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Abstract

Urban parks play a vital role in enhancing the quality of life, particularly in rapidly
urbanizing countries like China, where the rapid expansion in the quantity of
urban parks has not always been accompanied by a corresponding improvement
in their quality. Poorly designed parks not only fail to fulfill their intended
purposes but can also result in resource wastage and dissatisfaction among users.
This dissertation addresses these challenges by focusing on the Landscape Visual
Quality (LVQ) of urban parks in China, providing an evidence-based framework for
improving both the aesthetic and functional aspects of park design while catering
to the unique needs and preferences of Chinese users.

The research is structured into three interrelated studies, each contributing
to a comprehensive understanding of how LVQ impacts human perception, visual
behavior, emotions, and stress recovery:

Study 1 develops a comprehensive evaluation system for assessing urban park
LVQ using multidimensional visual indicators, including eye-tracking data, image
segmentation, and spatial feature indicators. Through GEE logistic regression
models, the study identifies key positive and negative factors influencing seven
perceptual dimensions, including beauty, comfort, color, complexity, liveliness,
greenness, and safety. Integrating these multidimensional visual indicators, a
generalized estimating equations (GEE) logistic regression model demonstrated
superior performance over existing traditional models focusing only on spatial
features, facilitating more accurate evaluations of LVQ perception. Moreover,
herb plants (eye-tracking indicator), water ratio (image segmentation indica-
tor), and number of materials (spatial feature indicator) were the most positive
factors affecting human perception. Isolated planting style positively impacted
the perception of greenness, and sky ratio negatively correlated with beauty
perception. Additionally, openness levels of 20–80% enhanced beauty perception,
while openness above 80% decreased liveliness but improved safety perceptions.
Shrub species diversity positively correlated with perceptions of greenness and
complexity, whereas single and dense shrub arrangements diminish perceptions of
greenness and liveliness. Overall, this study provides valuable insights for urban
planning at the design stage to enhance decision-making and visual quality of
urban parks, thereby contributing to the establishment of more sustainable urban
development strategies.

Study 2 focused on the emotional dimension of LVQ. This study quantifies how
seven landscape elements influence emotional responses and visual behavior. Herb
plants most effectively promote both psychological and physiological emotional
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responses, making them the most emotionally beneficial natural element. Shrubs
and artificial objects are associated with negative emotional responses, requiring
careful proportion and spatial arrangement. Flowering trees simultaneously de-
crease pulse rate and increase skin conductance, indicating a compound emotional
state of calmness and alertness. To support emotional restoration, designated
restorative zones should minimize artificial elements and incorporate water features
and herb plants. By bridging perception and emotion, this study provides practical
recommendations for urban park design to foster positive emotional experiences.

Study 3 examines the potential effects of urban park landscapes on children’s
emotional and stress recovery, contributing child-focused perspectives to the LVQ
framework. The findings suggest that LVQ may be associated with landscape
element proportions and spatial openness. For children, while greenery remains
important, spatial openness seems to play a more prominent role in shaping chil-
dren’s emotional responses. Landscape features may impact children’s emotions,
particularly calmness, happiness, and disgust, suggesting that thoughtful spatial
arrangements and visual balance could contribute to child-friendly landscape
design.

This research synthesizes findings from the perceptual, emotional, and stress
recovery dimensions of LVQ to develop a comprehensive set of optimization
guidelines for urban park design. These guidelines integrate evidence-based
recommendations across multiple dimensions, offering a practical framework for
balancing aesthetic, emotional, and functional objectives in park planning. By
aligning user-centered insights with multidimensional evaluation methods, this
dissertation provides urban planners and landscape designers with actionable tools
to create inclusive, visually engaging, and emotionally supportive urban parks.
This contribution not only advances the understanding of LVQ but also supports
the broader goal of sustainable urban development, addressing the well-being
priorities of diverse user groups, including children, in rapidly urbanizing regions
like China.

Keywords: Urban park, Virtual reality, Eye-tracking, Human perception,
Emotion responses, Physiological signal.
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Chapter 1

Introduction

1.1 Research background

Urban green spaces, especially urban parks, are essential components of urban
ecosystems and play a crucial role in promoting human health and well-being [1].
Against the backdrop of rapid urbanization, these green spaces not only provide
necessary contact with nature for urban residents but also help mitigate urban
heat island effects [2], improve air quality, and reduce noise pollution levels [3].
Numerous studies have shown that regular contact with urban green spaces can
alleviate psychological stress [4], reduce anxiety [5] and depression symptoms [6],
promote physical health [7], and increase social interactions [8], thereby enhancing
the quality of life and social welfare. However, the rapid expansion of urban parks
in China has not been accompanied by corresponding improvements in quality.
Poorly designed urban parks not only fail to achieve their intended effects but can
also lead to resource wastage and social issues. For instance, research indicates
that excessive enclosure in parks may reduce people’s sense of security [9], and
park features can influence crime rates [10]. Moreover, disparities in the quality of
urban parks across different regions exacerbate social inequality, posing challenges
to achieving public health equity [11,12]. Therefore, assessing the visual quality of
urban parks at the early stages of urban planning is particularly important [11].

Although landscape visual quality (LVQ) has attracted increasing scholarly
attention, several key challenges persist in current research. Firstly, LVQ research
remains limited in rapidly urbanizing regions such as Asia, despite the alterations
in urban green space planning and use patterns driven by accelerated development
[13]. Existing studies have largely focused on Western contexts, with limited
attention to how different urban development patterns and cultural values may
shape park use and perception [?, 14–17]. Secondly, traditional LVQ evaluation
methods—such as the scenic beauty estimation method [18], analytic hierarchy
process [19], and semantic differential technique [20]—rely on subjective interpre-
tation and specialized terminology, often leading to inconsistency and measurement
bias [21]. Moreover, the inherent complexity of human visual perception makes
it difficult to accurately capture images, thereby limiting the precision of LVQ
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assessments [22]. Building robust classification models based on assessment results
to better understand and categorize human perceptions of landscapes remains
a key challenge. Therefore, improvement of existing assessment methods and
development of strategies to convert the assessment results into actionable insights
are necessary to ensure that urban park designs meet the expectations and needs
of future urban residents.

In addition to visual perception, emotional experience constitutes a critical
dimension in evaluating the LVQ of urban parks. The compact city approach
and densification have reduced green space quality and increased the risk of low-
quality green spaces, thereby undermining urban livability [23]. The decline in
environmental experience not only affects ecological balance but may contribute
to increased psychological stress among urban residents and weaken their emo-
tional regulation capacity [24]. A growing body of research has recognized the
therapeutic potential of well-designed urban parks, highlighting their ability to
enhance emotional well-being [25, 26]. To better understand how environmental
features influence emotional states, scholars have employed various assessment
methods, including self-report surveys, physiological signal monitoring, and facial
expression analysis [27–29]. Despite advancements in emotion measurement,
research on emotional responses in urban parks continues to rely on indirect
data acquisition methods. Visual information plays a crucial role in variations
in landscape perception [30]. However, standardized frameworks and quantitative
methods linking visual behavior to emotional responses remain underdeveloped.
An integrated approach combining multimodal emotion assessment and visual
behavior analysis is needed to develop standardized frameworks linking park
elements to emotional responses.

While most studies on LVQ focus on adult users, children—who are sensitive
to environmental stimuli—remain an underrepresented group in current research.
However, evidence suggests that children perceive landscape elements differently
than adults. For instance, a photo-projective study comparing perceptions of a
river environment found marked differences between children and adult residents,
highlighting the need for age-specific design considerations [31]. Moreover, al-
though nature exposure has been linked to improved emotional well-being and
stress regulation in children, most research has concentrated on adults [32, 33].
Studies have demonstrated that green environments can support children’s creativ-
ity, social interaction, and emotional development [34], yet urban planning often
fails to prioritize their needs [35]. In addition, conventional methods for assessing
children’s emotional states—such as questionnaires, interviews, and parental obser-
vation—often rely on indirect inference and may not capture real-time emotional
responses. Empirical studies directly measuring children’s emotional responses to
landscape composition remain limited.
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1.1.1 Urban park landscapes

The definition of urban parks varies across different academic disciplines due
to their broad scholarly backgrounds, leading to diverse perspectives on what
constitutes a park. Additionally, the dynamic evolution of parks complicates
the establishment of a universally accepted definition. Historical perspectives
have contributed to the richness of the concept, but a consensus remains elusive.
Historically, the notion of urban parks has evolved from mere recreational spaces
to complex entities that embody the interplay of nature and urban culture. In
the 1920s, J.C. Loudon advocated for parks as a means to enhance the rational
attributes of society’s lower strata [36]. Later, in 1938, Holger Blom, a Swedish
landscape architect, described parks as "a re-creation of nature on the foundation
of existing natural conditions, combined with cultural elements" [37]. M. Laurie,
reflecting on the 19th century, viewed urban parks as a natural retreat within
industrial cities, suggesting their role as green lungs amidst urban sprawl [38]. In
China, the conceptualization of parks began with Mr. Chen Zhi in 1928, who is
considered a pioneer of Chinese landscape architecture. He categorized parks under
’Community Landscape’, a sub-discipline of Landscape Architecture, emphasizing
their educational, health, and safety functions [39]. By 2003, scholars like Meng
Gang and Li Lan were defining urban parks from a functional perspective, seeing
them as naturalized spaces designed for recreation and various other community
services [40]. This functional perspective was formalized into a national standard
by the Ministry of Housing and Urban-Rural Development in 2017, which described
parks as publicly accessible green spaces with facilities for recreation and areas
serving ecological and aesthetic purposes.

Today, urban parks are recognized for their multifunctional roles, catering not
only to recreation but also to community safety [9], health [12], and ecological
sustainability [2, 3]. These parks are integral to urban infrastructure, serving as
critical components for enhancing urban life quality through physical comfort,
psychological relief, and facilitating social interactions [4,8]. The extensive benefits
of interacting with nature, documented in numerous studies, highlight the crucial
role of urban parks in mitigating urban heat island effects, purifying the air, and
providing a respite from the bustling city life [2, 3]. As urban areas continue to
evolve, the design and functionality of parks remain pivotal in shaping healthier
and more sustainable urban environments.

1.1.2 Landscape visual quality

Visual perception plays a decisive role in how individuals evaluate the landscape
visual quality (LVQ) of urban parks, with studies indicating that visual information
accounts for 76% of urban park satisfaction [30, 41]. LVQ is defined as the
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interaction between landscape attributes and human perception, shaping how indi-
viduals experience and assess urban environments [42]. A deeper understanding of
visual perception can inform strategies to enhance park design and optimize user
experiences [43]. Urban parks consist of diverse landscape elements that integrate
both aesthetic and functional properties, and their evaluation, based on perceptual
and qualitative judgments, serves as a critical foundation for urban planning and
design decisions.

Despite growing recognition of the role of urban landscapes in mental health
promotion, research on the specific mechanisms through which green spaces influ-
ence psychological well-being remains limited [44]. This knowledge gap has led to
oversimplified planning approaches, where urban green spaces are often evaluated
solely based on size and coverage, without fully considering their actual usability
and engagement potential. As a result, some urban parks become underutilized
“green seen but not frequented” spaces, failing to provide the intended psychological
benefits or a sense of safety for visitors [45]. This highlights the need for more
evidence-based design strategies that consider both visual and experiential quali-
ties of urban parks. The COVID-19 pandemic further underscored the importance
of well-designed and accessible urban landscapes, bringing environmental justice
and spatial accessibility to the forefront of urban planning [46]. The increased
reliance on public green spaces during lockdowns highlighted existing inequalities
in park distribution, accessibility, and quality, challenging conventional urban
planning paradigms [47]. These circumstances stress the urgency of rethinking
urban green space design, ensuring that parks are not only visually appealing
but also psychologically restorative and equitably accessible. Therefore, urban
planners and researchers must adopt a more comprehensive approach to landscape
evaluation, integrating visual, perceptual, and emotional dimensions to enhance
the effectiveness of urban green spaces in promoting public well-being.

1.1.3 User perception and landscape visual quality

As urban populations grow, urban designers often prioritize the physical layout of
spaces while overlooking their psychological and emotional impact. This oversight
has led to the creation of visually appealing but emotionally disconnected environ-
ments that fail to foster engagement or enhance users’ well-being [48]. For instance,
public dissatisfaction with Tadao Ando’s concrete café in Manchester’s Piccadilly
Gardens (2016) and design issues with London’s South Bank public spaces in the
late 20th century highlight how urban landscapes that neglect users’ psychological
and functional needs can lead to costly redesigns and resource wastage. To create
effective urban spaces, designers must move beyond aesthetic considerations and
focus on how landscapes facilitate emotional recovery and visual interaction. This
requires an evidence-based approach, where user data informs design decisions,
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recognizing that humans are active agents in shaping their built environment.
Increasingly, landscape perception is studied through physiological, psychological,
and sensory dimensions [49, 50]. In the assessment of scenographic spaces, the
physical environment does not merely serve as a backdrop but actively shapes
emotional and perceptual experiences. Contemporary urban design increasingly
integrates digital technologies and human-centric methodologies to capture user
feedback and optimize spatial planning. By leveraging advanced data collection
techniques, designers can analyze emotional responses, visual experiences, and spa-
tial interactions with greater accuracy (Figure 1.1). Such an approach ensures that
urban spaces fulfill their intended functions, enhancing usability, user satisfaction,
and the LVQ of urban environments.

Figure 1.1: Landscape design workflow

1.1.4 Interdisciplinary interactions in landscape design

With the increasing emphasis on human-centered urban design, there is a growing
need to understand how users perceive and interact with landscape spaces. Tra-
ditional evaluation methods rely on questionnaires and expert assessments, which
are often subjective and lack real-time behavioral data. Recent advancements in
computer science, VR, and physiological sensing technologies have provided new
tools for quantifying user perception and optimizing landscape design. These inter-
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disciplinary innovations allow researchers to create immersive, data-driven environ-
ments where users’ visual attention, cognitive responses, and physiological states
can be accurately measured [51]. Figure 1.2 presents a conceptual model for captur-
ing human spatial perception data across multiple dimensions in VR. Within visual

Figure 1.2: A conceptual model of human multidimensional perceptual feedback

perception analysis, eye-tracking technology provides real-time data on users’ gaze
behavior and fixation points, offering insights into visual preferences and attention
distribution in urban spaces. By integrating eye-tracking with physiological
sensing, it is possible to examine how different landscape elements influence users’
emotional and cognitive states, providing empirical evidence for landscape design
optimization [52]. In physiological response measurement, advanced biometric
sensors capture synchronous data on heart rate, electrocardiography, electrodermal
activity, respiration, and body temperature. These physiological indicators, when
combined with eye tracking, provide a deeper understanding of users’ emotional
arousal and stress levels in response to different urban landscape settings [53, 54].
This study leverages eye-tracking and multidimensional physiological data to assess
users’ cognitive and emotional responses in urban landscapes. By integrating
VR-based simulations, researchers can evaluate how spatial configurations affect
perceived comfort, engagement, and well-being. The ability to analyze real-time
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user interactions in a controlled, immersive environment allows designers to fine-
tune spatial arrangements before actual construction. This approach represents a
shift towards evidence-based, data-driven design, bridging the gap between human
perception research and practical urban landscape planning. Ultimately, these
advancements provide a foundation for creating urban environments that are both
functional and emotionally engaging, optimizing the dynamic interaction between
people and their surroundings.

1.2 Research objectives

This dissertation aims to develop an integrative framework for assessing the LVQ
of urban parks by combining quantitative landscape indicators with perceptual,
emotional, and stress recovery dimensions. Through the integration of eye-tracking
data, spatial features, image segmentation, physiological signals, and child-specific
assessments, the research seeks to generate actionable insights for optimizing
urban park design. The ultimate goal is to promote well-being, inclusivity, and
sustainability in the context of Chinese urban development.

• Sub-objective 1: To evaluate LVQ using multidimensional visual
indicators. The first study focuses on adult users and examines how spatial
features, visual attention patterns, and semantic segmentation collectively
influence perceived landscape quality. By constructing a quantitative evalua-
tion model that identifies positive and negative spatial attributes, this study
provides a foundation for improving the visual and experiential quality of
urban parks.

• Sub-objective 2: To explore the emotional dimension of LVQ. The
second study explores how landscape elements—such as herb plants, water
landscapes, and artificial objects—influence emotional responses and visual
behavior. By linking eye-tracking data with physiological signals and self-
reported emotions, the study aims to clarify how visual attention mediates
emotional reactions, deepening our understanding of emotionally supportive
park environments.

• Sub-objective 3: To examine the emotional and stress recovery
dimensions of LVQ. This study focuses on children, a user group often
underrepresented in LVQ research. It investigates how spatial openness,
greenery, and other landscape elements affect children’s emotional states and
stress recovery through facial emotion recognition and stress assessment. In
contrast to the first two studies on adults, this research highlights the distinct
perceptual and emotional needs of children, contributing to more inclusive
urban park design.
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Together, these three studies offer a comprehensive, user-centered approach to
understanding and improving the visual, emotional, and restorative qualities of
urban parks.

1.3 Research contributions

This dissertation aims to develop an integrative framework for assessing the LVQ
of urban parks by combining quantitative landscape indicators with perceptual,
emotional, and physiological dimensions. To achieve this, it incorporates methods
such as VR-based visual exposure, eye-tracking, image segmentation, and phys-
iological signal analysis, enabling a comprehensive and data-driven approach to
LVQ assessment.

Previous studies on LVQ have often relied on subjective evaluations such as in-
terviews, the scenic beauty estimation method, or semantic differential approaches
[18, 20, 55]. These methods, while valuable, are prone to measurement errors due
to their dependence on respondents’ understanding of specialized terminology and
lack the precision to capture complex visual experiences [21,22]. In addition, many
existing studies derive visual indicators from 2D images [22, 56], which may not
adequately reflect the three-dimensional and immersive nature of actual urban
parks. Although recent developments in spatial metrics and computer vision
techniques have enhanced indicator [57], relatively few studies have integrated
these with user-centered data, such as visual attention. To address these limita-
tions, this study introduces a VR-based assessment framework that integrates
eye-tracking, image segmentation, and spatial feature indicators. Generalized
estimating equation (GEE) models were constructed and validated across seven
perceptual dimensions, comparing the predictive performance of models using
multidimensional visual indicators against those using only spatial indicators.
The results showed that the integrated models achieved moderate improvements
in classification accuracy, with AUC values increasing by 1% to 7%, and lower
QIC values indicating improved model fit. Among the indicators tested, herb
plants (eye-tracking indicator), water ratio (image segmentation indicator), and
number of materials (spatial feature indicator) were among the most consistently
associated with more positive perceptual evaluations. This contribution enhances
existing LVQ assessment approaches by incorporating attention-based, spatial, and
semantic features into a single evaluative framework. The proposed method offers
a more structured and reproducible approach to examining perceptual variation
in urban parks and may support more evidence-informed strategies for improving
visual quality during the design phase.

In addition to visual perception, emotional response represents a fundamental
dimension of landscape experience and plays a meaningful role in shaping users’
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evaluations of spatial quality. Previous studies on the emotional aspects of LVQ
have primarily relied on self-reported measures, such as semantic differential scales
and Likert-based surveys [27,58,59]. While these tools offer valuable insights into
participants’ subjective emotional states, they are prone to individual bias and
may not capture real-time or subconscious responses [28, 60]. Moreover, existing
research often assesses emotional responses in isolation from visual attention pro-
cesses, overlooking the mediating role of visual perception in emotional experiences
[30]. To address these limitations, this study integrates electrodermal activity
(EDA), pulse rate (PR), eye-tracking data, and self-assessment scales within a
VR environment to explore how landscape elements—such as water landscapes,
herb plants, artificial objects, and shrubs—influence both visual behavior and
emotional responses. The findings reveal that herb plants most effectively promote
both psychological and physiological emotional responses, making them the most
emotionally beneficial natural element. Flowering trees simultaneously decrease
pulse rate and increase skin conductance, indicating a compound emotional state of
calmness and alertness. To support emotional restoration, designated restorative
zones should minimize artificial elements and incorporate water landscapes and
herb plants. By integrating multiple modalities—physiological data, self-reported
emotions, and visual attention—this study contributes to a more nuanced un-
derstanding of the emotional dimension of LVQ. The findings may inform future
landscape design by identifying elements that support more emotionally engag-
ing and visually comfortable urban park environments, and they contribute to
advancing LVQ research beyond traditional perception-based evaluation methods.

Although the emotional and restorative benefits of green spaces for adults
have been extensively studied [32, 33], children—who are particularly sensitive to
environmental stimuli—remain an underrepresented population in LVQ research.
Existing studies often rely on indirect methods, such as interviews or parental
observation [35], and few have directly measured children’s real-time emotional
responses to landscape compositions. Moreover, evidence shows that children
perceive landscape elements differently than adults [31], and that environmen-
tal features can significantly influence their emotional development and social
behavior [34]. To address these gaps, this study examines how the proportion
of landscape elements—such as openness, greenery, and road ratio—influence
children’s emotional and stress recovery. Using a mixed-method approach that
combines facial emotion recognition with the State-Trait Anxiety Inventory for
Children (STAI-S) and the Perceived Restorativeness Scale for Children (PRCS-C
II), the study evaluates emotional outcomes more objectively and in real time.
The inclusion of stress recovery as an additional dimension responds to the
need for understanding not only immediate emotional reactions, but also how
effectively different environments support emotional regulation after mild stress.
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By intentionally introducing a low-stress task prior to exposure, the study was able
to capture pre-post emotional variation and quantify restorative potential. Rather
than conducting the experiment in uncontrolled outdoor environments, children
observed high-resolution video representations of various urban park landscapes in
a quiet indoor setting. This design helped minimize external distractions such as
noise, crowd movement, and weather conditions, ensuring greater consistency in
visual exposure and emotional measurement. The results suggest that spatial
openness enhances calmness and happiness while reducing negative emotions,
whereas certain artificial objects may induce visual discomfort or hinder stress
recovery. This contribution adds a child-centered dimension to LVQ research by
incorporating real-time emotional and stress recovery assessments. The findings
offer preliminary insights into how landscape composition may influence children’s
emotional responses, potentially informing future design considerations for sup-
portive and restorative urban park environments.

1.4 Thesis structure

This thesis explores the effects of urban park landscape elements on human LVQ,
emotional responses, and stress recovery, using data collected through two distinct
experiments. The methodology is structured around three studies, each addressing
specific research objectives derived from these experiments (Figure 1.3).

Chapter 1: Introduction This chapter sets the stage for the dissertation by
examining the role of LVQ in shaping human perception, emotions, and stress
recovery within urban parks. It outlines the research gaps in existing LVQ
assessments and highlights the necessity of integrating multidimensional visual,
physiological, and perceptual indicators into urban park evaluation. The chapter
also defines the primary research objectives, demonstrating how this dissertation
contributes to the broader fields of urban planning and landscape architecture by
providing evidence-based strategies for LVQ enhancement.

Chapter 2: Literature review This chapter reviews existing studies on
LVQ assessment methodologies and their applications in urban park research.
It examines how landscape elements influence perception, emotion, and stress
recovery, providing a theoretical foundation for this dissertation.

