underscores the importance of understanding non-verbal cues in assessing
emotional and affective engagement. By recognizing and interpreting these
non-verbal indicators, instructors and researchers can gain a deeper under-
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standing of students’ affective engagement and emotional well-being. This
understanding can inform strategies to enhance engagement, reduce disen-
gagement, and create a more positive and effective learning environment.

Moreover, recent research in behavioral science has highlighted the critical
role that bodily expressions play in nonverbal communication, more so than
was previously recognized[39, 60]. This is particularly pertinent in online
learning environments, where many students exhibit limited facial and bod-
ily expressions. Often, students may rest their faces in their hands or cover
parts of their faces, which can obscure their facial expressions and make it
challenging to analyze their engagement levels based on facial cues alone
accurately. In such scenarios, bodily expressions become significantly more
important for assessing engagement. Movements such as shifting posture,
hand gestures, and overall body orientation can provide vital insights into a
student’s engagement and emotional state. For instance, a forward-leaning
posture may indicate interest and attentiveness, while slumped shoulders
could suggest boredom or disengagement. By paying close attention to bod-
ily expressions, instructors can better interpret students’ engagement levels,
even when facial expressions are not visible or are difficult to discern. This
comprehensive approach to analyzing nonverbal communication helps create
more effective strategies for maintaining high levels of student engagement
and improving the overall learning experience.

Thus, incorporating the analysis of bodily expressions alongside facial
expressions provides a more comprehensive understanding of students’ emo-
tional and affective states. This dual approach allows for a more accurate
assessment of their engagement levels in online learning environments. By
integrating both facial and body language cues, instructors and researchers
can gain deeper insights into how students are interacting with the material
and identify signs of both engagement and disengagement more effectively.

3.2.2 Application of OpenPose in Feature Extraction
In research related to student engagement estimation in online learning, ex-
isting libraries such as OpenFace[73] and OpenPose[44] are commonly used
to extract computer vision-related information from learners[17]. However,
due to the nature of online learning, the information we can capture is limited
to the upper body, including the face, shoulders, and arms. As mentioned
in Section 2.2, body features play a crucial role in our study, so we require
a library that can provide the corresponding body features to support our
research. Chang et al.[43] utilized OpenFace in their experiment to cap-
ture facial features indicative of engagement, such as head pose and Action
Units (AUs). Additionally, to incorporate information regarding changes in a
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subject’s body posture, they applied two heuristic rules to the outputs of ma-
chine learning models. Specifically, they calculated hand movement features
by measuring the frequency of hand appearances through wrist features, and
defined body fidget features using the distance between the nose and neck,
along with the first-order distance delta. However, the heuristic rules ap-
plied to adjust the outputs from machine learning models were determined
empirically, potentially introducing instability into the results. Additionally,
OpenFace provides fixed facial information, which might not offer the level
of detail needed to enhance model accuracy in our study. Therefore, the
facial keypoints provided by OpenPose give us greater flexibility in feature
selection, allowing for improved performance in our models.

Thus, in our study, we utilized OpenPose [61, 62] to extract detailed
facial and body key points from learners, enabling us to develop sophisti-
cated computer-vision-based features for analyzing engagement levels dur-
ing online learning sessions. Using a single tool to capture both facial and
body features reduces inconsistencies and enhances the stability of our fea-
ture extraction process, thereby minimizing potential errors introduced by
combining outputs from multiple separate tools. OpenPose is an advanced
real-time multi-person keypoint detection library designed to extract the hu-
man body, face, hand, and foot key points from images in real-time, whether
from video, webcam, IP camera streams, or locally stored files. Developed by
the Carnegie Mellon Perceptual Computing Lab, OpenPose leverages deep
learning models to perform human pose estimation by detecting and tracking
various keypoints on the human body. Unlike other detection systems that
require separate libraries for each type of key point, OpenPose combines the
detected body, foot, face, and hand key points into a single output. This
unified approach allows for flexibility in choosing any combination of these
key points, which can be displayed or saved. Figure3.3 illustrates examples of
facial and body key points extracted using the OpenPose library. Figure 3.4
shows examples of key points extracted from the raw footage of participants,
as detailed in the reference paper[24]. The images clearly demonstrate that
the OpenPose method is effective in obtaining the necessary features from
the DAiSEE dataset. This method’s capability to capture and integrate
multiple key points from various parts of the body ensures that it meets the
requirements for detailed and nuanced feature extraction essential for our
study.

3.2.3 Facial and Body Features
Psychologists Ekman et al. developed the Facial Action Coding System
(FACS) to categorize and understand human emotions such as happiness,
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Figure 3.3: OpenOpse key points.

Figure 3.4: Images of key points extracted using OpenPose.
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sadness, anger, surprise, fear, and disgust, each associated with specific fa-
cial expressions[40]. FACS has become a fundamental tool in psychological
research for decoding the complex language of facial expressions. However, it
is crucial to note that while there is a significant correlation between facial ex-
pressions and emotional/affective states, this relationship can be influenced
by various factors, including context, individual differences, and cultural
backgrounds[40, 63]. In recent research studies, the association between spe-
cific facial expressions and levels of engagement remains imprecise [17]. This
ambiguity suggests that while facial expressions are informative, they alone
may not fully capture the nuanced levels of engagement in learning envi-
ronments. Nonverbal communication research underscores the importance
of both facial and bodily expressions in conveying emotions, intentions, and
attitudes[39]. Facial expressions provide a window into a person’s immedi-
ate emotional state, but body language offers additional context and depth.
In their exploration of body language, Kleinsmith et al. reviewed studies
on mapping body features to affective states[39]. They found that the os-
cillation and movement of body parts, such as the arms, head, shoulders,
elbows, and hands, are strongly correlated with the expression of internal
emotions. This research highlights the significant role that body dynamics
play in conveying psychological states, emphasizing the intricate relationship
between physical movements and emotional expressions. These insights un-
derscore the importance of a holistic approach to analyzing engagement and
emotions.

Based on relevant research investigations [38, 39, 48, 49, 60], learners’
facial and bodily information in engagement estimation studies are typically
categorized into the following: gesture and posture, eye information, facial
expressions, and additional bodily information. Drawing on the facial and
bodily features described in Sections 2.2 and 3.2.1 of related studies, we
selected a set of computer-vision-based features to analyze both facial and
bodily expressions for estimating engagement levels [48]. These features in-
clude eye information, eyebrow and lip shapes, facial rotation angles, head
and body posture, the distance between the face and the screen, and body
movements.

• Head Posture and Facial Rotation Angles [43, 73]:

Tilt Head
The tilt of the head is calculated using points 27 and 30 to determine the

rotation angles of the head in one dimension. This involves analyzing the tilt
and orientation of the head, as well as the overall posture of the body.

Turn Head
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Figure 3.5: Head pose.

The head’s turn is determined by subtracting the vector between the right
and left face points from the nose point. Specifically, this involves calculating
the vector (14-30)-(30-2). If the result is positive, it indicates a turn to the
left; if negative, a turn to the right. This measurement in two dimensions
provides information about the orientation of the head, indicating where the
learner is looking and their level of engagement with the screen.

• Eye Information [17, 43, 45, 73]:

Wink
The wink is calculated by measuring the length between the upper and

lower palpebral fissures. Specifically, the distance is measured between points
37 and 41 for the left eye, and points 44 and 46 for the right eye. This provides
a two-dimensional analysis.

Eye Movement
Eye movement is determined by measuring the distance between the pupil

and the palpebral fissure. For the left eye, the movement is gauged by mea-
suring the distance from point 68 to points 36, 37, 39, and 41. For the right
eye, it is measured from point 69 to points 42, 44, 45, and 46. This results
in an eight-dimensional analysis.

These metrics include blink rate, gaze direction, and eye movement pat-
terns, which are indicative of attention and focus.

• Lip Shapes [40, 45]:

Open/Close Mouth
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Figure 3.6: Eye Information.

The degree to which the mouth is open or closed is determined by dividing
the distance between the upper and lower lips by the width of the mouth.
Specifically, the value of (62−66)/(54−48) is used. A larger value indicates
an open mouth, while a value of zero indicates a closed mouth. This provides
a one-dimensional measurement.

Mouth Angle Radian
The angle of the mouth is measured by the vertical distance from the

bottom lip to the corners of the mouth. The calculation (66−(48+54)/2) is
used. If the result is positive, it indicates unhappiness, confusion or dissat-
isfaction; if negative, it indicates a normal or happy expression. This also
provides a one-dimensional measurement.

• Body Movement [43, 59, 60]:

Head Movement
The head movement is calculated by determining the standard deviation

(STD) of point 30 across one sample video. This is done by subtracting the
STD of point 30 from its value in each frame of the video (STD30). This
provides a one-dimensional measurement.

Hand and Elbow Movement
The presence or absence of hand and elbow movements in the sample

video is noted, with a value of 1 given if the hand or elbow appears and 0 if
it does not. This results in a two-dimensional measurement.

The frequency and nature of body movements, such as hand gestures,
arm movements, and shifts in sitting position, provide additional context
about the learner’s engagement and emotional state.
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Figure 3.7: Lip shapes.

• Distance Between the Face and the Screen:

Distance from Screen
The distance between the face and the screen is calculated by measuring

the length between the two eyes. This provides a one-dimensional metric.
Since the distance between a learner’s two eyes is generally consistent

across individuals, the variation in inter-eye distance among different learners
becomes even smaller when captured in videos. Therefore, we assume that
changes in the inter-eye distance reflect variations in the distance between
the learner’s face and the display screen. The proximity of the learner’s face
to the screen can be a useful indicator of engagement. Leaning closer to the
screen may suggest higher levels of interest and concentration.

In our experiment, we utilized the original body key points of the shoul-
ders, elbows, and hands as an additional body feature. This provided a
comprehensive set of 32 dimensions for analysis. The inclusion of these body
key points allowed us to measure various aspects of physical engagement,
such as the position and movement of the upper body, which can be indica-
tive of a learner’s focus and interest. By tracking the shoulders, elbows, and
hands, we could analyze gestures and shifts in posture that contribute to a
more nuanced understanding of engagement levels.

34



Figure 3.8: Distance and movement.

3.2.4 Additional Features: Standard Deviation and Ex-
treme Values

In the feature section, we adopted relevant features such as eye information,
eyebrow and lip shapes, facial rotation angles, head and body posture, the
distance between the face and the screen, and body movements. To oversam-
ple the existing data, we applied the Skipped Moving Average method to the
video samples. This technique smoothed out some data noise but also poten-
tially lost some information about the learners’ body movements. However,
in online learning, body movements are crucial for assessing engagement. For
example, within a specific time frame, larger ranges and frequencies of body
movements indicate lower engagement, while smaller ranges and frequencies
indicate higher engagement. Simply averaging the input video frames fails to
capture the range and frequency of body movements within a unit of time.

Standard deviation (SD) is a crucial statistical measure that quantifies
the amount of variation or dispersion in a set of data points. It is the square
root of variance and provides a direct insight into the spread of data around
the mean. A low SD indicates that data points are close to the mean, show-
ing less variability and more consistency in the data. Conversely, a high SD
indicates a wide range of values, suggesting more variability and less consis-
tency. In other words, a lower SD value represents lower engagement levels
from the learner, indicating that their behavior or responses are more consis-
tent and show less variation. On the other hand, a higher SD value signifies
higher engagement levels from the learner, suggesting that their behavior or
responses vary widely. Similarly, the maximum and minimum values within
the same window also convey significant information about the learner’s body
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movements. These critical values can provide insights into the range and ex-
tremity of movements, which are important indicators of engagement levels.
By incorporating SD, maximum and minimum values into our analysis, we
gain a deeper understanding of the temporal dynamics within each video,
leading to more accurate and robust models for engagement detection and
other analytical tasks. Therefore, we also added the standard deviation,
minimum, and maximum as features to enhance the model’s performance by
accurately reflecting the variability in body movements.

