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Monozone-centric Instance Grasping Policy in
Large-scale Dense Clutter

Chenghao Li, and Nak Young Chong, Senior Member, IEEE

Abstract—Despite the impressive performance of existing
vision-guided robot grasping methods in dense clutter, their re-
liance on a fixed view often results in incomplete object geometry
in the view boundary and limits grasping in more challenging
large-scale dense clutter. Moreover, analyzing all objects during
grasping can detract from the reasoning for specific objects. This
work proposes the Monozone-centric Instance Grasping Policy
(MCIGP) to solve these problems. Specifically, the first part is
the Monozone View Alignment (MVA), wherein we design the
dynamic monozone that can align the camera view according
to different objects during grasping, thereby alleviating view
boundary effects and realizing grasping in large-scale dense
clutter scenarios. Then, we devise the Instance-specific Grasp
Detection (ISGD) to predict and optimize grasp candidates for
one specific object within the monozone, ensuring an in-depth
analysis of this object. We performed over 8,000 real-world
grasping experiments in different cluttered scenarios with 300
novel objects, demonstrating that MCIGP significantly outper-
forms seven competitive grasping methods. Notably, in a large-
scale densely cluttered scene involving 100 different household
goods, MCIGP pushed the grasp success rate to 84.9%. To
the best of our knowledge, no previous work has demonstrated
similar performance. The source code and all grasping videos
are available here.

Index Terms—Robot grasping, grasp detection, class-agnostic
segmentation, large-scale dense clutter, deep learning.

I. INTRODUCTION

V ISION-guided grasping is a fundamental robotic capa-
bility with wide-ranging applications in warehousing,

manufacturing, retail, and service industries. Traditional visual
grasping approaches rely on three-dimensional (3D) object
models to construct grasp databases, integrating geometric and
physical metrics [1], [2] and employing stochastic sampling to
handle uncertainty [3]. However, their dependence on known
3D models limits generalization to novel objects. To address
this limitation, recent studies [4], [5] have introduced an
alternative paradigm that leverages Deep Neural Networks
(DNNs) [6]–[10] to train function approximators. These ap-
proximators predict grasp candidates directly from images,
utilizing datasets comprising empirical grasp successes and
failures, thereby enabling efficient generalization to previously
unseen objects at substantially lower cost. Nevertheless, these
methods are unstable in dense clutter scenarios because of the
tight spatial relationship between adjacent objects, which can
easily cause collision during grasping.

This work was supported by JSPS KAKENHI Grant Number JP23K03756,
and partly by the Asian Office of Aerospace Research and Development under
Grant/Cooperative Agreement Award No. FA2386-22-1-4042.

The authors are with the School of Information Science, Japan Advanced
Institute of Science and Technology, Ishikawa 923-1292 Japan (e-mail:
chenghao.li@jaist.ac.jp; nakyoung@jaist.ac.jp).

Fig. 1. Common grasping methods on the densely cluttered table: they require
analyzing all objects in the scene (some of which are highlighted with a green
border), which introduces significant computational redundancy and weakens
the analysis of the object to be grasped. Additionally, their reliance on a fixed
view often leads to incomplete object geometry at the view boundary.

One solution is to design novel grippers to replace com-
monly used parallel-jaw grippers, like jamming grippers [11],
telescopic grippers [12], or hybrid grippers (combined with
suction, parallel-jaw, and magnetic grippers) [13]. These meth-
ods can leverage the structural properties of the gripper to
reduce the probability of collisions with surrounding objects
during grasping in dense clutter scenarios. However, they
mainly focus on the hardware aspect of robotic grasping
systems. Designing grippers is costly, and each type of gripper
often requires a dedicated vision algorithm, which limits
reproducibility across different grasping systems. Therefore,
generic vision-based solutions are more accessible.

Likewise [14]–[18] perform instance-level grasp detection
for all objects, which combines the class-agnostic segmen-
tation model with the grasping model to filter out potential
collisions on adjacent objects and predict the optimal grasp
for each object. Although these methods have demonstrated
some effectiveness, however, they essentially sample grasp
candidates based on instance masks obtained through seg-
mentation without modifying the grasp candidates predicted
by the model. As a result, some instance objects may end
up with no valid grasp candidates. In other words, analyzing
all objects during grasping can detract from the reasoning for
specific objects. Furthermore, a more critical problem with
such methods (including all of the above-mentioned methods)
is their reliance on a fixed view, which often results in
incomplete object geometry at the view boundaries and limits
grasping performance in more challenging large-scale dense
clutter scenarios, as illustrated in Fig. 1.

https://github.com/clee-jaist/MCIGP
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Now, we look at the grasping problem in dense clutter from
a novel perspective based on the above discussion. Since the
robot typically grasps one object at a time, why not align
the camera view to one specific object and only focus on
conducting grasp detection on this object?

It should be highlighted that, based on this new perspective,
the method we intend to design will differ significantly from
common grasping approaches. Firstly, compared with methods
that operate within a fixed area, our approach will construct the
dynamic monozone that can break the limitation of the view
boundary, enabling grasping in more challenging large-scale
dense clutter scenarios. In addition, while many instance-level
grasping methods focus on segmenting all objects in a scene
and use the segmented instance masks to guide the sampling
of grasp candidates, our goal will be to directly perform
grasp detection for a specific target object. Specifically, the
segmentation mask of the target object will not be used
to guide the sampling process but be primarily employed
to modify the input image—pixels within the mask will be
preserved, while all others will be set to 255. This will allow
the grasping model to focus solely on the target object, and the
predicted grasp candidates will also concentrate exclusively on
this object. Finally, during the grasp candidate sampling stage,
we emphasize the improvement in the quality of the predicted
grasp candidates rather than the sampling process itself, which
is often overlooked by previous methods.

