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Stability Ensured Deep Reinforcement Learning for Online Bin Packing

Ziyan Gao and Nak Young Chong

Abstract— The Online Bin Packing Problem (OBPP) aims to
determine the optimal loading position for each incoming item
to maximize bin utilization, a critical challenge in various indus-
trial applications. While many studies have focused on learning-
based policies and heuristic approaches to enhance packing
efficiency, stability constraints have largely been overlooked.
In this work, we propose a computationally efficient method
to validate stable loading positions for incoming items without
requiring exact knowledge of their physical properties, such as
mass. Our approach leverages the concept of Load-Bearable
Convex Polygons (LBCPs), which provide substantial support
forces to ensure structural stability. We further integrate our
static stability validation framework into a state-of-the-art deep
reinforcement learning (DRL) model, guiding it to learn physics-
feasible packing strategies. Experimental results demonstrate
that our stability-aware DRL model achieves comparable pack-
ing efficiency while ensuring robust bin stability, offering a
significant advancement in practical OBPP applications.

I. INTRODUCTION

The Bin Packing Problem (BPP) is a classic optimization
problem in computer science and operations research. It
involves packing a set of items of varying sizes into a
finite number of bins or containers of fixed capacity, while
trying to minimize the number of bins used. It assumes that
all items are known beforehand before packing begins. On
the other hand, the Online Bin Packing Problem (OBPP)
presents unique challenges compared with conventional BPP
as items arrive sequentially, requiring immediate decisions
without knowledge of future items. This complexity makes
traditional heuristic-based approaches insufficient for optimal
packing [1]. As a result, reinforcement learning (RL) ap-
proaches have gained traction as a promising alternative for
optimizing bin utilization.

Recent research [2]–[6] has demonstrated that reinforce-
ment learning (RL) techniques can outperform heuristic meth-
ods by learning the packing policies in a trial-and-error
fashion. These models iteratively improve their decision-
making process, enabling them to adapt to diverse item distri-
butions and packing constraints. For example, Xiong et al. [2]
introduced GOPT, a transformer-based RL framework that
significantly improves bin utilization compared to traditional
heuristic-based approaches.

While maximizing bin utilization is crucial, another critical
aspect of OBPP is ensuring bin stability during and after each
packing operation. In industrial applications, unstable packing
configurations can lead to safety risks, inefficient space usage,
and logistical challenges. Despite the importance of stability,
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a robust yet computationally efficient solution remains an
open problem in 3D online bin packing. Zhao et al [3]
conducted a representative study where they used a set of
rules designed to validate the geometric relationship between
a newly packed item and its supporting items, to assess
if the newly packed item leads to bin collapse. However,
none of the rules considered in [3] guarantees the stability
of the bin. Recent works have started exploring stability
constraints beyond simple geometric fitting. Some approaches
leverage physics-based modeling, where physical constraints
such as friction, weight distribution, and structural load-
bearing properties are explicitly formulated to assess stability
[7]. While these methods show promise, they often suffer
from high computational costs, limiting their practicality for
large-scale real-time applications.

In this paper, we investigate the challenges inherent to
bin stability and propose a novel learning-based solution that
integrates deep reinforcement learning with explicit stability
validation mechanisms. Our approach seeks to bridge the
gap between efficient bin utilization and stable packing
configurations, improving the bin utilization while ensuring
the structural integrity of the stacked items.

To achieve this, we introduce a stability validation method
based on the concept of Loading Bearable Convex Polygons
(LBCPs). LBCPs are defined as convex polygons parallel to
the ground level, located at different height levels inside the
bin. Under the rigid body assumption, any point within an
LBCP can bear an infinite gravitational force, ensuring that
the packed items remain stable even as additional items are
introduced. By leveraging LBCPs, our approach provides a
lightweight yet effective method for assessing stability while
maintaining computational efficiency.

The assumptions made in this works are listed bellow.
• All items are cuboidal objects.
• All items are rigid, which means no deformation occurs

due to the external force.
• No lateral forces exist between items, ensuring that

stability is solely determined by vertical load-bearing
properties.

II. RELATED WORK

Early research on bin stability validation primarily focused
on mechanical equilibrium and vertical support constraints.
One of the foundational studies by Ramos et al. [8] introduced
a set of static mechanical equilibrium conditions applicable
to three fundamental scenarios: when an item rests directly
on the level ground, when it is fully supported by another
item beneath it, and when it is partially supported by multiple
underlying items. These early methods provided a theoretical
basis for evaluating structural integrity, ensuring that every



placed object had sufficient support to prevent instability.
Expanding on this work, Gzara et al. [9] incorporated vertical
support constraints, emphasizing the necessity for items to be
adequately supported at their corners or across a significant
portion of their base. Their study also introduced a graph-
based load tracing approach, which enabled a more system-
atic weight distribution across pallets, improving real-world
stability assessments.