During the skipped moving average data processing stage, for a 10-second
video, we used a window of 5 frames to calculate an average value for the
video. This resulted in the processed 300-frame video sample being divided
into 60 segments. To calculate the standard deviation and the minimum
and maximum values, we also used a 5-frame window to ensure consistency.
This approach ensures that the periodicity of our proposed Skipped Moving
Average data extraction remains the same.
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Chapter 4

Experimentation with Skipped
Moving Average for
Oversampling in Class
Imbalanced Datasets

4.1 Purpose
In this stage of the experiment, we aim to verify whether our proposed over-
sampling method, Skipped Moving Average (SMA), can address the class
imbalance in time series video data related to learners’ engagement during
online learning. Considering the real-time variability of learners’ engagement,
we will use the DAiSEE dataset to evaluate our method. To further assess
the effectiveness of our approach, we will also compare it with the widely
used Synthetic Minority Over-sampling Technique (SMOTE)[66].

4.2 Training Method
4.2.1 Application of LSTM in the Training Method
One of the characteristics of engagement is its dynamic and fluctuating na-
ture[16]. Engagement is not a static state; it continuously changes, making
it crucial to capture and predict these variations. To evaluate our proposed
data preprocessing and oversampling methods, we conducted experiments us-
ing a time-series deep learning model, LSTM[64]. Long Short-Term Memory
(LSTM) networks are a type of recurrent neural network (RNN) architecture
designed to effectively learn and remember over long sequences of data. They
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Figure 4.1: Recurrent neural networks and Long Short Term Memory net-
works[64].

were introduced by Sepp Hochreiter and Jürgen Schmidhuber in 1997 and
have since become a popular choice for a wide range of sequence learning
tasks due to their ability to mitigate the vanishing and exploding gradi-
ent problems commonly encountered with traditional RNNs. This model is
well-suited for tasks that involve sequential data and temporal dependencies,
making it ideal for analyzing the ongoing changes in engagement levels.

Figure 4.1 illustrates the transition from recurrent neural networks (RNNs)
to long short-term memory (LSTM) networks. In LSTM architecture, the
key components are the cell state and the gates, which work together to
manage the flow of information through the network.

• Cell State: The core concept of LSTM is the cell state, which acts as a
conveyor belt that runs through the entire sequence, carrying relevant
information throughout the processing of the input data. This helps in
preserving long-term dependencies.

• Gates: LSTM networks use three types of gates, each of which plays
a crucial role in regulating the information flow:
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Forget Gate (σ1): Decides what information to discard from the cell
state. It takes the previous hidden state and the current input and
outputs a number between 0 and 1 for each number in the cell state,
with 0 representing ”completely forget” and 1 representing ”completely
keep”.
Input Gate (σ2): Decides which new information to add to the cell
state. It works in combination with the tanh1 layer, which generates a
new vector contributing to the cell state update.
Output Gate (σ3): Decides what part of the cell state to output. This
output is based on the cell state and the input to the output gate.
In the update process, the pink circles represent how the previous cell
state is updated by the forget gate’s output and the new candidate
values generated by the tanh layer.

• Activation Functions:
LSTMs rely on sigmoid and tanh activation functions to regulate the
flow of information within the network. These functions help in con-
trolling the amount of information passed through the gates and into
the cell state.

Due to their architecture, LSTM networks are highly effective for vari-
ous tasks involving sequential data, including classification, processing, and
forecasting. Moreover, LSTMs can process other forms of sequential data, in-
cluding images (when treated as sequences of pixels) and audio or video time-
series data, making them versatile tools for handling complex, temporally de-
pendent data. In this study, we leveraged the capabilities of LSTM networks
to evaluate our proposed data preprocessing and oversampling methods.

The overall structure of the LSTM model is illustrated in Figure4.2. The
proposed LSTM model features a single LSTM layer consisting of 32 hidden
units. Following the LSTM layer, a fully connected layer was used to map
the LSTM outputs to the desired output space. This architecture leverages
the capabilities of LSTM networks to capture temporal dependencies in the
data while maintaining computational efficiency.

4.2.2 Application of LSTM-FCN in the Training Method
Karim et al.[65] proposed a hybrid model that combines Fully Convolutional
Networks (FCNs) with Long Short-Term Memory (LSTM) networks to en-
hance time series classification tasks. This innovative approach leverages
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Figure 4.2: LSTM architecture.
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the strengths of both FCNs and LSTMs to improve the performance of time
series classification.

The proposed LSTM-FCN model combines the strengths of Fully Convo-
lutional Networks (FCNs) and Long Short-Term Memory (LSTM) networks.
This hybrid model is composed of two main components: the FCN Compo-
nent and the LSTM Component.

• The FCN (Fully Convolutional Network) component:
The FCN part processes the time series as a univariate sequence with
multiple time steps, extracting features through convolutional layers.
The fully convolutional block consists of three stacked temporal con-
volutional blocks with filter sizes of 128, 256, and 128, respectively.
Each block includes:

1. A temporal convolutional layer.
2. Batch normalization.
3. A ReLU activation function.

Finally, global average pooling is applied after the final convolution
block.

• LSTM Component:
The proposed architecture includes a dimension shuffle layer and an
LSTM block. The time series input is first conveyed into the dimen-
sion shuffle layer. This layer transforms the time series data, which is
then passed into the LSTM block. The LSTM block in the proposed
architecture processes the input time series as a multivariate time series
with a single time step. The LSTM block consists of either a general
LSTM layer or an Attention LSTM layer, followed by a dropout layer.
This structure allows the model to capture long-term dependencies and
tempor.

• Concatenation Component:
The output of the global pooling layer from the FCN (Fully Convolu-
tional Network) component and the LSTM component is concatenated
and then passed on to a softmax classification layer. This final layer
produces the probability distribution across the different classes for the
time series classification task, enabling the model to make accurate pre-
dictions based on the combined features extracted by both the FCN
and LSTM components.
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Figure 4.3: LSTM-FCN architecture.
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By integrating these two components, the LSTM-FCN model effectively
captures both local and long-term patterns in the data, making it highly
effective for time series classification tasks. This architecture leverages the
convolutional layers’ ability to identify short-term features and the LSTM
layers’ strength in recognizing long-term dependencies, providing a robust
framework for analyzing complex time series data.

4.3 Data preprocessing
4.3.1 Skipped Moving Average with Oversampling
In the data processing section, we applied the Skipped Moving Average
method for data preprocessing. As described in sections 3.1.1 and 3.1.2, we
performed sixfold oversampling on the significantly small low engagement
categories in the DAISEE dataset, such as ”not engaged” and ”very low”.

1. Merging Label Data
Firstly, as mentioned in section 3.1.2, videos labeled as ”very low” and
”low” in the DAISEE dataset are often very similar [55]. Therefore,
we merged the ”very low” and ”low” labels into a single ”low engage-
ment” label. This approach simplifies the overly detailed four-class
classification problem and helps address the issue of data imbalance.

2. Undersampling Redundant Frames
Since the video samples in the DAISEE dataset are 10 seconds long,
to preserve the characteristics of the sequential data, we set the step
length of each video input sample to 10 time steps. To use the optimal
window settings described earlier, we set the moving window for the
Skipped Moving Average to 5 frames. After calculating the average
values of the video frames, we obtained 60 sequences.

3. Oversampling Video Samples
From the above averages, it can be seen that the 30 frames per second
are reduced to 6 sequences per second. Then, we sample 1 sequence
from each second to represent the data for that second. After complet-
ing this process, each sample video is divided into 6 segments, with each
segment consisting of 10 time steps. This means that an oversampled
10-second video sample is effectively multiplied by 6 times. Addition-
ally, all 6 segments of the videos labeled as ”low” retain their sequential
information in full, ensuring that the oversampled data remains both
authentic and effective.
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By combining these steps merging labels, undersampling redundant frames,
and oversampling video samples—we significantly improve the quality and
balance of the DAISEE dataset. Specifically, the training and validation data
distribution after processing is as follows: 2477 samples labeled as “low,”3471
samples labeled as “high,”and 3096 samples labeled as “very high.”From the
processed results, it is evident that we significantly increased the amount of
data labeled as ”low,” thereby reducing the disparity in the distribution of
input data compared to the original dataset.

4.3.2 Random Moving Average with Oversampling
We proposed the SMA method, where a fixed number of video frames per
second are selected and averaged as input to the model. Correspondingly, to
further validate the performance of the SMA method, we also conducted ex-
periments using random moving average(RMA) to compare diverse settings.

First, we applied the same processing described in Section 4.3.1, 1. Merg-
ing Label Data. Second, to ensure consistency in the experimental data set-
tings, we set the step length of each video input sample to 10 time steps.
Subsequently, 6 frames were randomly selected per second and averaged as
shown in 4.4. Finally, during the oversampling phase, data labeled as ”low”
underwent six rounds of random sampling, with the average value calculated
for each round. This process increased the data labeled as ”low” to 6 times,
ensuring alignment with the previous data settings. The RMA process was
applied only once for the ’high’ and ’very high’ label data. The processed
data was then used to train and validate the model. The same random
moving average process was applied once for the test data.

We obtained the same distribution of training and validation data as with
SMA oversampling: 2477 samples labeled as “low,”3471 samples labeled as
“high,”and 3096 samples labeled as “very high.”

4.3.3 Application of SMOTE in Our Experiment
To validate the effectiveness of our proposed method, this study compares the
Skipped Moving Average (SMA) approach with the widely used Synthetic Mi-
nority Over-sampling Technique (SMOTE). By evaluating the performance
of classifiers trained with these different data processing techniques, we aim
to demonstrate the advantages of the Skipped Moving Average method over
traditional oversampling methods like SMOTE.

Chawla et al.[66] introduced the Synthetic Minority Over-sampling Tech-
nique (SMOTE), a novel method designed to address the common issue of
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Figure 4.4: Application of the Random Moving Average method on a 300-
frame video.

class imbalance in datasets. This imbalance, where the minority class is sig-
nificantly underrepresented compared to the majority class, is prevalent in
many real-world applications and often leads to poor classifier performance.
SMOTE aims to improve the performance of classifiers trained on imbalanced
datasets, where the minority class is significantly underrepresented compared
to the majority class. Instead of simply duplicating minority class examples,
SMOTE generates synthetic samples.

They create synthetic examples in a more generalized way by working in
the ”feature space” instead of the ”data space.” To oversample the minority
class, they take each sample from the minority class and generate synthetic
examples along the line segments connecting it to any or all of its k nearest
minority class neighbors. Depending on the desired amount of over-sampling,
neighbors are randomly selected from the k-nearest neighbors, enhancing the
diversity of the synthetic samples.

However, despite its effectiveness, SMOTE has several limitations that
need to be addressed. These include the oversampling of uninformative sam-
ples, potential noise interference, and the indiscriminate selection of neigh-
bors[53]. These issues can reduce the quality of the synthetic samples and
adversely affect the performance of the classifiers.