Along these lines, this paper presents a novel grasping
policy, called the Monozone-centric Instance Grasping Pol-
icy (MCIGP), which first leverages the Monozone View
Alignment (MVA) to align the camera view according to
different objects during grasping, thereby alleviating view
boundary effects and realizing grasping in large-scale dense
clutter scenarios. Then, through the Instance-specific Grasp
Detection (ISGD), our policy can predict and optimize the
grasp candidates for one specific object within the monozone,
ensuring an in-depth analysis of this object. A summary of the
contributions in this work is as follows:

1) We propose the concept of dynamic monozone, which
can break the view boundary limitation and realize
grasping in more challenging large-scale dense clutter
scenarios.

2) We restructure the problem of grasping novel objects
in dense clutter into an instance-specific grasp detection
problem and integrate it into the dynamic monozone.
This places a greater focus on predicting and optimiz-
ing grasp candidates for one specific object within the
monozone during each grasping.

3) We conduct over 8,000 real-world grasping experiments
and demonstrate that our method far outperforms seven
competitive methods among 300 novel objects in various
cluttered scenes. Especially in large-scale dense clutter
scenarios with up to 100 household goods, our method
pushed the grasp success rate to 84.9%. To the best
of our knowledge, no previous work has demonstrated
similar grasping performance.

4) We release our code and all grasping experiment videos
to support reproducibility and encourage future research
in large-scale dense clutter grasping.

This paper is organized into the following sections. Section
II (Related Work) provides a review of traditional grasping
methods and learning-based grasping methods. Section III
(Grasp Configuration) describes the 4-DOF (Degree of Free-
dom) grasp configuration, and how to transform it from the im-
age coordinates to the robot end effector coordinates. Section
IV (Proposed Method) provides an overview of MCIGP and
makes a detailed description of its two components (MVA and
ISGD), as well as each submodule of each component. Section
V (Experiments) first compares the real grasping performance
between our method and seven competitive baseline grasping
methods in different dense clutter scenarios, then validates
the effectiveness of each component for our method by the
ablation study, and analyzes failure cases based on these
results. Finally, Section VI (Conclusion) summarizes the work
of this paper and provides prospects for future research.

II. RELATED WORK

While many grasping frameworks exist, this work only
focuses on vision-guided 4-DOF grasping with a parallel-
jaw gripper. The 4-DOF grasp framework typically performs
grasping in a top-down manner, where the robot moves along
the X , Y , and Z-axis and rotates only around the Z-axis.
During grasping, the parallel-jaw gripper will adjust its open-
ing stroke based on the size of the object perceived by the
depth camera. It is mainly divided into traditional methods
and learning-based methods as follows.

A. Traditional Grasping Methods

Traditional grasping methods rely on mathematical and
physical models that describe the geometry, kinematics, and
dynamics of objects [1]–[3]. These methods typically assume
access to a detailed 3D model of the object being grasped,
which is used to compute stable grasps. For example, [19]
optimized grasp strategies by leveraging both a known 3D
model of the object and predefined contact points for the
robot gripper. Similarly, [20] proposed grasping spaces, where
objects could be mapped to these spaces to identify suitable
grasps. While these techniques offer robust solutions in con-
trollable structured environments, they are inherently limited
by their reliance on complete 3D object models. In real-world
scenarios, such models may not always be available, particu-
larly when robots are deployed in uncontrollable, unstructured
environments with many unknown objects. Therefore, these
constraints highlight the need for more adaptable and efficient
approaches to robot grasping that can handle uncertainty and
variability in object geometry.

B. Learning-based Grasping Methods

Learning-based methods can generalize to various novel
objects, which typically involve training a function approx-
imator, such as DNNs, to predict the success probability of
grasp candidates from images by leveraging large datasets of
empirical successes and failures. For that reason, datasets play
a crucial role in these methods. One human-labeled dataset
is the Cornell Grasping Dataset [21], which contains around
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1,000 RGB-D images and has been widely used to train
grasping models, such as [22]–[28], based on convolutional
neural networks (CNNs) [29]. However, this dataset is quite
small and consists only of single-object images, which limits
the dense clutter grasping capabilities.

The Dex-Net series [4], [30]–[33] made significant advance-
ments by generating large synthetic datasets that incorporate
various dense clutter scenes. Despite these advancements,
this approach did not fully resolve the sim-to-real problem.
GraspNet [5], [34], [35], in contrast, constructed a real-world
dataset featuring one billion grasp labels and nearly 100,000
images with 190 different dense clutter scenes, supporting both
4-DOF and 6-DOF grasping. This dataset enabled remarkable
real grasping performance in dense clutter. Nevertheless, the
above methods are unstable in dense clutter scenarios because
of the tight spatial relationship between adjacent objects,
which can easily cause collision during grasping.

Recently, several works proposed to segment all objects in
a scene to create a mask that can guide the sampling of grasp
candidates [14]–[18]. These works evaluate the relationships
between objects and assess whether each grasp candidate
might result in collisions. However, these methods primarily
generate grasp candidates based on instance masks obtained
from segmentation without optimizing the candidates predicted
by the model. Consequently, certain object instances may lack
valid grasp candidates. In other words, attempting to reason
about all objects simultaneously can undermine the focus on
individual targets. More critically, such methods often rely
on a fixed view, which tends to produce incomplete object
geometries at view boundaries, particularly for objects placed
on tabletops, thereby preventing them from being grasped in
more challenging large-scale dense clutter scenarios.

Unlike the aforementioned works, we break the limitations
of view boundaries by defining the dynamic monozone, within
which grasp candidates for a specific object are predicted and
optimized. This operation allows for a more comprehensive
analysis of the target object and can realize grasping in large-
scale dense clutter scenarios.