As the complexity of bin packing problems increased,
researchers developed more advanced mathematical models
to enforce stability constraints in 3D bin packing. Zhu et
al. [10] proposed a stack-based integer programming ap-
proach that enforced strict support constraints to prevent tip-
ping and improve stability. This method effectively enhanced
the structural integrity of packed items by ensuring each
item was placed in a stable equilibrium. Similarly, Liu et
al. [11] introduced force-balancing equations for structural
stability in block stacking, accurately identifying weak points
in stacked assemblies, such as Lego constructions. While
these mathematical approaches significantly improved stabil-
ity analysis, they required high computational costs, limiting
their scalability in real-time applications.

With the rise of machine learning and reinforcement learn-
ing (RL) techniques, researchers began to explore how to
learn optimal stacking strategies while maintaining stability
constraints. Wu et al. [12] proposed an iterative action mask-
ing learning approach for RL-driven palletization, allowing
robotic systems to optimize stacking decisions in real-time.
However, despite its effectiveness, this approach exhibited
difficulties in generalizing to out-of-distribution scenarios,
making it less reliable for diverse packing conditions. Build-
ing on this, Zhang et al. [13] introduced a reinforcement
learning framework with online masking inference, training
models to dynamically adjust stacking configurations based
on gravity and rigidity constraints. By integrating physi-
cal constraints directly into the RL training process, this
method improved stacking adaptability compared to previous
learning-based solutions.

Beyond learning-based approaches, recent research has
integrated real-time physics simulations to provide more
accurate and dynamic stability assessments. Mazur et al. [7]
introduced physics-based simulations for cargo loading sta-
bility, demonstrating how traditional static models often over-
estimate or underestimate actual stability when compared
to dynamic evaluations. Their findings highlighted a crucial
limitation in previous approaches: static stability checks alone
may not be sufficient to ensure the long-term integrity of a
packed bin under real-world conditions.

Structured data-driven approaches have also gained traction
in stability validation research. Zhao et al. [14] proposed
a constrained deep reinforcement learning framework that
leveraged an adaptive stacking tree to recursively update mass
distribution and validate the stability of each packed item.
While this method achieved high performance in simulations,
it relied on the assumption that the mass of each item is
known and evenly distributed, which may not hold in real-
world scenarios. Zhou et al [15] proposed the concept of

”empty map”, sharing the same dimension as the heightmap,
to record if there exists the wasted spaces for each pixel po-
sitions. The pixel positions of no wasted spaces are expected
to offer the support forces to stabilize the upcoming item.
The authors experimentally evaluated their stable checking
method in simulation and found it outperforms the baseline
method [8]. In comparison to the approach introduced in this
study, this method adopts a conservative stance, which limits
learning efficiency.

III. STRUCTURAL STABILITY BASED PACKING

This section first outlines the problem state. It then intro-
duces load-bearable convex polygons (LBCPs) for stability
validation. Then, it presents a stability-ensured deep rein-
forcement learning (DRL) framework that optimizes packing
policy while ensuring safe loading.

A. Problem Statement

Imagine a container with specified dimensions W ×D ×
H and a set of items, each characterized by dimensions
{O1,O2, ...,Oi, ...,Om},Oi = (wi, di, hi), wi < W, di <
D,hi < H . These items are cuboidal in shape with varying
sizes, and although their weights are unknown, the maximum
displacement of each item’s center of gravity (CoG) from
its geometric center is known. An agent observes only one
item and is able to pack single item each time. Following the
setting described in [2], items can be rotated around the z
axis by 90◦. The loading position of the ith item is noted as
Li = (xi, yi, zi), and Ii = (Oi,Li) is used to describe the
item’s state inside the bin.

The primary objective is to determine a sequence of
loading positions {L1,L2, ...,Li, ...,Lm} that maximizes the
utilization of the container while ensuring the stability of
the assembled load to prevent collapse. This problem entails
sequential decision-making under uncertainty, balancing op-
timal space utilization with the rigorous constraints imposed
by load stability.

B. Structural Stability

1) Static Equilibrium: Given the item Oi with loading
position Li, the item geometric center w.r.t the bin coordinate
system can be calculated and is represented by gi. We assume
that the center of mass ci of the item is not overlaid with the
gi, and the deviation from geometric center is proportional
to the item dimension. Mathematically, if the max deviation
ratio is δCoG, then, the range of possible locations of the
center of mass is represented by Eq.

Ci = {gi +

δwwi

δddi
δhhi

 , |δw|, |δd|, |δh| ≤ δCoG} (1)

Stemming from Newton’s laws of motion and classical static
equilibrium, in the case that all support forces are parallel to
each other and perpendicular to the horizontal plane, item Ii
is considered statically stable if its ci is located within the
support polygon [8]. This conclusion can be easily extended
to our assumption such that item Oi is considered statically
stable if the bounds of CoG is inside the support polygon.