4.3.4 SMOTE with Oversampling
To further validate our proposed SMA method for processing video sequence
data, we compared the results of SMA with the SMOTE oversampling method.
The data preprocessing steps and SMA processing method remained consis-
tent, with the only difference being that SMOTE was used for the oversam-
pling portion. The details are as follows:
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After completing the 1. Merging Label Data and 2. Undersampling Re-
dundant Frames processing steps, 3. we performed fivefold oversampling on
the same sequences that were sampled in SMA. Since SMOTE generates
oversampled data points that are very close to the original points in the raw
data, we used fivefold oversampling in addition to the raw data to main-
tain consistency in the data. This approach also ensures the validity of the
comparison experiments.

Thus, after applying the same processing steps but with different oversam-
pling methods, we obtained the same distribution of training and validation
data as with SMA oversampling: 2477 samples labeled as “low,”3471 samples
labeled as “high,”and 3096 samples labeled as “very high.”

4.3.5 Selection of Window Period
In the Undersampling Redundant Frames step, we processed the video sam-
ples from the DAISEE dataset using a window period of 5 frames, the pro-
cessed videos had 60 segments per video. Since this is done on a per-second
basis, each second of the video was divided into 6 sequences. In the Over-
sampling Video Samples step, we oversampled the video samples with low
engagement labels data distribution. For the video samples with high en-
gagement labels data distribution, we only selected one segment per second
to form the input data for the deep learning training model. This approach
ensured that the segments with high data distribution maintained the au-
thenticity, temporal sequence, and consistency of the original video data.

However, the undersampled data has 6 sequences per second, meaning
there are six segments available for selection. Choosing the appropriate time
sequence for sampling is also an issue that requires further investigation. To
validate our method, we compared the cosine similarity of different segments
for high distribution labels after data preprocessing and oversampling of low
label data distribution.

Table 4.1 and Table 4.2 show the cosine similarity results of different
segments after data preprocessing and oversampling of low data distribution
is shown. These results were calculated for the training data, considering the
sequences obtained after applying the Skipped Moving Average for averaging.
Among the 6 sets of training segment data, the highest cosine similarity is
between the first and second segments, with a value of 0.958. The average
cosine similarity of each segment with the other five segments in training
data is as follows:

• segment 01 with the other five segments: 0.9262

• segment 02 with the other five segments: 0.9270
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Table 4.1: The cosine similarity results for different segments in the training
data after data preprocessing and oversampling of low label data distribution.

01 02 03 04 05 06
01 1.000 0.958 0.929 0.922 0.918 0.904
02 1.000 0.902 0.933 0.925 0.917
03 1.000 0.930 0.925 0.952
04 1.000 0.944 0.916
05 1.000 0.893
06 1.000

• segment 03 with the other five segments: 0.9276

• segment 04 with the other five segments: 0.9290

• segment 05 with the other five segments: 0.9210

• segment 06 with the other five segments: 0.9164

From the results listed for the average cosine similarity of each segment
with the other five segments, it is evident that the fourth segment has the
highest similarity. Additionally, as shown in Table 4.1, the highest cosine
similarity of 0.958 is found between the first and second segments. Therefore,
in the 60 segments obtained from undersampling, we select the first and
fourth segments for validation in the non-oversampled data section. The
first and fourth segments represent the beginning and middle parts of each
second in the video, respectively. This selection is crucial for verifying the
processing and evaluation of time-series data.

In the training data, we applied oversampling to the low distribution
labels. To evaluate our proposed method and model, we only calculated
the input features for the test data and did not perform any oversampling.
Therefore, we performed 6 separate samplings on the undersampled sequence
data and compared the cosine similarity of the 6 sets of data. In Table4.2, the
cosine similarity results of the 6 sets of segment data are listed. The average
cosine similarity of each segment with the other five segments in testing data
is as follows:

• segment 01 with the other five segments: 0.9866

• segment 02 with the other five segments: 0.9840

• segment 03 with the other five segments: 0.9788
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• segment 04 with the other five segments: 0.9824

• segment 05 with the other five segments: 0.9804

• segment 06 with the other five segments: 0.9858

From Table 4.2, it can be seen that the cosine similarity of 0.990 between
the first and second segments is the highest, which is consistent with the re-
sults of the cosine similarity between different segments in the training data.
The segment with the highest average cosine similarity with the other five
segments is the first segment in the test data. However, to maintain consis-
tency with the training data, we also selected the first and fourth segments
in the test data. This is also to test the effect of selecting the beginning and
middle times in a time series on the model results. The results in Table 4.3
are also consistent with the cosine similarity results. The first and fourth
segments have the highest ACC.

Table 4.2: The cosine similarity results for different segments in the testing
data after data preprocessing.

01 02 03 04 05 06
01 1.000 0.990 0.981 0.983 0.991 0.988
02 1.000 0.976 0.984 0.983 0.987
03 1.000 0.981 0.970 0.986
04 1.000 0.977 0.987
05 1.000 0.981
06 1.000

Simultaneously, Tables 4.4 and 4.5 present the cosine similarity results
for the data with added standard deviation after data preprocessing and
oversampling of low distribution label data. Since only the standard devi-
ation feature was added and the overall data structure did not change, the
cosine similarity of the six segments was compared similarly. The average
cosine similarity of each segment with the other five segments for average +
standard deviation features in the training data is as follows:

• segment 01 with the other five segments: 0.846

• segment 02 with the other five segments: 0.845

• segment 03 with the other five segments: 0.830

• segment 04 with the other five segments: 0.846
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Table 4.3: Precision, Recall, and F1 scores for different segments in the
testing data after data preprocessing.

Engagement Acc Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

segment 01
(Features) 0.445 0.346/0.090/0.142 0.523/0.521/0.522 0.373/0.537/0.440
segment 02
(Features) 0.431 0.372/0.087/0.141 0.498/0.514/0.506 0.366/0.530/0.433
segment 03
(Features) 0.434 0.397/0.106/0.168 0.487/0.518/0.502 0.382/0.492/0.430
segment 04
(Features) 0.458 0.282/0.106/0.154 0.546/0.511/0.528 0.385/0.512/0.439
segment 05
(Features) 0.411 0.346/0.076/0.124 0.502/0.497/0.499 0.322/0.524/0.399
segment 06
(Features) 0.435 0.299/0.090/0.138 0.516/0.506/0.511 0.364/0.495/0.420

Table 4.4: The cosine similarity results for different segments with average
+ standard deviation features in the training data after data preprocessing
and oversampling of low label data distribution.

01 02 03 04 05 06
01 1.000 0.927 0.825 0.844 0.854 0.780
02 1.000 0.796 0.838 0.844 0.822
03 1.000 0.841 0.824 0.862
04 1.000 0.873 0.832
05 1.000 0.761
06 1.000

• segment 05 with the other five segments: 0.831

• segment 06 with the other five segments: 0.811

Interestingly, after adding the standard deviation feature, the cosine sim-
ilarity comparison in the training data also showed that the highest similar-
ity was between the first and second segments, with a value of 0.927. When
comparing the average cosine similarity of each segment with the other five
segments, the first and fourth segments had the highest average similarities,
both being 0.846. This is consistent with our previous selection.

The average cosine similarity of each segment with the other five segments
for average + standard deviation features in the testing data is as follows:

• segment 01 with the other five segments: 0.9714
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Table 4.5: The cosine similarity results for different segments with average
+ standard deviation features in the test data after data preprocessing and
oversampling of low label data distribution.

01 02 03 04 05 06
01 1.000 0.977 0.963 0.964 0.970 0.983
02 1.000 0.953 0.961 0.955 0.977
03 1.000 0.957 0.938 0.973
04 1.000 0.955 0.974
05 1.000 0.963
06 1.000

• segment 02 with the other five segments: 0.9642

• segment 03 with the other five segments: 0.9566

• segment 04 with the other five segments: 0.9624

• segment 05 with the other five segments: 0.9522

• segment 06 with the other five segments: 0.9742

To ensure consistency with our previous selection, we also chose the first
and fourth segments in the test data, which included the standard deviation
feature, for validating the proposed method. Table4.6 shows the results of
the six segments after adding the SD features.

4.3.6 Normalization Method
Normalization[68] in deep learning is a critical preprocessing step that in-
volves scaling numerical data to a standard range. This process improves the
performance and stability of neural networks. It improves the convergence
speed, prevents numerical instability, ensures equal contribution of features,
and enhances the overall model accuracy. In this experiment, we applied
the standardscaler[74] method to normalize the training and validation data.
standardscaler is a data normalization technique provided by the scikit-learn
library in Python. It is used to standardize the features of a dataset so that
they have a mean of zero and a standard deviation of one, ensuring that the
input features have a uniform scale and allowing models to perform better.

We applied different normalization methods to validate our proposed data
processing method. The first approach was to normalize the entire training
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Table 4.6: Precision, Recall, and F1 scores for different segments with average
+ standard deviation features in the testing data after data preprocessing.

Engagement Acc Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

segment 01
(Features+SD) 0.452 0.462/0.157/0.234 0.449/0.504/0.475 0.456/0.501/0.477

segment 02
(Features+SD) 0.471 0.218/0.126/0.160 0.546/0.508/0.526 0.419/0.497/0.454

segment 03
(Features+SD) 0.474 0.321/0.166/0.218 0.635/0.506/0.563 0.320/0.509/0.393

segment 04
(Features+SD) 0.462 0.308/0.113/0.166 0.644/0.509/0.568 0.286/0.534/0.373

segment 05
(Features+SD) 0.453 0.333/0.160/0.216 0.444/0.499/0.469 0.477/0.476/0.476

segment 06
(Features+SD) 0.442 0.247/0.144/0.182 0.565/0.482/0.520 0.333/0.448/0.382

and validation dataset as a whole. This is a commonly used normalization
method in current machine learning research. It helps reduce bias between
features in the training data, prevents numerical instability, and thereby
improves model accuracy. However, due to the nature of time-series video
data and individual variability, each video has its own unique data range.
Therefore, we attempted to normalize each video individually to investigate
whether the characteristics and personalization of individual videos have an
impact on the experimental results. Thus, the second approach was to nor-
malize each video sample individually. Additionally, we normalized the data
on a per-second basis before merging them into the input data for the deep
learning model.

In the experiment of Table 4.7, we selected the first segment for the
non-oversampled part of the training, validation, and test data. The results
indicate that the overall performance on the unbalanced data shows that
normalizing the processed data as a whole and normalizing the input samples
per second are superior to normalizing each video individually. Therefore, we
ultimately chose the methods of normalizing the entire processed data and
normalizing each second of the video.
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Table 4.7: Precision, Recall, and F1 scores for different standard scaler nor-
malization methods.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

Entire train
and val 0.806/0.702/0.751 0.474/0.525/0.498 0.539/0.544/0.541

Entire test 0.346/0.090/0.142 0.523/0.521/0.522 0.373/0.537/0.440
Each video

train and val 0.386/0.342/0.363 0.401/0.407/0.404 0.352/0.384/0.367

Each video test 0.333/0.057/0.097 0.385/0.491/0.432 0.336/0.468/0.392
Per-second

train and val 0.475/0.599/0.530 0.591/0.445/0.507 0.421/0.527/0.468

Per-second test 0.218/0.118/0.153 0.658/0.511/0.575 0.295/0.486/0.367

4.4 Experiment Setting
4.4.1 Training and Testing Data Pattern
In Experiment Part 1, to validate our proposed oversampling method, we
selected the DAiSEE dataset for verification due to its more imbalanced
yet larger data volume. The original video data in the DAiSEE dataset[24]
were divided for training, validation, and testing purposes with proportions
of 60%, 20%, and 20%, respectively. To better train the model, we first
combined the training set and the validation set. During model training,
we then split this combined set into an 80:20 ratio to ensure the model was
thoroughly trained.