III. GRASP CONFIGURATION

Now, we elaborate on how the 4-DOF grasp configuration is
represented in the image coordinate system and its conversion
to the robot end effector coordinate system (eye-in-hand grasp-
ing). Specifically, we adopt the same grasp configuration in
[36], which is composed of parameters (x, y, w, h, θ) forming
a rotated box. Here, (x, y) represents the center of the box, w
and h denote the width and height of the box, and θ represents
the angle of the box relative to the horizontal direction.

Since h is only used for visual representation and not in
the conversion process, we denote the grasp configurations
(or one grasp candidate) in the image and robot end effector
coordinate systems as gi and gr, respectively. gi and gr are
composed by (x, y, w, θ) and (xr, yr, zr, wr, θr), respectively.
Here (xr, yr, zr) represents the grasp position in the robot
end effector coordinate system, wr is the opening stroke of
the parallel jaw gripper, and θr is the rotation angle of the
gripper relative to the Z axis.

The conversion between gi and gr can be divided into three
parts. The first part involves converting (x, y), as shown in
Eq. 1: using depth information (d) and the camera’s intrinsic
parameters (fx, fy for focal lengths and cx, cy for the
image center coordinates), we convert (x, y) from the image
coordinate system to the camera coordinate system (xc, yc, zc),
denoted by pc.xc

yc
zc

 =

f−1
x 0 −cxf−1

x

0 f−1
y −cyf−1

y

0 0 1

xy
1

 d (1)

The first part is followed by converting pc, i.e., (xc, yc, zc),
to the robot end effector coordinate system (xr, yr, zr) denoted
by pr via off-line hand-eye calibration as shown in Eq. 2,
where the rotation and translation parts are denoted by Rr

c

and Tr
c and 01×3 represents a 1× 3 zero matrix.[

pr
1

]
=

[
Rr

c Tr
c

01×3 1

] [
pc
1

]
(2)

The final part involves the conversion between the gripper
stroke wr and rotation θr relative to the grasp box’s width w,
and rotation θ, which can be manually adjusted because of
their linear relationship.

Pr = (xr, yr, zr, θr, θ
∗
x, θ

∗
y) (3)

After a series of conversions, the final grasp pose Pr based
on gr can be obtained, as shown in Eq. 3, where θ∗x and θ∗y
represent the constant rotations relative to the X-axis and the
Y -axis. Finally, the gripper will be moved to the target pose
using inverse kinematics, and its stroke will be kept to the
width wr to grasp the object.

IV. PROPOSED METHOD

We propose a novel grasping policy, the Monozone-centric
Instance Grasping Policy (MCIGP), designed to realize grasp-
ing in large-scale dense clutter, as illustrated in Fig. 2. MCIGP
is composed of two main modules: Monozone View Alignment
(MVA) and Instance-specific Grasp Detection (ISGD). The
MVA is used to break the camera’s field of view boundaries
and is divided into two types: Quality-based MVA (Q-MVA)
and Depth-based MVA (D-MVA). The ISGD predicts and
optimizes grasp candidates for one specific object within the
monozone to make sure an in-depth analysis of it, which
includes Cross-prompted Segmentation (CPS) and Grasp Can-
didate Optimization (GCO).

A. Monozone View Alignment (MVA)

Since grasping models typically accept inputs of size 224×
224, we configure the dynamic monozone according to this
size. It is important to note that we refer to it as a dynamic
monozone because it will change after each view alignment
(except the size), which distinguishes it from the 224 × 224
center region within the fixed view.

Given that the resolution of the depth camera (640×480) is
usually larger than 224×224, a coarse global view alignment is
required at each grasping to find the dynamic monozone that
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Fig. 2. Pipeline of MCIGP: Firstly, conducting Monozone View Alignment (MVA) to align the initial view V of depth camera on the target object to get
view V ′′′, and segment this object by the center c′′′v (green point) of this view as prompt to obtain initial segmented RGB image (emphasized with green
borders) with mask Mf . Then, calculate two pairs of most distant points (p∗ (red point), p̃∗ (red point), p∗s (blue point), and p̃∗s (blue point)) based on the
edge of Mf , and using these points to make Cross-prompted Segmentation (CPS) to optimize Mf to get Mr . In step three, the segmented RGB image r
with mask Mr and the depth image d within view V ′′′ are fed into the Grasping Model (GM) to generate initial grasp candidates G, followed by Grasp
Candidate Optimization (GCO) to obtain optimized grasp candidates G′. After GCO, G′ will be processed through Grasp Candidate Sampling (GCS) to find
the optimal grasp g∗. Finally, g∗ is optimized by Optimal Grasp Refinement (OGR) to transfer it to the final grasp g∗f . Notably, the left part of the figure
with the robot is focused on MVA, while the right part of the figure (6 subfigures) is focused on Instance-specific Grasp Detection (ISGD).

contains the target object. Specifically, based on the initial
depth image V and the center point cv of the camera view,
we align the pixel corresponding to the minimum depth value
(among all 640 × 480 pixels) in V with cv by moving the
robot (the camera mounted on the robot will be also moved).
We denote the depth image after this camera movement by
V ′. Assuming that the point with the minimum depth value
is located at pcd in the camera coordinate system, it can
be transformed to prd via a hand-eye relationship (without
translation). By moving the robot to prd , the original point
pcd can be brought to the center of the camera view, thereby
achieving view alignment, as shown in Eq. 4, where 03×1

denotes a 3× 1 zero matrix. Notably, this process places
the primary focus more on narrowing down the region of
interest containing the target object with the minimum depth
value, that is finding the dynamic monozone. Therefore, it is
significantly different from directly selecting and grasping the
object corresponding to the minimum depth within a fixed
view as in [11], which will also suffer from the problem of
view boundary limitation.[

prd
1

]
=

[
Rr

c 03×1

01×3 1

] [
pcd
1

]
(4)