Chapter 3: Assessment of landscape visual quality using multidi-
mensional indicators This chapter develops a comprehensive LVQ assessment
framework by incorporating eye-tracking, image segmentation, and spatial feature
indicators. By integrating these multidimensional visual indicators, it enhances
the accuracy of LVQ classification models and provides quantitative insights into
landscape perception. The findings contribute to a more systematic evaluation of
LVQ and offer practical recommendations for improving urban park design.
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Figure 1.3: Research objectives and methodological framework

Chapter 4: Emotional responses to landscape visual quality This chap-
ter investigates the relationship between LVQ and emotional responses, focusing on
how landscape elements influence both visual behavior and emotional responses.
By integrating eye-tracking data with physiological and self-reported emotional
measures, the study quantifies the emotional impact of landscape elements. The
findings contribute to a deeper understanding of how LVQ can be leveraged to
enhance emotional well-being in urban parks, providing design recommendations
for creating psychologically supportive environments.

Chapter 5: Emotional and stress recovery dimensions of landscape
visual quality This chapter extends LVQ research by examining its role in
children’s emotional and stress recovery. Using facial emotion recognition tech-
nology and psychological assessments, the study explores how landscape elements
influence children’s emotion and stress recovery. This research provides insights
into optimizing urban park design to better support children’s emotional well-
being and stress recovery, ensuring that these spaces are both engaging and
psychologically beneficial for younger users.

Chapter 6: Conclusion, implications, and limitations This final chapter
synthesizes the key findings on how landscape elements influence human well-
being in urban parks. It consolidates these insights to highlight their implications
for urban planning and landscape design, demonstrating how LVQ enhancements
contribute to more engaging and supportive urban environments. The chapter
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also discusses key strategies derived from the research, providing actionable
recommendations for future urban park development. Additionally, the study’s
limitations are critically evaluated, addressing methodological challenges and data
constraints. Finally, future research directions are outlined, emphasizing the
need for further investigations to refine LVQ assessment and explore its broader
implications, particularly in rapidly urbanizing regions.
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Chapter 2

Literature review

2.1 Landscape visual quality assessment

Landscapes, as products of long-term interaction between humans and nature, have
become increasingly complex in function and appearance over time [61]. Human
activities have not only influenced the function and appearance of landscapes,
but landscapes in turn have impacted humans [62]. In this context, conservation
policies in the United States and Europe highlight the need for a rapid response to
landscape changes and provide a framework for international cooperation to main-
tain landscape quality and characteristics [63]. Moreover, with growing concern
for environmental issues, natural resources and landscape aesthetics are regarded
as important cultural ecological services, further emphasizing the importance of
considering LVQ in landscape management and policy-making [64].

LVQ is defined by the interaction between landscape features and their effects
on human observers, significantly influencing urban residents’ perceptions and
satisfaction with their living environment [42]. Since the 1960s, psychological and
behavioral methods have been introduced into the standardized assessment of LVQ
to support environmental conservation and the protection of national parks and
nature reserves [65]. By the 1980s, landscape assessment research began to focus
on distinguishing different landscape attributes, emphasizing the core impact of
landscape features on assessment outcomes [66]. Years of research evolution have
led to four main assessment paradigms: expert assessment [67], psychophysical
assessment [68], cognitive assessment [69, 70], and experiential assessment [71].
These paradigms encompass traditional assessment techniques ranging from Scenic
Beauty Estimation [18], Analytic Hierarchy Process [72], Semantic Differential [58],
to data collection through interviews [73]. Although these traditional methods
have been widely applied, they have limitations in the detailed assessment of urban
park landscapes, especially when assessment errors occur due to participants’
lack of understanding of professional terminology. Therefore, the fundamental
issues of how landscapes are perceived and how various landscape elements trigger
specific perceptions remain unresolved in human perception prediction models
[22]. This often requires more comprehensive and innovative methods to enhance
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assessment accuracy, ensuring that LVQ assessments can more effectively support
environmental management and policy-making. In the fields of urban planning and
landscape design, traditional methods of LVQ assessment have primarily relied on
site visits and photographic techniques, which are often affected by factors such as
terrain, obstacles, and weather conditions [66, 74]. Particularly in the assessment
of unbuilt or renovation projects, the limitations of on-site visits can be especially
significant [75]. With advancements in technology, VR has demonstrated its value
in simulating and assessing spatial environments. Conducted within controlled
laboratory settings, VR not only saves costs and enhances efficiency but also
allows researchers to isolate and modify various variables to deeply understand
how design decisions impact user experience [76]. The use of head-mounted display
devices enhances user immersion, making simulated environments more closely
resemble the real world and generating data unattainable from field studies [77].
Moreover, recent research has shown that participants’ perceptions of real and
virtual environments are similar, providing a solid foundation for visual research
[78,79].

The rapid development of computer vision technology in recent years has pro-
pelled research on LVQ assessment based on emerging technologies. Researchers
evaluate the LVQ of urban parks by performing semantic segmentation on collected
photographs of urban vegetation combined with traditional metrics. However,
previous studies on the LVQ of urban parks have primarily relied on image
segmentation metrics extracted from two-dimensional images [56], while actual
spatial perception occurs in three-dimensional space. This has led to an incomplete
understanding of real spatial dimensions, limiting the comprehensiveness and
accuracy of assessments. To address this issue, researchers create detailed three-
dimensional models and perform semantic segmentation of panoramic images to
more accurately simulate and analyze the visual quality of landscapes. On the
other hand, traditional methods of collecting visual perception data primarily use
questionnaires [22], which involve a translation of perception. Initially, individuals
observe the landscape with their eyes, then translate these observations into
perceptions to fill out a questionnaire. In contrast, eye-tracking technology can
directly capture users’ observational information. As a physiological measurement
method, eye-tracking has been widely applied in fields such as cognitive linguistics,
marketing, neuroscience, and urban design [80–83]. This technology measures
attention distribution by capturing the fixation points where an individual’s gaze
pauses, allowing researchers to collect precise data about users’ visual attention
[84]. Studies have found that most people focus their attention on man-made
objects while walking in parks, with street edges being the most visually attractive
areas [85,86]. Additionally, eye-tracking can more accurately observe differences in
eye movements when viewing urban and natural images during different vegetation
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periods. Thus, integrating eye-tracking data with cognitive assessment results
to evaluate LVQ offers an effective method, overcoming the shortcomings of
questionnaire-based approaches.

2.2 Landscape elements on emotions and visual be-
havior

Emotional experience is increasingly recognized as a central component of urban
spatial design. Grounded in theories such as environmental psychology and
behavioral architecture, contemporary urban planning emphasizes not only the
physical structure of spaces but also their capacity to evoke emotional responses.
As urbanization continues to challenge mental and physical health, planners are
turning to nature-based solutions to support psychological well-being. Integrating
emotionally resonant landscape features into urban parks aligns with global
priorities, such as the United Nations’ goals for healthy, inclusive, and sustainable
cities. Contemporary research incorporates human emotional responses into urban
planning to create environments that enhance health and well-being. Predictive
models of landscape spatial features have been developed to assess these effects
[87], and studies have examined the influence of elements such as plant color on
emotions and perceptions [88]. Analyses of social media and streetscape data
quantify emotional responses across different scenarios, revealing that areas with
more greenery typically exhibit lower negative emotions [89]. Real-time analysis
using mobile EEG technology has compared the emotional impacts of walking
versus sitting in urban parks, highlighting that walking helps reduce stress while
sitting aids in restoring attention [90]. This research emphasizes the importance
of emotional health in landscape composition studies. However, there remains a
gap in understanding how specific proportions and types of landscape elements
within the same type of space affect emotions. This article aims to fill that gap by
systematically analyzing the impact of various landscape elements in urban parks,
providing a comprehensive understanding to support more effective urban space
design.

Emotional evaluation methods are typically categorized into two main types:
self-reported assessments and physiological measurements. Self-report tools such
as the semantic differential scale, Likert scale, day reconstruction method, and the
Self-Assessment Manikin (SAM) [27, 58, 59, 91] are widely used to capture partic-
ipants’ subjective emotional states. Among these, SAM is particularly popular
for its efficiency and ease of use. However, self-reports rely on individuals’ intro-
spection, which may be influenced by cognitive bias or limited self-awareness, often
requiring complementary data sources for validation. Physiological approaches, on
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the other hand, assess emotional changes through objective indicators such as facial
expressions, vocal tone, posture, and biosignals—including electrodermal activity
(EDA), electromyography (EMG), electrocardiography (ECG), and others [87,92].
EDA, EMG, and ECG are especially prevalent in emotion recognition studies due
to their sensitivity to autonomic nervous system responses [28, 93]. To improve
reliability, many studies adopt a multimodal approach, combining self-reported
data with physiological signals to gain a more comprehensive understanding of
emotional responses.

Human visual perception relies on different regions of the retina—namely the
fovea, parafovea, and peripheral vision. The fovea, located at the center of
the retina, offers the highest visual acuity and is responsible for precise detail
recognition. To achieve clear vision, individuals move their eyes to direct objects
of interest into this high-resolution zone. Eye-tracking technology has made
it possible to analyze various eye movement types, such as saccades, smooth
pursuit, and fixation, each corresponding to different cognitive and perceptual
tasks. In landscape research, these eye movements serve as key indicators of visual
attention and preference. Studies have shown that specific spatial features—such
as openness, vegetation density, or visual contrast—can significantly influence gaze
patterns and fixation durations [94]. For example, natural riverbanks in urban
settings have been found to alter visual exploration behavior, highlighting the
link between landscape features and attentional engagement [52]. Similarly, the
proportion of greenery has been shown to affect visual salience and perception
outcomes [56]. Comparative studies between urban and natural environments
further reveal that spatial composition, degree of urbanization, and design layout
can shape both eye movement patterns and related emotional responses [85, 95].
Beyond landscape studies, eye-tracking has been extensively applied across dis-
ciplines—including psychology, education, and human-computer interaction—to
investigate cognitive processing during tasks such as reading, visual search, and
multimedia learning. These applications further validate the method’s reliability
in capturing attention, processing effort, and user engagement, reinforcing its
suitability for analyzing human responses to spatial environments.

Furthermore, the processing of visual information is closely related to emotional
responses, as visual cues can trigger emotions primarily encoded in the brain’s
medial temporal lobe, responsible for emotional processing [96]. Therefore, visual
information and emotional responses are related to memory formation and affect
psychological states [97]. For instance, observing certain urban environments
can influence emotional responses. The presence of water landscapes not only
relieves stress but also helps restore attention, enhancing positive emotions [98,99].
Specific visual layouts in urban environments, such as color schemes and spatial
arrangements, also impact individuals’ emotional states by affecting pupil diameter
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[97]. Despite extensive research, the mechanisms by which visual information is
captured and processed to trigger emotional responses are not fully understood.
The aim is to tackle this challenging issue by utilizing precise eye-tracking data
analysis to fill the research gap on how visual information affects emotional states.
Given that existing research primarily focuses on direct comparisons between
natural and urban environments, there remains a lack of detailed understanding
of how visual behavior specifically modulates emotional responses.

2.3 Landscape elements on emotions and stress re-
covery

In current urban planning and landscape design, there is often insufficient attention
to the LVQ of children’s activity spaces. Research shows that high-quality urban
parks improve children’s physical and mental health [100–102]. In the contempo-
rary educational and social landscape, children encounter heightened pressures
from academics, societal expectations, and familial strife, which impact their
mental and physical health [25,26,103]. Studies have shown that children in urban
impoverished areas are at a higher risk of developing emotional disorders such as
depression, anxiety, or behavioral issues like ADHD [104]. Barriers such as limited
access to green spaces due to logistical challenges exacerbate these problems [105].
Therefore, it is crucial to research and design environments that enhance the LVQ
of children’s activity spaces. This approach more effectively supports children’s
psychological and emotional development, providing a healthier and more inclusive
growing environment for children. This emphasizes the importance of enhancing
visual quality in urban planning and landscape design to improve child well-being.

Urban parks are vital components of urban infrastructure, significantly enhanc-
ing environmental sustainability and public well-being, particularly in terms of
mental health [106–108]. An increasing body of research explores the link between
urban greenery and physical and mental health benefits. Evidence indicates that
green spaces not only bolster physical health and social interactions but also
provide multifaceted benefits to human health, enhancing well-being [109, 110].
Brief interactions with nature can quickly yield psychological benefits, such as
stress relief and improved mood, particularly beneficial for children’s emotional and
psychological health [100–102]. These natural encounters offer a respite from urban
life’s demands, improving relaxation and happiness [100]. Besides psychological
advantages, green spaces have direct physical health benefits, including reduced
blood pressure and heart rate [111]. Although extensive research highlights the
positive impacts of urban greenery on children, there is a lack of studies comparing
the effectiveness of different landscape types in alleviating children’s stress. Few
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studies have detailed the landscape features that affect children’s emotional well-
being and stress recovery. This research aims to fill these gaps by exploring how
landscape features influence children’s stress relief and emotional health.

Children represent a sensitive and vulnerable group that can be challenging
to study due to their inability to fully articulate their emotions and stress
levels. Traditional research methods such as surveys [102, 112], sampling [104],
and observation [105], while direct and convenient, often lack data to analyze
children’s emotional and stress recovery states effectively. However, advancements
in technology, particularly in facial emotion recognition, now make it possible
to collect direct emotional data from children themselves. This study intends
to use facial emotion recognition technology to investigate the effect of landscape
elements on children’s stress recovery and emotional regulation. By providing more
detailed data support and theoretical exploration, this approach helps to identify
and prioritize urban landscape spaces that offer optimal stress recovery for children.
These insights can guide urban planning and landscape design to enhance the
LVQ of urban spaces, particularly those utilized by children. By identifying which
urban park elements most effectively support children’s relaxation and recovery,
this targeted approach can inform the design of more conducive environments
for children’s leisure activities, ultimately enhancing the well-being of children in
urban settings. This section focuses specifically on children, a group particularly
vulnerable to environmental stressors, to explore how landscape elements influence
emotional and stress recovery within the broader LVQ framework.

2.4 Research gaps

In the field of urban landscape design and its influence on human well-being, several
key research gaps remain unaddressed:

Limitations of single-indicator LVQ assessments: Traditional methods primar-
ily rely on 2D image analysis and subjective surveys focused on spatial feature
indicators. While informative, these approaches fail to capture the complexity
of visual landscapes and the diversity of user perceptions, resulting in limited
accuracy and generalizability of LVQ classification models.

Lack of integration across multiple dimensions: Current evaluations often
emphasize perceptual dimensions while overlooking emotional responses and stress
recovery. This absence of multidimensional integration restricts a holistic under-
standing of how LVQ impacts psychological well-being and user experience.

Insufficient analysis of specific landscape elements: Although features like
greenery and water are widely studied, finer-grained components—such as herb
plants, shrubs, and the spatial layout of water elements—are rarely examined
in detail. Their precise roles in shaping visual attention, emotional regulation,
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and physiological responses remain unclear, limiting their practical application in
design.

Adult-centric research bias: Most studies have focused on adults, neglecting
the distinct emotional and stress recovery patterns of children. This gap impedes
the development of inclusive and restorative landscape strategies that address the
needs of younger users.

Geographic and cultural bias in existing studies: Urban landscape studies
have largely been conducted in Western contexts, with limited attention to East
Asian environments. The lack of culturally contextualized research hinders the
development of locally adaptive guidelines, especially in rapidly urbanizing regions
like China.

Gaps between research and practical application: Findings from LVQ research
often remain theoretical, with few translated into actionable design strategies. The
absence of practical, evidence-based guidance limits their impact on real-world
urban park planning and design.
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Chapter 3

Assessment of landscape visual qual-
ity using multidimensional visual in-
dicators

3.1 Introduction

This chapter aims to construct a perceptual evaluation model for the LVQ of
urban parks, integrating eye-tracking, image segmentation, and spatial feature
indicators. LVQ is defined by the interaction between landscape features and their
effects on human observers, significantly influencing urban residents’ perceptions
and satisfaction with their living environment [42]. This study developed a LVQ
classification model based on multidimensional visual indicators, including eye-
tracking, image segmentation, and spatial features. The model performs binary
classification of positive and negative perceptions across seven dimensions: beauty,
comfort, color, complexity, liveliness, greenness, and safety [22, 56, 113–115]. As
essential components of urban ecosystems, urban parks play a key role in promoting
public health and well-being by relieving psychological stress, supporting physical
activity, and fostering social interaction [1]. High-quality parks contribute to
improved quality of life and equitable resource distribution. Therefore, early-stage
evaluation of their LVQ is critical for guiding planning decisions and mitigating
potential social and spatial inequalities. Traditional methods for evaluating LVQ,
such as questionnaire surveys or expert on-site assessments, often suffer from sub-
jectivity and are limited by environmental or logistical constraints—especially in
areas under construction or renovation [14,22]. This study addresses these limita-
tions by employing a VR environment to simulate park landscapes under controlled
conditions, enabling repeatable and immersive visual assessments [32, 76, 116].
The proposed method integrates multidimensional visual indicators: eye-tracking
technology captures participants’ visual attention and gaze behavior [60], semantic
segmentation extracts salient landscape components, and spatial feature indicators
quantify structural attributes of the park environment. Through this framework,
we investigate how different visual characteristics influence human perception and
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how integrated indicators can improve the evaluation of landscape visual quality.
We examined the mechanisms by which these multidimensional visual indicators
assess human perceptions of urban parks and enhance LVQ. This study aimed to
address the following two research questions:

• How is human perception of urban parks correlated with multidimensional
visual indicators?

• How well can a perception model integrating multidimensional visual indica-
tors differentiate positive and negative perceptions? Does it perform better than
the model using only spatial feature indicators?

3.2 Method

3.2.1 Study area and panoramic image rendering

Study area
This study selected three urban parks located in the northern, central, and

southern regions of China, aiming to capture diverse landscape designs and spatial
features for exploring the feasibility of using multidimensional visual indicators
to assess LVQ (Figure 3.1). This approach provides a basis for investigating how
various urban park designs influence human perceptions. Theseurban parks include
urban park, community garden, and ecological wetland. With the assistance of
the community park audit tool [117], we recorded the spatial features of each
urban park after detailing these descriptions to demonstrate their diversity and
differences. Labor Park (park A; Chaoyang, Liaoning Province), located in the
city center of Chaoyang, where urban parks dominate the urban landscape. Labor
Park is characterized by its diverse trails, educational features, and facilities that
support various fitness activities, exemplifying the image of a traditional and
multifunctional urban park. Platform Park (park B; Wuhan, Hubei Province)
is situated in Wuhan, a national central city, where high-density urban spaces are
predominantly composed of community gardens. Located in Wuhan’s business
core area, Platform Park provides spaces for picnicking and relaxation, fountains,
and modern children’s entertainment facilities, reflecting the qualities of a small
urban recreational green space that serves both the local commercial district and
residents. Dory Park (park C; Guangzhou, Guangdong Province), located in
the important port city of Guangzhou, effectively integrates water elements into
its urban park design. Dory Park features natural hills and lawns, basketball
courts, a lake, and playground facilities, showcasing the rich ecological and
natural experiences of an ecological wetland. This approach provides a basis for
investigating how various urban park designs influence human perceptions and
facilitated the development of an inclusive model to assess the manner in which
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Figure 3.1: Study area and 30 panoramic image-rendering points. Source of base
map: standard map service system

the LVQ of urban parks influences human perceptions.
Panoramic image rendering
Technically, we modeled and rendered the three urban parks using SketchUp

2019 (https://www.sketchup.com) and Lumion 10 (https://lumion.com). Panoramic
images, produced in JPG format with a resolution of 8192 × 4096 (Figure 3.3),
focus specifically on the landscape elements within the urban parks, omitting the
surrounding environment and people to solely focus on the urban parks. When
rendering panoramic images, we set the sun’s azimuth to 38 degrees northeast and
the altitude to 60 degrees, simulating a specific time at midday in summer. This
setup helps ensure consistency in the rendering conditions of the experimental
materials. Ten specific points in each urban park were chosen to ensure complete
experiential assessment, culminating in 30 panoramic images (Appendix A). These
images were designed to provide participants with a detailed perception of each
green space, highlighting the unique landscape elements defining each setting.

3.2.2 Data collection

Overview
The experimental procedure is illustrated in Figure 3.2. Landscape features

from various regions were used as variables to assess the human perceptions
of urban park LVQ with multidimensional visual indicators. Multidimensional
visual indicators to assess LVQ were derived using three approaches. First, eye-
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Figure 3.2: Experimental procedure

tracking indicators were derived via visual clustering analysis of user interactions
with urban park panoramic images using eye-tracking technology. Second, image
segmentation indicators were derived via semantic segmentation of the panoramic
images. Third, spatial feature indicators were determined via detailed spatial mea-
surements and calculations. Additionally, to investigate the impacts of landscape
features on human emotions and behaviors, emotional data were collected using
the self-assessment manikin for psychological responses and EmbracePlus device
for physiological data. However, this study mainly focused on multidimensional
visual indicators to assess the LVQ of urban parks; emotional data will be analyzed
in a study 2.

Eye-tracking indicators
In this study, we used the NeU-VR device developed by FOVE (Tokyo, Japan).

The device consists a WQHD OLED (2560×1440) stereo screen and dual infrared
eye-tracking systems, achieving a tracking accuracy of 1.15° and frame rate of
120 fps, enabling the smooth recording of eye movements in 360° panorama. The
accompanying FOVE Gaze Analyzer software was used to record the eye-tracking
data. Various types of eye-tracking data, including time to first fixation, dwell
time, fixation ratio, revisit count, first fixation duration, and average fixation
duration, were collected. Area of interest (AOI)-based analysis was performed
to identify and examine the eye-tracking indicators in the specified regions.
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Considering the importance of dwell time and revisit count in understanding
visual attention and interest, we mainly focused on these indicators. Dwell time
reflects the total accumulated time during which the user’s gaze remains on an
AOI, indicating the depth of interest in the scene [85]. This indicator is crucial
to understand the ways in which long specific landscape elements capture the
participants’ attention. Revisit count measures the frequency of gaze reentries
into an AOI, directly correlating with the user’s voluntary focus on specific areas
of interest [118]. This indicator helps to identify the elements repeatedly attracting
attention, suggesting their importance in the perception of landscapes.

Image segmentation indicators

Figure 3.3: Panoramic pictures and semantic segmentation results

To perform precise image semantic segmentation of panoramic photos to
calculate the proportions of landscape elements (Figure 3.3), this study used
an interactive semi-automatic image annotation tool (ISAT) integrated with
the segment-anything model [119]. This tool supports rapid and low-resource
image segmentation, adapts to various requirements, and enables semiautomatic
annotation using point and bounding box inputs. Additionally, it supports various
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annotation styles and is compatible with multiple export formats, facilitating
integration with different machine learning workflows. Panoramas were first seg-
mented into different color classes representing various landscape features using the
aforementioned tools for landscape element analysis. Subsequently, we developed
and executed Python scripts using PyCharm Community Edition 2023.2.1 to
read the annotated image files, calculate the total pixel count, identify unique
colors, and compute each color area’s pixel count and proportion, enabling precise
quantification of the landscape elements (Appendix B). To ensure the reliability of
the segmentation results, we conducted an accuracy evaluation by comparing the
ISAT tool-assisted semantic segmentation results with manually segmented results
using Adobe Photoshop 2021 (Adobe Inc., San Jose, CA, USA). The average
performance of the tool-assisted segmentation method across these metrics was
as follows: accuracy of 96.07%, precision of 98.04%, recall of 98.04%, F1 score of
0.98, and Intersection over Union of 0.96. The segmentation results demonstrated
strong performance across all metrics, with high reliability and consistency.