In Section 3.2.4, we discussed using combinations such as average, aver-
age+ standard deviation, and average+ standard deviation + minimum/maximum
to validate our proposed method. In Section 4.3.4, we compared the cosine
similarity of the 6 non-oversampled segment data and the average cosine
similarity of each single segment with the other five segments. Based on
this comparison, we chose the first and fourth segments for model validation.
Therefore, in the experimental phase, we have the following data combina-
tions.

The experimental data combinations used the first and fourth segments
for testing.

• The training and validation data included the following combinations:

• The testing included the following combinations:
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Table 4.8: Experimental data combinations for training and validation

Data Combinations for Training and Validation
LSTM (Key Points)
LSTM-FCN (Key Points)
LSTM (Features)
LSTM-FCN (Features)
LSTM (Features+SMOTE)
LSTM-FCN (Features+SMOTE)
LSTM (Features+RMA)
LSTM-FCN (Features+RMA)
LSTM (Features+SMA)
LSTM-FCN (Features+SMA)
LSTM (Features+SMA+OS)
LSTM-FCN (Features+SMA+OS)
Skipped Moving Average (oversampled)
Skipped Moving Average (oversampled) + Standard Deviation
Skipped Moving Average (oversampled) + Standard Deviation + Min/Max Values

4.4.2 LSTM Model and Experimental Parameters
We applied PyTorch to build our experiment models. PyTorch is an open-
source machine learning library based on the Torch library. It is widely
used for various applications, including computer vision and natural language
processing, due to its flexibility and ease of use in building deep learning
models[67]. PyTorch provides dynamic computational graphs, which allow
for more intuitive model building and debugging, making it a preferred choice
for many researchers and practitioners in the field of deep learning.

First, we employed the StandardScaler method to normalize the merged
training and validation datasets, which consisted of 32-dimensional features
over 10 timesteps. This step ensures that the features have a mean of zero
and a standard deviation of one, which helps in stabilizing and accelerating
the learning process of the model. Next, we set the random state to 10
to maintain consistency and reproducibility in our experiments. Then, the
processed data were trained using the LSTM model introduced in Section
4.2.1.

The proposed models were trained over the course of 50, 100, and 200
epochs, with dropout rates ranging from 0 to 0.5, to ensure that the models
could adequately learn and generalize from the training data. In our model,
we used the Adam optimizer with a learning rate set to 0.001. Each training
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Table 4.9: Experimental data combinations for testing

Data Combinations for Testing
LSTM (Key Points)
LSTM-FCN (Key Points)
LSTM (Features)
LSTM-FCN (Features)
LSTM (Features+SMOTE)
LSTM-FCN (Features+SMOTE)
LSTM (Features+RMA)
LSTM-FCN (Features+RMA)
LSTM (Features+SMA)
LSTM-FCN (Features+SMA)
LSTM (Features+SMA+OS)
LSTM-FCN (Features+SMA+OS)
Skipped Moving Average
Skipped Moving Average + Standard Deviation
Skipped Moving Average + Standard Deviation + Min/Max Values

duration was conducted five times for thorough evaluation. After training,
we evaluated the models using the original test set to gauge their performance
on unseen data. For testing data processing, we applied the StandardScaler
normalization technique by applying the normalization rules learned from
the training data to the test data. This ensures consistency between the
training and testing phases. Additionally, we employed the Skipped Moving
Average method without oversampling. This involved undersampling the
data to obtain 60 sequences per video, and then selecting one sequence per
second to create a 10-timestep input structure. Finally, the best-performing
result from the tests was selected as the evaluation metric for the model.

4.4.3 LSTM-FCN Model and Experimental Parame-
ters

Similar to the previous LSTM model, we used PyTorch to build our ex-
periment models in the LSTM-FCN part. All parameters, except for the
model-specific ones, remain consistent with the LSTM experiment.

In the model section, we trained the data using an LSTM-FCN model.
The forward pass involves processing the input through an LSTM layer fol-
lowed by three stacked temporal convolutional blocks with filter sizes of 128,
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256, and 128, respectively. Each of these blocks comprises a temporal con-
volutional layer, batch normalization, and a ReLU activation function. The
outputs from the LSTM and convolutional layers are concatenated and then
passed through a fully connected layer with softmax activation functions to
generate the final output, as illustrated in Figure4.3.

To maintain consistency and comparability in our experiments, we also
used 50, 100, and 200 epochs with dropout rates ranging from 0 to 0.5 as
training parameters. The testing phase employed the same data and model
parameter settings as the LSTM model section. Then, the best-performing
result from the tests was selected as the evaluation metric for the model.
Similarly, the best-performing result from the tests was selected as the eval-
uation metric for the model.

4.5 Results for Oversampling in Class Imbal-
anced Datasets

In evaluating classification tasks in machine learning and deep learning, com-
monly used metrics include accuracy, precision, recall, F1 score, and the
confusion matrix, which are employed to measure model performance in es-
timation and detection tasks. However, due to the severe class imbalance in
the DAiSEE dataset, this study adopts the F1 score as the primary evalua-
tion criterion, while accuracy, precision, and recall are used as supplementary
metrics. Accuracy is appropriate for situations where the data is balanced
but may not be suitable for imbalanced datasets[27]. Precision and recall
often involve a trade-off: improving one may reduce the other due to differ-
ences in dataset distribution[77]. Therefore, the F1 score is more suitable for
addressing class imbalance issues because it represents the harmonic mean of
precision and recall, combining both strengths. It is particularly effective in
scenarios where a balance between precision and recall is required, especially
in datasets with significant class imbalance.

In this chapter, we will present the validation and test results of the var-
ious data processing methods mentioned earlier, along with the comparative
results of different parameters.

• Tables 4.10 and 4.11 present the experimental results of the original-
data without any processing, as well as the results after applying the
skipped moving average and skipped moving average with oversampling
methods. Additionally, the results are compared with the RMA and
SMOTE oversampling method. The first segment of high-distribution
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data that was not oversampled was selected as the training and val-
idation data. The results shown in Tables 4.10 and 4.11 have been
previously published in study[70].

Table 4.10: Validation results for the original data, RMA, SMOTE, and
Skipped Moving Average with 32-D features[70]

.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

LSTM (Key
Points) 0.101/0.211/0.137 0.553/0.595/0.573 0.607/0.526/0.564

LSTM-FCN
(Key Points) 0.049/0.211/0.079 0.654/0.562/0.605 0.500/0.553/0.525

LSTM
(Original) 0.069/0.114/0.086 0.587/0.558/0.572 0.482/0.491/0.486

LSTM-FCN
(Original) 0.049/0.211/0.079 0.654/0.562/0.605 0.500/0.553/0.525

LSTM
(SMOTE) 0.821/0.751/0.784 0.539/0.557/0.548 0.556/0.579/0.567

LSTM-FCN
(SMOTE) 0.792/0.690/0.738 0.538/0.530/0.534 0.515/0.598/0.554

LSTM (Fea-
tures+RMA) 0.727/0.664/0.694 0.536/0.523/0.530 0.512/0.572/0.540

LSTM-FCN
(Fea-

tures+RMA)
0.629/0.588/0.608 0.508/0.510/0.509 0.522/0.549/0.535

LSTM (SMA) 0.096/0.235/0.137 0.634/0.561/0.595 0.521/0.558/0.539
LSTM-FCN

(SMA) 0.036/0.348/0.065 0.694/0.547/0.612 0.502/0.590/0.543

LSTM
(SMA+OS) 0.806/0.702/0.751 0.474/0.525/0.498 0.539/0.544/0.541

LSTM-FCN
(SMA+OS) 0.637/0.623/0.630 0.527/0.498/0.512 0.510/0.557/0.533

Tables 4.10 and 4.11 show the validation and testing results of the pro-
posed method compared to the RMA and SMOTE oversampling technique
in our study. The ”LSTM (Original)” and ”LSTM-FCN (Original)” results
refer to the original data with facial and body features, without applying the
moving average.

”LSTM (SMA)” and ”LSTM-FCN (SMA)” show the results of the input
data processed by the Skipped Moving Average (SMA) method, which uses a
moving average window of 30 frames over 10 timesteps. ”LSTM (SMA+OS)”
and ”LSTM-FCN (SMA+OS)” present the outcomes of training data pro-
cessed by both the Skipped Moving Average and oversampling methods.
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Table 4.11: Testing results for the original data, RMA, SMOTE, and Skipped
Moving Average with 32-D features[70].

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

LSTM (Key
Points) 0.069/0.114/0.086 0.587/0.558/0.572 0.482/0.491/0.486

LSTM-FCN
(Key Points) 0.014/0.111/0.025 0.694/0.518/0.594 0.300/0.434/0.355

LSTM
(Features) 0.030/0.380/0.060 0.760/0.570/0.650 0.400/0.560/0.470

LSTM-FCN
(Features) 0.056/0.190/0.086 0.597/0.557/0.576 0.477/0.479/0.478

LSTM (Fea-
tures+SMOTE) 0.295/0.053/0.089 0.385/0.475/0.425 0.350/0.487/0.407

LSTM-FCN
(Fea-

tures+SMOTE)
0.179/0.037/0.061 0.579/0.503/0.539 0.241/0.558/0.336

LSTM (Fea-
tures+RMA) 0.320/0.082/0.131 0.499/0.528/0.513 0.403/0.527/0.457

LSTM-FCN
(Fea-

tures+RMA)
0.267/0.073/0.115 0.529/0.520/0.525 0.384/0.539/0.448

LSTM (Fea-
tures+SMA) 0.192/0.109/0.140 0.665/0.510/0.577 0.314/0.526/0.393

LSTM-FCN
(Fea-

tures+SMA)
0.038/0.071/0.050 0.728/0.526/0.611 0.355/0.553/0.433

LSTM (Fea-
tures+SMA+OS) 0.346/0.090/0.142 0.523/0.521/0.522 0.373/0.537/0.440

LSTM-FCN
(Fea-

tures+SMA+OS)
0.269/0.063/0.103 0.561/0.512/0.535 0.312/0.562/0.401

To effectively compare with existing oversampling methods, we also ap-
plied the RMA and SMOTE techniques to oversample the training data.
”LSTM (Features+RMA)”, ”LSTM-FCN (Features+RMA)”, ”LSTM (SMOTE)”
and ”LSTM-FCN (SMOTE)” present the outcomes following the application
of SMOTE oversampling. After processing with the Skipped Moving Aver-
age, the data samples comprised 60 sequences, with six sequences per sec-
ond. We extracted one sequence from each second, forming a structure of 10
timesteps. Subsequently, the data labeled as low engagement were oversam-
pled six times using the RMA and SMOTE techniques to serve as training
data for the LSTM and LSTM-FCN models. This ensured uniformity in
the data structure between the two oversampling methods: Skipped Moving
Average oversampling, RMA and SMOTE oversampling.
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LSTM (Original) and LSTM-FCN (Original) process the time-series data
without applying undersampling or Skipped Moving Average techniques. In
contrast, LSTM (SMA) and LSTM-FCN (SMA) involve Skipped Moving
Average processing on the original data, without oversampling. The results
clearly indicate a significant disparity between the low-engagement label and
other labels, suggesting that data imbalances negatively impact classification
outcomes.