Fig. 1. Illustration of instable case: the item on top may cause the stack
collapsing due to the lack of substantial support beneath the region marked
as load unbearable region.

Please note that the deviation of CoG of the item along z-axis
does not affect the stability.

To calculate the support polygon for Inew, we need
to find all items that support item Inew, we use Bt =
{I1, I2, ..., Ii, ..., Im, } to represent the current bin state.
Then, all regions of support for the new item Inew is
represented by {Inew ∩ Ij |zj + hj = znew, Ij ∈ Bt}. The
support polygon is the region inside the smallest convex
hull encompassing all regions of support, which can be
represented by CH({Inew ∩Ij |zj +hj = znew, Ij ∈ Bt}}).

However, the implicit assumption of this method is that any
point inside the support polygon can resist any magnitude of
gravitational forces. This assumption can be easily violated
in multi-layer (more than two) stacking scenario. Fig. 1
illustrates the case that the support polygon may fail to
bear the gravitational forces by the new item since there
is no structural support beneath the item in the middle.
Thus, the geometric intersection alone cannot guarantee true
load-bearing capacity, and thus the item can topple despite
appearing stable in a purely geometric analysis.

2) Load Bearable Convex Polygon: In this work, we intro-
duce the concept of load bearable convex polygons (LBCP)s.
We use Pt to refer the set of LBCP in the current bin state
Bt. Basically, LBCPs is a set of convex polygons that are
parallel to the horizontal plane and located at different height
level inside the bin. The height level of the LBCP is at the
top surface of each item. We use (P△

i , hc
i ) to represent a

specific LBCP where hc
i = zi + hi. If the ground of the

bin is homogeneous, then, the ground can be considered as
one specific LBCP and located at the bottom of the bin.
The LBCP at the level ground is represented by (P△

0 , 0).
Excluding the LBCP at the level ground, the number of
LBCPs is equal to the number of packed items, in other
words, new LBCP will be generated after packing the new
item.

An essential characteristic of LBCPs is their ability to
support any gravitational forces at any point within these
polygons. Apart from the LBCP at ground level (P△

0 , 0),
other LBCPs are formed based on one or more existing
LBCPs to maintain this property.

Lemma 3.1: If a cuboidal item is placed stably on level
ground, then its entire top surface is a load-bearable polygon.

Proof: Firstly, an item is considered statically stable if
its (CoG) lies within the support polygon. For an item resting
on the level ground, the support polygon is simply the item’s

base in full contact with the ground plane. Since the base
fully contacts the ground, any load placed on the item’s top
surface is transmitted vertically downward through the item to
the ground. The ground, in turn, provides equal and opposite
reaction forces that prevent tipping or toppling. In other
words, placing a load on any point of the top surface will not
shift the item’s CoG outside its support polygon. Thus, the
top face can fully bear that load without overturning. Hence,
the item’s top face is indeed a valid load-bearable polygon.

In this work, the item stability validation method is also
based on the inclusiveness relationship between the CoG of
the new item and its support polygon, however, the substantial
difference with [8] is that the support polygon is calculated
based on LBCPs, which can be represented by Eq. 2

P△
new = CH({Inew ∩P△

i |znew = hc
i ,P

△
i ∈ Pt}) (2)

where, Pt = {P△
0 ,P△

1 ,P△
2 , ...,P△

i , ...,P△
m}.

Theorem 3.2: The support polygon calculated based on the
load bearable convex polygons is also a load bearable convex
polygon.

Proof: Since the support polygon is calculated based
on all intersected regions between Inew and LBCPs. Based
on the definition of LBCPs, any point inside the intersected
regions can bear any magnitude of gravitational forces.
Meanwhile, since the resultant force of two support forces is
located in the line segment between these two lines of forces
and parallel to these forces, the net force is always located
inside the smallest convex hull of all intersected regions.

Therefore, given the object dimension Onew, loading posi-
tion Lnew and maximal deviation of the CoG of the item, the
item is considered as stable if the support polygon calculated
based on Pt contains all deviations of the CoG.

If the new item is packed, a new LBCP will be created,
sharing the same convex hull as the support polygon, and be-
ing located on the top surface of the new item. As illustrated
in Fig. 2, the quantity of LBCPs grows with an increase in
the number of items packed.

C. Stability Ensured Deep Reinforcement Learning

In this work, we utilize GOPT [2], a state-of-the-art
model known for its superior space utilization, to address
the stability-ensured online bin packing problem. Specifically,
GOPT is an actor-critic deep reinforcement learning (DRL)
model that incorporates two key components: the packing
heuristics (refers to as the packing generator in [2]), which
generates a fixed-length set of Empty Maximal Spaces (EMS)
[16] to define feasible placements, and the Packing Trans-
former, which serves as the backbone of the DRL framework
by capturing spatial relationships among EMSs and item.