After finding the dynamic monozone, we perform Mono-
zone View Alignment, which includes two types: Quality-
based MVA (Q-MVA) and Depth-based MVA (D-MVA). Due
to the large search range during global alignment, the un-
certainty of depth values also increases significantly. As a
result, the position aligned to the globally minimal depth value
may not correspond to the actual minimal depth in the scene.
The first type D-MVA can refine the global alignment by
continuing to align within the dynamic monozone (we perform
two alignments here), allowing the identification of the object
corresponding to the locally minimal depth value. Following
the global alignment stage, let V ′′ and V ′′′ denote the depth
images after each D-MVA step, respectively. In addition, the

robot moves to follow Eq. 4. Notably, unlike the previous
global view alignment, the robot motion during this alignment
is limited to the 224× 224 monozone. As a result, the object
centered in the new camera view after D-MVA will become
the final target for grasping.

Different from D-MVA, Q-MVA can predict the grasp
quality score through the grasping model within the dynamic
monozone and select the pixel corresponding to the highest
score as the alignment point. Let Q denote the quality map
of this monozone, and (xq, yq) the corresponding position of
one quality score. Then the corresponding position (x∗

q , y
∗
q ) of

the highest score can be shown in Eq. 5, where (H,W ) is the
size of the monozone.

(x∗
q , y

∗
q ) = argmaxQ(xq, yq)

(xq,yq)∈(H,W )

(5)

Now, suppose (x∗
q , y

∗
q ) is located at p∗cq in the camera

coordinate system. This position can be transformed into the
robot coordinate system as p∗rq in the same way via a hand-eye
transformation (excluding translation). By moving the robot
to p∗rq , the original position p∗cq is brought to the center of
the camera view (one alignment), thereby achieving Q-MVA,
following Eq. 4. The robot movement ranges the same as in
D-MVA and is restricted within the 224× 224 monozone.

B. Instance-specific Grasp Detection (ISGD)

In this part, we perform Instance-specific Grasp Detection
within the aligned monozone. We first leverage the center point
of the aligned monozone as the initial prompt and apply Cross-
prompted Segmentation (CPS) to segment the target object
located at the center. The segmented result is then fed into the
grasping model to predict grasp candidates. These candidates
are further refined through Grasp Candidate Optimization
(GCO). Finally, we sample the optimized candidates and refine
the best one to generate the final grasp.
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1) Cross-prompted Segmentation (CPS): We initially lever-
age the center point of the aligned monozone as the initial
prompt to drive the Segment Anything Model (SAM) [37]
to segment the target object located at the center. We denote
the segmented result by mask Mf . However, the single-
point prompt is highly unstable in dense clutter, particularly
pronounced when the object’s appearance is complex, such as
the food packaging, where only part of the object is segmented
(usually manifested as many holes in the segmented object).
This limitation adversely impacts the subsequent prediction
and optimization of grasp candidates.

Therefore, we propose Cross-prompted Segmentation
(CPS), which performs a geometric analysis of the initial
segmentation result Mf and conducts a second segmentation
to alleviate the segmentation hole effect. Specifically, it begins
by applying the Sobel operator [38] to extract the edges of
the instance mask Mf obtained from the initial single-point
prompt segmentation. We then search for the two pixels most
distant from each other, which we refer to as p∗ and p̃∗ on
the edges. As shown in Eq. 6, Pe means the set of all pixels
on the edges, and ∥·∥2 means the Euclidean distance.

(p∗, p̃∗) = argmax
(pi,pj)∈Pe

∥pi − pj∥2 (6)

Next, we calculate the perpendicular line ⊥(p∗,p̃∗) connect-
ing p∗ and p̃∗, and intersecting this perpendicular line with the
edges Pe yields another pair of the most distant pixels, which
we refer to as p∗s and p̃∗s as shown in Eq. 7. These four points
are then used as prompts to perform the second segmentation,
resulting inMs. Compared to a single point, these two farthest
pairs of points can better exploit the geometric constraints of
the initial segmentation result, thus alleviating the holes in the
initial segmentation, as demonstrated in our ablation studies.
Finally, Ms is refined by image dilation processing: a depth
threshold is applied and pixels from the first prompt serve as
initial points for segmentation to produce Md. By combining
Md and Ms, we obtain the refined Mr.

(p∗s, p̃
∗
s) =⊥(p∗,p̃∗) ∩Pe (7)

2) Grasp Candidate Optimization (GCO): After segment-
ing the target object, we preserve pixels of the image within
the mask Mr, while all others will be set to 255, and
input this revised image to the grasping model. Here, we use
the grasping model in [25] to obtain the grasp candidates.
This will allow the grasping model to focus solely on the
target object, and the predicted grasp candidates will also
concentrate exclusively on this object, which is deemed to
be instance-specific grasp detection. Then we propose Grasp
Candidate Optimization (GCO) to optimize the predicted grasp
candidates. Inappropriate selection of the grasp angle θ may
cause the object to slip or fall during grasping due to the
uneven force distribution on both fingers of the parallel-jaw
gripper. Therefore, the first part of GCO is to optimize all
grasp candidates (denoted by G) to have an optimal angle.
Specifically, it begins with extracting the edges of the instance
mask Mr.