However, after implementing Skipped Moving Average and oversampling,
the results for the low-engagement labels in both LSTM and LSTM-FCN
models (LSTM (SMA+OS) and LSTM-FCN (SMA+OS)) showed improve-
ment compared to the settings without oversampling. This demonstrates
that our proposed Skipped Moving Average oversampling method effectively
addresses the class imbalance issues in time-series data.

Based on the test results of the LSTM model in Tables 4.11, our pro-
posed Skipped Moving Average (SMA) oversampling method outperformed
the RMA and SMOTE oversampling methods for both low and high dis-
tribution data. This result demonstrates the superiority of our method in
handling oversampling for time-series data. For the LSTM-FCN model, the
test results indicate that the SMA method shows better performance than
the RMA and SMOTE methods for the low and very high labels in various
metrics. Although the high label performance with the SMA oversampling
method was not as good as with the RMA and SMOTE methods, it was still
relatively close. This indicates that our proposed method also has a certain
level of stability and effectiveness.

In the previous experiment, we observed that the LSTM (SMA+OS) data
processing achieved the best results for low-distribution label data, with Re-
call/Precision/F1 scores of 0.346/0.090/0.142. This result also outperformed
the RMA and SMOTE oversampling method. The F1 score of around 0.142
is the best among the comparisons but is not sufficiently accurate. Estimat-
ing low engagement in practical applications is not sufficient. However, our
proposed method effectively mitigates the negative impact of class imbalance
in engagement estimation studies. Therefore, in the context of this study,
our results are relatively good. Therefore, in the following experiments, to
further improve the performance of our proposed data processing method, we
will retain the LSTM model parameters and use this result as a benchmark
for subsequent experiments.

• The first segment data of the experimental results for the skipped mov-
ing average values, Standard Deviation and Extreme Values features.
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Table 4.12: The first segment data of the experimental results for the skipped
moving average values, Standard Deviation, and Extreme Values features in
training and validation.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

SMA 0.806/0.702/0.751 0.474/0.525/0.498 0.539/0.544/0.541
SMA+SD 0.844/0.731/0.784 0.510/0.542/0.526 0.506/0.538/0.522

SMA+SD+Min/Max0.820/0.790/0.805 0.542/0.559/0.550 0.561/0.559/0.560

Table 4.13: The first segment data of the experimental results for the skipped
moving average values, Standard Deviation, and Extreme Values features in
testing.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

SMA 0.346/0.090/0.142 0.523/0.521/0.522 0.373/0.537/0.440
SMA+SD 0.462/0.157/0.234 0.449/0.504/0.475 0.456/0.501/0.477

SMA+SD+Min/Max0.256/0.124/0.167 0.518/0.514/0.516 0.440/0.501/0.468

In this experiment, we used the first segment data from the high-distribution
part of the dataset, which had not undergone oversampling, as the experi-
mental input. For the training and validation parts of these three sets of
data, we applied the following methods respectively: Skipped Moving Aver-
age Oversampling, Skipped Moving Average Oversampling + Standard Devi-
ation, and Skipped Moving Average Oversampling + Standard Deviation and
Extreme Values. For the corresponding test data, we processed the data with
Skipped Moving Average, Skipped Moving Average + Standard Deviation,
and Skipped Moving Average + Standard Deviation and Extreme Values,
but without applying oversampling.

Tables 4.12 and 4.13 present the experimental results. The test results
indicate that the combination of Skipped Moving Average Oversampling +
Standard Deviation for training and validation produced the best outcomes.
For the low label engagement estimation, it achieved Recall/Precision/F1
scores of 0.462/0.157/0.234, which is an improvement in the F1 score by
0.092 compared to the previous experiment’s result of 0.346/0.090/0.142.
Although the performance for the high label did not surpass the previous
experiment, the overall average performance across the three metrics was
the best, indicating a balanced result. Since the purpose of our experiment
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is to address data imbalance in engagement estimation, the Skipped Moving
Average Oversampling + Standard Deviation combination’s experimental re-
sults perfectly demonstrate the effectiveness and superiority of our proposed
method. The findings in this section are part of ongoing research and will be
detailed in a future publication.

• The fourth segment data of the experimental results for the skipped
moving average values, Standard Deviation and Extreme Values fea-
tures.

Table 4.14: The fourth segment data of the experimental results for the
skipped moving average values, Standard Deviation, and Extreme Values
features in training and validation.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

SMA 0.825/0.764/0.793 0.488/0.519/0.503 0.506/0.504/0.505
SMA+SD 0.806/0.696/0.747 0.537/0.538/0.538 0.473/0.542/0.505

SMA+SD+Min/Max0.824/0.768/0.795 0.559/0.543/0.551 0.511/0.562/0.535

Table 4.15: The fourth segment data of the experimental results for the
skipped moving average values, Standard Deviation, and Extreme Values
features in testing.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

SMA 0.282/0.106/0.154 0.546/0.511/0.528 0.385/0.512/0.439
SMA+SD 0.308/0.113/0.166 0.644/0.509/0.568 0.286/0.534/0.373

SMA+SD+Min/Max0.256/0.105/0.149 0.496/0.495/0.495 0.408/0.482/0.442

In this part of the experiment, we used the fourth segment of data, which
has a high distribution in the DAISEE dataset and has not undergone over-
sampling, as the experimental input. Similar to the previous experimental
setup, we processed the training and validation parts of these three data
groups using the following methods: Skipped Moving Average Oversam-
pling, Skipped Moving Average Oversampling + Standard Deviation, and
Skipped Moving Average Oversampling + Standard Deviation and Extreme
Values. For the corresponding test data, we applied Skipped Moving Aver-
age, Skipped Moving Average + Standard Deviation, and Skipped Moving
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Average + Standard Deviation and Extreme Values, but without oversam-
pling.

In the test results presented in Table 4.14 and Table 4.15, Skipped Mov-
ing Average Oversampling + Standard Deviation yielded the best perfor-
mance for the low data distribution, with Recall/Precision/F1 scores of
0.308/0.113/0.166. Notably, the F1 score improved by 0.024 compared to
the LSTM (SMA+OS) experiment from earlier tests. Although the Recall
value did not perform as well as in previous experiments, the overall test
results for the low-distribution label data showed an improvement.

• Comparison of three standardScaler normalization methods

In this experiment, we applied the StandardScaler normalization tech-
nique using three different methods to preprocess the dataset and evaluate
their impact on model performance.

The three methods are as follows:

1. Overall Normalization:
This method involves applying StandardScaler to the entire merged
training and validation dataset. The goal is to collectively normalize
the data to ensure consistency across all features.

2. Per-Video Normalization:
In this approach, StandardScaler is applied individually to each video
sample. This method aims to capture and normalize variations within
each video, making the features comparable across different video sam-
ples.

3. Per-Second Normalization:
This method involves normalizing each second of video samples in the
DAiSEE dataset individually. After normalization, the segments are
merged to form the input data for the deep learning model. This
method is designed to handle temporal variations within the video data
more effectively.

Tables 4.16 and 4.17 present the validation and testing results for three
different StandardScaler normalization methods. In Table 4.11, among the
experiments comparing unprocessed original data, Skipped Moving Aver-
age (SMA), Skipped Moving Average with oversampling (SMA+OS) and
SMOTE oversampling methods, the LSTM (SMA+OS) data processing achieved
the best results for low-distribution label data, with Recall/Precision/F1
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Table 4.16: Validation results under different normalization methods.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

Overall
SMA+OS 0.806/0.702/0.751 0.474/0.525/0.498 0.539/0.544/0.541

Per-Video
SMA+OS 0.386/0.342/0.363 0.401/0.407/0.404 0.352/0.384/0.367

Per-Second
SMA+OS 0.475/0.599/0.530 0.591/0.445/0.507 0.421/0.527/0.468

Per-Second
SMA+OS+SD 0.659/0.608/0.632 0.419/0.516/0.463 0.600/0.525/0.560

Table 4.17: Testing results under different normalization methods.

Engagement Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

Overall
SMA+OS 0.346/0.090/0.142 0.523/0.521/0.522 0.373/0.537/0.440

Per-Video
SMA+OS 0.333/0.057/0.097 0.385/0.491/0.432 0.336/0.468/0.392

Per-Second
SMA+OS 0.218/0.118/0.153 0.658/0.511/0.575 0.295/0.486/0.367

Per-Second
SMA+OS+SD 0.317/0.128/0.182 0.512/0.507/0.509 0.419/0.502/0.457

scores of 0.346/0.090/0.142. Therefore, we use this result as the comparison
data sample for different normalization methods. This part of the experiment
involves applying overall normalization to the processed data.

”Per-Video SMA+OS” refers to normalizing each video input sample sep-
arately and then merging the processed sample data for model input. ”Per-
Second SMA+OS” refers to normalizing each second of the video before
combining them into validation and test data.

In Table 4.13, the first segment’s validation and training data, which
added the standard deviation feature, achieved the best results in both pre-
cision improvement for low-distribution data and the balance of the three
classification data. Therefore, in this set of experiments, we also compare
the test results after normalizing the data with the added standard deviation
feature for each second.

From the experimental results, it is observed that the Per-Second Nor-
malization method yields the best overall performance in terms of recall,
precision, and F1 scores across different engagement labels, both in “Per-
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Second SMA+OS”and “Per-Second SMA+OS+SD.”Additionally, the per-
formance of the data with added standard deviation surpasses that of the
data processed only with oversampling. This indicates the sensitivity and
importance of standard deviation in engagement estimation experiments for
detecting the physical characteristics of online learning students. The results
also suggest that handling temporal variations more granularly by normaliz-
ing per-second segments is more effective for improving model performance.
However, compared to the results in Table 4.13, where SMA+SD (adding
standard deviation but applying overall normalization to the data) showed
superior performance in terms of Recall/Precision/F1, the results are still
better than this set of experiments.

63



Chapter 5

Experimentation with Skipped
Moving Average for Transfer
Learning

5.1 Purpose
The results from Experiment 1 demonstrate that our proposed method is
effective in addressing the issue of data imbalance. Additionally, it raises the
question of whether our method can also adapt to the diversity and variability
inherent in time-series data. Therefore, in this experimental phase, we aim to
apply transfer learning techniques to verify the effectiveness of our proposed
SMA method under different data conditions. Specifically, we will evaluate
whether the SMA approach can successfully handle the unique challenges
presented by varying time-series data.

5.2 Application of Transfer Learning
In the field of engagement estimation research, data imbalance, data insuffi-
ciency, and the limited number of computer vision-related features are major
issues. Additionally, the time span of a single online learning session is rela-
tively long, making the ten-second videos used in the DAiSEE dataset from
Experiment 1 seem almost fleeting in the context of online learning. If stu-
dent engagement is detected every ten seconds and reported to teachers and
students, it could potentially disrupt the continuity of the lesson and inter-
fere with the students’ concentration. Online course instructors are more
interested in capturing student engagement over a more extended period, so
ten-second video inputs are too short for effective engagement estimation.

64



Therefore, it is worth investigating whether our proposed skipping moving
average method is also applicable to longer time-span data.