The stability of each placement is achieved in this way:
firstly, the set of placement candidates is extracted based on
the packing heuristics, all candidates will pass to the static
stability validation module to generate the stability mask.
Meanwhile, all candidates along with the dimension of the
new item will be forward into GOPT. Then, the distribution of
actions for packing is derived through the softmax function,



Fig. 2. Illustration of Loading Bearable Convex Polygons Pt (The ground is also a LBCP but hidden for clarity purpose). With the increase of the number
of the packed items, Pt increases incrementally.

Fig. 3. Proposed framework for stability ensured online bin packing. The guarantee on bin stability is through the structural stability validation module
that filter instable placements.

which relies on the element-wise product of the GOPT output
and the stability mask. Finally, new LBCP will be appended
to Pt+1 after finishing the packing operation.

IV. EXPERIMENT

We first conduct the experiment validating the efficiency
of the proposed item stability validation method. Then per-
formance of the trained DRL model is demonstrated on the
RS Dataset [3].

A. Structural Stability

In this investigation, our goal is to assess the efficiency of
the proposed approach. The data set is derived from the RS
dataset [3] along with a modified version referred to as RS
dataset (same height). In the RS dataset, each sequence of
items is selected without replacement from a collection of 64
items with varying sizes. In contrast, in the RS dataset (same
height), the sequences are also sampled without replacement,
but from a subset of the RS dataset where all items have an
identical height, specifically 0.12 meters.

The baseline for validating the stability is based on adaptive
stacking tree [3] since it attains the state of the art accuracy
while has the computational complexity O(NlogN) where

N is the number of the already packed object. Specifically,
the Adaptive Stacking Tree is a data structure designed
to efficiently update mass distribution. The tree is updated
in a top-down fashion, meaning stability updates propagate
downward in an efficient manner. Conversely, our approach
possesses a computational complexity of O(N). To further
enhance the computational efficiency, we align the LBCPs
with the height map recorded by the ceiling camera. Then,
the support regions are easily determined by: 1. Retrieving
all points within the window defined by the loading position
and item dimensions from the height map. 2. Identifying
the points within that window nearest to the ceiling camera.
Consequently, the computational complexity is decreased to
O(k), where k is a fixed constant.

We created 1000 sequences consisting of 500 items each.
A random packing strategy is used, which chooses a stable
loading position from a predefined set of possible positions.
In a sequence of items, we initially verify the available
loading positions for the next item. If there are no stable
loading positions, the item is disregarded, and the next item is
then checked for stable loading positions. If a stable position
is found, a random policy will select one of these positions
for packing the item. This routine continues until the entire



Fig. 4. Time cost for completing the packing of the whole sequence.

Fig. 5. Reward on the test set that consists of 2000 random sequences of
items.

sequence has been processed. The time required to pack the
entire sequence is illustrated in Fig. 4.

Overall, the proposed method is at least 4 times faster than
the baseline method. The efficiencies of the baseline method
for dealing with different dataset are significantly different.
The time cost becomes even higher in RS datsaset(same
height), while our method is not affected by the variation
of the dataset.

B. DRL Model Performance

The training of the GOPT model with structural stability
validation is done by using Tianshou framework [17]. We
adopt the same hyperparameter setting as [2], and the dataset
for training and testing are based on RS dataset. We generated
2000 sequences of items for testing. Fig. 5 reports the model
performance on the test set in the phase of training. The total
number of training steps is about 30 million, and finally it
achieves the bin utilization 73.6% with standard deviation
7.1%, which is slightly lower than the performance of the
original GOPT (76.1%). However, thanks to the stability val-
idation module, every placement guarantees the item stability.

V. CONCLUSION

In this paper, we addressed the fundamental challenge
of ensuring stability in OBPP by integrating load-bearable
convex polygons (LBCPs) into a deep reinforcement learning
framework. Unlike traditional heuristic methods, which pri-
oritize space utilization but overlook stability, our approach
effectively balances packing efficiency and physical feasibil-
ity. By leveraging LBCPs, we provide a lightweight, scalable,
and computationally efficient stability validation technique
that ensures that each placement decision maintains structural
integrity.

Experimental results demonstrate that our method achieves
comparative bin utilization while satisfying the stability con-
straint. The proposed stability-aware DRL model offers a
practical and generalizable solution for real-world warehous-
ing, logistics, and robotic packing applications.

Future work may explore incorporating additional physical
constraints, such as friction and dynamic stability, and extend-
ing the model to non-cuboidal objects to further enhance its
applicability in industrial automation.
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