Figure 3.4: Degree of openness calculation method
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Spatial feature indicators
Visual perception is a primary source of information for assessing landscape

quality, influenced by spatial layout and landscape features such as shape, depth,
color, and dynamics [120]. These elements underscore the necessity of focusing
on specific spatial features that most significantly impact visual quality, leading
to the selection of four key indicators: PlantingStyle, DegreeOfOpenness, Con-
trastDegree, and Topography. PlantingStyle, defined as the arrangement of trees,
influences the aesthetic experience by creating visually pleasing silhouettes that
shape the visual aesthetics of greenspaces [121]. Trees are categorized as isolated,
linear, or clustered based on their arrangements. DegreeOfOpenness relates to the
sense of enclosure or exposure, affecting overall perception [122,123]. Following the
studies [124, 125], we used AutoCAD 2019 (developed by Autodesk, San Rafael,
California, USA) to calculate the field of view openness within a 15-meter radius
from a fixed point by measuring the visible arc length and horizontal area size
(Figure 3.4). ContrastDegree, highlighting the color differences among landscape
elements, impacts aesthetic perception and preference. We classified contrast
as low, medium, or high based on color differences between major landscape
elements. Lastly, Topography which describes the shape and features of the ground
influences the visual scale of landscapes, thereby enriching the visual experience
[126]. These classifications include no topography, partial topography, or complete
topography. We identified 18 quantitative indicators, which were divided into two
categories: nine image segmentation indicators (CrownCoverage, ArtificialObjects,
SkyRatio, GreenRatio, FlowerRatio, FlowerTreeRatio, HerbRatio, RoadRatio,
and WaterRatio) and nine spatial feature indicators (EdgeWidth, EdgeLayers,
ArborSpecies, ShrubSpecies, HerbSpecies, PlantRichness, NumberOfElements,
NumberOfMaterials, and SpaceTypeCategories). Additionally, four qualitative
indicators, involving spatial feature indicators (PlantingStyle, DegreeOfOpenness,
ContrastDegree, and Topography), were identified. Together, these 22 indicators
comprehensively described the landscape features, as detailed in Table 3.1.
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Table 3.1: Spatial feature and image segmentation indicators.

Indicators English name Feature element calculation
Qualitative indicators

Spatial feature
Indicators

PlantingStyle [22] Describes the way trees are planted. Isolated signifies a single tree as the main view.
Linear signifies rows or columns of trees. Clustered signifies more than two rows or
columns of trees. Isolated=1, Linear=2, and Clustered=3

DegreeOfOpenness
[124]

Describes the visual and mobility permeability of an area. Low openness indicates
a visible arc length and visible horizontal area < 20%, high openness indicates a
visible arc length and visible horizontal area > 80%, medium openness indicates a
visible arc length and visible horizontal area between the two at 20–80%. Low=1,
Medium=2, and High=3

ContrastDegree [22] Describes the color differences between landscape elements. High color contrast
indicates a large color difference, such as red and green. Low color contrast indicates
a small color difference, such as green and white. Medium color contrast indicates
a noticeable color difference that is not too strong, such as green and yellow. Low
color contrast=1, Medium color contrast =2, and High color contrast=3.

Topography [66] Describes the shape and features of the ground. No topography indicates that the
surface is essentially flat with no significant topographic features. Partial topography
indicates that topographic features are present in certain areas of the scene but
are not dominant across space. Complete topography indicates that significant
topographic structures dominate space. No topography=1, Partial topography=2,
and Complete topography=3.

Quantitative Indicators
EdgeWidth [87] EdgeWidth = Ds-Dh, where Ds is the distance from the refer-ence point (a point

where a person stands on the road) to the soft boundary, and Dh is the distance
from the same reference point to the hard boundary

Continued on next page
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Table 3.1 – continued from previous page
Indicators English name Feature element calculation

Spatial
Features
Indicators

EdgeLayers [22] EdgeLayers = Number of soft boundary layers on both sides of the road (e.g., lawns,
flower beds, and small shrubs)

ArborSpecies [22] ArborSpecies = Number of tree species
ShrubSpecies [22] ShrubSpecies = Number of shrub species
HerbSpecies [22] HerbSpecies = Number of herb species
PlantRichness [22] PlantRichness = NAS+NSS+NHS, where NAS is the number of arbor/tree species,

NSS is the number of shrub species; and NHS is the number of herb species
NumberOfElements
[87]

Number of landscape elements

NumberOfMaterials
[87]

Number of spatial materials

SpaceTypeCategories
[87]

Number of different space types

Image
Segmentation
Indicators

CrownCoverage CrownCoverage = CCA/PIA×100%, where CCA (crown coverage area) is the area of
the tree canopy, and PIA (panoramic image area) is the total area of the panoramic
picture

ArtificialObjects ArtificialObjects = AOA/PIA×100%, where AOA (artificial object area) is the area
of the artificial objects, and PIA (panoramic image area) is the total area of the
panoramic picture

SkyRatio SkyRatio = SA/PIA×100%, where SA (sky area) is the area of the sky, and PIA
(panoramic image area) is the total area of the panoramic picture

GreenRatio GreenRatio = GA/PIA×100%, where GA (green area) is the area of the green
region, and PIA (panoramic image area) is the total area of the panoramic picture

FlowerRatio FlowerRatio = FA/PIA×100%, where FA (flower area) is the area of the flower, and
PIA (panoramic image area) is the total area of the panoramic picture

Continued on next page
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Table 3.1 – continued from previous page
Indicators English name Feature element calculation

FlowerTreeRatio FlowerTreeRatio = FTA/PIA×100%, where FTA (flower tree area) is the area of
the flower tree, and PIA (panoramic image area) is the total area of the panoramic
picture

HerbRatio HerbRatio = HA/PIA×100%, where HA (herb area) is the area of the herb, and
PIA (panoramic image area) is the total area of the panoramic picture

RoadRatio RoadRatio = RA/ PIA×100%, where RA (road area) is the area of the road, and
PIA (panoramic image area) is the total area of the panoramic picture

WaterRatio WaterRatio = WA/PIA×100%, where WA (water area) is the area of the water,
and PIA (panoramic image area) is the total area of the panoramic picture
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Perception questionnaire survey
In this study, participants evaluated each photograph according to seven

perceptual dimensions: beauty, color, comfort, complexity, liveliness, greenness,
and safety [22,56,113–115], as detailed in Table 3.2. Beauty captures the aesthetic
appeal of the urban park landscape, commonly used to assess LVQ and reflect
public aesthetic preferences [22, 127–129]. Comfort replaces the previously used
indicator depression to better reflect the positive psychological benefits of urban
parks [113]. Comfort captures the sense of relaxation and mental ease experienced
in urban park. It reflects the restorative effect of the environment, helping to
reduce mental fatigue and promote relaxation [130, 131]. Color captures the
diversity of colors within the urban park. Different combinations of colors reflect
the richness of the environment, influencing individuals’ preferences and viewing
behaviors [22]. Complexity captures the richness of landscape elements and
materials within the urban park, enhancing the visual interest and engagement of
the environment [22,132]. Liveliness captures the vitality of spatial and landscape
elements within the urban parks, reflecting the inherent human connection to
natural environments and the preference for spaces that are vibrant and full of
life [133, 134]. Greenness is newly added to capture the presence and density
of vegetation within the urban parks, a vital aspect for assessing the visual
attractiveness of urban parks [56]. Safety captures the perceived safety based
on visibility and spatial layout of the urban park. The spatial configuration and
physical characteristics of landscape features can significantly influence people’s
sense of safety [22, 124, 135]. After experiencing each panoramic image, the
participants used a 9-point Likert scale (e.g., “This landscape feels beautiful”: -4
[strongly disagree] to 4 [strongly agree]) to rate the image on multiple dimensions:
beauty, comfort, color, complexity, liveliness, greenness, and safety. It is important
to note that despite clearly distinguishing each perception indicator during the
questionnaire design, some overlap in participant responses may still occur. Prior
to the experiment, each participant was thoroughly briefed on the definitions of
each indicator to minimize confusion and enhance the reliability of their responses.
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Table 3.2: Description and question of human perception indexes

Index Definition Questions corresponding to the questionnaire
Beauty Indicates the aesthetic appeal of the urban park landscape. This landscape feels beautiful
Comfort Indicates the sense of relaxation and mental ease experienced in the urban park. This landscape feels comfortable
Color Indicates the diversity of colors within the urban park. This landscape feels colorful
Complexity Indicates the richness of landscape elements and materials within the urban park. This landscape feels complex
Liveliness Indicates the vitality of spatial and landscape elements within the urban park. This landscape feels lively
Greenness Indicates the presence and density of vegetation within the urban park. This landscape’s degree of greenness
Safety Indicates the perceived safety based on visibility and spatial layout of the urban park. This landscape’s degree of safety
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Participants
Sixty Chinese nationals were recruited from the Japan Advanced Institute of

Science and Technology Graduate School (Nomi, Japan) to ensure a culturally
relevant perspective aligned with the background of the urban parks represented
in this study. All students were healthy, aged 20–29 (41), 30–39 (16), and 40–49 (3)
years, with an equal gender distribution (30 males and 30 females) from diverse
academic backgrounds. Before the experiment, all participants were informed
about the procedures, risks, and confidentiality issues and signed informed consent
forms. The study adhered to the principles of the Declaration of Helsinki. To
mitigate adverse effects, such as dizziness, nausea (VR sickness), and fatigue from
prolonged exposure to head-mounted displays, participants took a 10-min break
after every 15 panoramic images. Participants were seated comfortably in swivel
chairs and wore NeU-VR headsets to immerse themselves in the ms. The order
of the 30 panoramic images from the three urban parks was randomly assigned to
avoid order effects on the output. The participants viewed each panoramic image
for 1 min. After observing each panoramic image, the participants rated it on
several dimensions using the 9-point Likert scale. Each experiment lasted for 1
h 30 min. Participants received 1500 Japanese Yen for their participation in the
study.

3.2.3 Data analysis

1. Pre-selection of indicators
FOVE Gaze Analyzer (FOVE) was used to analyze the eye-tracking data.

Normality tests conducted using IBM SPSS Statistics 29.0.0.0 (IBM, New York,
NY, USA) revealed that most variables, including questionnaire responses, eye-
tracking data, and quantitative and qualitative data, were not normally dis-
tributed. Spearman’s correlation analysis was used to explore the relationship
between eye-tracking data, quantitative data, and human perception. Additionally,
Welch’s one-way analysis of variance was used to analyze the significant differences
in human perception based on qualitative data, facilitating the elimination of irrel-
evant indicators for subsequent generalized estimating equations logistic regression
analysis.

2. Perception data reclassification and generalized estimating equa-
tions logistic regression

This study collected a total of 12,600 data points from 60 participants, each of
whom evaluated 30 panoramic urban park images across seven perceptual dimen-
sions. Seven human perceptions served as dependent variables, with eye-tracking,
image segmentation, and spatial feature indicators acting as independent variables
in the perception model. Binary reclassification method: This method processes
all human perceptions with the aim of reducing instability and uncertainty in
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human perception assessments, especially near the middle values [136, 137].For
example, beauty perception is classified as: yes=1 (beauty perception_1, equal to
and higher than the average value) and no=0 (beauty perception_0, below the
average value). The reclassified value qij can be represented by equation (3.1):

qij =

{
1, if Qij ≥ Qj

0, if Qij < Qj

(3.1)

qij is the reclassified value, Qij is the original score of the photo, i represents the
photo number, j represents a certain perception, and Qj is the average score of
the j-th perception.

To clarify the correlations between various factors and human perceptions,
stepwise regression was performed to select and simplify the variables, guided by
the smallest Akaike information criterion (AIC) values [22]. Multicollinearity was
assessed during this process using variance inflation factor (VIF) values to ensure
the stability of the model. VIF = 1 indicated no multicollinearity, values = 1–4
indicated low multicollinearity, values > 4 indicated moderate multicollinearity,
and values > 10 indicated high multicollinearity. VIF values exceeding the critical
threshold were addressed by further refining the variables. Given the clustered
nature of the data, generalized estimating equations (GEE) logistic regression was
employed to construct the final perceptual models. Quasi-likelihood under the
independence model criterion (QIC) values were calculated to assess the model
fit and guide model selection. By accounting for within-participant correlations
arising from repeated evaluations of multiple urban park images, GEE provided
a reliable framework to analyze the relationships between predictor variables and
outcomes effectively addressing the dependencies inherent in clustered data [138–
140].

3. Visualization and performance evaluation of perception models
Error bar plots were employed as graphical tools to visualize the relationships

between predictor variables and human perceptions of urban park, providing an
intuitive and effective means of interpreting the results from the GEE logistic
regression models. We assessed the performance of the perception model using the
receiver operating characteristic (ROC) curve and area under the curve (AUC)
method [141,142]. An ROC curve closer to the top left corner and AUC value closer
to 1.0 typically indicate good model performance. Specifically, AUC quantifies
the model’s ability to distinguish between positive and negative perceptions, with
higher values indicating greater discriminatory power. Sensitivity and specificity
indicated the model’s ability to identify positive and negative perceptions of urban
park correctly. Threshold value indicated the critical point for differentiating
between positive and negative perceptions. The data analysis and visualization
processes were implemented using RStudio 4.3.3 (developed by Posit, Boston,
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Massachusetts, USA) [143].

3.3 Results

3.3.1 Pre-selection of multidimensional visual indicators

(1) Correlation of image segmentation indicators with landscape visual
quality

Analyzing the correlations between different perceptual and image segmen-
tation indicators (Figure 3.5, Table 3.3), the image segmentation indicators for
water ratio (p < 0.01), herb ratio (p < 0.01), and flower ratio (p < 0.01) all show
significant positive correlations with beauty, indicating they have a notable positive
impact on the perception of beauty. Water ratio (p < 0.01) and flower ratio (p <
0.05) are positively correlated with comfort, having a significant positive influence.
Flower ratio (p < 0.01) is also positively correlated with color, suggesting that an
increase in flower ratio positively affects color perception. Herb ratio (p < 0.01)
and flower ratio (p < 0.01) are positively correlated with complexity, indicating
they have a notable positive impact on the perception of complexity. Herb ratio
(p < 0.01) and flower ratio (p < 0.05) are positively correlated with liveliness,
significantly enhancing the perceived liveliness of the landscape. Green ratio (p <
0.01) and crown coverage (p < 0.01) are positively correlated with the greenness
of the landscape, while sky ratio (p < 0.05), road ratio (p < 0.01), and artificial
objects (p < 0.01) are negatively correlated. There is no significant correlation
between safety perception and the image segmentation indicators.

(2) Correlation of spatial feature indicators with landscape visual
quality

Spatial feature indicators relate to human perceptions of spatial dimensions,
features, colors, and more (Figure 3.6, Table 3.3). The spatial feature indicators
affecting the perception of beauty are herb species (p < 0.01), number of elements
(p < 0.01), and number of materials (p < 0.01); as these indicators increase, the
perception of beauty also increases. Beauty perception is negatively correlated
with shrub species (p < 0.05), with an increase in shrub species leading to a
decrease in beauty perception. The spatial feature indicators affecting comfort
are herb species (p < 0.05), number of elements (p < 0.01), number of materials
(p < 0.05), and planting style (p < 0.05); comfort increases as these indicators
rise. The spatial feature indicators affecting color perception are the number of
elements (p < 0.05), number of materials (p < 0.01), degree of contrast (p < 0.05),
and planting style (p < 0.01); these indicators are positively correlated with color
perception. The spatial feature indicators affecting complexity perception are herb
species (p < 0.01), number of elements (p < 0.01), number of materials (p < 0.01),
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Figure 3.5: The relationship between 9 image segmentation indicators and 7 human
perceptions. The black bars indicate that the feature indicators significantly
explain the LVQ indicators, with the X axis representing the F values (for
qualitative indicators) and the Cor values (n = 30)

and degree of contrast (p < 0.05); these indicators are positively correlated with
complexity. The spatial feature indicators affecting liveliness perception are herb
species (p < 0.01), number of elements (p < 0.01), and number of materials (p
< 0.01); as these indicators increase, liveliness perception increases. Conversely,
liveliness perception is negatively correlated with shrub species (p < 0.05), with an
increase in shrub species leading to a decrease in liveliness perception. Greenness
perception is positively correlated with the degree of openness (p < 0.05); as
openness increases, the perception of greenness decreases. Safety perception is
only positively correlated with space type categories (p < 0.05).

Based on the correlation analysis of qualitative and quantitative indicators, we
classify the landscape feature elements according to image segmentation and spa-
tial feature indicators and summarize the correlation between image segmentation
indicators and spatial feature indicators and perceptual evaluation (Table 3.3).
Edge width, edge layers, arbor species, plant richness, flowering tree ratio, and
topography, these six indicators were not correlated with any perception evaluation
and therefore were excluded.

(3) Correlation of eye-tracking indicators with landscape visual qual-
ity

Before analysis, the dwell time and the revisit count were calculated for each
individual element for all participants. Spearman correlation analysis was applied
to the eye-tracking data and the questionnaire data. In dwell time (Figure 3.7),
herb plants (p < 0.01) and water landscape (p < 0.01) showed a strong positive
correlation with beauty, liveliness, comfort, and complex. Among these, shrubs
(p < 0.01) showed a significant negative correlation with complex. Artificial
objects (p < 0.01) showed a very strong negative correlation with greenness.
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Figure 3.6: The relationship between 13 spatial feature indicators and 7 human
perceptions (n = 30)

Table 3.3: Summary of correlations between image segmentation and spatial feature
indicators with human perception

Aspect Image segmentation indicators Spatial feature indicators

Beauty WaterRatio (+), HerbRatio (+), FlowerRatio
(+)

HerbSpecies (+), NumberOfElements (+),
NumberOfMaterials (+), ShrubSpecies (-)

Comfort FlowerRatio (+), WaterRatio (+) HerbSpecies (+), NumberOfElements (+),
NumberOfMaterials (+), PlantingStyle (+)

Color FlowerRatio (+) NumberOfElements (+), ContrastDegree (+),
NumberOfMaterials (+), PlantingStyle (+)

Complexity HerbRatio (+), FlowerRatio (+) HerbSpecies (+), NumberOfElements (+),
NumberOfMaterials (+), ContrastDegree (+)

Liveliness HerbRatio (+), FlowerRatio (+) HerbSpecies (+), NumberOfElements (+),
NumberOfMaterials (+), ShrubSpecies (-)

Greenness
GreenRatio (+), CrownCoverage (+),
SkyRatio (-), RoadRatio (-), ArtificialObjects
(-)

DegreeOfOpenness (+)

Safety None SpaceTypeCategories (+)

Note: (+) represents positive correlation; (-) represents negative correlation.

Similar to dwell time, the revisit count (Figure 3.7) for herb plants (p < 0.01)
and water landscape(p < 0.01) showed positive correlations with perceptions of
beauty, liveliness, comfort, and complexity. The revisit count for shrubs (p <
0.01) showed a significant negative correlation with perceptions of comfort and
complexity. Grass (p < 0.05) showed a significant negative correlation with color.
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Figure 3.7: Correlation coefficients between landscape perception evaluation and
eye-tracking data

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).
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Indicators showing significant correlations were used for subsequent analysis.

3.3.2 Perceptual model construction and visualization

We first assessed the performance of the perception models using the ROC and
AUC method (Figure 3.8) to quantify their accuracy in distinguishing between
positive and negative perceptions. Error bar plots, as shown in Figure 3.9, were
employed to visualize the estimated coefficients and their 95% confidence intervals
from the GEE logistic regression models.

Final QIC for beauty GEE logistic regression analysis was 1871.82 (Table
3.4). ROC curve for the model had an AUC of 0.82 (Figure 3.8a). Error
bar plots for beauty perception (Figure 3.9a) show that NumberOfElements had
the highest standardized coefficient. ArtificialObjects was the most prominent
negative indicator, whereas NumberOfElements was the most significant positive
indicator affecting the perception of beauty.

Table 3.4: Final GEE logistic regression beauty perceptual model variables (QIC =
1871.82)

Variable Estimate Std.Error p value 95 % CI

(Intercept) 0.81 0.29 < 0.01 (0.239, 1.389)
DTHerbPlants 0.09 0.02 < 0.01 (0.047, 0.125)
NumberOfElements 0.46 0.03 < 0.01 (0.394, 0.528)
SkyRatio –8.45 0.96 < 0.01 (–10.330, –6.563)
ArtificialObjects –6.13 0.68 < 0.01 (–7.457, –4.806)
WaterRatio 27.67 5.82 < 0.01 (16.270, 39.072)
DegreeOfOpenness_Medium 0.44 0.14 < 0.01 (0.156, 0.717)

Final QIC for comfort GEE logistic regression analysis was 2158.92 (Table 3.5).
ROC curve for the model exhibited an AUC of 0.74 (Figure 3.8b). Error bar plots
for comfort perception (Figure 7b) show that NumberOfElements had the highest
standardized coefficient. RoadRatio was the most prominent negative indicator,
whereas NumberOfElements was the most significant positive indicator affecting
the perception of comfort.

Final QIC for color GEE logistic regression analysis was (Table 3.6). ROC
curve for the model exhibited an AUC of 0.74 (Figure 3.8c). Error bar plots for
color perception (Figure 3.9c) show that ContrastDegree_High had the highest
standardized coefficient. RCGrass was the most prominent negative indicator,
whereas ContrastDegree_High was the most significant positive indicator affecting
the perception of color.
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Figure 3.8: ROC curve of the seven human perceptions, (a) beauty, (b) comfort,
(c) color, (d) complexity, (e) liveliness, (f) greenness, and (g) safety, based on GEE
logistic regression analysis
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Figure 3.9: Error bar plots of the seven human perceptions: (a) Beauty, (b)
Comfort, (c) Color, (d) Complexity, (e) Liveliness, (f) Greenness, and (g) Safety,
showing standardized coefficients with 95% confidence intervals from GEE logistic
regression analysis
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Table 3.5: Final GEE logistic regression comfort perceptual model variables (QIC =
2158.92)

Variable Estimate Std.Error p value 95 % CI

(Intercept) –2.46 0.30 < 0.01 (–3.048,–1.872)
NumberOfElements 0.38 0.03 < 0.01 (0.322, 0.444)
CrownCoverage 7.81 0.81 < 0.01 (6.225, 9.391)
RoadRatio –4.14 0.71 < 0.01 (–5.522, –2.755)
WaterRatio 20.163 2.77 < 0.01 (14.736, 25.591)
PlantingStyle_Linear –0.39 0.12 < 0.01 (–0.628, –0.158)

Table 3.6: Final GEE logistic regression color perceptual model variables (QIC = 2117.28)

Variable Estimate Std.Error p value 95 % CI

(Intercept) -2.52 0.22 < 0.01 (–2.956, –2.092)
RCGrass –0.17 0.08 < 0.05 (–0.331, –0.007)
NumberOfMaterials 0.11 0.01 < 0.01 (0.084, 0.139)
WaterRatio 16.11 2.60 < 0.01 (11.011, 21.201)
FlowerRatio 6.74 0.97 < 0.01 (4.840, 8.630)
ContrastDegree_High 1.16 0.12 < 0.01 (0.920, 1.392)

Final QIC for complexity GEE logistic regression analysis was 2147.22 (Table
3.7). ROC curve for the model exhibited an AUC of 0.73 (Figure 3.8d). Error bar
plots for complexity perception (Figure 3.9d) show that NumberOfMaterials had
the highest standardized coefficient. RoadRatio was the most prominent negative
indicator, whereas NumberOfMaterials was the most significant positive indicator
affecting the perception of complexity.