Collecting a large number of video samples from online learning courses
with accurate student engagement labels that meet our requirements is un-
doubtedly time-consuming and costly. Therefore, in this part of the experi-
ment, we use transfer learning to assess whether our proposed method is effec-
tive in different situations. Transfer learning is a machine learning technique
where a model trained on one task is repurposed and fine-tuned for a dif-
ferent but related task. This approach leverages the knowledge gained from
the original task to improve the performance and efficiency of the new task,
often requiring less data and computational resources compared to training
a model from scratch. We use transfer learning, where a model is pre-trained
on the large DAISEE dataset and then fine-tuned on a combination of the
”in the wild” dataset and our own dataset.

• The structure of the transfer learning model

We constructed our transfer learning model on the Keras platform due to
its user-friendly and intuitive API, which simplifies the process of building
and training deep learning models. Keras is highly modular, enabling flex-
ible combinations and customization of components, which is essential for
research. It seamlessly integrates with TensorFlow, providing access to pow-
erful computational features and pre-trained models for rapid development.

In the experiment setting, we initially trained a model on the DAiSEE
dataset. To enhance interpretability and flexibility, we incorporated an inner
model with one neural network layer into the pre-training model. This design
allows us to better understand and manipulate the features learned during
pre-training.

After the initial training phase, we extracted the trained inner model
from the pre-trained model and froze its parameters. Freezing the inner
model ensures that the valuable information it has learned from the DAiSEE
dataset is preserved and not altered during subsequent training phases.

Next, we augmented the frozen inner model with a new trainable LSTM
(Long Short-Term Memory) neural network layer. This LSTM layer is added
at the bottom of the frozen layers, allowing it to leverage the pre-trained
feature extraction capabilities while being specifically trained on the new
dataset. By doing this, we ensure that the model can utilize the general-
ized features learned from the large DAiSEE dataset and adapt them to the
specific characteristics of the new dataset.

Finally, we fine-tuned the newly built LSTM model. Fine-tuning involves
making small adjustments to the model parameters to optimize performance
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Figure 5.1: The structure of the transfer learning model applied in our study.

on the new dataset. This step ensures that the model not only retains the
useful features learned from the DAiSEE dataset but also becomes highly
effective for the specific task and data distribution of the new dataset. This
process of integrating pre-trained models with new trainable layers and fine-
tuning helps achieve better performance and robustness in the final model.

After fine-tuning the newly built model, it becomes our final model after
transfer learning. To validate our fine-tuned model, we also tested it to ensure
its performance. Figure 5.1 shows the structure of the transfer learning model
we proposed.

66



5.3 Data preprocessing
In this set of experiments, we use three datasets. In transfer learning, we
first need a relatively large dataset to train a model, and then transfer the
trained model to a smaller dataset for fine-tuning. This approach improves
the performance of the model trained on the smaller dataset. We use the
DAiSEE dataset as the primary dataset, and then transfer the model trained
on the DAiSEE dataset to the ”in the wild” dataset and our own dataset for
further training and fine-tuning. Therefore, in this section, we will introduce
the data preprocessing methods for each of the three datasets separately.

• Data Preprocessing for the DAiSEE Dataset

In the transfer learning experiment, we also use the LSTM (SMA+OS)
with Recall/Precision/F1 scores of 0.346/0.090/0.142 from Table 4.11 as a
benchmark. Therefore, we apply the same preprocessing method to the
DAiSEE dataset as before. Specifically, we extract body and facial keypoints
using OpenPose and design features including eye information, eyebrow and
lip shapes, facial rotation angles, head and body posture, the distance be-
tween the face and the screen, and body movements.

We then set a window period of 5 frames for the skipping moving average
method and performed undersampling on the 10-second, 300-frame in the
DAiSEE dataset. After undersampling, we obtain 60 segments. In the train-
ing and validation sets, to address the low distribution data, we oversample
by keeping all data from the six segments labeled as low unchanged. For the
high distribution labels, high and very high, we retain only the first segment
as input samples for deep learning.

In the test data, no oversampling is performed on the samples from all
labels to better reflect real online learning conditions. After preprocessing,
the training and validation data for the low, high, and very high labels consist
of the following numbers of samples: 2764, 4009, and 3286, respectively.

• Data Preprocessing for the “in the wild”Dataset

The ”in the wild” dataset is also a popular public dataset for engage-
ment estimation. This dataset includes 264 videos, each approximately five
minutes long, with labeled engagement levels. The dataset comprises 91 sub-
jects (27 females and 64 males) recorded in various settings such as computer
labs, dorm rooms, and open spaces. In contrast, the data in the DAiSEE
dataset is uniformly processed, with all videos being 10 seconds long, and
recorded at 30 frames per second, resulting in 300 frames per video. Such
a well-organized dataset is convenient for data processing and maintaining
consistency.
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Unlike the DAiSEE dataset, the ”in the wild” dataset features videos
of approximately five minutes in length, with significant variations in frame
quality and count per video. Therefore, processing the ”in the wild” dataset
involves additional considerations:

1. Data Smoothing and Averaging:
Ensuring smooth transitions and averaging data effectively.

2. Standardizing Video Lengths:
Adjusting the irregular video lengths to create a uniform dataset suit-
able for deep learning model inputs.

Since the DAiSEE dataset consists of 10-second videos and the ”in the
wild” dataset contains five-minute videos, we need to maintain consistency
in the data. Therefore, in Experiment 2, we segment the five-minute ”in the
wild” videos into 10-second segments for data preprocessing.

The method is as follows:
First, the five-minute video samples are segmented into 10-second videos

to maintain an input of 10 timesteps per input video.
Next, body and facial features are calculated for the segmented 10-second

video segments.
As shown in Figure 2.3, although the ”in the wild” dataset also exhibits

data imbalance, it is not as extreme as in the DAiSEE dataset. Therefore,
when processing the ”in the wild” data, we apply a skipping moving average
without oversampling. Specifically, after segmenting the ”in the wild” videos
into 10-second segments, we process the 10-second videos with a moving
window of 30 frames, averaging the values based on a frame rate of 30 frames
per second. This ensures that each timestep of data corresponds to one
second of input. With this processing, there is only one segment, and no
segment selection is needed.

The original labels of the unsegmented videos are retained as the labels
for the newly processed data.

However, this method presents an issue: due to the varying lengths of the
videos, some segments may be shorter than 10 seconds. For video segments
shorter than 10 seconds, we pad the insufficient part with values of -1 to
ensure the consistency of the deep learning data input.

The same skipping moving window with a 30-frame interval is applied to
the test data, and any segments shorter than 10 seconds are padded with a
target value of -1.

The above content describes our method for processing the ”in the wild”
dataset.
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• Data Preprocessing for the newly created Dataset

Unlike the previous two datasets, this new dataset involves answering 30
questions over approximately 12 minutes, resulting in significant variability in
the length of each data segment. This increases the difficulty and complexity
of data preprocessing. Therefore, we applied the following preprocessing
steps to the dataset.

Firstly, the videos were clipped based on the time span of answering each
question. Each clip corresponds to the duration a participant spent on a
particular question. The engagement label provided by the participant’s self-
report and external observations from several study members, was assigned
to the corresponding video clip. A comparison was made between the self-
reports and the external observations, and in cases of disagreement, the final
label was determined collectively by the observers. For each clipped portion,
we extracted body and facial features, including eye information, eyebrow
and lip shapes, facial rotation angles, head and body posture, the distance
between the face and the screen, and body movements.

We applied a skipping moving average method with a window size based
on the frame rate of 30 frames per second to smooth the data. This av-
eraging window size ensures that each timestep corresponds to a consistent
one second. Since the lengths of the clips varied, we ensured uniformity by
padding clips shorter than the required length with a value of -1.

5.4 Experiment Setting
In this section, we will introduce the division of datasets and experimental
parameters for Experiment 2.

5.4.1 Division and Usage of the Three Datasets
As described in Section 5.3, Data Preprocessing, we preprocessed the DAiSEE,
”in the wild,” and newly created datasets separately. The structure of the
preprocessed data is shown in Table 5.1.

All the processed data from DAiSEE (SMA+OS) was retained as the
primary dataset for transfer learning. The ”in the wild” (SMA) and New
Created (SMA) datasets were mixed at an 80:20 ratio to form the fine-tuning
validation data and the final testing data for the fine-tuned model.

At the fine-tuning stage, we made the following data adjustments to en-
hance the performance of the fine-tuning process. One limitation of the ”in
the wild” (SMA) dataset is that it consists of a single ethnicity. To enhance
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Table 5.1: Data distribution in transfer Learning Preprocessing.

Affective State Very Low/Low High Very High
DAISEE(SMA+OS) 2764 4009 3286
“in the wild”(SMA) 985 1479 833
Newly Created(SMA) 392 610 360

the generalizability of the model, we added a portion of the newly created
dataset to the ”in the wild” (SMA) dataset based on the same 80:20 ratio.
This addition was made to increase the diversity of features in the fine-tuning
dataset. At the same time, we ensured that there was no overlap between the
validation data and the testing data. The sample videos in the ’in the wild’
dataset are approximately five minutes. To maintain consistency with the
other two datasets, the proposed method estimates in 10-second increments,
as done in DAiSEE. After splitting the five-minute video data into 10-second
segments, each segment is evaluated using the original engagement label as
its label.

This preprocessing approach helps maintain a balanced and diverse dataset
for fine-tuning and testing, thereby improving the robustness and perfor-
mance of the final transfer learning model.

5.4.2 Experimental Parameters
In our transfer learning experiments, we used distinct sets of parameters for
training the model on the source dataset (DAiSEE) and for fine-tuning the
model on the target datasets (”in the wild” and the newly created dataset).
For training on the DAiSEE dataset, the parameters were: 500 epochs, 16
hidden units, a dropout rate of 0.1, a batch size of 32, a ’softmax’ activation
function, the ’adam’ optimizer, and early stopping callbacks.

These parameters were chosen to ensure robust training and to prevent
overfitting.

For fine-tuning the target datasets, we adjusted the parameters to ensure
the model could adapt to the new data while preserving the learned features.
The fine-tuning parameters included a learning rate of 0.00001, a ’softmax’
activation function, 500 epochs, a batch size of 32, and early stopping call-
backs.
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5.5 Results for Transfer Learning
We used the ”in the wild” and newly created datasets, split at an 80:20 ratio,
to train an LSTM model as a baseline for comparison. The transfer learning
method mentioned in Experiment 2 was then applied to validate whether
our proposed data processing method positively impacts the model trained
on data from different scenarios.

Table 5.2: Validation results of the model on ”in the wild” and newly created
datasets in LSTM model and transfer learning model.

Engagement Acc. Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

LSTM Model 0.892 0.892/0.931/0.911 0.909/0.875/0.892 0.865/0.881/0.873
Transfer
Learning

(without OS)
0.582 0.565/0.706/0.627 0.780/0.526/0.628 0.299/0.622/0.404

Transfer
Learning (with

OS)
0.578 0.659/0.667/0.663 0.661/0.542/0.595 0.364/0.538/0.434

Table 5.3: Testing results of the model on ”in the wild” and newly created
datasets in LSTM model and transfer learning model.