For each grasp candidate, we rotate them clockwise in 2-
degree intervals until they reach 360 degrees. For each rotation
R, we find four intersection points between the two long sides
of the grasp candidate and the edges, that is, ptl , pbl , ptr , and
pbr . Subsequently, we calculate the angle θ′ between the vector
vpl

determined by pbl and ptl and the vector vgu of the long
upper side of this grasp candidate, and similarly to get the
angle θ′′ between the vector vpr

determined by pbr and ptr
and the vector vgu . By subtracting 90 degrees from each of
these angles, taking the absolute value, and summing them,
we obtain the angle difference for each rotation. Finally, we
select the rotation R∗ with the smallest angle difference given
by Eq. 8 and use it to formulate the new grasp candidate.

R∗ = argmin
R

(∣∣∣θ′(R)− π

2

∣∣∣+ ∣∣∣θ′′(R)− π

2

∣∣∣)
s.t. R ∈ {0◦, 2◦, 4◦, . . . , 2π}

(8)

The second part of GCO is designed to ensure that viable
grasp candidates remain available after sampling. It achieves

Algorithm 1: MCIGP
Input: Camera Frame V
Output: Final grasp set Gf for all objects

1 foreach V ∈ V do
// Conducting Depth-based MVA

2 V ′ ← V , V ′′ ← V ′, V ′′′ ← V ′′

3 Mf ← SAM(c′′′v )
4 (p∗, p̃∗)← SOLVE Eq. 6
5 (p∗s, p̃

∗
s)← SOLVE Eq. 7

// Running CPS
6 Ms ← SAM(p∗, p̃∗, p∗s, p̃

∗
s)

7 Md ← DILATION(Ms, d)
8 Mr ←Ms,Md

9 G← GRASPING MODEL(Mr, r)
// Executing first part of GCO

10 foreach gi ∈ G do
11 R∗ ← SOLVE Eq. 8
12 G′ ← G,R∗

// Executing second part of GCO
13 if G′ = ∅ then
14 SOLVE Eq. 9
15 break

// Sampling grasp candidate
16 else
17 foreach gi ∈ G′ do
18 G′′ ← SOLVE Eq. 10

19 foreach gi ∈ G′′ do
20 g∗ ← SOLVE Eq. 11

// Refining optimal grasp
21 Rec ← g∗,Mr

22 (w′
s, c

′
i)← MINRec(w), ec,Rec(c)

23 g∗f ← g∗, (w′
s, c

′
i)

24 Gf ← g∗f

25 return Gf
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this by adaptively rotating the image’s viewpoint clockwise,
thereby altering all grasp candidates. This part can work syn-
ergistically with the first part of GCO for joint optimization.
Specifically, if no grasp candidate gi is available from the
current viewpoint, we rotate the image 30 degrees at a time
and repeat it until an available grasp candidate is found.

Since the camera does not rotate and is constrained by hand-
eye calibration, we need to project the rotated candidate grasp
g′i back to the original viewpoint. Here, the parameters w′

and h′ of g′i remain unchanged. The angle θ′ can be adjusted
by adding the rotation angle θc and restricting it to the range
[−π

2 ,
π
2 ] to convert it back to the angle θ of the candidate grasp

gi under the original viewpoint. For the center c′i(x
′, y′) of g′i,

assuming the center of rotation is cr(xcr , ycr ), the projection
relationship from c′i(x

′, y′) to the center ci(x, y) of the grasp
candidate gi under the original viewpoint can be obtained from
Eq. 9.

[
x
y

]
=

[
cos(θc) − sin(θc)
sin(θc) cos(θc)

] [
x′ − xcr

y′ − ycr

]
+

[
xcr

ycr

]
(9)

Based on GCO, we start sampling the grasp candidates
within this object, which is a heuristic-based method by a
large number of experimental observations made. In addition,
it only analyzes and samples candidates of a single object and
without the guidance of the mask. Therefore, it is different
from instance-level grasping, which analyzes all objects and
uses the mask of each object to guide sampling. Let G′ denote
the grasp candidates after angle calibration (the second part
of GCO is also dynamically activated). We first analyze their
relationship with adjacent objects by setting a depth threshold
Td, that is, if the depth difference between any p and ci exceeds
Td, the grasp candidate gi will be filtered out and get grasp
candidate sets G′′, as shown in Eq. 10. Here Ps means pixels
along the two short sides of the grasp candidate gi, and p is
one pixel within Ps, d means depth image.

G′′ = {gi ∈ G′ | ∀p ∈ Ps, |d(p)− d(ci)| ≤ Td} (10)

After getting G′′, we use our previous method [39] to sort
G′′ with depth value and select the gi with the smallest center
pixel depth value d(ci) as the optimal grasp g∗, which is shown
in Eq. 11.

g∗ = argmin
gi∈G′′

d(ci) (11)

Finally, although the optimal grasp g∗ was obtained, it might
still result in collisions with adjacent objects during grasping
execution due to its too wide open width. One way to get
around this problem was reported in [33], where a series
of intervals was defined within the grasp box and the grasp
width and position were adjusted based on the relationships
between these intervals. However, this method relies on the
intersection depth area of objects can easily cause errors, and
is computationally cumbersome. Therefore, we directly find
the minimum rectangle Rec intersecting the optimal grasp g∗

and the instance mask Mr in the RGB image. Followed by
calculating the shortest width ws and a new center point c′i

Fig. 3. Objects for the grasping experiment: toys, ragdolls, household goods,
and snacks (clockwise from top left).

of by Rec. Additionally, to mitigate the impact of hand-eye
calibration errors, we further expand ws to w′

s by adding some
of the hand-eye calibration translation errors ec in the X and
Y -axis. So, w′

s and c′i can be used as the new width and center
of the grasp for optimal grasp and it can be denoted as the final
grasp g∗f . We show a pseudocode of MCIGP in Algorithm 1.

