JAIST Repository

https://dspace.jaist.ac.jp/

K Using Reinforcement Learning to Generate Levels
of Super Mario Bros. with Quality and Diversity
Nam, Sang-Gyu; Hsueh, Chu-Hsuan; Rerkjirattikal,

Author(s))
Pavinee; Ikeda, Kokolo

Citation [EEE Transactions on Games, 16(4): 807-820

Issue Date 2024-06-19

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/20015
This is the author's version of the work. Copyright
(C) 2024 1IEEE. IEEE Transactions on Games. DOI:
https://doi.org/10.1109/TG.2024.3416472.
Personal use of this material is permitted.
Permission from IEEE must be obtained for all

Rights other uses, in any current or future media, including
reprinting/republishing this material for advertising
or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work
in other works.

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

Using Reinforcement Learning to Generate Levels
of Super Mario Bros. with Quality and Diversity

Sang-Gyu Nam, Chu-Hsuan Hsueh, Pavinee Rerkjirattikal, Kokolo Ikeda

Abstract—Procedural content generation (PCG) is essential in
game development, automating content creation to meet various
criteria such as playability, diversity, and quality. This paper
leverages reinforcement learning (RL) for PCG to generate
Super Mario Bros levels. We formulate the problem into a
Markov decision process (MDP), with rewards defined using
player enjoyment-based evaluation functions. Challenges in level
representation and difficulty assessment are addressed by condi-
tional generative adversarial networks (CGAN) and human-like
Al agents that mimic aspects of human input inaccuracies. This
ensures that the generated levels are appropriately challenging
from human perspectives. Furthermore, we enhance content
quality through virtual simulation (VS), which assigns rewards
to intermediate actions to address a credit assignment problem
(CAP). We also ensure diversity through a diversity-aware greedy
policy (DAGP), which chooses not-bad-but-distant actions based
on Q-values. These processes ensure the production of diverse
and high-quality Super Mario levels. Human subject evaluations
revealed that levels generated from our approach exhibit natural
connection, appropriate difficulty, non-monotony, and diversity,
highlighting the effectiveness of our proposed methods. The
novelty of our work lies in the innovative solutions we propose
to address challenges encountered in employing PCGRL in
Super Mario Bros, contributing to the field of PCG for game
development.

Index Terms—Reinforcement learning, procedural content gen-
eration, Super Mario Bros., quality and diversity.

I. INTRODUCTION

ROCEDURAL generation is a versatile technique widely
employed across various applications, offering advantages
in cost-effectiveness and quality assurance. One of its most
prominent domains is game development. Procedural con-
tent generation (PCG) employs algorithms to create diverse
in-game content autonomously, ensuring replayability and
entertainment value while managing financial and memory
constraints. Its capabilities have been demonstrated in various
aspects of games, including generation of levels [1] [2] [3],
characters [4], and items [5]. Given its vital role in game
development, extensive research efforts have been dedicated
to the development and application of PCG, spanning various
game genres such as platformers [6], thythm games [7], and
puzzle games [8].
This paper proposes a PCG method aiming to generate
levels in Super Mario Bros. In Super Mario, a level consists of
tile arrangements, with each level breaking down into patterns.

The authors are with Sirindhorn International Institute of Technol-
ogy, Thammasat University, and Japan Advanced Institute of Science
and Technology, e-mail: (sanggyu@siit.tu.ac.th; hsuehch@jaist.ac.jp; pavi-
nee.rerk @dome.tu.ac.th; kokolo@jaist.ac.jp)

It is crucial to generate content that aligns with the standards
of game developers, addressing aspects such as difficulty,
entertainment, or playability. These qualification indicators
should be based on human players’ perceptions to ensure a
satisfactory and engaging gaming experience. In Super Mario
levels, the layout, types of tiles, and proper pattern placement
are vital for enjoyable levels. Improper concatenation can
result in levels that are unnatural, overly complex, repetitive,
or non-playable. Therefore, these factors are often considered
as part of the quality criteria for Super Mario levels. Diversity
of the generated content is also essential since players expect
new content with every launch. In addition to quality criteria
and diversity, the appropriate difficulty is also crucial to
the gameplay experience from a human perspective. Many
existing works employ human-like Al agents to evaluate the
level of difficulty, representing different aspects of human
likeness. Some studies employed biological constraints, such
as confusion [9] and physical fatigue from successive inputting
keys [10] to impart human-like behavior to Al. In our work,
we focus on Al agents that mimic new aspects of human
input inaccuracies time span. This approach ensures that the
generated levels have appropriate difficulty for human players.