Engagement Acc. Low
(Recall/Precision/F1)

High
(Recall/Precision/F1)

Very High
(Recall/Precision/F1)

LSTM Model 0.560 0.612/0.693/0.650 0.695/0.522/0.596 0.299/0.479/0.368
Transfer
Learning

(without OS)
0.586 0.600/0.718/0.654 0.746/0.533/0.622 0.325/0.568/0.413

Transfer
Learning (with

OS)
0.593 0.635/0.720/0.675 0.695/0.543/0.610 0.390/0.556/0.458

As shown in Table 5.3, our proposed data processing method SMA with
oversampling TL (with OS), when applied in transfer learning, achieved the
best results. The overall accuracy improved by 3.3%, with the F1 score for
the Low engagement label increasing by 2.5%. Interestingly, in the transfer
learning without oversampling (TL without OS) experiment, although the
overall model accuracy increased by 2.6%, the F1 score for the Low engage-
ment label showed almost no improvement due to the data distribution of
the DAiSEE dataset. In contrast, the oversampled data in DAiSEE resulted
in better model performance. This demonstrates that the Skipped Moving
Average with oversampling data processing method effectively alleviates the
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negative impact of data class imbalance on transfer learning techniques. Fur-
thermore, it improved the overall accuracy of the model by 1% compared to
the model without oversampling. The results presented in this section are
planned to be published in future work.
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Chapter 6

Discussion

6.1 Discussion of Comparative Experiments
In this study, we proposed a data preprocessing method to address imbal-
ances in time-series video data. We also validated several aspects of feature
selection and time-series data processing that required verification. In this
chapter, we will discuss the findings and limitations of our experiments.

• The reliability of our proposed skipping moving average oversampling
method.

The results in table 4.7 demonstrate the effectiveness of our proposed Skipped
Moving Average (SMA) oversampling method in processing class-imbalanced
video time-series data. Unlike SMOTE, which synthesizes new samples in the
feature space around existing minority class samples, our method uses real
data for oversampling, preserving the authenticity and continuity of the video
time-series data.

SMOTE works by generating new instances from existing minority cases,
essentially creating synthetic samples that do not exist in the original data[66].
While SMOTE is widely used in machine learning for balancing datasets, it
has notable drawbacks. One significant issue is the blindness in neighbor
selection, which can disrupt the continuity and natural progression of time-
series data, as highlighted in related investigations[53]. This synthetic nature
of SMOTE-generated data can potentially harm the temporal characteristics
essential for video data analysis. In contrast, our SMA method maintains
the inherent variability and continuity of the original video time-series data.
By using actual data segments for oversampling, our approach ensures that
the generated data are both realistic and contextually consistent. This au-
thenticity is crucial for maintaining the integrity of time-dependent features.
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Our experimental results show that the SMA method not only enhances
the accuracy of the model but also demonstrates stability across different
datasets and conditions. The real-data-based oversampling approach leads
to better generalization and robustness, as it avoids the pitfalls associated
with synthetic data generation. Thus, the SMA method is a reliable and
effective solution for addressing class imbalances in video time-series data.

• The Skipped Moving Average (SMA) values, Standard Deviation, and
Extreme Values features in our proposed method.

We applied the Skipped Moving Average for smoothing the existing data,
and in addition, we incorporated features related to Standard Deviation and
Maximum/Minimum values.

The Skipped Moving Average values are crucial for smoothing the time-
series data. By averaging values over a specified window and skipping certain
intervals, the SMA helps to reduce noise and capture the underlying trend
in the data. The Standard Deviation feature measures the variability or
dispersion of the data points from the mean. In the context of time-series
video data, it helps quantify the fluctuations in engagement levels over time.
High standard deviation indicates greater variability, which can be important
for detecting changes in user engagement and distinguishing between different
states of attention or interest. The Extreme Values feature captures the
minimum and maximum values within a given segment of the time-series
data. These extreme values provide valuable information for identifying the
most significant changes in the student’s body movements over a given period.

Tables 4.12 and 4.13 present the experimental results. The results in-
dicate that the experiments incorporating Standard Deviation and Extreme
Values outperformed those using only the Skipped Moving Average. The test
results demonstrate that the combination of Skipped Moving Average Over-
sampling and Standard Deviation during validation and testing produced
the most favorable outcomes. Specifically, for the low engagement label,
this combination achieved Recall/Precision/F1 scores of 0.462/0.157/0.234.
This marks a notable improvement in the F1 score, which increased by 0.092
compared to the previous experiment’s results of 0.346/0.090/0.142.

While the performance for the high engagement label in this experiment
did not surpass the results from the previous approach, the overall average
performance across all three metrics (Recall, Precision, and F1 score) was
the best among the tested methods. This indicates that the combination
of Skipped Moving Average Oversampling and Standard Deviation not only
improved the accuracy for the low engagement label but also achieved a more
balanced performance across different engagement levels.
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Given that the primary objective of our experiment is to address data
imbalance in engagement estimation, the results achieved with the Skipped
Moving Average Oversampling and Standard Deviation combination strongly
validate the effectiveness and superiority of our proposed method. This ap-
proach ensures that the model can handle imbalanced data more effectively,
leading to more accurate and reliable engagement predictions across various
categories. The improvements observed, particularly in the F1 score for the
low engagement label, underscore the importance of incorporating Standard
Deviation into the oversampling strategy.

However, the results show that the data incorporating only the Standard
Deviation performed better than the data with both Standard Deviation and
Extreme Values. This might be because Standard Deviation is a measure of
the frequency of a student’s body movements within a given time frame,
which has a more significant relationship with engagement during online
learning. The Extreme Values, on the other hand, represent the maximum
amplitude of a student’s body movement within a given period. If a student
has large but infrequent body movements, it could still indicate that the
student is paying attention. Conversely, if a student has low amplitude but
high-frequency movements, it might suggest lower engagement. However, the
inclusion of Extreme Values could interfere with the model’s ability to accu-
rately assess engagement levels, potentially leading to misinterpretation of
the engagement degree. Therefore, this part of the experiment suggests that
the frequency of body movements plays a more crucial role in determining
engagement than the amplitude of those movements.

• Three forms of video time-series data normalization.

Tables 4.16 and 4.17 present the experimental results for three different
normalization approaches: normalizing the entire dataset, normalizing each
video individually, and normalizing each second of video data.

From the experimental results, it is observed that the Per-Second Nor-
malization method yields the best overall performance in terms of recall,
precision, and F1 scores across different engagement labels, particularly in
the “Per-Second SMA+OS”and “Per-Second SMA+OS+SD”configurations.
Additionally, the performance of the data with added standard deviation
surpasses that of the data processed solely with oversampling. This aligns
with previous experimental findings, where the inclusion of the standard de-
viation feature consistently outperforms the use of a simple moving average
alone.

The results also suggest that handling temporal variations more gran-
ularly by normalizing per-second segments is more effective for improving
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model performance. This approach allows the model to capture finer details
in the time-series data, leading to better engagement estimation. However,
when compared to the results in Table 4.13, where SMA+SD (with stan-
dard deviation added but overall normalization applied to the data) showed
superior performance in Recall, Precision, and F1 scores, the Per-Second
Normalization method still demonstrates a more nuanced improvement in
this set of experiments.

• Impact of different time segment data on the model

In this set of experiments, we compared the cosine similarity between six
segments of data that had not undergone oversampling, as well as the re-
sults of comparing each segment with the other five segments’average values.
Additionally, we compared the cosine similarity between segments processed
with only the Skipped Moving Average and those processed with both the
Skipped Moving Average and the added Standard Deviation.

In the data processed with Skipped Moving Average oversampling, we
used the first and fourth segments in the later experiments. The average
cosine similarity between the first segment and the other five segments was
0.9262, while for the fourth segments, it was 0.9290. Notably, the fourth
segment’s similarity of 0.9290 was the highest average cosine similarity among
all groups. In the test data, the cosine similarity of the first and fourth
segments with the other five segments were 0.9866 and 0.9824, respectively,
with 0.9866 being the highest value. Consistent with the results in Tables
2.1 and 4.15, segments with higher cosine similarity achieved better model
testing outcomes.

In the comparison of cosine similarity between different segments after
adding the Standard Deviation, it turns out that the first and fourth segments
had the highest cosine similarity with the other segments, both reaching
0.846. Additionally, when comparing the similarities among all segments,
the first segment again achieved the highest similarity, with a value of 0.927.
This indicates that, after adding the Standard Deviation, the first segment
consistently had the highest similarity, both in direct comparisons and in the
average similarity with other data.

From our subsequent experiments, it is evident that the Skipped Mov-
ing Average oversampling method with the addition of Standard Deviation
produced the highest results for the ”low” label so far, while also achieving
the most balanced overall accuracy. The (Recall/Precision/F1) values for
the three engagement labels were 0.462/0.157/0.234, 0.449/0.504/0.475, and
0.456/0.501/0.470, respectively. These results provide new insights, show-
ing that there is a positive correlation between the cosine similarity among
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different segment data and the model’s training outcomes. Based on the cur-
rent experimental findings, higher cosine similarity appears to lead to better
model performance.

• Performance of the skipped moving average oversampling method on
datasets with different time spans

In the transfer learning phase, the application of our proposed transfer
learning model led to a significant improvement, with the F1 score increas-
ing by nearly 0.25. Additionally, there was a substantial enhancement in the
overall balance of the test results, leading to a more stable and robust per-
formance, particularly in the ”Low” and ”Very High” categories, compared
to the LSTM model. This improvement suggests that the transfer learning
approach effectively enhances the model’s ability to generalize across diverse
datasets and varying conditions.

The results from the transfer learning model on both the validation and
test sets showed consistent performance across various metrics, indicating
that the model trained on the source dataset has successfully adapted to the
different data distributions in the target dataset. This outcome demonstrates
that our proposed Skipped Moving Average Oversampling method is highly
adaptable to various time-series data scenarios. It also confirms the method’s
effectiveness and high stability, making it a reliable approach for handling
diverse data with temporal dynamics.

6.2 Error Analysis
The main purpose of this study is to estimate low engagement levels among
learners during online learning to provide appropriate support when students
lose engagement. Therefore, we analyzed the misclassified videos between the
labels of engagement.

For the misclassification of low engagement labels shown in 6.1, learners’
facial and bodily expressions usually exhibit little to no change, but their
gaze tends to wander. In other words, no noticeable feature changes can be
captured from the video, and subtle gaze changes are also difficult to detect.
As a result, identifying low engagement videos without explicit changes in
facial or bodily expressions becomes particularly challenging.

For the misclassification of high engagement shown in 6.2, two scenarios
exist: one where it is mistakenly classified as very high engagement, and an-
other where it is misclassified as low engagement. The first scenario, where
high engagement is misclassified as very high engagement, is similar to the
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Figure 6.1: Misclassification of low engagement labels.

Figure 6.2: Misclassification of high engagement labels.
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Figure 6.3: Misclassification of very high engagement labels.

misclassification of low engagement. In this case, facial and bodily expres-
sions show minimal changes, but gaze variation is less than in low engagement
misclassification. The second scenario, where high engagement is misclassi-
fied as low engagement, occurs when students listen attentively but exhibit
behaviors like eating or drinking. These excessive physical movements in-
troduce additional feature variations, which increase the difficulty for the
classifier in distinguishing engagement levels accurately.

In cases where very high engagement is misclassified as shown in 6.3,
it often occurs when students are attentively engaged in the online course
content, but redundant facial and bodily feature information leads to misclas-
sification into either high or low engagement levels. For instance, behaviors
such as resting their hands on their faces, adjusting their glasses, eating, or
drinking can result in such errors. In these videos, we observed that the
learners’eyes and attention remained focused on the online course content;
however, these extraneous bodily movements adversely affected the model’s
performance.