V. EXPERIMENTS

In this section, we validate the effectiveness of MCIGP by
conducting benchmarking studies. Firstly, we compare it with
baseline grasping methods in various mid-clutter (up to 20
objects) and high-clutter (up to 50 objects) scenes. Then we
increase the number of objects to 100 (large-scale clutter) and
analyze the effectiveness of MVA and ISGD.

A. Experimental Settings

1) Setting for Grasping Model: The baseline methods are
categorized into two groups. The first group includes GGCNN
[22], GGCNN2 [23], GRconvnet [25], SEnet [24], and FCGnet
[26], which are suitable for mid-clutter scenarios. The second
group comprises DexNet 4.0 [4] and GraspNet [5], which are
tailored for high-clutter scenarios.

For the first group, since the pre-trained models were
all trained on the Cornell Grasping Dataset [21] (only one
object in each fixed white background), their performance in
cluttered environments is limited. Therefore, we merge the
OCID Grasping Dataset [14], [41] (with different piled objects,
backgrounds, sensor-to-scene distance, viewpoint angle, and
lighting conditions) into the Cornell Grasping Dataset and
retrain these models using the parameter settings specified
in their original papers (except that all uses the RGB-D
modality). Specifically, these models were trained on a single
NVIDIA RTX 4090 GPU with 24 GB of memory. The system
is Ubuntu 22.04, and the deep learning framework is PyTorch
2.3.1 with CUDA 12.1. Before training, we randomly shuffle
the entire dataset, using 90% for training and 10% for testing.
During training, the data are uniformly cropped to fit the
acceptable sizes, the number of training epochs is set to 50,
and data augmentation (random zoom and random rotation)
is applied. For testing, we use the same metric [36] to report
the detection accuracy (Acc) of these methods. According to
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this metric, a grasp is considered valid when it satisfies two
conditions: the Intersection over Union (IoU) score between
the ground truth and predicted grasp rectangles is over 25%,
and the offset between the orientation of the ground truth
rectangle and that of the predicted grasp rectangle is less than
30◦.

For the second group, we directly use their pre-trained
models: the parallel-jaw version of DexNet 4.0, the planar
version of GraspNet (GraspNet 4D) [5], [42], and the 6-
DOF version of GraspNet (GraspNet 6D) [5]. Finally, unless
specified, the segmentation and grasp candidate prediction
components of MCIGP use the pre-trained models of SAM
and GRconvnet in all experiments, and we use D-MVA for all
experiments too.

2) Setting for Real Grasping: Our grasping system con-
sists primarily of an Intel RealSense D435 depth camera,
a UFactory xArm 5 robot (5-DOF), and a UFactory 850
robot (6-DOF). We employ an eye-in-hand architecture, with
the camera mounted on the robot’s distal end and facing
downward. There are real object types of benchmarking in the
dense clutter grasping field, such as [43]. However, most of
these objects are European and American products, which are
usually difficult to obtain completely due to regional restric-
tions. Moreover, the types and number of such benchmarks
are scarce, which cannot meet our needs for large-scale dense
cluttered (up to 100 objects) grasping experiments. Therefore,
we refer to the objects used in two widely recognized dense
clutter grasping methods, DexNet 4.0 [4] and GraspNet [35].
Specifically, the objects used in our grasping experiments
are divided into four categories, with a total of 300 novel
objects: 50 ragdolls (Category 1), 100 snacks (Category 2),
50 toys (Category 3), and 100 household goods (Category 4),
respectively, as shown in Fig. 3. Category 1 is the easiest, and
as the category number goes up, the grasping difficulty for the
robot rises, too.

Prior to grasping, we first define the robot’s workspace in
the base coordinate system with the X and Y axes limited
by the edges of a 120 cm × 80 cm table. The range of the
Z-axis is limited by the maximum distance to the tabletop (40
cm) and the minimum distance (10 cm) to prevent collisions
between the gripper fingers and the table. The camera is
mounted at the distal end of the robot arm to which the
gripper (about 10 cm) is also removably mounted. Before each
grasping attempt, we set the robot to a pre-specified position
(40 cm above the center of the table) and ensure that the
camera covers the entire pile of objects on the table. Then we
fill the depth hole [22] and set a depth value threshold (with
the upper limit of 40 cm and the lower limit of 10 cm) to
ensure that the grasp is executed within a safety range.

During grasping, each method is tested in five trials per
experiment, and the number of failed grasps in each trial (T)
is recorded. The grasp success rate (GSR) is calculated by
dividing the total number of successful grasps by the total
number of grasp attempts across five trials. In addition, to
improve experimental safety and ensure all objects are grasped
in each trial, we provide minimal manual assistance during the
experiments. Specifically, if an object fails to be grasped 2-3
times, we manually pick up the object and count it as a failure.

Fig. 4. Line graph showing GSR of MCIGP and first-group baselines in
mid-clutter scenarios. The horizontal axis represents different methods, and
the depth axis represents trials from T1 to T5. The vertical axis represents
the number of grasp failures. We emphasize the number of grasp failures (T1,
T3, T5) in each method with dots, and connect them with dashed lines to
better show the difference.

TABLE I
GSR COMPARISON AMONG MCIGP AND FIRST-GROUP BASELINES IN

MID-CLUTTER SCENARIOS

Methods T1 T2 T3 T4 T5 Acc (%) GSR (%)

GGCNN 3 6 5 5 2 22.3 82.6
GGCNN2 16 24 29 23 18 37.7 47.6
GRconvnet 10 3 6 4 5 52.0 78.1

SEnet 8 13 0 5 10 45.0 73.5
FCGnet 4 0 1 3 4 52.0 89.3
MCIGP 1 0 2 1 3 - 93.5

Additionally, if an object moves out of the camera view, it is
repositioned with manual intervention. Similarly, if a grasped
object moves out of the robot’s workspace, causing it to stop,
the object is repositioned manually, too.