Two primary PCG techniques widely adopted in existing
studies are procedural content generation via machine learning
(PCGML) [11] and search-based PCG [12]. Each has its ad-
vantages and disadvantages, making them suitable for different
applications and addressing various practical constraints in
game development scenarios. PCGML relies on substantial
training data and tends to produce less diverse content when
faced with limited datasets. It proves useful for games with
abundant and easily obtainable human-generated content. On
the other hand, search-based PCG does not require extensive
training but relies on evaluation functions to tailor content to
meet designer or player preferences. The genetic algorithm
(GA) is often employed to optimize the evaluation values.
However, GA may require modifications and parameter set-
ups to generate diverse content [13]. Additionally, optimization
processes can be time-consuming and may not be suitable for
immediate content generation needs. Real-world game devel-
opment often encounters challenges of insufficient training
data and the requirement for immediate content, deeming
PCGML and search-based PCG impractical for such cases.
To address these challenges, many studies employ the rein-
forcement learning (RL) method in PCG, so-called PCGRL, to
enable immediate game content generation without requiring
substantial data.

This study employs the PCG using the RL method proposed
in our previous works [14] and [15] to generate high-quality

and diverse Super Mario levels. The general idea of formu-
lating the level generation problem into a Markov decision
process (MDP) is similar to that presented in [15]. However,
differences in formulating each problem into MDP and the
characteristics of the games pose two distinct challenges. This
paper aims to address them to ensure that the generated levels
meet our defined quality and diversity criteria.

Firstly, due to the complexities in the Super Mario game,
the action dimension of RL is larger. We adopted twin delayed
deep deterministic policy gradient (TD3), and its training was
proven efficient in environments with less than 10 dimen-
sions of action space (e.g., Hopper-vl with 3 dimensions or
Walker2d-v1 with 6 dimensions) [16]. However, the training
becomes difficult for environments with more than 10 dimen-
sions (e.g., Humanoid-v1 with 17 dimensions) [17]. Therefore,
we decided to use low-dimensional vectors as the output of
RL and map them to the corresponding level pattern.

The second challenge is the evaluation of the difficulty
of generated content. In Super Mario, the difficulty is also
an essential factor, especially based on human perception. In
our previous work, we evaluated the difficulty based on the
characters’ every possible action. The action choices in Super
Mario are broader and deeper than those in turn-based RPGs,
which makes it very difficult to apply the previous approaches.
In this work, we adopt human-like Al agents and assume they
represent human players. By letting the Al agents play the
levels, the degree of difficulty from human ability is measured
based on their play logs.

Notably, both our research and that of Shu et al. [18] employ
PCGRL to generate Mario levels. Both studies represent
the generated levels as latent vectors (matrices) and assess
their playability using the A* agent. However, our research
introduces an additional layer of evaluation by employing
human-like Al agents that emulate human behavior, allowing
us to assess not only playability but also the difficulty of the
levels, ensuring that the generated content is both playable and
appropriately challenging. We also ensure natural connectivity
among adjacent patterns using conditional generative adver-
sarial networks (CGAN), which is introduced in our previous
work [14].

In terms of addressing level monotony, Shu et al.’s research
primarily compares the occurrences of individual tiles, while
our work shifts the focus to the arrangement of patterns. Our
approach ensures that levels do not have the same adjacent
patterns, as we do not want users to experience similar patterns
consecutively. This can directly impact playstyle and is a
critical aspect of both monotony and the overall entertainment
value of the levels.

Regarding generating diverse levels, Shu et al. utilized
historical deviation to encourage the RL agent to create novel
patterns. In contrast, we achieve diversity through randomized
initialization (RI) and the implementation of a diversity-aware
greedy policy (DAGP). DAGP ensures diversity by generating
patterns different from those produced by RL’s greedy policy,
using distance criteria without compromising quality. This
approach enables us to generate multiple high-quality levels
that exhibit diversity from one another.

Lastly, Shu et al. employed a CNet-assisted evolutionary

IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

repairer [19] to address noise in the generation process, while
our approach utilizes pattern matching to find the most similar
patterns from existing data.