Table 3.7: Final GEE logistic regression complexity perceptual model variables (QIC =
2147.22)

Variable Estimate Std.Error p value 95 % CI

(Intercept) -3.76 0.31 < 0.01 (–4.363, –3.150)
RCHerbPlants 0.21 0.04 < 0.01 (0.141, 0.283)
ShrubSpecies 0.21 0.03 < 0.01 (0.149, 0.262)
NumberOfMaterials 0.23 0.02 < 0.01 (0.198, 0.267)
RoadRatio –1.95 0.48 < 0.01 (–2.894, –1.002)
WaterRatio 11.85 2.58 < 0.01 (6.792, 16.906)
PlantingStyle_Group 0.37 0.09 < 0.01 (0.185, 0.545)
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Final QIC for liveliness GEE logistic regression analysis was 1864.32 (Table
3.8). ROC curve for the model exhibited an AUC of 0.81 (Figure 3.8e). Error
bar plots for liveliness perception (Figure 3.9e) show that DTHerbPlants had
the highest standardized coefficient. DegreeOfOpenness_High was the most
prominent negative indicator, whereas DTHerbPlants was the most significant
positive indicator affecting the perception of liveliness.

Final QIC for greenness GEE logistic regression analysis was 2160.98 (Table
3.9). ROC curve for the model exhibited an AUC of 0.74 (Figure 3.8f). Error bar
plots for the perception of greenness (Figure 3.9f) show that RoadRatio had the
highest standardized coefficient. RoadRatio was the most prominent negative indi-
cator, whereas PlantingStyle_Isolated was the most significant positive indicator
affecting the perception of greenness.

Table 3.8: Final GEE logistic regression liveliness perceptual model variables (QIC =
1864.32).

Variable Estimate Std.Error p value 95 % CI

(Intercept) -2.02 0.30 < 0.01 (–2.620, –1.429)
DTHerbPlants 0.14 0.02 < 0.01 (0.101, 0.183)
ShrubSpecies –0.21 0.04 < 0.01 (–0.285, –0.126)
NumberOfMaterials 0.21 0.02 < 0.01 (0.167, 0.255)
SpaceTypeCategories –0.28 0.05 < 0.01 (–0.381, –0.178)
WaterRatio 37.82 9.61 < 0.01 (18.982, 56.655)
DegreeOfOpenness_High –1.25 0.23 < 0.01 (–1.689, –0.808)

Table 3.9: Final GEE logistic regression greenness perceptual model variables (QIC =
2160.98).

Variable Estimate Std.Error p value 95 % CI

(Intercept) 3.45 0.49 < 0.01 (1.935, 3.395)
DTShrubs -5.45 0.96 < 0.01 (–0.045, –0.006)
RCArtificialObjects -0.09 0.03 < 0.01 (–0.291, –0.142)
ShrubSpecies 0.60 0.19 < 0.01 (0.082, 0.263)
RoadRatio -3.30 1.03 < 0.01 (–7.665, –4.549)
WaterRatio 0.18 0.06 < 0.01 (2.599, 12.186)
HerbRatio 0.13 0.05 < 0.01 (–6.055, –2.178)
DegreeOfOpenness_Low -0.59 0.21 < 0.05 (0.069, 0.705)
PlantingStyle_Isolated 0.11 0.06 < 0.01 (0.874, 1.600)

Final QIC for safety GEE logistic regression analysis was 2076.22 (Table 3.10).
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ROC curve for the model exhibited an AUC of 0.78 (Figure 3.8g). Error bar plots
for safety perception (Figure 3.9g) show that SpaceTypeCategories had the highest
standardized coefficient. DTTree was the most prominent negative indicator,
whereas SpaceTypeCategories was the most significant positive indicator affecting
the perception of safety.

Table 3.10: Final GEE logistic regression safety perceptual model variables (QIC =
2076.22)

Variable Estimate Std.Error p value 95 % CI

(Intercept) –2.49 0.21 < 0.01 (–2.899, –2.09)
DTTrees –0.05 0.01 < 0.01 (–0.065, –0.036)
SpaceTypeCategories 0.66 0.05 < 0.01 (0.566, 0.748)
DegreeOfOpenness_High 1.07 0.13 < 0.01 (0.81, 1.338)
ContrastDegree_High 1.41 0.15 < 0.01 (1.127, 1.697)

Eventually, after eliminating the non-significant characteristic elements through
the stepwise regression method, the formulas of the GEE logistic regression
equations for each perception are expressed as follows:

Logit(P (Beauty)) = 0.81 + 0.09 · DT_HP + 0.46 · NE − 8.45 · SR − 6.13 · AO
+ 27.67 · WR + 0.44 · DO_M (3.2)

Where the variables are defined as follows:

• DT_HP: DTHerb Plants
• NE: Number Of Elements
• SR: Sky Ratio
• AO: Artificial Objects
• WR: Water Ratio
• DO_M: Degree Of Openness Medium

Logit(P (Comfort)) = − 2.46 + 0.38 · NE + 7.81 · CC − 4.14 · RR
+ 20.16 · WR − 0.39 · PS_L (3.3)

Where the variables are defined as follows:

• NE: Number Of Elements
• CC: Crown Coverage
• RR: Road Ratio
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• WR: Water Ratio
• PS_L: Planting Style Linear

Logit(P (Color)) = − 2.52− 0.17 · RC_G + 0.11 · NM + 16.11 · WR + 6.74 · FR
+ 1.16 · CD_H (3.4)

Where the variables are defined as follows:

• RC_G: RC Grass
• NM: Number Of Materials
• WR: Water Ratio
• FR: Flower Ratio
• CD_H: Contrast Degree High

Logit(P (Complexity)) = − 3.76 + 0.21 · RC_HP + 0.21 · SS + 0.23 · NM (3.5)
− 1.95 · RR + 11.85 · WR + 0.37 · PS_G

Where the variables are defined as follows:

• RC_HP: RCHerb Plants
• SS: ShrubSpecies
• NM: Number Of Materials
• RR: Road Ratio
• WR: Water Ratio
• PS_G: Planting Style Group

Logit(P (Liveliness)) = − 2.02 + 0.14 · DT_HP − 0.21 · SS + 0.21 · NM
− 0.28 · STC + 37.82 · WR − 1.25 · DO_H (3.6)

Where the variables are defined as follows:

• DT_HP: DTHerb Plants
• SS: ShrubSpecies
• NM: Number Of Materials
• STC: Space Type Categories
• WR: Water Ratio
• DO_H: Degree Of Openness High
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Logit(P (Greenness)) = 2.66− 0.03 · DT_S − 0.22 · RC_AO + 0.17 · SS − 6.11 · RR
+ 7.39 · WR − 4.12 · HR + 0.39 · DO_L + 1.24 · PS_L

(3.7)

Where the variables are defined as follows:

• DT_S: DT Shrub
• RC_AO: RCArtificial Objects
• SS: ShrubSpecies
• RR: Road Ratio
• WR: Water Ratio
• HR: Herb Ratio
• DO_L: Degree Of Openness Low
• PS_I: Planting Style Isolated

Logit(P (Safety)) = − 2.49− 0.05 · DT_T + 0.66 · STC + 1.07 · DO_H + 1.41 · CD_H
(3.8)

Where the variables are defined as follows:

• DT_T: DTTrees
• STC: Space Type Categories
• DO_H: Degree Of Openness High
• CD_H: Contrast Degree High

Through correlation and GEE logistic regression analyses, we excluded insignif-
icant indicators and identified those that influenced human perception. Combi-
nation of three dimensions provided comprehensive visual assessment results. As
shown in Table 3.11, eye-tracking indicators related to herb plants (DTHerbPlants
and RCHerbPlants) showed the most extensive positive correlations, affecting the
perceptions of beauty, complexity, and liveliness. Among the image segmentation
indicators, WaterRatio showed the most extensive positive correlation, affecting
the perceptions of beauty, comfort, color, complexity, liveliness, and greenness.
NumberOfMaterials exhibited the most extensive positive correlations with the
spatial feature indicators, affecting the perceptions of color, complexity, and
liveliness. These findings emphasize the correlations between multidimensional
visual indicators and human perceptions.
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Table 3.11: Summary of key indicators and their correlations with human perception

Perception Eye-tracking
indicators

Image
segmentation
indicators

Spatial feature indicators

Beauty DTHerbPlants (+) WaterRatio (+),
SkyRatio (–), and
ArtificialObjects
(–)

NumberOFElements (+), and
DegreeOfOpenness_Medium
(+)

Comfort None WaterRatio (+),
RoadRatio (–), and
CrownCoverage
(+)

NumberOfElements (+), and
PlantingStyle_Linear (–)

Color RCGrass (–) WaterRatio (+),
and FlowerRatio
(+)

NumberOfMaterials (+) and
ContrastDegree_High (+)

Complexity RCHerbPlants (+) WaterRatio (+),
and RoadRatio (–)

ShrubSpecies (+),
NumberOfMaterials (+), and
PlantingStyle_Group(+)

Liveliness DTHerbPlants (+) WaterRatio (+) ShrubSpecies (–),
NumberOfMaterials (+),
SpaceTypeCategories (–), and
DegreeOfOpenness_High (–)

Greenness DTShrubs (–), and
RCArtificialObjects
(–)

WaterRatio (+),
RoadRatio (–), and
HerbRatio (–)

ShrubSpecies (+),
DegreeOfOpenness_Low (+),
and PlantingStyle_Isolated
(+)

Safety DTTrees (–) None SpaceTypeCategories (+),
DegreeOfOpenness_High (+),
and ContrastDegree_High (+)

Note: (+) represents positive correlation; (-) represents negative correlation.

3.3.3 Enhancing classification models using multidimensional
visual indicators

Our classification models incorporating multidimensional visual indicators exhib-
ited good performance in assessing the LVQ of urban parks. Our models exhibited
robust performance in distinguishing between positive and negative perceptions of
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Table 3.12: Comparison of model performance metrics (QIC and AUC).

Multidimensional
visual indicators

Spatial feature
indicatorsModel QIC AUC QIC AUC QIC Difference AUC Difference

Beauty 1871.82 82% 2003.99 78% 132.17 4.0%
Comfort 2158.92 74% 2301.30 69% 142.38 5.0%
Color 2117.28 74% 2182.30 73% 65.02 1.0%
Complexity 2147.22 73% 2229.45 71% 82.23 2.0%
Liveliness 1864.32 81% 2015.63 78% 151.31 3.0%
Greenness 2160.98 74% 2332.99 67% 172.01 7.0%
Safety 2076.22 78% 2200.54 75% 124.32 3.0%

Note: QIC Difference = QIC (spatial feature indicators) - QIC (multidimensional visual
indicators).
AUC Difference = AUC (multidimensional visual indicators) - AUC (spatial feature indicators).

urban park attributes by integrating eye-tracking, image segmentation, and spatial
feature indicators. As shown in Table 3.12, we evaluated the effectiveness of the
models using AUC and QIC metrics, which showed their ability to distinguish
between perceptions and deliver reliable classification outcomes.

The AUC scores reflected the classification performance of our models in
distinguishing between positive and negative perceptions of urban parks. Com-
pared to models solely relying on spatial feature indicators, our models involving
multidimensional visual indicators exhibited better performance, with notable
improvements across all attributes, with an increase of 4% in beauty, 5% in
comfort, 1% in color, 2% in complexity, 3% in liveliness, 7% in greenness, and 3%
in safety. Although the degree of improvement varied, the overall enhancement
highlights the advantages of incorporating multidimensional visual indicators into
traditional models, particularly since models based solely on spatial feature indi-
cators demonstrated higher QIC scores, indicating weaker model fit. In contrast,
models incorporating multidimensional visual indicators demonstrate superior
performance, emphasizing the significant benefit of integrating eye-tracking, image
segmentation, and spatial feature indicators in enhancing the model accuracy and
goodness-of-fit.
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Figure 3.10: ROC curves derived from GEE logistic regression models using spatial
feature indicators to assess seven human perceptions
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3.4 Discussion

3.4.1 The impact of multidimensional visual indicators on
human perception

(1) Comprehensive impact
In this study, eye-tracking, image segmentation, and spatial feature indicators

each contribute to a predictive indicator that has the broadest impact on the
human perceptual assessment of urban park across seven perceptual models.
Specifically, these indicators were HerbPlants (DTHerbPlants and RCHerbPlants),
WaterRatio, and NumberOfMaterials. Specific eye-tracking indicators related to
herb plants, namely DTHerbPlants and RCHerbPlants, significantly influenced
multiple perceptual models. The DTHerbPlants is an indicator that significantly
affects multiple perceptual models. In models assessing beauty and liveliness, the
extended dwell time on herb plants indicates an enhancement of the landscape’s
appeal and diversity through rich visual elements such as a variety of flower colors
and species richness [88,144]. A longer dwell time reflects the visual attractiveness
of herb plants compared with ordinary green ornamental plants, providing more vi-
sual stimulation and aesthetic value to the landscape [88]. The positive correlation
of RCHerbPlants with complexity suggests that the visual intricacy of herb plants,
despite their limited area and uniformity in some settings, can significantly engage
observers, contributing to a more complex visual experience [145]. WaterRatio is
an essential indicator for assessing the LVQ of urban parks, correlating positively
with various perceptions, including beauty, comfort, complexity, liveliness and
greenness. High water ratio significantly enhances the beauty, comfort, and liveli-
ness of urban parks [99, 146, 147]. Water-associated colors, such as blue, promote
relaxation and pleasure, thereby enhancing color perception [148]. Eye-tracking
data further support these findings, showing that areas with a higher proportion of
water retain visitors’ gazes significantly longer, indicating that these areas are more
effective in attracting and maintaining human interest. The reflective properties of
water surfaces play a key role in the positive correlation between WaterRatio and
perceptions of complexity and greenness. Reflections of vegetation and structures
add visual stimuli, enhancing scene complexity, while reflected greenery amplifies
perceived green coverage, creating a synergistic effect that strengthens greenness
perception [56]. NumberOfMaterials is positively correlated with perceptions of
color, complexity, and liveliness, reflecting the influence of material diversity in
uniquely designed, color-rich facilities and varied plant arrangements that enhance
these attributes [132,149].

We found that HerbPlants, WaterRatio, and NumberOfMaterials have sig-
nificant impacts on multiple perceptual dimensions, reflecting the multidimen-
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sional integration of human perception [22, 127, 150]. HerbPlants significantly
enhances perceptions of beauty and liveliness through its visual appeal and
diversity, while simultaneously contributing to complexity due to the intricate
details of herb plants [88, 149]. Similarly, WaterRatio not only promotes beauty
and comfort through its aesthetic and restorative qualities but also enhances
perceptions of color diversity due to its association with blue tones, while its
reflective properties further enhance perceptions of complexity and greenness by
mirroring vegetation, enriching the perceptual experience [147,148]. The diversity
of materials represented by NumberOfMaterials enriches color and complexity
while also increasing liveliness by offering varied visual experiences [151]. Due
to the complex and comprehensive effects of these spatial features on visual
appeal and psychological restoration, they often simultaneously influence different
perceptual dimensions [107, 148]. This multidimensional influence demonstrates
the interrelationships within environmental perception and provides a more holistic
perspective for the overall assessment of urban parks [22,114,148,152]. The strong
classification performance of the perceptual models further indicates that these
potential overlaps do not undermine the validity of the findings; rather, they
emphasize the important role these indicators play in the comprehensive evaluation
of environmental perception.

(2) The impact of eye-tracking indicators

eye-tracking provides an insightful perspective on the ways in which users
visually interact with urban park landscape elements. This technology reveals
key indicators that influence various perceptual models, offering direct insights
into user engagement and preference patterns. RCArtificialObjects negatively
correlated with the perception of greenness. Artificial objects such as street
lamps, noticeboards, and trash bins, characterized by their stark contrast with
natural vegetation, have attracted significant attention [85, 153]. This attentional
shift towards artificial objects leads to a diminished focus on vegetation, thereby
negatively affecting the perceived greenness of the environment [154,155]. DTTrees
negatively correlated with the perception of safety. This can be explained by
prospect-refuge theory, as trees may act as visual obstructions that reduce open-
ness, heightening vigilance and lowering perceived safety [127, 156]. The negative
correlation between RCGrass and color perception may reflect the dominance of
large grassland areas in the visual field. With their extensive coverage and uniform
color, grasslands often attract repeated visual attention, limiting the exploration of
more colorful elements and consequently reducing the perception of color diversity
in the urban park. DTShrubs negatively correlated with greenness perception. By
comparing spaces with similar green ratios, shrub ratios, and dwell time to shrubs,
it was found that greenness perception was higher in spaces with greater shrub
species diversity. This suggests that the negative correlation of DTShrubs may
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indirectly reflect the suppressive effect of low shrub species diversity on greenness
perception.

In this study, eye-tracking data not only improved the accuracy of our classifi-
cation models but also provided profound insights on the relationships revealed by
image segmentation and spatial feature indicators. We found a negative correlation
between HerbRatio and greenness perception. Despite their visual appeal and
colorful flowering, herb plants negatively affect the overall perception of greenness
as they draw attention away from green foliage, reducing the perceived greenness in
areas with high concentrations of these plants [88]. Typically, increased RoadRatio
reduces the perceptions of comfort, complexity, and greenness due to reduced
vegetation [56, 157]. Eye-tracking data also supported this finding, showing that,
in areas with a higher RoadRatio, human visual attention to green vegetation
decreased, further reducing perceptions of these attributes. The diversity of shrub
species correlated positively with perceptions of complexity and greenness, while
showing a negative correlation with liveliness. Eye-tracking data revealed that
areas with abundant shrubs attracted frequent and prolonged visual attention,
enriching the scene’s visual complexity. The diversity of shrub species enhances
the perception of greenness by increasing the richness and variety of vegetation
coverage [130]. The negative association with liveliness may stem from dense shrub
arrangements, which not only obstruct open views but also limit the visibility of
other landscape elements within space. Isolated planting positively influenced the
perceptions of greenness. Although the planting style has been associated with
perceptions in similar studies, its impact is generally not significant. To understand
this relationship, we reviewed the study area, which included four scenes featuring
trees with isolated planting styles. Examination of the eye-tracking gaze trajectory
plots from these four scenes (Figure 3.11) revealed that isolated planting attracted
the most attention, improving the perception of greenness.

(3) Other indicators Building on our multidimensional visual indicator
approach, this section delves into the roles of other image segmentation and spatial
feature indicators that shape urban park perceptions. ArtificialObjects negatively
impact the perception of beauty, with artificial structures typically detracting from
aesthetic quality owing to their stark contrast to natural elements [85]. Moreover,
SkyRatio correlates negatively with beauty, which parallels the results of the Sky
View Factor analysis at the street level [158]. Thus, we can show that SkyRatio’s
impact on perception extends beyond urban street landscapes and applies to urban
parks in VR. Transitioning from factors that detract from the beauty of green
spaces, several indicators significantly enhance the experience of green spaces. An
increased CrownCoverage enhances comfort by providing extensive coverage [56].
FlowerRatio enhances color perception by increasing color diversity and adding
visual appeal to the greenspace environment [88]. NumberOfElements is positively
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Figure 3.11: Gaze plot of an isolated planting style scene. The circles displayed
represent the user’s points of gaze, and the size of the circles is proportional to the
duration of the gaze

correlated with perceptions of beauty and comfort. The diversity of elements
is positively associated with perceptions of beauty and psychological comfort by
increasing visual complexity and creating more visually appealing scenes [151,159].
SpaceTypeCategories positively correlated with safety. A variety of visible space
types enhances safety perceptions by improving visibility and reducing potential
hiding spots through unobstructed views [156]. Fragmented space types, which
disrupt spatial continuity, may account for the negative correlation with liveliness
[160,161]. ContrastDegree significantly influenced perceptions of color, and safety.
High contrast levels enhance color perception and show a positive correlation with
safety, likely due to their frequent use in activity areas, where brightly colored
equipment improves visibility and reduces uncertainty [22, 162]. A medium level
of openness positively correlates with the perception of beauty [122,163,164], this
study further specifies that the degree of openness between 20–80% is mainly
associated with increased beauty perception. In contrast, high degrees of open-
ness negatively affect complexity and liveliness perceptions, as our analysis of
panoramic photos in highly open areas showed that elements within a 15-m radius
tend to be uniformly sparse, leading to a simpler visual landscape. Low degrees of
openness were positively correlated with greenness perception, likely because green
spaces with lower openness are often enclosed by arranged vegetation, enhancing
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the perception of greenery. In contrast, high degrees of openness enhance safety
perception by providing clear sightlines and minimizing potential hiding spots,
aligning with the principles of prospect-refuge theory [156]. PlantingStyle_Linear
was negatively correlated with perceptions of comfort, likely due to its uniform and
rigid structure, which lacks the visual richness necessary to promote relaxation and
mental ease in urban parks [121]. PlantingStyle_Group positively correlated with
perceptions of complexity, as grouped planting arrangements create varied and
layered vegetation patterns, enhancing the perception of complexity.

3.4.2 The performance of perception model integrating mul-
tidimensional visual indicators

Assessment of LVQ in urban parks is crucial to avoid resource wastage and prevent
negative impacts due to unmet human expectations. This study introduced
an integrated method that combines VR technology, eye-tracking, and image
segmentation to effectively assess the perceived LVQ of urban parks. Compared
to methods that rely on two-dimensional rendering, immersive VR technology
provides a more realistic sensory experience by simulating environments that
are yet to be constructed [77], thus overcoming the limitations of traditional
techniques and enhancing the visualization and interactivity of designs [116].
This study identified and recorded zones of maximum visual attention using eye-
tracking technology, offering empirical data on focal points within urban park
environments [165–167]. Image segmentation technology divides visual content
into distinct parts, such as the green ratio, water ratio, and artificial objects,
facilitating detailed analysis of the mechanisms by which these segments contribute
to the overall perceptual quality [56, 168]. Combining spatial feature indicators
such as openness and planting style with eye-tracking and image segmentation
indicators offers a more comprehensive evaluation perspective. This multidi-
mensional integration enabled the model to comprehensively capture the diverse
features of greenspace environments. Multidimensional visual indicators improved
the model’s ability to differentiate between positive and negative perceptions
of urban park attributes by 1–7%. Furthermore, the lower QIC scores of the
multidimensional visual classification model indicate a better fit compared to
models relying solely on spatial feature indicators. These findings emphasize
the advantages of incorporating multidimensional visual indicators to enhance the
performance and goodness-of-fit of classification models.
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3.5 Summary

This study demonstrated the efficacy of VR-based multidimensional visual indica-
tors in enhancing LVQ assessment of urban parks. Using a VR-based multifaceted
approach, we developed a set of multidimensional visual indicators to understand
the impact of LVQ on human perception of urban parks. The integrated model
demonstrated a better fit and distinguished more effectively between positive and
negative perceptions compared to models using only spatial feature indicators.
Therefore, our integrated model incorporating various multidimensional visual in-
dicators accurately classifies human perceptions of urban park LVQ. Our approach
allows for pre-assessment of LVQ before urban park construction, enabling planners
to make informed design adjustments early in the process.