B. Comparison Studies

1) Comparison with Baseline Methods in Mid-clutter:
We compare MCIGP with the baseline methods in the first
group. We used 10 snacks and 10 household goods to form a
mid-clutter scene. The results are shown in Table I. MCIGP
achieves a GSR of 93.5% (100/107), with only 7 grasp failures,
which is far superior to other baselines except for FCGnet.
Additionally, we found that some baselines perform well on
the dataset but not in real grasping. For example, GGCNN2
has a GSR of only 47.6% (100/210) with a total of 110 grasp
failures, indicating that this method does not generalize well
to novel objects in mid-clutter. Finally, we also visualize the
result in Fig. 4 to better show the gap between MCIGP with
other baseline methods. As shown in this figure, it is very
clear that our method’s number of failures is much smaller
with little variance across the trials.

2) Comparison with Baseline Methods in High-clutter:
DexNet 4.0 and GraspNet are considered state-of-the-art
for learning-based 4-DOF and 6-DOF grasping, respectively.
Therefore, to demonstrate the effectiveness of MCIGP’s grasp-
ing capability, we compare it with these two methods. Specif-
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Fig. 5. Bar graphs showing GSR of MCIGP and second-group baselines in high-clutter scenarios. (a), (b), (c), and (d) represent the results of testing ragdolls,
snacks, toys, and household goods. In each subfigure, the vertical axis represents the number of grasp failures, and the horizontal axis represents different
methods with five trials. We show the positive and negative errors at the top of each bar by calculating the mean of the number of grasp failures across all
trials for each method.

TABLE II
GSR COMPARISON AMONG MCIGP AND SECOND-GROUP BASELINES IN HIGH-CLUTTER SCENARIOS

Methods Ragdolls Snacks Toys Household goods

T1 T2 T3 T4 T5 GSR (%) T1 T2 T3 T4 T5 GSR (%) T1 T2 T3 T4 T5 GSR (%) T1 T2 T3 T4 T5 GSR (%)

DexNet 4.0 4 1 1 3 2 95.8 10 15 7 10 12 82.2 29 23 24 28 30 65.1 29 29 28 26 26 64.4
GraspNet 4D 5 6 3 2 6 92.0 13 10 6 18 14 80.4 25 27 28 21 21 67.2 17 38 30 35 36 61.6

MCIGP 0 1 1 2 0 98.4 4 4 3 3 1 94.3 6 10 10 7 5 86.8 8 6 10 11 5 86.2

TABLE III
GSR COMPARISON BETWEEN MCIGP AND GRASPNET 6D IN

HIGH-CLUTTER SCENARIOS

Methods T1 T2 T3 T4 T5 GSR (%)

GraspNet 6D 12 13 12 11 10 81.2
MCIGP 8 6 10 11 5 86.2

ically, we first compare with the parallel gripper version of
DexNet 4.0 and the planar version of GraspNet. Here, we
conducted experiments in high-clutter scenes composed of
50 ragdolls, 50 snacks, 50 toys, and 50 household goods,
respectively. The experimental results are shown in Table II,
indicating that MCIGP achieves GSR of 98.4% (250/254)
for ragdolls, 94.3% (250/265) for snacks, 86.8% (250/288)
for toys, and 86.2% (250/290) for household goods. All
surpassed DexNet 4.0 and GraspNet 4D. More importantly, as
the difficulty in grasping increases, the gap between MCIGP

and the baseline methods becomes more obvious. For example,
when grasping toys and household goods, MCIGP’s GSR
exceeds theirs by up to 20%, demonstrating the high reliability
of our method. We also visualize these results in Fig. 5. It
is obvious that the bar length of our method is shorter than
that of other methods in each subfigure, and it varies little
across the trials and has smaller errors. To further demonstrate
the superiority of our method, we compare it against the
extremely challenging GraspNet 6D. The experimental settings
are consistent with those described above, except that we only
conduct experiments on the most difficult high-clutter scenes
to better reflect their performance differences, composed of
50 household goods. As shown in Table III, despite MCIGP
supporting only 4-DOF grasping (GSR is 86.2% (250/290)),
it still outperforms GraspNet 6D (GSR is 81.2% (250/308)).

C. Ablation Studies
1) Effectiveness of Monozone View Alignment: To demon-

strate the effectiveness of MVA, we first evaluate it in a
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Fig. 6. Visualization of CSP and SP segmentation. The first and second rows are the CSP segmentation and CSP grasp, respectively. The third and fourth
rows are the SP segmentation and SP grasp, respectively. In addition, we use translucent magenta and green rectangles to emphasize the mask and grasp.

Fig. 7. Visualization of the grasping process on large-scale clutter scenarios with 100 household goods for MCIGP. Each subfigure represents the grasping
process, and we emphasize the object being grasped by the green border. Sub-subfigures inside each subfigure are the original view (top left), aligned view
(top right), segmentation based on the aligned view (bottom left), and the predicted grasp based on the aligned view (bottom right), respectively. The mask
and grasp are also emphasized by translucent magenta and green rectangles.

non-clutter scenario consisting of 10 household objects. In
these scenarios, some parts of the objects’ geometries may
not be fully captured by the depth camera, simulating potential
view boundary limitations encountered by baseline methods.
We compare our method with the first group baseline meth-

ods, and the experimental results are presented in Table IV.
MCIGP achieves a GSR of 90.9% (50/55) with only five grasp
failures, significantly outperforming the other baselines. This
demonstrates that our method can substantially improve grasp
success rates by overcoming boundary limitations. In addition,
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Table IV reports the average time from grasp detection to
grasp execution for all methods. Although our method is
approximately twice as slow as the baselines, the execution
time remains within an acceptable range. The additional time
required by our method is reasonable, as it conducts more
visual analysis compared to the baseline methods in order
to achieve higher grasp success rates. We also visualize the
view alignment and grasping process in Fig. 7. Note that the
visualization here is mainly based on Section V-C2.