In summary, our paper employs a PCG technique using
RL to generate Super Mario levels. The significance of this
work lies in its innovative solutions to various challenges
encountered in PCGRL and its application to Super Mario
content generation, contributing to the advancement of both
game development and procedural content generation research.
Our work builds upon these foundations and introduces several
key contributions to the field as follows:

« We validate our framework of applying RL to the PCG
problem proposed in [15], using more complex target
content—Super Mario levels. Several challenges arise
due to the different characteristics of the games, and we
proposed innovative solutions to address them.

o We define different quality criteria for Super Mario levels,
encompassing difficulty based on humans’ perspectives,
non-monotonous layout, and playability. By generating
levels that meet these criteria, we ensure high-quality
gameplay experiences. In addition, the diversity among
generated levels is assured by introducing RI and DAGP
without compromising their quality.

« We evaluate the difficulty of our levels using Al agents
that mimic human nature in terms of inaccuracies in input
timing and input time span, providing a more realistic
assessment of gameplay challenges.

The remainder of this paper is organized as follows: In
Section II, we discuss the quality criteria in Super Mario
levels and provide an overview of existing PCG techniques.
Section III describes the gameplay and components of Su-
per Mario levels. Section IV presents the level generation
processes. Section V presents the concept of our proposed
PCGRL considering quality and diversity criteria. Section VI
outlines the experimental results and discussions. Finally,
Section VII concludes the paper, discussing limitations and
outlining future works.

II. BACKGROUND

PCG is a technique that employs algorithms to generate
diverse game content automatically. This generation can occur
either upon players’ requests (online) or during the game
development stage (offline). Due to time constraints, online
generation is more challenging. PCG aims to produce high-
quality content that ensures an enjoyable gameplay experience,
whether for online or offline generation. Additionally, content
diversity plays a pivotal role in enhancing the long-term
appeal of games, providing players with fresh and engaging
experiences in each gameplay.

A. Quality Criteria

Various aspects of content quality, corresponding to players’
enjoyment, have been explored in previous studies. These
aspects include difficulty [20], [21], [22], [23] and entertain-
ment value [24]. A review paper by Gravina et al. [25] also
emphasizes the need for PCG techniques to maximize both
quality and diversity as such aspects are essential to expanding

NAM ET AL.: USING REINFORCEMENT LEARNING TO GENERATE LEVELS OF SUPER MARIO BROS. WITH QUALITY AND DIVERSITY 3

the capabilities of PCG in games, ensuring enjoyable and
engaging gaming experiences.

In the assessment of quality criteria for Super Mario levels,
numerous studies have proposed different aspects such as the
shape of levels [26], difficulty, or playability [27]. For instance,
Shi and Chen [28] introduced playability, resource balance,
difficulty curve, reachability, and aesthetic properties as qual-
itative labeling criteria for levels. Level difficulty, defined by
configurations of enemy and hole tiles, is dynamically adjusted
based on Al agents’ performance indicators. In Flimmel et
al. [29]’s work, the quality of levels is evaluated through
non-linearity, difficulty, and complexity. Non-linearity aims to
prevent entirely flat levels, while difficulty is estimated as the
total difficulty value of each enemy/hole tile type, assessed
based on the authors’ sentiments. Complexity ensures that
levels present a variety of obstacles. Zhang et al. [30] proposed
a PCG method that repairs broken Super Mario levels to
meet aesthetics and playability requirements. Beukman et al.
[31] used diversity and difficulty as their evaluation metrics.
Diversity among the two levels is compared by trajectories of
actions obtained from A* Al agent, and difficulty is measured
by the degree of explorations A* Al agent makes throughout
a level. Thus far, the criteria for quality and diversity in Super
Mario levels require further exploration, considering different
aspects and combinations of criteria to enhance gameplay
engagement and entertainment levels. In this paper, we define
quality criteria for Super Mario levels, encompassing difficulty
based on human perspectives, non-monotonous layout, and
playability.

While many existing PCG techniques exist, two represen-
tative techniques rooted in the artificial intelligence concept
have gained widespread recognition in the existing literature:
search-based PCG and PCGML. The details of each technique
are introduced in the following sections.

B. Search-Based PCG

Search-based PCG is a generate-and-test algorithm known
for its efficiency in generating high-quality content, even for
complex games, as discussed in a survey paper by Togelius et
al. [32].