This study makes important contributions to the assessment of LVQ in urban
park. First, this study analyzed the correlations between multidimensional visual
indicators (eye-tracking, image segmentation, and spatial feature indicators) and
human perceptions, highlighting the ways in which these elements influence the
human perceptions of urban park landscapes. Herb plants, water ratio, and
number of materials were the most positively correlated indicators (eye-tracking,
image segmentation, and spatial feature indicators, respectively) influencing hu-
man perception. Second, this study explored the correlations between human
perceptions and urban park landscape environments using eye-tracking data.
Isolated planting styles, which drew the most attention, positively impacted the
greenness perception. Perceptions of beauty, complexity, and liveliness were posi-
tively correlated with eye-tracking data from herb plants, whereas perceptions of
greenness were negatively correlated with the HerbRatio. SkyRatio was negatively
correlated with beauty, consistent with the street-level analysis results. Moderate
degree of openness (20–80%) positively correlated with beauty, establishing a range
for openness. However, high openness led to a monotonous visual landscape, as
elements within a 15-meter radius tend to be uniformly sparse, thereby reducing
the perceived liveliness of urban parks but enhancing the perception of safety.
Shrub species diversity enhances perceptions of greenness and complexity by
enriching vegetation richness and visual complexity. In contrast, low shrub species
diversity, as reflected in dwell time to shrubs, suppresses greenness perception.
Additionally, dense shrubs can obstruct open views and limit the visibility of other
landscape elements, which may reduce perceptions of liveliness. Based on these
findings, we propose several design guidelines for urban park development that
can help urban planners and landscape designers enhance LVQ while meeting user
expectations: 1) Incorporate a variety of herb plants to create a visually appealing
and dynamic landscape, positively impacting perceptions of beauty, complexity,
and liveliness. 2) Maintain a visible water ratio within the space to enrich human
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perceptions, achieved through integrating fountains or other water features. 3) Use
moderate openness levels (20–80%) to balance beauty perception, avoiding overly
open designs that may lead to visual monotony. 4) Ensure visually engaging
elements within a 15-meter radius to prevent sparse landscapes, as insufficient
density can reduce perceived complexity and liveliness. 5) Designing with diverse
shrub species while avoiding dense single-species planting can enhance perceptions
of greenness and complexity while maintaining a balance in liveliness perception.
Overall, our findings and the proposed assessment approach can assist landscape
designers and urban planners in enhancing the LVQ of urban parks. Our approach
can help to meet public expectations before urban park construction, prevent
resource wastage, and support sustainable urban development. Future studies
should evaluate the efficiency of our assessment method in other space designs.
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Chapter 4

Emotional dimensions of landscape
visual quality

4.1 Introduction

As urbanization accelerates, the design and evaluation of urban parks have become
increasingly important for promoting emotional well-being and enhancing urban
life quality [25, 26]. Landscape visual quality (LVQ)—defined as the interaction
between landscape features and human perception—has emerged as a key indicator
of successful park design [88,151,169]. Building on Study 1’s investigation into the
perceptual dimensions of LVQ (e.g., beauty, comfort, color, complexity, liveliness,
greenness, and safety), this chapter shifts focus to the emotional dimension. It
adopts a multimodal approach integrating physiological signals (e.g., electrodermal
activity, PR), eye-tracking data, and self-reported emotional ratings via the
Self-Assessment Manikin (SAM), offering a comprehensive perspective on how
landscape elements influence emotional responses.

Emotional responses are essential for understanding how specific landscape
elements shape user experience. While Study 1 identified positive and negative
spaces based on perceptual qualities, Study 2 seeks to bridge perception and
emotion by embedding LVQ evaluation within an emotional framework. This study
employs immersive VR environments—constructed via SketchUp modeling and
Lumion rendering—to simulate urban park settings under controlled experimental
conditions. Landscape elements were isolated and manipulated to investigate their
impact on user experience. Emotional data were captured through physiological
measurements (e.g., skin conductance, PR) and subjective self-assessments (SAM),
while visual behavior was recorded using eye-tracking technology to explore
attentional patterns. These methods provide an integrative understanding of how
emotional states and visual engagement interact with LVQ, generating practical
insights for emotionally supportive park design. Specifically, this study addresses
the following research questions:

• How do landscape element proportions relate to visual behavior and emo-
tional responses?
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• How does visual behavior toward different landscape element types influence
emotional responses?

• How does visual behavior explain the relationship between landscape ele-
ments and emotional responses?

4.2 Method

4.2.1 Data collection overview

Figure 4.1: Experimental device wear and data synchronization process.

This study builds upon data collected in the same experiment as Study 1
but focuses on a different portion of the dataset. While Study 1 emphasized
dwell time and revisit count from the eye-tracking data to assess LVQ, Study
2 broadens the analysis by incorporating all eye-tracking indicators, including
time to first fixation (TTFF), dwell time (DT), fixation ratio (FR), revisit count
(RC), first fixation duration (FFD), and average fixation duration (AFD). To
explore the emotional dimensions of LVQ, this study also integrates physiological
measurements and the SAM scale to examine how landscape elements influence
both emotional responses and visual behavior. Data collection followed the same
protocol outlined in Study 1 (refer to section 3.2), using the NeU-VR device and
integrated eye-tracking technology. Physiological measurements were captured
using the EmbracePlus smartwatch, and emotional responses were recorded using
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Figure 4.2: Self-Assessment Manikin.

the SAM sacle. Together, these tools provided a multidimensional framework for
quantifying the emotional dimensions of LVQ in controlled yet immersive virtual
environments.

4.2.2 Physiological measurements

This device continuously recorded EDA and PR, synchronized via Bluetooth to
the Empatica health monitoring platform for real-time data processing and cloud-
based storage (Figure 4.1). EDA, an established indicator of sympathetic nervous
system activation, is extensively used as a physiological marker of emotional
arousal [170]. PR, modulated by both sympathetic and parasympathetic activity,
serves as a physiological indicator of responses to emotional stimuli [171].

4.2.3 Psychological measurements

Psychological emotional responses were assessed via the SAM scale [27], which
evaluates valence, arousal, and dominance. Following previous studies [172], only
valence (unpleasant to pleasant) and arousal (calm to excited) were analyzed, since
restricted participant movement minimized dominance-related effects. Emotional
responses were rated on a nine-point scale (Figure 4.2). This concise tool
is well-suited for capturing immediate emotional reactions within virtual park
environments, providing valuable insights into the emotional dimensions of LVQ.
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4.2.4 Visual behavior indexes

Eye-tracking technology was employed to analyze gaze behavior and identify how
landscape elements influence emotional arousal. The data provided an objective
and quantifiable means of understanding visual behavior within virtual environ-
ments, directly contributing to the evaluation of LVQ. This study analyzed six key
types of eye-tracking data to capture participants’ visual behavior comprehensively
(Table 4.1). Real-time data visualization tools, including heatmaps and gaze
trajectory diagrams, were used to analyze participants’ attention allocation. This
analysis enabled the identification of visual behaviors that are closely tied to
emotional responses and LVQ. The detailed definitions and explanations of all
indicators are provided in Appendix C.
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Table 4.1: Eye-tracking indexes for different landscape elements.

Abbreviation Full name Definition and explanation

TTFF Time To First Fixation The time taken from the onset of a stimulus until the first fixation on a
specific Area of Interest (AOI); reflects the priority of visual elements.

FFD First Fixation Duration The duration of the initial gaze at this AOI;
reflects visual initial processing.

DT Dwell Time The total time the user’s gaze stayed within the AOI;
reflects the user’s interest and engagement.

RC Revisit Count The number of times the user’s gaze entered the AOI;
reflect the element’s importance or attractiveness.

FR Fixation Ratio The ratio of the amount of time the user spends in a particular AOI to the total
amount of time spent in all AOI; reflects the relative importance or complexity.

AFD Average Fixation Duration Mean of fixation duration on each AOI;
reflects the depth of cognitive processing.
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4.2.5 Quantifying landscape elements

The proportions of seven landscape elements in 30 panoramic images were analyzed
to explore their influence on emotional responses and LVQ. These elements
included:

• Natural elements: Trees, shrubs, flowering trees, grass, herb plants, and
water landscapes.

• Artificial objects: Roads, street lamps, benches, sculptures, game facilities,
and buildings.

To extract and quantify landscape elements in panoramic images, this study
utilized an interactive semi-automatic image annotation tool (ISAT) integrated
with the segment-anything model [119]. Following segmentation (Figure 4.3),
Python scripts were employed to process the annotated images, extract pixel
distributions, and compute the proportional coverage of each landscape element.

4.2.6 Data analysis

Eye-tracking data were analyzed with FOVE Gaze Analyzer (FOVE) and Py-
Charm Community Edition 2023.2.1 (JetBrains s.r.o., Czech Republic). Raw data
were processed into structured metrics by aggregating redundant instances of the
same landscape element (e.g., Grass1 and Grass2 were merged into a single variable
named Grass). The extracted eye-tracking metrics comprised TTFF, FFD, RC,
DT, FR, and AFD. Physiological signals, recorded as time-series data, were
extracted for each participant during the one-minute viewing of each panoramic
image, synchronized using timestamps.

Shapiro-Wilk tests and histogram analyses confirmed that data from the
SAM scale, physiological signals, eye-tracking metrics, and landscape element
proportions did not follow normal distribution. Consequently, Spearman’s rank
correlation was used to assess associations among landscape element proportions,
emotional responses, physiological signals, and visual behavior. The Kruskal-
Wallis H test evaluated differences in eye-tracking metrics across landscape element
types, while partial Spearman’s rank correlation controlled confounding variables
when analyzing relationships between visual behavior, emotional responses, and
physiological signals. Composite emotional scores were derived from SAM scale
data to rank scenes based on their extremity in emotional responses (most positive
and most negative). Finally, eye-tracking heatmaps were generated to visualize key
visual attention regions across different emotional conditions, identifying landscape
elements associated with emotional responses.
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Figure 4.3: Panoramic pictures and semantic segmentation results.
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4.3 Results

4.3.1 Effect of landscape element proportions on emotional
responses and visual behavior

Correlation of landscape element proportions with emotional responses
(1) Psychological results

Table 4.2: Spearman correlation coefficients (ρ) between landscape element proportions
and psychological changes.

Variable Trees Shrubs Flower
Trees

Grass Herb
Plants

Water
Land-
scape

Artificial
Objects

Valence r 0.099 -0.359 -0.044 0.165 0.574** 0.350 -0.169
ρ 0.602 0.052 0.817 0.384 <0.01 0.058 0.372

Arousal r -0.111 -0.442* -0.235 0.194 0.677** 0.347 -0.012
ρ 0.561 <0.05 0.211 0.303 <0.01 0.060 0.950

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

The analysis of the correlation between landscape element proportions and
emotional psychological changes, as shown in Table 4.2, reveals that herb plants
have a significant positive correlation with both the valence and arousal compo-
nents of emotions (p < 0.01). This indicates that the presence of herb plants in
the landscape is associated with higher levels of positive emotions and increased
arousal. Conversely, shrubs exhibit a negative correlation with arousal (p < 0.05),
suggesting that higher proportions of shrubs might be linked to reduced emotional
arousal.

(2) Physiological results
In terms of physiological changes, as detailed in Table 4.3, the results show

that only Flower Trees have a notable correlation with physiological responses.
Specifically, Flower Trees are significantly positively correlated with EDA (r
= 0.597, p < 0.01), indicating increased sympathetic nervous system activity.
Additionally, Flower Trees are significantly negatively correlated with PR (r =
-0.683, p < 0.01), suggesting a calming effect on PR. This highlights the unique
impact of Flower Trees on physiological signals compared to other landscape
elements.

Correlation of landscape element proportions with visual behavior
The analysis of correlations between landscape element proportions and eye-

tracking indicators (Table 4.4) shows that, apart from FlowerTrees metrics showing
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Table 4.3: Spearman correlation coefficients (ρ) between landscape element proportions
and physiological changes.

Variable Trees Shrubs Flower
Trees

Grass Herb
Plants

Water
Land-
scape

Artificial
Objects

EDA r 0.039 0.119 0.597** -0.057 0.236 0.187 -0.107
ρ 0.836 0.529 <0.01 0.765 0.210 0.323 0.574

PR r -0.160 -0.081 -
0.683**

-0.174 -0.018 0.005 0.239

ρ 0.399 0.669 <0.01 0.359 0.926 0.978 0.203

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

no correlation with eye-tracking indicators and no correlation between Trees and
TTFF, other landscape element proportions are positively correlated with TTFF,
FFD, RC, DT, FR, and AFD. Taking HerbPlants as an example, the Pearson
r values for eye tracking indicators are high (TTFF r=0.883, FFD r=0.947, RC
r=0.941, DT r=0.936, FR r=0.938, AFD r=0.944). This indicates that the higher
the proportion of landscape elements, the quicker people gaze at them, the longer
the initial fixation duration, the more frequent the revisits, the longer the total
dwell time, the higher the fixation ratio, and the longer the average fixation
duration.

4.3.2 Effect of landscape element types on emotional re-
sponses and visual behavior

Correlation between visual behavior of different elements and emotional
responses

(1) Time to first fixation and emotional responses:
The analysis in Table 4.5 shows that TTFF for herb plants is significantly and

positively correlated with valence and arousal, indicating that the earlier people
focus on herb plants, the more pleasant and excited they will be. Water landscapes
were positively correlated with valence, indicating that the earlier people focus
on water landscapes, the more pleasant they would be. Grass was significantly
positively correlated with arousal, indicating that the earlier people focused on
grass, the more excited they would be. On the other hand, TTFF for shrubs was
significantly negatively correlated with valence and arousal, indicating that the
earlier people focused on shrubs, the more likely they were to feel unpleasant and
calm.
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Table 4.4: Spearman correlation coefficients (ρ) between landscape element proportions
and visual behavior.

Elements TTFF FFD RC DT FR AFD
Trees r 0.180 0.565** 0.645** 0.489** 0.483** 0.578**

ρ 0.341 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Shrubs r 0.646** 0.880** 0.859** 0.868** 0.861** 0.883**

ρ < 0.01 < 0.01 < 0.01 < 0.01 <0.01 < 0.01
FlowerTrees r 0.209 0.185 0.219 0.208 0.219 0.195

ρ 0.268 0.328 0.245 0.270 0.245 0.302
Grass r 0.739** 0.888** 0.881** 0.899** 0.886** 0.877**

ρ < 0.01 < 0.01 < 0.01 < 0.01 <0.01 < 0.01
HerbPlants r 0.883** 0.947** 0.941** 0.936** 0.938** 0.944**

ρ < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
WaterLandscape r 0.935** 0.942** 0.939** 0.941** 0.941** 0.942**

ρ < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
ArtificialObjects r 0.594** 0.750** 0.705** 0.762** 0.766** 0.735**

ρ < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

Table 4.5: Correlation coefficients between TTFF and emotion of landscape elements.

Elements Valence Arousal EDA Pulse_Rate
TTFF Trees -0.030 -0.082 -0.276 0.117

Shrubs -0.499** -0.469** -0.020 0.121
FlowerTrees -0.219 -0.344 -0.311 0.115
Grass 0.261 0.475** 0.019 -0.007
HerbPlants 0.598** 0.704** 0.120 0.099
WaterLandscape 0.420* 0.338 0.247 -0.079
ArtificialObjects 0.077 0.136 -0.327 0.355

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).
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Table 4.6: Correlation coefficients between FFD and emotion of landscape elements.

Elements Valence Arousal EDA Pulse_Rate
FFD Trees -0.020 -0.209 -0.293 -0.017

Shrubs -0.500** -0.513** -0.002 0.064
FlowerTrees -0.190 -0.362* -0.203 0.105
Grass 0.150 0.311 0.004 -0.052
HerbPlants 0.575** 0.666** 0.243 0.023
WaterLandscape 0.429* 0.346 0.216 -0.059
ArtificialObjects -0.016 0.093 -0.103 0.130

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

(2) First fixation duration and emotional responses:
As shown in Table 4.6, the FFD on herb plants is significantly positively

correlated with both valence and arousal, suggesting that the longer people initially
fixate on herb plants, the more pleasant and excited they feel. The FFD for water
landscapes is also positively correlated with valence, indicating that longer initial
gazes on water landscapes are associated with increased pleasantness. In contrast,
the FFD for shrubs is significantly negatively correlated with both valence and
arousal, implying that prolonged first gazes on shrubs tend to be associated with
feelings of unpleasantness and calmness. Additionally, Flower trees show a negative
correlation with arousal, indicating that longer initial fixations on Flower Trees
correspond to a calmer.

(3) Revisit count and emotional responses:
As shown in Table 4.7, the RC for herb plants is significantly positively

correlated with both valence and arousal, indicating that the more frequently
people revisit herb plants, the more pleasant and excited they feel. The RC
for water landscapes is positively correlated with valence, suggesting that more
frequent revisits to water landscapes are associated with increased feelings of
pleasantness. On the other hand, the RC for shrubs is negatively correlated with
both valence and arousal, indicating that the more often people revisit shrubs, the
more unpleasant and calm they tend to feel.

(4) Dwell time and emotional responses:
As shown in Table 4.8, the DT for herb plants is significantly positively

correlated with both valence and arousal, indicating that the longer people gaze at
herb plants, the more pleasant and excited they feel. The DT for water landscapes
is positively correlated with valence, suggesting that the longer the gaze on water
landscapes, the more pleasant people feel. On the other hand, the DT for shrubs is
significantly negatively correlated with both valence and arousal, indicating that
the longer people gaze at shrubs, the more unpleasant and calm they tend to
feel. Additionally, the DT for Flower Trees is negatively correlated with arousal,
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Table 4.7: Correlation coefficients between RC and emotion of landscape elements.

Elements Valence Arousal EDA Pulse_Rate
RC Trees -0.004 -0.237 -0.204 0.097

Shrubs -0.369* -0.385* 0.103 0.019
FlowerTrees -0.150 -0.342 -0.104 0.041
Grass 0.028 0.169 -0.006 -0.149
HerbPlants 0.517** 0.600** 0.276 0.014
WaterLandscape 0.429* 0.338 0.194 -0.08
ArtificialObjects -0.061 0.112 0.147 -0.028

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

Table 4.8: Correlation coefficients between DT and emotion of landscape elements.

Elements Valence Arousal EDA Pulse_Rate
DT Trees -0.118 -0.311 -0.316 0.107

Shrubs -0.426* -0.404* 0.011 0.099
FlowerTrees -0.190 -0.365* -0.151 0.081
Grass 0.157 0.293 0.004 -0.133
HerbPlants 0.542** 0.622** 0.272 0.016
WaterLandscape 0.436* 0.347 0.198 -0.069
ArtificialObjects -0.027 0.117 0.023 0.010

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

suggesting that longer gazes on Flower Trees are associated with a calmer.
(5) Fixation rate and emotional responses:
As shown in Table 4.9, the FR for herb plants is significantly positively

correlated with both valence and arousal, indicating that the higher the fixation
rate on herb plants, the more pleasant and excited people feel. The FR for water
landscapes is positively correlated with valence, suggesting that higher fixation
rates on water landscapes are associated with increased feelings of pleasantness.
On the other hand, the FR for trees is significantly negatively correlated with
both valence and arousal, indicating that higher fixation rates on trees tend to
be associated with feelings of unpleasantness and calmness. Additionally, the FR
for shrubs and Flower Trees is negatively correlated with arousal, suggesting that
higher fixation rates on these elements correspond to a calmer.

(6) Average fixation duration and emotional responses:
As shown in Table 4.10, the AFD for herb plants is significantly positively

correlated with both valence and arousal, indicating that the longer the average
fixation duration on herb plants, the more pleasant and excited people feel. The
AFD for water landscapes is positively correlated with valence, suggesting that
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Table 4.9: Correlation coefficients between FR and emotion of landscape elements.

Elements Valence Arousal EDA Pulse_Rate
FR Trees -0.114* -0.308* -0.344 0.109

Shrubs -0.444 -0.422* 0.01 0.092
FlowerTrees -0.191 -0.371* -0.145 0.073
Grass 0.152 0.289 0.013 -0.116
HerbPlants 0.541** 0.627** 0.258 0.031
WaterLandscape 0.436* 0.347 0.198 -0.069
ArtificialObjects -0.013 0.124 0.003 0.024

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

Table 4.10: Correlation coefficients between AFD and emotion of landscape elements.

Elements Valence Arousal EDA Pulse_Rate
AFD Trees -0.051 -0.245 -0.289 -0.031

Shrubs -0.489** -0.511** 0.014 0.070
FlowerTrees -0.184 -0.372* -0.184 0.093
Grass 0.143 0.313 -0.016 -0.046
HerbPlants 0.572** 0.655** 0.244 0.02
WaterLandscape 0.432* 0.345 0.212 -0.068
ArtificialObjects 0.039 0.111 -0.14 0.164

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

longer average fixation durations on water landscapes are associated with increased
feelings of pleasantness. On the other hand, the AFD for shrubs is significantly
negatively correlated with both valence and arousal, indicating that longer average
fixation durations on shrubs tend to be associated with feelings of unpleasantness
and calmness. Additionally, the AFD for Flower Trees is negatively correlated
with arousal, suggesting that longer average fixation durations on Flower Trees
correspond to a calmer.

In addition, eye-tracking behavior of landscape elements was not significantly
correlated with EDA and PR.

(7) Summary of correlations between visual behavior and emotional
responses by landscape type

Our analysis revealed distinct effects of landscape elements on emotional
responses, as measured through eye movement metrics (TTFF, FFD, RC, DT,
FR, AFD) and their correlation with valence, arousal, EDA, and PR. We found
strong correlations between the visual behavior elicited by these elements and
psychological responses, but these correlations varied significantly across different
elements. In this study, we found that aside from the FR of shrubs, which
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Table 4.11: Biased Spearman correlation analysis of control trees ratio, valence, arousal,
EDA, PR and eye-tracking data.

Elements
controlled

Emotion
indicators TTFF FFD DT RC FR AFD

Trees Valence -0.049 -0.093 -0.192 -0.09 -0.186 -0.134
Arousal -0.064 -0.179 -0.296 -0.218 -0.292 -0.223
EDA -0.288 -0.382* -0.385* -0.301 -0.415* -0.382*
Pulse_Rate 0.150 0.090 0.214 0.264 0.216 0.076

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05).

showed no significant correlation with valence, all other eye-tracking behaviors
induced by shrubs demonstrated a consistent negative correlation with both
valence and arousal. Moreover, all eye-tracking behaviors induced by herb plants
were positively correlated with both valence and arousal. Similarly, all eye-tracking
behaviors induced by water landscapes showed a positive correlation with valence.
For flowering trees, with the exception of TTFF and RC, the remaining metrics
generally exhibited a negative correlation with arousal. Additionally, the TTFF for
grasslands was positively correlated with arousal. However, these visual behaviors
showed weak correlations with physiological responses such as EDA and PR.

Partial correlation analysis of different landscape elements
(1) Ratio of trees
The Table 4.11 results show that, when controlling for the tree ratio, the

correlations between eye-tracking indicators and valence and arousal are weak
and not statistically significant. However, certain eye-tracking indicators (such
as FFD, DT, FR, and AFD) have a significant negative correlation with EDA.
This suggests that longer initial fixation, longer attention duration, higher fixation
rate, and longer average fixation time on trees may lead to a calmer physiological
response. No significant correlations were found between PR and the eye-tracking
indicators.