Another case involves the influence of individual characteristics, such as
unique facial and bodily expressions or personal behavioral habits, which
affect the model’s performance. Personalized engagement estimation is an
important research direction that warrants further attention.

From the analysis, the misclassification of videos labeled as low engage-
ment is primarily due to insufficient information to accurately estimate learn-
ers’ behavior. In the absence of clear facial and bodily expressions, capturing
corresponding cues such as gaze direction, blinking, and eye movement be-
comes increasingly important. For the misclassification between high and
very high engagement, the main issue lies in the excessive bodily feature in-
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formation, which introduces potential interference with the model’s perfor-
mance. This suggests that, while bodily movements and actions enhance the
performance of deep learning models, threshold adjustments are necessary
to accommodate such anomalies. Additionally, the challenge of personalized
engagement estimation is also significant. Improving the recognition of indi-
vidual characteristics and behavioral habits is a crucial factor in ensuring the
accuracy of foundational research. However, as observed in the analysis of
misclassifications, the difference between high and very high engagement is
often subtle and difficult to distinguish, even through external observation.
This raises the question of how many labels are necessary for engagement
estimation and classification studies, particularly for low engagement. Ad-
dressing this issue will be a vital topic for future research.

6.3 Gap Points for Improvement
From the above discussion, we can see that the proposed SMA method for
processing video time-series data has shown some effectiveness in handling
imbalanced time-series data. Furthermore, it has great potential in terms of
both accuracy and stability when applied to video data of varying lengths
and environments. However, there are still aspects of our experiments that
need improvement.

The increase in accuracy observed after adding the SD feature highlights
the importance of body vibration frequency in detecting learner engagement
during online learning. We should further analyze and validate which body
features have the greatest impact on our research. Additionally, further
research and analysis should be conducted on features related to body move-
ment.

In the comparative experiment of the three normalization methods, the
method that normalized each second of video separately before merging them
into the input data for the deep learning model showed the best performance
in terms of accuracy. However, since the focus of our current experiment is
to verify whether our proposed method is effective in addressing the issue
of time-series data imbalance, we did not conduct further analysis of this
aspect. Based on the results we have presented, normalization techniques
could also serve as a breakthrough point for improving the performance of
our future research.

In this experiment, we applied transfer learning to evaluate the perfor-
mance of SMA on video data of different durations. However, in real on-
line education environments, determining the most suitable duration for en-
gagement research remains an important question. Furthermore, it is worth
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exploring whether our proposed method can adapt to longer and more var-
ied video time-series data. Another key research question for the future
is whether the SMA method can be applied to time-series data prediction
problems.

6.4 Advantages of the Skipped Moving Aver-
age Method

Our proposed method retains the characteristics of time series data while
reducing its sensitivity to noise. The proposed skipped moving average over-
sampling method for time series data not only preserves the temporal char-
acteristics of video data during oversampling but also addresses the issue of
data imbalance in engagement estimation-related research. Moreover, it pro-
vides a reference approach for studies focused on estimating and predicting
actions such as running, badminton, fitness, and other activities. Addition-
ally, it reduces the sensitivity of time-series data to noise. In videos, the
movement of learners inevitably results in inaccuracies in the features of
the current frame, leading to errors in feature extraction. Such noise can
negatively impact estimation results. However, the proposed SMA method
smooths the curve of outliers between adjacent frames, thereby mitigating
the adverse effects of noise on detection outcomes.

The proposed method not only retains the temporal characteristics of the
data but also preserves its authenticity. Most existing data oversampling
methods inevitably compromise the authenticity of the original video time
series data. This poses a significant challenge for ensuring the effectiveness
of the oversampled data in subsequent analysis. Furthermore, the similarity
between adjacent levels of emotional engagement labels higher demands on
input features. Our proposed method not only preserves the authenticity of
the original data but also effectively redistributes the data across different
classes. In addition, our method preserves the authenticity of video time se-
ries data while reducing computational cost and processing time. Although
model-based video oversampling methods can retain data authenticity, their
complexity and high generation cost present unavoidable challenges for real-
time engagement estimation. In contrast, our proposed method not only
retains data authenticity but also reduces the computational cost, ensur-
ing support for future real-time engagement estimation and rapid processing
tasks.

The proposed method addresses the issue of data imbalance to a certain
extent. Although the current results indicate that there is still significant
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space for improvement, it has achieved notable progress, providing an effec-
tive solution to the problem of imbalance in time series data. This method
can be applied to various experimental approaches, such as time series model
training and transfer learning. The generalizability of our proposed method
is relatively high. It does not have specific requirements for the data and can
be applied as long as it is video data. Moreover, the flexibility in selecting
sliding windows enables its application to different estimation/detection tar-
gets and model tasks. Researchers can adjust the parameters according to
the specific requirements of their studies and the data they need to process.

It provides feasibility for predicting engagement levels. One of the advan-
tages of time series estimation/detection tasks is the ability to retain tem-
poral dynamic information, enabling tasks such as action recognition and
behavior prediction. Our ultimate goal is to predict changes in students’
engagement levels during online learning and provide timely support and in-
tervention when a student is predicted to lose engagement. This aims to help
students achieve better learning outcomes during online education. There-
fore, addressing the current challenges in engagement estimation/detection
can also drive future research on engagement prediction.
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Chapter 7

Conclusion

7.1 Summary and Contributions
In this study, we tackled the challenge of class-imbalanced time-series video
data in the context of engagement estimation and detection by introducing a
novel approach: Skipped Moving Average (SMA) oversampling. This method
was specifically designed to address the complexities of video time-series data,
where traditional oversampling techniques may fall short. By focusing on
the unique temporal dynamics of video data, the Skipped Moving Average
oversampling method enhances the accuracy and reliability of engagement
level analysis. This approach not only mitigates the effects of class imbalance
but also preserves the continuity and authenticity of the time-series data,
leading to more precise and consistent results in engagement detection.

Throughout the overall experiment, we implemented the following proce-
dures.

1. RQ1: How can we address the issue of class imbalance in datasets like
DAiSEE?

• Facial and body Features

First, we used facial and body features for learners in online learning based
on existing psychological research on the relationship between internal states
and external expressions. The features include eye information, eyebrow
and lip shapes, facial rotation angles, head and body posture, the distance
between the face and the screen, and body movements. These features were
selected to capture the subtle cues that reflect a learner’s engagement and
cognitive state during online learning sessions.

• Skipped Moving Average Oversampling
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To address the issue of class imbalance in video time-series data, we pro-
posed a novel data processing method known as the Skipped Moving Aver-
age (SMA) oversampling method. This technique was specifically developed
to enhance the quality and balance of time-series data by selectively aver-
aging data within specified intervals, effectively smoothing the data while
preserving essential patterns. The SMA method ensures that the temporal
characteristics of the video data are maintained, leading to more accurate
and robust model performance. This method not only helps in balancing
the dataset but also improves the model’s ability to generalize across differ-
ent time spans and scenarios, making it particularly effective for engagement
estimation in diverse online learning environments.

2. RQ2: How does the proposed method influence the accuracy of engage-
ment estimation?

• Comparison of Moving Average with Standard Deviation and Extreme
Values

To increase the diversity of engagement estimation data, we compared
the results of models tested with data processed using only the Skipped
Moving Average method versus those with the addition of Standard Devia-
tion and Extreme Values. The data with added Standard Deviation consis-
tently achieved the best results. This comparison highlights the importance
of incorporating statistical features like Standard Deviation, which capture
variability and enhance the model’s ability to recognize different levels of
engagement.

• Comparison of Different Normalization Methods

We conducted a comparative experiment to evaluate the effectiveness of dif-
ferent normalization methods: normalizing the entire dataset, normalizing
each video individually, and normalizing each second of video data. The
results showed that overall dataset normalization outperformed per-second
video normalization, while normalizing individual videos yielded the poorest
results.

• Selecting Different Segment Data

Effectively selecting segments from a dataset that do not require oversam-
pling is crucial to ensuring the effectiveness of our method. Experimental
results indicate that segments with the highest similarity to other data tend
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to produce better outcomes. These segment data likely contain represen-
tative patterns and features that are more consistent with the overall data
distribution, thus enhancing the model’s performance when they are used as
a foundation for training without oversampling.

• Model Training

In our experiments, we employed both LSTM and LSTM-FCN models to
evaluate the effectiveness of our proposed methods. The LSTM model consis-
tently outperformed the LSTM-FCN model in testing results. Additionally,
to assess the performance of our proposed method under different conditions,
we implemented a transfer learning framework to test the data processed us-
ing our approach.

3. Q3: Can the proposed method with fine-tuning adapt to different video
datasets?

We applied our proposed SMA method to video data from three datasets with
different time spans and types. Then, we used a transfer learning model to
verify whether SMA could improve the accuracy of data with varying time
spans. The results demonstrated the feasibility and stability of our proposed
method.

Based on the results of the above experiments, it is clear that our proposed
method has made a positive impact on the study of engagement estimation.
Additionally, it has helped to address the issue of class imbalance in time-
series data to some extent.

7.2 Further work
The training and test data duration is an indispensable aspect that drives
this research forward. Making full use of existing public datasets is also an
important issue. Therefore, testing our proposed methods on new datasets in
different scenarios and environments that more closely resemble real online
education settings will be an important focus for future work.

The length of individual video samples within a dataset is also a critical
factor to consider. Using one second unit Skipped Moving Average may be
too short for real online education scenarios, as changes in learner engagement
are unlikely to occur frequently within a single class session. Therefore,
determining the appropriate window size for the Skipped Moving Average
oversampling method is an important aspect to explore further. Additionally,
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deciding how frequently to report engagement levels to both teachers and
students is another significant research question that needs to be addressed.

In this experiment, we adopted a set of computer vision-based facial and
body features. While we achieved some success in our experiments, under-
standing the relationship between each specific facial and body information
and the learner’s internal state remains an important area for further inves-
tigation. If we can identify which features are most effective at capturing the
learner’s internal state, there is significant potential to further improve the
accuracy of our model through more targeted feature.

Furthermore, designing and facilitating learning support using the esti-
mation results is a key direction for future research. Since the ultimate goal
of detecting learner engagement in online learning is to improve the quality of
education, future work should focus on creating an online educational sup-
port system that provides real-time engagement feedback to both learners
and instructors. This system would enable learners to better manage and
monitor their own progress, while also allowing instructors to adjust their
teaching content and quality based on engagement feedback, leading to a
more effective and personalized educational experience.

The current state of generative AI for video-to-video synthesis involves
significant advancements in creating videos by learning temporal and spa-
tial features. Therefore, using existing datasets as a foundation to generate
similar videos with the same labels for data oversampling is also a poten-
tial direction for future development. However, ensuring that the generated
videos meet our requirements is a critical prerequisite. Research has shown
that engagement levels with similar labels often exhibit very similar facial
and body information. Thus, in the generated videos, ensuring that they
meet the current requirements with accurate label information is essential.
Additionally, the associated human costs and the computational costs of com-
plex models involved in this process are inevitable factors that need careful
consideration.

Additionally, it is worth noting that during our experiments, we observed
that the processing speed for tasks such as data processing and model training
was nearly real-time. This is a significant improvement in addressing the issue
of delayed feedback[54] in learner engagement. It also highlights the broader
applicability of our proposed method.
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