Next, we investigate the difference between D-MVA and
Q-MVA. Here, we use a mid-clutter scenario consisting of
20 household objects. The experimental results are shown in
Table V. Q-MVA achieves a GSR of only 74.6% (100/134),
whereas D-MVA achieves 90% (100/111), exhibiting a 15.4%
performance gap. This result indicates that D-MVA outper-
forms Q-MVA in mid-clutter scenarios.

2) Effectiveness of Instance-specific Grasp Detection: In
this section, we first validate the CPS component in ISGD
using a large-scale clutter scenario composed of 100 snack
objects, whose complex appearances can effectively highlight
the advantages of CPS. Here, MCIGP without CPS employs
single-point (SP) segmentation, while other aspects remain
consistent with the original MCIGP. The experimental results
are presented in Table VI; the GSR of MCIGP without CPS is
79.1% (500/632), compared to 88.7% (500/564) achieved by
the original MCIGP, demonstrating the effectiveness of CPS.
Furthermore, Fig. 6 visualizes the segmentation differences
between CPS and SP, where CPS is observed to significantly
reduce segmentation holes and small segmented regions com-
pared to SP segmentation, thereby helping the grasping model
predict better grasp.

Next, we evaluate the GCO component in ISGD under
conditions of the highest grasping difficulty, specifically within
large-scale cluttered scenes composed of 100 household goods.
These objects exhibit the greatest variation in materials,
shapes, and appearances compared to other objects that we
use. The experimental results shown in Table VII, the GSR of
MCIGP without GCO is 75% (500/667), compared to 84.9%
(500/589) for MCIGP. Two cases differ by approximately
10%, illustrating the obvious advantage of GCO in large-scale
dense clutter scenarios. We also visualize some the grasping
processes in Fig. 7.

D. Failure Case Analysis

In the above experiments, we performed more than 8,000
grasp attempts and achieved a total of 6,350 successful grasps.
More importantly, we tested MCIGP’s capability in large-scale
clutter scenarios involving 100 novel objects, and the GSR is
stable between 85% to 89%. To the best of our knowledge, no
previous work has demonstrated similar performance. How-
ever, MCIGP still encounters some failures. The first issue
is slippage during grasp execution, which occurs due to the
smooth surface of the object. To address this, we plan to use
parallel jaw grippers with high-friction finger pads or wrap
the fingers with textured tape. Furthermore, depth holes and
errors from the depth camera can cause a collision with the
table during grasping. This problem can be mitigated by using

TABLE IV
GSR COMPARISON AMONG MCIGP AND FIRST-GROUP BASELINES IN

NON-CLUTTER SCENARIOS

Methods T1 T2 T3 T4 T5 Time (s) GSR (%)

GGCNN 4 5 7 6 7 23.5 63.3
GGCNN2 9 8 9 9 7 28.0 54.3
GRconvnet 2 5 5 1 4 27.8 74.6

SEnet 5 5 4 4 4 24.3 69.4
FCGnet 2 1 3 3 4 25.5 79.4
MCIGP 0 1 1 1 2 54.5 90.9

TABLE V
IMPACT OF DIFFERENT MVA IN MID-CLUTTER SCENARIOS

Methods T1 T2 T3 T4 T5 GSR (%)

Q-MVA 6 5 10 6 7 74.6
D-MVA 4 1 1 4 1 90.0

TABLE VI
IMPACT OF CPS IN LARGE-SCALE CLUTTER SCENARIOS

Methods T1 T2 T3 T4 T5 GSR (%)

Without CPS 23 29 20 28 32 79.1
With CPS 19 14 9 9 13 88.7

TABLE VII
IMPACT OF GCO IN LARGE-SCALE CLUTTER SCENARIOS

Methods T1 T2 T3 T4 T5 GSR (%)

Without GCO 25 35 32 34 41 75.0
With GCO 22 14 17 12 24 84.9

a high-precision industrial depth camera. While our method
can improve the segmentation of SAM, it will be unable to
segment the complete shape of an object if serious occlusion
exists between objects in dense clutter. To optimize this, we
are going to use amodal instance segmentation [44] to predict
the occluded parts of the object, thereby getting the complete
mask of the object. Finally, when objects with similar depths
are tightly packed together, they will be difficult to grasp. This
challenge can be overcome by designing a methodology that
can combine grasping and pushing manipulation, like [45].

VI. CONCLUSION

In this paper, we proposed the MCIGP, which first employed
the MVA to find the dynamic monozone and then leveraged
ISGD to predict and optimize grasp candidates for one specific
object within this monozone. MCIGP enabled the robot to
effectively mitigate view boundary limitation and realize in-
depth analyses for one specific object in large-scale dense clut-
ter environments, significantly enhancing the grasping success
rate. We conducted over 8,000 real-world grasping attempts
on 300 novel objects across various levels of clutter, including
mid-clutter (20 objects), high-clutter (50 objects), and large-
scale clutter (100 objects), demonstrating that MCIGP signif-
icantly outperforms seven competitive grasping methods.

Future work can be divided into two major parts. The first
part can focus on addressing the issues highlighted in the
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Failure Case Analysis to enhance the method proposed in
this paper. The second part can involve using this method
as a baseline and extending it to human-robot interaction
for specific object retrieval. For instance, safely grasping a
specific object in a cluttered scene without interfering with
other objects, and securely handing it over to a person should
be noteworthy.
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