(2) Ratio of shrubs
The Table 4.12 results show that, when controlling for the shrub ratio, certain

eye-tracking indicators (such as TTFF, FFD, and AFD) show a significant negative
correlation with valence. This indicates that faster initial fixation on shrubs, longer
initial fixation duration, and longer average fixation time may result in unpleasant
feelings. The correlations between arousal, EDA, and PR with these eye-tracking
indicators are weak and not statistically significant, suggesting that the impact of
shrubs on these physiological and emotional indicators is limited or inconsistent.

(3) Ratio of flower trees
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Table 4.12: Biased Spearman correlation analysis of control shrubs ratio, valence, arousal,
EDA, PR and eye-tracking data.

Elements
controlled

Emotion
indicators TTFF FFD DT RC FR AFD

Shrubs Valence -0.376* -0.416* -0.248 -0.127 -0.285 -0.394*
Arousal -0.267 -0.292 -0.046 -0.012 -0.090 -0.286
EDA -0.128 -0.226 -0.188 0.000 -0.184 -0.196
Pulse_Rate 0.228 0.287 0.342 0.175 0.320 0.303

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05).

Table 4.13: Biased spearman correlation analysis of control flower trees ratio, valence,
arousal, EDA, PR and eye-tracking data.

Elements
controlled

Emotion
indicators TTFF FFD DT RC FR AFD

FlowerTrees Valence -0.213 -0.185 -0.185 -0.144 -0.186 -0.179
Arousal -0.318 -0.334 -0.332 -0.307 -0.337 -0.343
EDA -0.476** -0.397* -0.351 -0.3 -0.352 -0.382*
Pulse_Rate 0.278 0.323 0.312 0.267 0.313 0.316

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05).
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Table 4.14: Biased spearman correlation analysis of control grass ratio, valence, arousal,
EDA, PR and eye-tracking data.

Elements
controlled

Emotion
indicators TTFF FFD DT RC FR AFD

Grass Valence 0.210 0.007 0.020 -0.252 0.012 -0.004
Arousal 0.502** 0.307 0.276 -0.005 0.258 0.302
EDA 0.091 0.119 0.126 0.093 0.137 0.070
Pulse_Rate 0.182 0.225 0.054 0.009 0.084 0.226

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05).

The Table 4.13 results show that, when controlling for the flower tree ratio,
the impact of flower trees on valence and arousal is weak and not statistically
significant. However, certain eye-tracking indicators (such as TTFF, FFD, and
AFD) have a significant negative correlation with EDA. This suggests that faster
initial fixation, longer initial fixation duration, and longer average fixation time
on flower trees may lead to a calmer physiological state. The positive correlations
between PR and the eye-tracking indicators are also not statistically significant,
indicating that the impact of flower trees on PR is limited.

(4) Ratio of grass
The Table 4.14 results show that, when controlling for the grass ratio, the

correlations between eye-tracking indicators and valence are weak and not statis-
tically significant. There is a significant positive correlation between arousal and
TTFF, indicating that the quicker people fixate on the grass, the more likely they
are to feel excited. The correlations between EDA and PR with the eye-tracking
indicators are weak, suggesting that the impact of grass on these physiological
indicators is limited.

(5) Ratio of herb plants
The Table 4.15 results show that, when controlling for the herb plants ratio,

the correlations between herb plants and valence, arousal, as well as physiological
signals (EDA and PR) are weak and not statistically significant. This suggests
that herb plants have a limited impact on these psychological and physiological
indicators.

(6) Ratio of water landscapes
The Table 4.16 results show that, when controlling for the water landscapes

ratio, the correlations between water landscapes and valence, arousal, as well as
physiological signals (EDA and PR) are weak and not statistically significant. This
suggests that water landscapes have a limited impact on these psychological and
physiological indicators.
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Table 4.15: Biased spearman correlation analysis of control herb plants ratio, valence,
arousal, EDA, PR and eye-tracking data.

Elements
controlled

Emotion
indicators TTFF FFD DT RC FR AFD

HerbPlants Valence 0.236 0.120 0.015 -0.084 0.010 0.110
Arousal 0.309 0.106 -0.043 -0.147 -0.027 0.067
EDA -0.194 0.062 0.151 0.165 0.110 0.067
Pulse_Rate 0.244 0.123 0.092 0.092 0.138 0.112

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05).

Table 4.16: Biased spearman correlation analysis of control water landscapes ratio,
valence, arousal, EDA, PR and eye-tracking data.

Elements
controlled

Emotion
indicators TTFF FFD DT RC FR AFD

WaterLandscape Valence 0.277 0.314 0.333 0.311 0.333 0.324
Arousal 0.040 0.062 0.065 0.036 0.065 0.056
EDA 0.207 0.120 0.068 0.053 0.068 0.108
Pulse_Rate -0.236 -0.188 -0.217 -0.248 -0.217 -0.218

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05).
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Table 4.17: Biased spearman correlation analysis of control artificial objects ratio,
valence, arousal, EDA, PR and eye-tracking data.

Elements
controlled

Emotion
indicators TTFF FFD DT RC FR AFD

ArtificialObjects Valence 0.224 0.170 0.159 0.083 0.184 0.245
Arousal 0.177 0.154 0.195 0.169 0.207 0.176
EDA -0.329 -0.034 0.162 0.315 0.134 -0.091
Pulse_Rate 0.272 -0.078 -0.274 -0.285 -0.256 -0.019

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05).

(7) Ratio of artificial objects
The Table 4.17 results show that, when controlling for the artificial objects

ratio, the correlations between artificial objects and valence, arousal, as well as
physiological signals (EDA and PR) are weak and not statistically significant.
This suggests that artificial objects have a limited impact on these psychological
and physiological indicators.

(8) Summary of partial spearman correlation analysis
Partial Spearman correlation analysis results for emotional variables (valence

and arousal) showed that shrubs’ valence was significantly negatively correlated
with TTFF, FFD, and AFD. Grass’ arousal was significantly positively correlated
with TTFF. No significant correlations were observed between any eye-tracking
measures and valence or arousal for other elements when controlling for other
landscape elements. These results suggest that, in terms of eye-tracking measures,
shrubs and grass have the most significant impact on emotional responses (valence
and arousal). Partial Spearman correlation analysis results for physiological signals
(EDA and PR) showed that trees’ EDA was significantly negatively correlated with
FFD, DT, FR, and AFD. Flower trees’ EDA was significantly negatively correlated
with TTFF, FFD, and AFD. No significant correlations were observed between
any eye-tracking measures and EDA or PR for other elements when controlling for
other landscape elements.

Visual behavioral differences in different landscape elements
Multivariate models included element proportions as covariates to analyze the

impact of element types on visual behavior and to determine differences among
various elements. Statistical analysis using the Kruskal-Wallis H test indicated
significant differences in TTFF, FFD, RC, DT, FR, and AFD across different
landscape elements within urban settings. Boxplot comparisons revealed different
patterns of visual attention and cognitive engagement with these elements (Figure
4.4). According to TTFF and FFD, water landscapes are perceived more quickly
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Figure 4.4: Boxplots of participants’ visual behavior towards different landscape
elements.
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Table 4.18: Comparative analysis of physiological responses between two scenes.

Scene Mean Statistic p-Value
EDA 12 54.23 1423.5 0.048

29 66.78
PR 12 79.65 0.160 0.873

29 79.35

EDA ranks. Significant if p < 0.05 (Mann-Whitney U). PR: mean ± SD. No significant
difference if p > 0.05 (T-test).

but have shorter initial fixation durations. Artificial objects require more time
to initially attract observers’ attention, but once attracted, observers tend to
engage in longer preliminary processing on these elements. Thus, water landscapes
are more appealing but less cognitively complex. According to RC and DT
data, artificial objects had the most revisits and showed the longest dwell times.
According to FR and AFD data, they exhibited high fixation ratios and long
average fixation durations. These results suggest that in virtual environments of
urban parks, artificial elements are attractive and more complex but take longer
to initially attract observers’ attention. In contrast, water landscapes are also
appealing but less cognitively complex, and are perceived the fastest.

4.3.3 Eye-tracking emotional responses to landscape ele-
ments

When assessing the emotion scores of the individual scenes in the urban park,
scene 29 stood out with the highest combined mood score (Combined Score =
4.02), representing the best emotion stimulation.On the contrary, Scene 12 had
the lowest emotional score (Combined Score = -0.95) and represented the worst
emotionally stimulating space. With this comparison, we further analyzed the eye
tracking data of these two scenes to reveal landscape elements that positively or
negatively influenced emotional.

Physiological effect in varied emotional spaces
Tests for normality and homogeneity of variance revealed that EDA data do

not follow a normal distribution and exhibit unequal variances, whereas PR data
are normally distributed with equal variances. Consequently, the non-parametric
Mann-Whitney U test will be applied to the EDA data, while an independent
samples t-test will be utilized for the PR data. Table 4.18 indicates a statistically
significant difference in EDA between the two scenes. Specifically, Scene 12 has
an average rank of 54.23 compared to Scene 29’s average rank of 66.78, suggesting
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Figure 4.5: Heat map of scene 12.

a more pronounced physiological stress response in Scene 29. This implies that
Scene 29 contains elements that may trigger stronger physiological stress responses
in participants. However, the t-test statistic for PR is 0.160 with a p-value of 0.873,
indicating no significant differences in PR between Scenes 12 and 29.

Figure 4.6: Heat map of scene 29.

Eye tracking patterns in negative emotional spaces
In scenes that most effectively elicited positive emotions (Figure 4.5), the eye

tracking data reveal a predominant focus on water landscape and herb plants.
The corresponding hotspot maps displayed dense red and yellow areas, indicating
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prolonged visual engagement with these natural elements, which played a key role
in evoking positive emotional responses.

Eye tracking patterns in positive emotional spaces
In the scenes associated with the strongest negative emotional responses, eye

tracking data reveal a significant focus on artificial objects (Figure 4.6). Hotspot
maps displayed intense red and yellow zones, indicating that artificial objects
were the primary focus of visual attention, which in turn contributed to negative
emotional responses.

4.4 Discussion

4.4.1 Landscape element proportions, emotion responses,
and visual behavior

We examined the impact of landscape element proportions on psychological
and physiological changes in emotions. Psychologically, herb plants significantly
promote positive emotional responses, correlating positively with both valence and
arousal. This finding aligns with previous research emphasizing preferences for and
emotional perception of ornamental plant species within urban park spaces [88].
In contrast, although shrubs are natural elements, an increase in their proportion
tends to reduce emotional arousal. This result contradicts the expectation that
shrubs enhance positive emotions [173]. Our investigation into spaces containing
shrubs suggests that the dense layout of shrubs may limit visibility, thus reducing
arousal levels [174]. Shrubs are a vital element in enhancing the emotional
dimensions of LVQ, and their spatial arrangement must be carefully considered
to maximize their positive emotional impact.

Physiologically, the proportion of FlowerTrees correlates positively with EDA
and negatively with PR, indicating complex physiological responses triggered by
these elements [131, 175, 176]. Further integrating eye-tracking data analysis, we
observed a positive correlation between the proportion of FlowerTrees and EDA,
yet no correlation with eye-tracking metrics. This suggests that physiological
responses, such as an increase in EDA, can be decoupled from visual behaviors such
as eye movements [177]. FlowerTrees may trigger rapid physiological activation
through their color and appearance, which may not directly translate into changes
in visual behavior.

Furthermore, In landscape architecture design, fundamental elements such as
plant materials, buildings, pavements, and water landscapes play pivotal roles
[178]. In our study, we further categorize urban parks into seven elements based
on people’s visual perception. Our findings confirm that varying proportions
of these landscape elements significantly influence both visual engagement and
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emotional responses in urban parks. We found that apart from the lack of
correlation between FlowerTrees and eye-tracking metrics, and between Trees
and TTFF, other landscape elements show a significant positive correlation with
visual behavior. This indicates that visual behavior follows trends in proportional
changes; the larger the area, the more information there is to process [179, 180].
Although there are no significant differences between elements, water landscapes
and herb plants more rapidly capture attention, likely due to their unique visual
appeal [66].

4.4.2 Landscape element types, emotion responses, and vi-
sual behavior

This study shows that artificial objects in urban parks initially capture observers’
attention for longer periods, demonstrating higher visual appeal and complexity.
This finding aligns with previous research which suggests that while natural
elements such as trees and shrubs appear to attract more initial attention, the
actual proportion of attention dedicated to artificial objects like street lamps,
distant buildings, and benches is significantly higher [85]. In contrast, water
landscapes, while also visually appealing, have a lower cognitive complexity and
are perceived more quickly. As important components of urban green, water
landscapes effectively stimulate positive feedback as observation time increases
[56,181].

Eye-tracking technology revealed that landscape perception is mediated by
various visual characteristics. Psychologically, in terms of emotional impact,
shrubs, grass, herb plants, water landscapes, and flowering trees were the main
influences on emotional scores, while artificial objects and trees had minimal
effects. Visual behaviors associated with herb plants correlated positively with
emotional enhancements, likely due to their diverse sensory qualities and color
variations. Previous studies have also shown that flowering plants are more
attractive to observers than green foliage plants [85]. Visual behaviors related
to shrubs negatively correlated with emotions (valence and arousal), possibly due
to the negative visual preference caused by their dense and obscuring foliage [174].
These results suggest that not all natural elements uniformly enhance emotional
responses and that their design and arrangement require careful consideration to
optimize emotional benefits and maintain LVQ.

Moreover, eye movements triggered by water landscapes positively correlated
with valence, enhancing feelings of pleasure [66, 99, 182]. Generally, flowering
trees were negatively correlated with arousal levels, suggesting a calming effect
on observers [131]. The TTFF on grasses positively correlated with arousal,
indicating that initial engagement or interest in grasslands excites observers,
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as lawns provide opportunities for walking, playing, and lying down [127, 183].
Controlling for other factors, visual behaviors triggered by shrubs and grasses
independently had a significant impact on emotional responses. Physiologically,
while all landscape elements had insignificant effects on EDA and PR, trees and
flowering trees exhibited a negative correlation with EDA after controlling for other
factors, suggesting that these elements might play a role in reducing physiological
arousal [53, 101]. These results demonstrate the complex relationship between
emotional responses at psychological and physiological levels, and how landscape
elements influence these responses through different mechanisms. These findings
demonstrate how visual and emotional responses to specific landscape elements
contribute to the broader perception of LVQ in urban parks.

4.4.3 Visual behavior in emotional spaces

Our analysis highlights significant differences in the emotional and physiological
responses elicited by various elements within urban park landscapes. The physi-
ological data corroborate these findings, offering actionable insights through eye-
tracking patterns observed in scenes with both positive and negative emotional
ratings. Notably, intense focus on water landscapes and herb plants substantiates
their role in enhancing emotional responses [184]. Prolonged attention and
concentrated hotspots in these areas not only reflect an intrinsic appeal but
also align with biophilic design principles advocated in urban planning [83, 134],
demonstrating how these elements stimulate positive emotions while potentially
intensifying the sympathetic nervous system’s activity [175].

In spaces perceived negatively, artificial objects emerge as focal points, under-
scoring the potential adverse impacts of poorly integrated or dominant artificial
features within green spaces [147, 185]. These findings indicate that the presence
of certain artificial objects might diminish the natural benefits typically offered by
urban parks, necessitating strategic placement and thoughtful design to mitigate
negative emotional reactions. Furthermore, the absence of significant differences
in PR between scenes suggests that visual elements do not uniformly affect all
physiological markers, highlighting a subtle yet complex relationship between
visual stimuli and physiological responses. By identifying these relationships, this
study contributes to a deeper understanding of how emotional and physiological
responses shape the perception of landscape visual quality.

4.5 Summary

This research focused on the emotional dimension of LVQ. This study quantifies
how seven landscape elements influence emotional responses and visual behavior.

79



Addressing the challenge of low-quality green space provision in compact urban
environments, this study investigates how different landscape element proportions
and types influence emotional responses and visual behavior through a controlled
virtual reality experiment. By integrating physiological signals, eye-tracking, and
questionnaire data, we establish a data-driven framework to assess the interplay
between landscape elements, visual behavior, and emotional responses. Herb
plants most effectively promote both psychological and physiological emotional
responses, making them the most emotionally beneficial natural element. Shrubs
and artificial objects are associated with negative emotional responses, requiring
careful proportion and spatial arrangement. Flowering trees simultaneously de-
crease pulse rate and increase skin conductance, indicating a compound emotional
state of calmness and alertness. To support emotional restoration, designated
restorative zones are recommended to minimize artificial elements and incorporate
water features and herb plants. This research provides evidence on the specific
roles different landscape elements play in influencing human emotional states
and visual behavior, both of which are integral to LVQ. By understanding the
intricate relationship between landscape elements and human responses, urban
environments can be designed to not only fulfill aesthetic and recreational needs
but also to support emotional health. By focusing on the emotional aspects of
LVQ, this study complements the perceptual insights from Study 1, bridging the
gap between perception and emotion in urban park design. The findings aim to
provide practical recommendations for designing urban parks that not only satisfy
visual and functional needs but also foster positive emotional experiences.
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Chapter 5

Emotional and stress recovery di-
mensions of landscape visual quality

5.1 Introduction

This chapter focuses on children as a specific user group and expands the investiga-
tion of landscape elements to examine the emotional and stress recovery dimensions
of landscape visual quality (LVQ). The decision to center this study on children
is based on several considerations. First, children perceive and evaluate landscape
elements differently than adults. For example, a photo-projective study comparing
perceptions of a river environment in Japan found distinct differences between child
and adult residents, underscoring the need for age-specific design considerations
[31]. Second, while the effects of natural environments on adult emotions and
stress have been extensively studied—including factors like tree cover and gender
differences [32], and virtual nature’s influence on youth and seniors [33]—research
on children’s emotional and stress regulation through environmental interaction
remains limited. Third, although environmental features have been shown to
support children’s creativity and social development [34], urban environments often
overlook their needs [35]. Furthermore, existing studies on children’s emotional
and stress responses to landscapes often rely on indirect or observational methods,
such as ethnographic interviews, attention tests, or parental reporting. As shown
in previous research [186–188], common approaches include controlled walks, in-
terviews, and self-reported questionnaires. While informative, these methods may
lack real-time accuracy and are limited in capturing subtle emotional variations
in children. Few studies have employed direct, multimodal measures—such as
facial emotion recognition or combined psychological scales—to assess children’s
affective responses in a controlled experimental setting. This methodological gap
highlights the need for more child-friendly, objective tools to evaluate how specific
landscape features impact children’s emotional states and stress recovery.

In this study, LVQ is investigated through the lens of children’s emotional reg-
ulation and stress recovery. Specifically, we explore how the composition and pro-
portion of landscape elements—such as openness, greenery, and road ratio—affect
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children’s emotional well-being. A mixed-method approach is used, combining
facial emotion recognition with the State-Trait Anxiety Inventory (STAI-S) and
the Perceived Restorativeness Scale for Children (PRCS-C II), to assess children’s
responses more objectively and robustly. Urban parks are recognized as key infras-
tructure that supports both environmental sustainability and public health. For
children, high-LVQ environments are especially valuable in mitigating psychologi-
cal stress and enhancing emotional well-being, given the growing academic, social,
and familial pressures they face in modern urban contexts [25]. Yet, the specific
relationship between landscape types, LVQ, and children’s emotional outcomes
remains underexplored. Traditional methods—such as surveys, observations, and
parental interviews—have offered insights into children’s emotional states, but
they often rely on indirect inference. Technological advances, especially in facial
emotion recognition, offer promising tools for capturing children’s emotions in
real-time, reducing observer bias and enhancing accuracy.

This study integrates qualitative and quantitative methods to evaluate how
different urban park landscape types support stress recovery and emotional regu-
lation in children. The sub-objectives of this study are as follows:

• To explore whether different landscape types can alleviate stress in children.
• To explore differences in the effects of different landscape types on children’s

stress recovery and emotion.
• To explore the relevance of landscape elements to children’s stress recovery

and emotion.

5.2 Method

5.2.1 Sites selection

Based on the "Urban Green Space Classification Standards," this study selected
three urban spaces with high utilization rates by children: a comprehensive park,
a children’s park, and an urban square. The selected sites were Dalian Labor
Park, Children’s Park, and Zhongshan Square in Northeast China (Figure 5.1).
These sites were chosen for their unique landscape features, which represent a
diverse range of green spaces frequently visited by children. Labor Park, with its
large area and lush natural environment, features prominent plant arrangements
and aesthetic viewing experiences. Children’s Park offers abundant vegetation
and various play facilities tailored to children’s activities. Zhongshan Square, as
a typical public square, is spacious with simpler plant arrangements, allowing for
the study of urban square features.

This study employed video stimuli instead of on-site experiments to create a
controlled and consistent experimental environment, which is essential for isolating
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the impact of landscape elements on children’s emotional and stress recovery.
Video stimuli eliminate external variables such as weather, noise, and unexpected
interactions that might arise during on-site experiments. Moreover, videos ensure
that all participants experience the same environmental conditions, enhancing the
reproducibility and reliability of the findings. This approach simplifies logistical
procedures while minimizing potential stress for child participants, thereby enhanc-
ing the study’s ethical and practical feasibility. Importantly, this method enabled
better control over environmental distractions during data collection, which is
particularly beneficial for capturing children’s facial emotional expressions with
higher accuracy and less interference. To ensure consistency in environmental
conditions, video footage was captured using the GoPro Hero11 Black camera,
following a standardized filming route and duration. Each simulated walking
video lasted 5 minutes, filmed from a height of 1.60 meters to replicate a child’s
perspective. Filming was conducted during clear, windless mornings from May 24
to 30, 2023, with original audio retained to simulate real-world conditions (Figure
5.1).

Figure 5.1: Video roadmap and devices. Base map data © OpenStreetMap
contributors.

5.2.2 Facial emotion recognition

Given the challenges of equipping children with physiological signal detectors,
this study employed facial emotion recognition technology to collect emotional
data. Facial photographs were captured every five seconds from recorded videos,
resulting in a dataset of 4,416 facial images across the stress and recovery phases.
These images were analyzed using the MEGVII Facial Emotion Recognition API,
which identifies seven primary emotions: happiness, calmness, surprise, sadness,
disgust, anger, and fear. This approach allowed for the construction of an
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objective, data-driven facial emotion dataset for further analysis.

5.2.3 Quantifying landscape elements

Figure 5.2: Image semantic segmentation examples.

In this study, frames from the video were intercepted every 30 seconds and the
proportion of plant and non-plant elements in each photo was calculated, while the
background buildings outside the scene were excluded from the statistical analysis
due to low relevance to this study. Plant elements were categorized into green-leaf
trees, colored-leaf trees, shrubs, grass, and plants. Non-plant elements included
water, sky, hardscape, visual dominant elements, and pedestrians. The hardscape
included features like a road, gaming facility, parapet, pavilion, and bridge.
Visual dominant elements encompassed items such as garbage bins, streetlamps,
signboards, seats, pergolas, sculptures, buildings, and stone. Pedestrians included
passersby, dog walk-ers, and other users of the landscape space. Separating animals
and pedestrians facil-itates the analysis of the impact of these features in the
scenes. The obtained images were subjected to image semantic segmentation using
the Segment Anything Model [119]. Figure 5.2 illustrates a schematic diagram of
semantic segmentation.

5.2.4 Data collection

A total of 18 participants (9 males and 9 females) aged 7–15 years were recruited
online, meeting the inclusion criteria of no physical or psychological health issues
and no medication use before the experiment. Two participants withdrew during
the Trier Social Stress Test (TSST), resulting in valid data from 16 participants (8
males and 8 females). The experimental procedure involved two phases: a stress
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Figure 5.3: Experimental procedures and participants.

phase induced by the TSST and a recovery phase facilitated by landscape videos.
Participants completed the State-Trait Anxiety Inventory (STAI-S) during both
phases, and the Perceived Restorativeness Scale for Children (PRCS-C II) during
the recovery phase. Randomized video orders ensured unbiased results. The entire
experiment lasted approximately 40 minutes per session, conducted over three days
for each participant between July 15 and August 20, 2023. Ethical approval was
obtained from the China Children’s Center, and parental consent was secured for
all participants (Figure 5.3).

5.2.5 Data analysis

1. t-test The anxiety questionnaire scores follow a normal distribution, suitable
for comparing the means of two related samples (the same group of children
under different conditions). In this case, a paired t-test is used to analyze
the data from the stress and recovery periods.

2. Friedman Test The facial emotion data are non-normally distributed, hence
the non-parametric Friedman test is used. This test analyzes whether there
are significant differences across seven emotional dimensions among three
landscape types and is suitable for handling related or paired samples.
Additionally, the Friedman test effectively analyzes repeated measures design
data to evaluate if there are significant differences in medians under different
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Figure 5.4: 16 experimental participants.

conditions.
3. Bivariate Correlation Analysis To explore the relationship between landscape

spatial features and stress recovery and emotional responses, this study
conducts a bivariate correlation analysis between the quantitative values of
landscape features for three types and participants’ PRCS-C IIscores and
mean emotional difference values.

4. One-way ANOVA A one-way ANOVA is conducted on three landscape
features: green trees, shrubs, and sky, to determine which landscape features
positively influence children’s emotional experiences and stress recovery.
One-way ANOVA is used to compare the mean differences between three
or more groups to determine if at least one group differs significantly from
the others.

5.3 Results

5.3.1 Evaluation of stress responses and emotional changes

Stress Response
Based on the results from the paired sample t-test (Figure 5.5), all three
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Figure 5.5: Changes in STAI-S values from the stress stage to the recovery stage
(n=16).

** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p < 0.05).

landscape types significantly reduced the anxiety levels in children. During the
post-stress state and the stress recovery state, there was a significant difference in
anxiety scores, and the difference was statistically significant (p < 0.01).

Emotional Change
In this study, we assessed the impact of different landscape types on children’s

emotional recovery from stress. We compared the emotional changes and signifi-
cance of three different landscape types in children’s transition from a stress state
to a recovery state through line graphs and Wilcoxon tests (Figure 5.6, Figure 5.7,
Figure 5.8). The results of the Wilcoxon test indicate that, in Zhongshan Square,
children exhibited significant recovery effects across four emotional dimensions:
"Happiness" (p < 0.05), "Calmness" (p < 0.01), "Surprise" (p < 0.01), and
"Disgust" (p < 0.01). Notably, the significant increase in "Calmness" during
the stress recovery state, along with the significant decreases in other emotions,
suggests that Zhongshan Square provides an environment conducive to children’s
emotional regulation and recovery. A slight decrease in "Happiness" during the
recovery phase in Zhongshan Square may be attributed to specific environmental
factors or the nature of the recovery process. The exact reasons for this decreased
need to be explored in future research, highlighting the complexity of emotional
responses during stress recovery.

In the Children’s Park, significant changes were observed in "Calmness" (p
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Figure 5.6: Comparing changes in children’s emotion during labor park stress and
recovery states.

N = 16, median, ** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05), Wilcoxon test.

< 0.05) and "Disgust" (p < 0.05), indicating that the park promotes children’s
calmness while alleviating feelings of disgust. Changes in "Happiness" (p=0.056)
and "Surprise" (p=0.063) did not reach traditional significance levels, but p-values
approaching 0.05 suggest a potential trend, indicating that further research may
provide more insights into these two emotional dimensions.

Labor Park showed significant statistical changes in "Surprise" (p < 0.05).
However, the role of "Surprise" as a neutral emotion during the recovery process
remains unclear, emphasizing the need for further investigation into this complex
emotional response.

Overall, the findings of this study suggest that urban landscape environments
have different impacts on children’s emotions. Zhongshan Square exhibited the
most significant recovery effects across multiple emotional dimensions, while Chil-
dren’s Park and Labor Park also demonstrated positive effects in specific emotional
aspects. These insights are crucial for urban planners and public space designers,
emphasizing the importance of considering the emotional impact of different
environments when creating spaces that contribute to children’s psychological well-
being.
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Figure 5.7: Comparing changes in children’s emotion during children’s park stress
and recovery states.

N = 16, median, ** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05), Wilcoxon test.

Figure 5.8: Comparing changes in children’s emotion during Zhongshan square
stress and recovery states.

N = 16, median, ** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p <
0.05), Wilcoxon test.
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Figure 5.9: Comparison of perceived restrictiveness of different landscape types.

N=16, mean±SEM, ** Significant at the 99% level (p < 0.01), * Significant at the 95% level (p
< 0.05), Wilcoxon test.

5.3.2 Effect of landscape types on children’s stress recovery
and emotion

Differences in perceived restorativeness across landscape types
Upon examining the PRCS-C IIscores, it was observed that for the landscapes

of Labor Park, Children’s Park, and Zhongshan Square, all associated PRCS-
C IIvalues were positive (Figure 5.9). This indicates that children perceived all
three landscapes as having a beneficial impact on their psychological recovery.
Results from a one-way ANOVA demonstrated significant differences in PRCS-C
IIvalues among the three landscapes (F=21.894, p < 0.01). The highest PRCS-
C IIvalue was associated with Zhongshan Square, scoring 73.69±1.091, suggesting
that Zhongshan Square offered the most optimal recovery effects. This was followed
by Children’s Park with a score of 68±1.118, while Labor Park showed the least
recovery potential, scoring 63.63±1.024. Post-hoc tests revealed highly significant
differences between Labor Park and Zhongshan Square and between Children’s
Park and Zhongshan Square (p < 0.01). A significant difference was also noted
between Labor Park and Children’s Park (p < 0.05). As shown in Table 5.1,
it’s clear that children perceive distinct restorative differences across the three

90



landscapes. Specifically, Zhongshan Square stands out with the highest score,
showcasing the most favorable perceived restorative attributes for children. This
is followed by Children’s Park. Labor Park, on the other hand, registered the
lowest score, indicating a comparatively diminished restorative effect for children
in that setting.

Table 5.1: Post-hoc analysis of children’s perceived restorativeness across different
locations.

(I) Location (J) Location Mean
Difference(I-J)

Standard
Error p

95% Confidence
Interval

Lower Limit

Labor Park Children’s Park -4.375* 1.525 <0.05 -7.45
Zhongshan Square -10.062* 1.525 <0.01 -13.13

Children’s Park Labor Park 4.375* 1.525 <0.05 1.30
Zhongshan Square -5.687* 1.525 <0.01 -8.76

Zhongshan Square Labor Park 10.063* 1.525 <0.01 6.99
Children’s Park 5.688* 1.525 <0.01 2.62

Differences in children’s emotions across landscape types
In conjunction with the PRCS-C IIassessment, this study combined facial

emotion recognition techniques to comprehensively assess the effects of different
landscape types on children’s emotional responses. As shown in Table 5.2, the
application of the Friedman test to analyze seven emotional dimensions (Happi-
ness, Calmness, Surprise, Sadness, Disgust, Anger, and Fear) indicates significant
differences in the dimensions of "Happiness," "Calmness," and "Disgust" across
three distinct landscape spaces.

Happiness: Significant variations were observed in Happiness levels (Z=9.375,
p < 0.01) among Labor Park, Children’s Park, and Zhongshan Square. Post hoc
analyses indi-cated that both Children’s Park and Zhongshan Square exhibited
significantly higher Happiness levels compared to Labor Park (p < 0.05). However,
no statistically signifi-cant difference in Happiness was found between Labor Park
and Children’s Park (p > 0.05). Calmness: Calmness levels demonstrated signifi-
cant differences (Z=9.500, p < 0.01) across the three landscape spaces. Post hoc
analyses revealed that Zhongshan Square displayed significantly higher Calmness
levels compared to both Labor Park and Children’s Park (p < 0.05). No significant
difference in Calmness was identified between Labor Park and Children’s Park (p
> 0.05). Disgust: The Friedman test indicated significant differences (Z=9.375,
p < 0.01) in Disgust levels among the three landscape types. Post hoc analyses
showed that both Children’s Park and Zhongshan Square had significantly lower
Disgust levels com-pared to Labor Park (p < 0.05). No statistically significant
difference in Disgust was observed between Labor Park and Children’s Park (p >
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Table 5.2: Emotional responses across different landscape spaces: results from the
friedman test.

Emotion Labor Park Children’s
Park

Zhongshan
Square chi-square p

Happiness
0.00064
(-0.00030,
0.00437)

0.01376
(-0.00042,
0.06976) a

0.04352
(0.00096,
0.07674) a

9.375 .009

Calmness
-0.06059
(-0.17958,
0.11550)

-0.06087
(-0.20263,
0.02949)

-0.25586
(-0.38376,
-0.05383) ab

9.500 .009

Surprise
0.00166
(0.03295,
0.00296)

0.00852
(0.00032,
0.02340)

0.02311
(0.00240,
0.07107)

3.375 .185

Sadness
0.00183
(-0.07118,
0.06548)

-0.01947
(-0.06781,
0.03111)

0.09027
(-0.00772,
0.09027)

2.000 .368

Disgust
-0.00166
(-0.03295,
0.00296)

0.00852
(0.00032,
0.02340)

0.02311
(0.00240,
0.07107) ab

9.375 .009

Anger
0.00005
(-0.00815,
0.00079)

0.00037
(-0.00616,
0.00348)

-0.00033
(-0.00506,
0.00320)

1.125 .570

a N=16, "a" indicates a significant difference compared to Labor Park, and "b" indicates a
significant difference compared to Children’s Park, with pairwise comparisons adjusted using
Bonferroni correction.
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0.05). In summary, our study findings underscore the impact of different landscape
types on children’s stress recovery and emotional experiences. Notably, Zhongshan
Square consistently emerged as a space that fosters higher levels of happiness
and calmness. These results provide valuable insights for urban planning and
landscape design, emphasizing the need for environments that positively contribute
to children’s emotional well-being.

5.3.3 Effect of landscape elements on children’s stress recov-
ery and emotion

Impact of landscape elements on stress recovery and emotion
To investigate the relationship between landscape feature elements and stress

recovery and emotion. In this study, bivariate correlation analyses were con-
ducted between the quantitative values of landscape feature elements of the three
landscape types and the subjects’ PRCS-C IIscores, happiness difference means,
calmness difference means, and disgust difference means. The results are presented
in Table 5.3.
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Table 5.3: Relationship between landscape feature elements and physiological and psychological recovery effects.

Green-leaf
Trees

Colored-leaf
Trees Shrubs Grass Plant Water Sky Hardscapes

Visual
Dominant
Elements

Pedestrians

PRCS-C II
Pearson -.527** -0.027 -.405* 0.013 -0.246 -0.213 .434* 0.059 -0.003 0.078
Sig. 0.002 0.879 0.02 0.945 0.168 0.233 0.012 0.745 0.987 0.665

Happiness
Pearson -.444** 0.054 -.354* 0.074 -0.254 -0.186 0.337 -0.009 0.012 0.114
Sig. 0.01 0.763 0.044 0.684 0.154 0.300 0.055 0.958 0.949 0.528

Calmness
Pearson .598** 0.142 .442* 0.075 0.212 0.233 -.535** -0.15 0.023 -0.021
Sig. < .001 0.432 0.01 0.678 0.236 0.191 0.001 0.403 0.897 0.908

Disgust
Pearson -.431* 0.065 -.345* 0.081 -0.254 -0.182 0.322 -0.019 0.013 0.118
Sig. 0.012 0.718 0.049 0.652 0.154 0.311 0.067 0.918 0.941 0.512

** Significant correlation at the 0.01 level (two-tailed). * Significant at the 0.05 level (two-tailed).
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PRCS-C IIAnalysis: The presence of green-leaf trees (Pearson correlation
coefficient = -0.527, p = 0.002) and shrubs (Pearson correlation coefficient = -
0.405, p = 0.02) was significantly and negatively correlated with PRCS-C IIvalues,
suggesting that reductions in the presence of green-leaf trees and shrubs in the
landscape were asso-ciated with enhanced stress recovery in children. Additionally,
sky proportion (Pear-son correlation coefficient = 0.434, p = 0.012) exhibited
a positive correlation with PRCS-C IIscores. This implies that increasing the
sky proportion may further enhance children’s stress recovery experiences. These
findings provide valuable insights for designing landscapes tailored to children,
emphasizing the importance of specific natural elements in promoting the overall
well-being of children.

Analysis of Mean Happiness Differences: Mean happiness differences were
calculated by subtracting recovery state data from stress state data. Larger
differences indicate relatively lower values during the recovery state, while smaller
(or possibly negative) differences indicate relatively higher values during the
recovery state. This suggests that the mean differences are negatively correlated
with happiness during recovery. Green trees (Pearson correlation coefficient = -
0.444, p = 0.01) and shrubs (Pearson correlation coefficient = -0.354, p = 0.044)
exhibited a significant negative correlation with mean happiness differences. In
contrast, an increase in sky proportion (Pearson correlation coefficient = 0.337, p
= 0.055) showed a significant positive correlation with mean happiness differences.
This indicates that a higher level of happiness in children is associated with more
trees and shrubs, and a smaller sky proportion.

Analysis of Mean Calmness Differences: Mean calmness differences were calcu-
lated by subtracting recovery state data from stress state data. Larger differences
indicate relatively lower values during the recovery state, while smaller (or possibly
negative) differences indicate relatively higher values during the recovery state.
This suggests that the mean differences are negatively correlated with calmness
during recovery. Green trees (0.598, p < 0.01) and shrubs (0.442, p = 0.01)
showed a significant positive correlation with mean calmness differences, while
sky proportion (-0.535, p = 0.01) exhibited a significant negative correlation with
mean calmness differences. These findings indicate that reducing green trees and
shrubs and increasing sky proportion is associated with increased calmness during
recovery.

Analysis of Mean Disgust Differences: Mean disgust differences were calculated
by subtracting recovery state data from stress state data. Larger differences
indicate relatively lower values during the recovery state, while smaller (or possibly
negative) differences indicate relatively higher values during the recovery state.
This suggests that the mean differences are negatively correlated with disgust
during recovery. Green trees (-0.431, p = 0.012) and shrubs (-0.345, p = 0.049)
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Figure 5.10: Comparison of landscape feature elements.

exhibited a negative correlation with mean disgust differences. This indicates that
reducing green trees and shrubs is positively correlated with a decrease in disgust
in children during the stress recovery period.

Through the quantitative analysis of spatial characteristics and stress recovery
and emotion in Labor Park, Children’s Park, and Zhongshan Square, we have
understood the effects of green leafy trees, shrubs, and sky on children’s stress
recovery and emotion, while the three landscape spaces have different effects on
children’s stress recovery and emotion regulation. The results of one-way ANOVA
for each of the 3 landscape spaces Green-leaf Trees, Shrubs, and Sky showed
(Figure 5.10). For the Green-leaf Trees indicator, there was no significant difference
between Labor Park and Children’s Park, while the value of Zhongshan Square was
significantly lower. ANOVA results showed significant differences between groups
(p < 0.001). Shrubs metrics and the mean values of shrubs differed among the three
sites. There was no significant difference between Labor Park and Children’s Park,
while the value for Zhongshan Square was significantly lower. ANOVA results
showed a significant difference between groups (p = 0.037). For the Sky metric,
the difference between Labor Park and Children’s Park was relatively small, while
the value for Zhongshan Square was significantly higher. The ANOVA results
showed a significant difference between groups (p = 0.002). The comparison reveals
that Zhongshan Square has a higher proportion of sky and relatively fewer leafy
trees and shrubs compared to Labor Park and Children’s Park. These features
may be factors contributing to Zhongshan Square’s better performance in terms
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of children’s stress recovery and emotional experience.
Through an in-depth analysis of the relationship between different landscape

spatial features and children’s stress recovery and emotional experiences, we draw
the following conclusions: in landscape design, a higher proportion of sky, and
relatively fewer green-leaf trees and shrubs have a positive impact on promoting
children’s stress recovery, enhancing calmness emotions, and reducing disgust. The
presence of more green-leaf trees and shrubs, along with a smaller proportion of
sky, correlates with children’s happiness.

5.4 Discussion

5.4.1 Effects of different landscapes on children’s stress re-
covery

This study highlights the impact of different landscape types on children’s stress
recovery and emotional responses [66,102]. The selected TSST effectively induced
changes in state anxiety and facial emotion recognition. Analysis of PRCS-C IIs-
cores revealed that children perceived all three landscapes—Labor Park, Children’s
Park, and Zhongshan Square—as restorative, consistent with previous studies
emphasizing the psychological benefits of green landscapes [189,190]. Interestingly,
Zhongshan Square, an urban square landscape, exhibited the highest recovery
potential, challenging traditional assumptions about the restorative attributes of
green spaces. This finding underscores the importance of considering LVQ as
a multidimensional construct that extends beyond greenery to include openness,
spatial arrangement, and visual diversity.

The study indicates that the proportion of green-leaf trees and shrubs is
significantly negatively correlated with PRCS-C IIscores, while the sky proportion
is positively correlated. These results suggest that landscape visual quality
is not solely determined by the quantity of green elements but also by their
spatial configuration and the perceived openness of the space. Compared to
adults, children may be more sensitive to spatial openness, potentially due to
differences in developmental stages and cognitive processes [191]. Adults tend
to evaluate the visual quality of green spaces based on spatial orderliness and
element coordination, such as organized layouts, distinct color contrasts, and
well-designed pathways, which are associated with positive perceptions [22]. In
contrast, children are more drawn to direct experiences, favoring open spaces that
encourage exploration and interaction. These distinctions highlight the importance
of designing landscapes that balance openness and greenery to better support
children’s emotional and stress recovery.
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5.4.2 Effects of different landscapes on children’s emotion
responses

Happiness.
In the current study, the results indicate that different landscape types influence

changes in children’s happiness. The current findings reveal significant differences
in "green-leaf trees," "shrubs," and "sky proportion" in relation to happiness from
the perspective of children. More trees and shrubs, and a smaller sky proportion
are associated with higher levels of happiness in children. Higher levels of happiness
are associated with more green elements and a reduced sky proportion, highlighting
the role of greenery in enhancing the emotional dimensions of LVQ. Similar to our
study, Reeve et al. [192] concluded in a study on the effects of a rehabilitation
garden in a children’s hospital that patients spending time in the garden reported
higher levels of happiness. They also found that the garden provided emotional
relief for visitors through appreciating scenic views, being in nature, enjoying
time, therapeutic experiences, and exposure to outdoor air. Van den Berg et
al. [193] compared a park-like forest area with an urban environment and found
that parks with a high green view rate generated higher levels of happiness and
lower levels of stress, anger, depression, and tension during the recovery period,
thereby improving emotion. Some studies suggest that children are particularly
fond of water features as they can evoke feelings of joy in children [191]. Although
in this study, water features did not show a significant correlation with children’s
happiness, comparing the features of the three landscape spaces, both Labor Park
and Children’s Park include water features, while Zhongshan Square does not.
This may explain why the happiness changes in Zhongshan Square are lower than
in the other two landscape spaces.

Calmness.
Enhancing calmness is essential for stress recovery, and this study found that

open spaces with a higher sky proportion and balanced greenery contribute to
increased calmness. This result aligns with research by Ahmad Hami et al. [194],
which highlighted the preference for open and spacious areas in campus landscapes.
For children, the emotional dimension of LVQ emphasizes the importance of spatial
openness and simplicity over dense or enclosed settings. Open spaces allow for
greater flexibility in activities and reduce feelings of restriction, making them more
restorative and engaging for children [195].

Disgust.
In the current study, the results indicate that maintaining an appropriate

proportion of green-leaf trees and shrubs can effectively reduce children’s disgust,
positively impacting stress recovery in children. This is consistent with the findings
of Simone et al. [196], who investigated the impact of green spaces in the homes of
Dutch children on brain structure from birth. They observed a negative correlation
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between tree coverage density and brain structure in the prefrontal clusters region.
In these areas, where trees are more densely concentrated, there may be an adverse
impact on the gray matter volume of the prefrontal cortex in children. This
suggests that an increase in tree density in these regions may be associated with a
negative correlation in the development of brain structures related to cognitive
control, emotional regulation, and social behavior in children. In this study,
a reduction in green trees and shrubs was positively correlated with a decrease
in children’s aversion during the stress recovery period. In this study, balanced
proportions of greenery reduced aversion during the recovery period, emphasizing
the role of LVQ in creating emotionally supportive environments. The negative
emotional responses associated with overly dense greenery further highlight the
importance of considering both visual diversity and balance in LVQ metrics.

5.5 Summary

This study underscores the value of LVQ as a framework for understanding the
relationship between landscape elements and children’s emotional recovery. A
mixed-method recovery approach, incorporating facial emotion recognition and
psychological scales, enabled the evaluation of children’s emotional changes in
response to landscape features. The study shows that in children’s spaces,
emotional and stress recovery benefits depend not only on the presence of greenery,
but also on its proportion and the degree of openness. While greenery remains im-
portant, spatial openness seems to play a more prominent role in shaping children’s
emotional responses. Landscape spatial features can lead to changes in children’s
emotions, particularly in terms of “calmness,” “happiness,” and “disgust.” These
findings contribute to advancing child-friendly landscape design by emphasizing
the need for thoughtful spatial arrangements and visual balance.
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Chapter 6

Conclusion, implication, and limita-
tions

6.1 Conclusion

This dissertation investigates how landscape visual quality (LVQ) in urban parks
influences human perception, emotional responses, and stress recovery, with a
particular focus on the Chinese urban context. Although rapid urbanization
in China has led to a significant expansion in the number of urban parks,
improvements in their design quality have not kept pace. Many parks fall short
of meeting users’ psychological and perceptual needs, resulting in underutilization
and inefficient resource allocation. In response, this research proposes a multi-
dimensional framework for evaluating and enhancing LVQ, aiming to generate
both theoretical contributions and practical guidance for urban park planning and
design.

Study 1 focuses on assessing urban park LVQ using multidimensional visual
indicators. This study demonstrated the efficacy of VR-based multidimensional
visual indicators in enhancing LVQ assessment of urban parks. Using a VR-
based multifaceted approach, we developed a set of multidimensional visual
indicators to understand the impact of LVQ on human perception of urban parks.
Improved model differentiation of positive and negative perceptions by 1–7%
using multidimensional visual indicators. The integrated model demonstrated
a better fit and distinguished more effectively between positive and negative
perceptions compared to models using only spatial feature indicators. Therefore,
our integrated model incorporating various multidimensional visual indicators
accurately classifies human perceptions of urban park LVQ. Our approach allows
for pre-assessment of LVQ before urban park construction, enabling planners to
make informed design adjustments early in the process. This study revealed key
design elements: Herb plants, water ratio, and number of materials were the most
positively correlated indicators (eye-tracking, image segmentation, and spatial
feature indicators, respectively) influencing human perception. Second, this study
explored the correlations between human perceptions and urban park landscape
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environments using eye tracking data. Isolated planting styles, which drew the
most attention, positively impacted the greenness perception. Perceptions of
beauty, complexity, and liveliness were positively correlated with eye-tracking
data from herb plants, whereas perceptions of greenness were negatively correlated
with the HerbRatio. SkyRatio was negatively correlated with beauty, consistent
with the street-level analysis results. Moderate degree of openness (20–80%)
positively correlated with beauty, establishing a range for openness. However,
high openness led to a monotonous visual landscape, as elements within a 15-
meter radius tend to be uniformly sparse, thereby reducing the perceived liveliness
of urban parks but enhancing the perception of safety. Shrub species diversity
enhances perceptions of greenness and complexity by enriching vegetation richness
and visual complexity. In contrast, low shrub species diversity, as reflected in
dwell time to shrubs, suppresses greenness perception. Additionally, dense shrubs
can obstruct open views and limit the visibility of other landscape elements,
which may reduce perceptions of liveliness. The framework not only allows for
a detailed understanding of how urban park elements influence perceptions but
also provides a practical tool for urban planners and designers to pre-assess and
refine park designs, aligning them with user expectations and minimizing resource
inefficiencies.

Study 2 expanded the investigation into the emotional dimensions of LVQ, an-
alyzing how landscape elements influence emotional responses and visual behavior.
This study demonstrates that landscape elements within urban parks significantly
influence emotional responses and visual behavior. By integrating visual behavior
metrics with physiological and self-reported emotional data, this study offers
practical, data-driven guidance for designing emotionally supportive urban parks.
Designers are recommended to minimize visually dominant artificial structures
in emotionally restorative areas, while strategically incorporating sensory-rich
elements such as herb plants and water landscapes to enhance visual engagement
and psychological benefits. Specifically, urban park designers are encouraged to
emphasize visually prominent herb plants and water landscapes to foster positive
affect and support restorative engagement, while avoiding overly dense shrubs or
large clusters of artificial structures that may introduce visual clutter. A moderate
use of flowering trees can create aesthetically pleasing focal points while balancing
arousal and relaxation. Together, these strategies can enhance the psychological
benefits of urban parks, contributing to urban residents’ overall well-being. These
results highlight that different landscape elements contribute uniquely to the
emotional experience and LVQ of urban parks.

Study 3 introduced a child-specific perspective on LVQ, addressing the unique
needs of this user group while maintaining a focus on emotional regulation and
stress recovery. The study shows that in children’s spaces, emotional and stress
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recovery benefits depend not only on the presence of greenery, but also on its
proportion and the degree of openness. While greenery remains important, spatial
openness seems to play a more prominent role in shaping children’s emotional re-
sponses. Additionally, landscape spatial features were shown to influence children’s
emotional states, particularly in terms of “calmness,” “happiness,” and “disgust.”
The research highlights that certain natural elements, such as water features and
herb plants, are more likely to elicit positive emotional responses, while artificial
objects, despite their visual appeal, may evoke negative emotions. These results
emphasize the nuanced contributions of different landscape elements to emotional
experiences, underscoring the need for targeted strategies that prioritize emotional
well-being in landscape design. By integrating insights from children’s emotional
responses, this study broadens the application of LVQ to inform inclusive and
adaptive urban park designs that cater to diverse user needs.

By integrating these findings with the broader goals of sustainable urban devel-
opment, this dissertation offers practical and evidence-based recommendations for
urban planners and designers in China and beyond. The emphasis on LVQ as a
multidimensional framework not only bridges the gap between aesthetic appeal
and emotional well-being but also aligns with global sustainability objectives.
Moreover, the inclusion of child-specific insights enriches the applicability of this
framework, underscoring the importance of designing inclusive urban parks that
cater to diverse user needs. Ultimately, this research provides a comprehensive
pathway for creating urban parks that balance functionality, visual quality, and
restorative benefits, contributing to the physical and psychological health of their
users while advancing the practice of sustainable urban design.

6.2 Research implications

6.2.1 Theoretical implications

This research utilizes multidisciplinary technologies to analyze urban landscapes,
fundamentally advancing the theoretical framework of environmental psychology.
By integrating eye-tracking technology and image segmentation within a virtual
reality environment, this study provides a novel multidimensional framework for
evaluating urban LVQ. It comprehensively captures human visual perception and
cognitive responses.

Key theoretical advancements include:

1. Reconceptualization LVQ as a multidimensional construct. This study
redefines LVQ as a multidimensional construct. By demonstrating how
these dimensions contribute to both positive and negative perceptions, this
research provides a more nuanced understanding of LVQ, positioning it as a
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critical metric for evaluating urban park quality. The developed classification
models, which integrate spatial, visual, and cognitive indicators, outperform
traditional indicator-based models, offering a significant theoretical contri-
bution to environmental psychology and landscape design.

2. Establishment of links between emotions and visual behavior. This re-
search quantifies the relationship between landscape features and emotional
responses, mediated by visual attention. It demonstrates how landscape
elements, such as herb plants and water features, evoke positive emotional
responses, while shrubs and artificial objects may elicit negative reactions.
This provides a deeper theoretical understanding of the role visual behavior
plays in emotional regulation within urban environments. By linking LVQ
to measurable emotional dimensions, the study bridges a critical gap in the
environmental psychology literature, advancing theories on how landscape
elements influence human emotions through visual stimuli.

3. Expansion of LVQ to child-centric frameworks. Through the inclusion of
experiments focusing on children, this research extends the theoretical scope
of LVQ to address the needs of younger and often overlooked user groups.
The findings highlight that openness and greenery proportions are key factors
in creating emotionally supportive environments for children, providing a
foundation for child-centered LVQ theories. This contribution emphasizes
the adaptability of LVQ to diverse demographic needs, offering a more
inclusive theoretical model for urban landscape design.

4. Methodological integration of multimodal data. By employing cutting-edge
technologies such as eye-tracking and facial emotion recognition within a
VR environment, this dissertation introduces a comprehensive approach
to LVQ assessment. Traditional methods, including questionnaire-based
evaluations, often lack the precision to capture the dynamic interactions
between users and landscapes. The integration of multiple data collection
techniques enables a more accurate, objective, and reproducible analysis of
how landscape elements influence perception, emotion, and stress recovery.
This approach contributes to the theoretical advancement of LVQ research
by offering data-driven insights into human-environment interactions.

5. Advancement of evidence-based design principles. The dissertation con-
tributes to the broader discourse on evidence-based urban design by es-
tablishing LVQ as a critical theoretical and practical tool. It not only
validates the importance of balancing natural and artificial elements in urban
parks but also provides a theoretical framework for integrating user-centered
perspectives into the planning and design process. This positions LVQ as
both a theoretical and operational construct, capable of guiding sustainable
and user-responsive urban development.
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Figure 6.1: Landscape program evaluation process.

6.2.2 Practical implications

This dissertation presents an integrative framework for assessing and enhancing
LVQ in urban parks, specifically addressing the evolving challenges in rapidly
urbanizing regions like China. As urbanization accelerates, the quantity of urban
parks has grown substantially, but challenges related to their design quality persist.
This research bridges these gaps by integrating multidimensional insights across
perceptual, emotional, and stress recovery dimensions into actionable recommen-
dations, ultimately offering a integrative approach to urban park design and
evaluation. This research introduces a robust methodology for LVQ assessment,
combining spatial, visual, and physiological indicators with advanced technologies
such as VR, eye-tracking, and facial emotion recognition. These methods enable
precise pre-construction evaluations, minimizing resource wastage and ensuring
alignment with user expectations. The iterative process of design refinement, as
illustrated in Figure 6.1, allows for continuous improvement of design propos-
als, balancing visual aesthetics, and emotional resonance. Urban planners and
designers can adopt this process to systematically assess and refine urban park
designs, ensuring that they meet both aesthetic and experiential objectives. The
framework’s adaptability allows it to be applied to various spatial contexts, from
green-dominated parks to urban squares.

The Table 6.1 consolidates findings across all dimensions, presenting a struc-
tured guide for landscape designers and urban planners. By linking specific LVQ
indicators with practical design strategies, the table serves as an invaluable refer-
ence for translating research insights into real-world applications. This integration
of evidence-based insights empowers stakeholders to design urban parks that align
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with user needs while fostering sustainable urban development.
Bridging user-centered design with data-driven insights, this study provides

evidence-based recommendations for urban park design. Designers can use this
approach to address contentious design elements, ensuring that decisions are
grounded in empirical evidence and aligned with user needs. The integration of
physiological and visual data provides foundation for discussions among stakehold-
ers, facilitating consensus and enhancing design outcomes.
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Table 6.1: Positive and negative effects of indicators across three dimensions

Positive Effects Negative Effects
Perception Dimension

Beauty DTHerbPlants: Extended dwell time on
herb plants reflects their visual appeal and
aesthetic value, enhancing the perception of
beauty.
WaterRatio: A higher proportion of water
enhances the scenic beauty through reflective
and soothing visual properties.
NumberOfElements: A greater diversity
of elements increases visual richness,
contributing to the perception of beauty.
DegreeOfOpenness_Medium: Moderate
openness (20–80%) balances spatial
arrangement, creating visually pleasing
compositions.

SkyRatio: Higher sky proportion reduces
the density of greenery, negatively impacting
perceived beauty.
ArtificialObjects: Artificial elements such as
benches or trash bins detract from the natu-
ral aesthetics, reducing perceived beauty.

Comfort WaterRatio: The presence of water features
promotes a sense of relaxation and comfort.
CrownCoverage: Tree canopy coverage pro-
vides shade and reduces direct sunlight, en-
hancing physical and psychological comfort.
NumberOfElements: Diverse elements create
visually stimulating environments that feel
comfortable.

RoadRatio: Roads often reduce vegetation
density, leading to a less comfortable envi-
ronment.
PlantingStyle_Linear: Rigid and uniform
linear planting lacks diversity, reducing re-
laxation and comfort.
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Positive Effects Negative Effects
Color WaterRatio: Water surfaces add blue hues to

the environment, enhancing color diversity.
FlowerRatio: The proportion of flowers in-
creases visual vibrancy and aesthetic appeal.
NumberOfMaterials: Greater material diver-
sity enhances the richness of color percep-
tion.
ContrastDegree_High: High contrast be-
tween elements highlights color differences,
enriching the visual experience.

RCGrasses: Large uniform grasslands limit
color diversity, reducing perceived vibrancy.

ComplexityRCHerbPlants: Herb plants with intricate
patterns and colors contribute to visual com-
plexity.
WaterRatio: Reflections on water surfaces
enhance the visual layering of a scene, in-
creasing complexity.
ShrubSpecies: Diverse shrub species add
richness to vegetation patterns, enhancing
complexity.
NumberOfMaterials: Material diversity in-
troduces visual variety, fostering complexity.
PlantingStyle_Group: Grouped planting
styles create layered vegetation patterns, en-
hancing complexity.

RoadRatio: Roads interrupt natural pat-
terns, simplifying the visual composition and
reducing complexity.107



Positive Effects Negative Effects
Liveliness DTHerbPlants: Herb plants with vibrant

colors and diverse textures add dynamism to
the landscape, fostering liveliness.
WaterRatio: Flowing or reflective water sur-
faces introduce movement, enhancing liveli-
ness.

ShrubSpecies: Dense or monotonous shrubs
can obscure views, reducing the dynamic
feel of the space.
SpaceTypeCategories: Limited variety in
space types diminishes visual stimulation,
reducing liveliness.
DegreeOfOpenness_High: Highly open
spaces with sparse elements feel static,
reducing perceived liveliness.

Greenness ShrubSpecies: A diverse range of shrubs
enriches vegetation and enhances greenness
perception.
DegreeOfOpenness_Low: Enclosed spaces
surrounded by vegetation intensify the per-
ception of greenery.
PlantingStyle_Isolated: Isolated plantings
draw visual focus, amplifying the perception
of greenery.

DTShrubs: Monotonous shrubs limit vegeta-
tion diversity, reducing perceived greenness.
RCArtificialObjects: Artificial elements dis-
tract from vegetation, lowering greenness
perception.
RoadRatio: High road coverage reduces veg-
etation density, negatively impacting green-
ness perception.

Safety SpaceTypeCategories: A variety of space
types with clear visibility improves safety by
reducing hiding spots.
DegreeOfOpenness_High: Open spaces with
clear sightlines enhance safety perception.
ContrastDegree_High: Brightly colored or
contrasting features improve visibility, pro-
moting safety.

DTTrees: Dense tree coverage obstructs vis-
ibility, reducing perceived safety.
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Positive Effects Negative Effects
Emotion Dimension

Valence Herb Plants: Enhance emotional valence.
Water Landscapes: Enhance emotional va-
lence.
Flowering Trees: Trigger positive physiolog-
ical responses, such as relaxation.

Shrubs: Reduce emotional valence due to
vision-limiting characteristics.
Artificial Objects: Improper design or exces-
sive proportions provoke negative emotional
responses.

Arousal Herb Plants: Enhance emotional arousal.
Water Landscapes: Enhance emotional
arousal.
Grass: Quickly capture attention, fostering
active interaction and a dynamic environ-
ment.

Flowering Trees: Longer fixation durations
associated with calmer arousal levels.
Shrubs: Reduce emotional arousal due to
vision-limiting characteristics.

Emotion/Stress Recovery Dimension
Calmness Enhanced by higher sky proportion, promot-

ing openness and flexibility.
Reduced by dense green-leaf trees and
shrubs, which can create a sense of restriction
and limit visibility.

Happiness Increased by the presence of green-leaf trees
and shrubs in balanced proportions.

Diminished by overly open spaces with a
higher sky proportion.

Disgust Minimized through balanced greenery
(green-leaf trees and shrubs).

Triggered by overly dense greenery, partic-
ularly when tree density is high, creating a
visually overwhelming setting.

Stress
Recovery

Best supported in spaces like Zhongshan
Square with thoughtful spatial arrangements
and openness.

Impeded by imbalanced proportions of green-
ery and hardscape features.
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6.2.3 Contribution to knowledge science

This dissertation advances the domain of knowledge science by providing inte-
grative frameworks, empirical evidence, and methodological developments that
enhance our understanding of the interplay between urban park landscapes and
human perceptions. The integration of multidimensional visual indicators, physio-
logical signals, and psychological responses bridges existing gaps in urban planning,
environmental psychology, and landscape evaluation, creating new pathways for
research and application.

1. Advancement of multidimensional assessment methods. This research in-
troduces a novel approach to evaluating LVQ by combining eye-tracking,
semantic image segmentation, and spatial feature indicators. Improved
model differentiation of positive and negative perceptions by 1–7% using
multidimensional visual indicators.

2. Providing evidence-based guidance for landscape design. This research
delivers empirical evidence that supports the refinement of urban park
design based on users’ perceptual and emotional responses. By identifying
landscape features—such as herbaceous plants, water elements, and spatial
openness—that enhance perceived beauty, emotional well-being, and visual
engagement, the study offers practical references for landscape architects and
designers seeking to optimize the restorative and aesthetic functions of urban
green spaces.

3. This interdisciplinary integration has brought new strategies and ways of
thinking to knowledge development and organizational learning (Fig. 6.2).
By bridging visual landscape, environmental psychology, and urban de-
sign, the proposed framework offers a novel perspective for understanding
how multidimensional visual indicators interact with human perceptual,
emotional, and stress recovery responses. The integration of diverse data
sources—including eye-tracking, image segmentation, spatial features, and
physiological and psychological measures—enables a deeper and more nu-
anced analysis of human–environment interactions. Such an approach not
only advances methodological innovation but also promotes a more holistic,
user-centered paradigm in the evaluation and design of urban park land-
scapes. Ultimately, this cross-disciplinary framework contributes to the
evolving body of knowledge in urban landscape research and provides a
foundation for evidence-based, emotionally supportive design strategies.

These contributions not only fill existing gaps in the literature but also propose
new pathways for future research, particularly in the adaptation of emerging tech-
nologies to understand and enhance the human experience in urban landscapes.
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Figure 6.2: Multidimensional framework contributing to knowledge science in
urban park landscape research.

6.3 Limitations and future works

This dissertation explores the multidimensional impacts of urban park landscapes
on perception, visual behavior, emotion, and stress recovery. While the findings
contribute valuable insights for urban design and environmental psychology, several
limitations were identified across the three studies, highlighting directions for
future research.

6.3.1 Study 1: Limitations in VR-based LVQ assessment

Although the use of VR-based panoramic imagery enabled controlled and im-
mersive evaluations, the static visual content lacked the sensory richness and
dynamic interaction of real-world environments [100, 197, 198]. Future studies are
encouraged to integrate dynamic VR simulations or field experiments to enhance
ecological validity and user immersion. The study’s limited sample—comprising
mostly young participants—and its focus on the summer season restrict the gen-
eralizability of the results. Given evidence of age-related differences in landscape
preferences [199], future research is recommended to include participants across
diverse age groups and consider seasonal variations to provide more comprehensive
design guidance. Furthermore, only three parks were included, each with distinct
designs. While this offered some variation, a broader sampling across multiple park
types and regions is needed to improve representativeness. Applying audit tools
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to screen and classify urban parks systematically could support the development
of region-specific design strategies [117]. Finally, although the proposed LVQ
evaluation framework proved effective for perception classification, its application
to larger and more diverse datasets remains to be tested. Future research is
encouraged to validate this model in different contexts and explore its scalability
for broader use in urban design decision-making.

6.3.2 Study 2: Emotional responses and visual behavior in
VR

This study employed a multimodal approach—integrating psychological, physi-
ological, and visual behavior data—to examine how specific landscape elements
influence emotional responses and visual behavior. The use of controlled VR
environments allowed for precise isolation of variables and supported scalable,
repeatable evaluations of LVQ-related emotional effects. However, several limita-
tions are worth noting. First, while VR offers experimental control, it lacks the
multisensory and social dynamics of real-world environments. Emotional responses
in actual parks are shaped by sounds, movement, and interactions that were not
fully captured in the virtual setting. Second, the study focused on short-term visual
exposure; longer-term emotional and behavioral effects remain unexplored. Future
research could employ longitudinal or repeated-measures designs to investigate
lasting impacts. Third, the findings are based on urban parks in China, limiting
cross-cultural generalizability. Landscape preferences vary by culture, urban form,
and climate; thus, replication in diverse settings is needed. Finally, this study
centered on visual and physiological responses. Expanding to include auditory,
olfactory, and tactile inputs would provide a more holistic understanding of how
landscapes influence emotion and well-being. Despite these limitations, this study
contributes a robust framework for evaluating emotional dimensions of LVQ. Its
insights can inform the design of emotionally supportive, visually engaging urban
green spaces that promote user well-being and enhance livability.

6.3.3 Study 3: Emotional and stress recovery responses in
children

In the third study, we examined the relationship between LVQ and children’s
emotional responses, emphasizing the importance of spatial openness and balanced
greenery in supporting stress recovery. However, the relatively small and age-
homogeneous sample limited our ability to explore differences across gender and
age. As noted by Cacioppo et al. [200], broader demographic representation is
necessary to better understand variability in emotional and stress responses.
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Additionally, this study used video-based stimuli to maintain experimental
control and ensure consistency across different landscape settings. While this
approach minimized external interference, it may lack the ecological validity and
interactivity of real-world environments. Rather than simply replacing videos with
field experiments, future studies are encouraged to conduct on-site experiments
under controlled environmental conditions (e.g., consistent lighting, weather,
and crowd levels). This will help balance experimental rigor with ecological
realism and provide deeper insights into children’s responses in real urban park
contexts. Combining controlled and naturalistic methods will also help clarify how
direct engagement—such as physical activity and social interaction—influences the
restorative effects of LVQ for children [201,202].

Across all three studies, this dissertation highlights the critical role of LVQ
in shaping human psychological and physiological responses. The multidimen-
sional approach introduced here—combining perceptual, emotional, and behav-
ioral data—offers a comprehensive framework for future research. However,
limitations such as the restricted sensory scope of VR, the geographic specificity
of the study sites, and the sample demographic constraints point to opportunities
for further refinement. Future research is encouraged to expand the scope of
LVQ assessment to include diverse cultural, regional, and environmental contexts.
Integrate multisensory data (e.g., auditory and olfactory elements) to better
understand the holistic impacts of urban park landscapes. Investigate the temporal
dynamics of LVQ by assessing how seasonal variations influence perceptions and
experiences. Explore the long-term impacts of LVQ on different user groups,
incorporating longitudinal studies to assess sustained effects on well-being. By
addressing these limitations, future studies can deepen the understanding of LVQ
and its role in creating restorative, inclusive, and sustainable urban environments.
These advancements will strengthen the connection between research findings and
practical applications, ensuring that urban parks are designed to meet the evolving
needs of diverse populations.
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Appendix A

30 experimental panoramas

Figure A.1: 30 experimental panoramas.
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Appendix B

Computation of block scale code in
semantic segmentation of images

1 import cv2
2 import numpy as np
3
4 image_path = ’D:\\ segment_02\\P101 . png ’
5
6 img = cv2 . imread ( image_path )
7
8 i f img i s None :
9 print (" Fa i l ed to load image")

10 else :
11 t o t a l_p i x e l s = img . shape [ 0 ] ∗ img . shape [ 1 ]
12 print ( f "Total p i x e l s in the image : { t o t a l_p i x e l s } p i x e l s . \ n")
13
14 unique_colors = np . unique ( img . reshape(−1 , img . shape [ 2 ] ) , axis=0)
15
16 for c o l o r in unique_colors :
17 mask = cv2 . inRange ( img , co lo r , c o l o r )
18
19 area = cv2 . countNonZero (mask )
20
21 percentage = ( area / t o t a l_p i x e l s ) ∗ 100
22
23 print (
24 f "The area o f the l ab e l ed r eg i on with c o l o r { c o l o r } i s {

area } p i x e l s , which i s { percentage : . 2 f }% of the image
. " )
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Appendix C

Definitions and meanings of visual
behavior indexes
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Category Abbreviation Explanation Meanings
Time to First Fixation TTFF The time taken from stimu-

lus onset up to the first fix-
ation into a particular AOI
(area of interest)

It can provide information about how
certain aspects of an element are prior-
itized in a photo. [203]

Dwell Time DT The total time the user’s
gaze stayed within the AOI.

It provides insights into the viewer’s in-
terest and engagement with the content
within the AOI. [204]

Fixation Ratio FR The ratio of the amount of
time the user spends in a
particular AOI to the total
amount of time spent in all
AOIs.

It reflects the relative importance or
complexity of these elements to the
viewer. [205]

Revisit Count RC The number of times the
user’s gaze entered the AOI.

This metric counts how many times a
viewer returns their gaze to a specific
area, suggesting recurring interest or
the need for additional cognitive pro-
cessing, which shows the element’s im-
portance or attractiveness over time.
[204]

First Fixation Dura-
tion

FFD The duration of the initial
gaze at the AOI.

Reflects visual initial processing. It
is the early state of viewing. [55] The
higher the FFD, the more complex the
initial processing.

Average Fixation Du-
ration

AFD Mean of fixation duration
on each AOI. (i.e., Gaze du-
ration mean)

It reflects the depth of cognitive pro-
cessing, suggesting that longer fixations
may indicate more complex cognitive
engagement or deeper processing of the
visual content in that specific area. [85]
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