Search-based PCG primarily applies GAs to optimize the
evaluation function value. GAs are well-known evolutionary
algorithms that involve iterative operations resembling the
natural selection process, continually improving the gener-
ated content compared to previous iterations. Furthermore,
search-based PCG enables developers to customize evaluation
functions based on specific criteria tailored to developers’ or
players’ preferences. For example, Togelius et al. [33] applied
search-based PCG to generate racing tracks in racing games,
using evaluation functions that maximize the entertainment
value of the track, accounting for variations in specific players’
driving styles.

Despite its efficiency, search-based PCG has significant
content diversity and generation time drawbacks. Due to
the diversity issue of GAs, content generated using search-
based PCG may exhibit redundancy. To address this, efforts
have been made to incorporate diversity-related aspects into

the generation process. For instance, Loiacono et al. [34]
introduced elements such as track curvature, speed profile,
and surrounding landscapes to enhance diversity in racing
game tracks. Similarly, Alvarez et al. [35] utilized a variation
GA called MAP-Elites algorithm to ensure diversity when
generating designer-interactive dungeons.

Additionally, regardless of quality and diversity require-
ments, search-based PCG often involves numerous evaluation
processes (trials and errors), which can be time-consuming.
Consequently, this technique may not be well-suited for online
content generation.

C. PCG via Machine Learning (PCGML)

PCGML is a framework for generating content using var-
ious machine learning algorithms. Unlike search-based PCG,
PCGML directly generates the content from the trained model
using the existing content as training data. Many studies
demonstrated the use of PCGML to generate various kinds
of game content.

For example, Summerville and Mateas [36] employed long
short-term memory (LSTM) networks, known for their se-
quence prediction capabilities, to generate Super Mario levels.
These levels were represented as strings, with each character
denoting a tile on the map. By providing an initial seed
sequence (a series of pre-assigned tiles), the LSTM generated
complete levels tile by tile. Lee et al. [37] applied the con-
volutional neural network (CNN) to predict resource locations
within StarCraft IT maps, showcasing the potential value of
PCGML for map designers. Similarly, Summerville et al. [38]
used Bayesian networks to learn the room-to-room structures
of Zelda dungeons, enabling the generation of new levels with
statistical properties similar to the given examples.

In PCGML, GAN and variational autoencoder (VAE) are
widely utilized for their ability to generate content based
on input datasets. GAN, for instance, has been successfully
applied to PCG for generating levels in Super Mario [39],
Zelda [40], and Doom [41]. Similarly, VAEs have been useful
in generating levels for Super Mario [42], [43], Lode Runner
[44], and various other platformer games [45]. An example
of GAN usage in PCG is found in the work of Abraham
and Stephenson [46], where they employed GANSs to generate
several structures composed of small blocks in Angry Birds
using an encoding/decoding process. These structures are
similar to patterns in this work.

While PCGML holds significant potential, challenges arise
in its application when confronted with a shortage of adequate
training data. Determining which features to use in content
generation and the type of data to collect can also be com-
plicated. For instance, in the case of Super Mario levels, it
may be challenging to ensure that collected level data aligns
with appropriate difficulty levels or specific play styles. This
underscores the importance of understanding the content’s
characteristics during data collection, which can be costly and
intricate. Noise is likely to be included. Additionally, content
structure varies between games, making it challenging to reuse
content from one game to generate content in another.

Despite these challenges, various strategies have been em-
ployed to address these limitations of PCGML. Siper et al.

[47], [48] implemented Path of Destruction techniques, locally
modifying data to replicate additional training data from
existing sources. Schubert et al. [49] adopted a tokenization
approach on each tile, leveraging downsampling techniques to
generate tokens and utilizing TOAD-GAN for level generation
from a limited dataset. Torrado et al. [40] utilized a boot-
strapping technique to augment the playable levels in training
data. Bontrager and Togelius [50] introduced a Generative
Playing Network comprising an agent and a generator. The
agent plays given levels to enhance its proficiency, while the
generator aims to create playable levels. Despite these efforts,
the impact of data quantity persists in the outputs, particularly
concerning quality and diversity, especially within complex
game domains. In such scenarios, the application of PCGRL
can be promising.

D. Reinforcement Learning

In real-world game development, several challenges, such as
limited access to training data and the need for online content
generation, often hinder the practicality of procedural content
generation techniques like search-based PCG and PCGML.
To address these issues, RL has emerged as a promising
approach. RL is a mathematical framework widely used in
scenarios where an agent interacts with an environment to
achieve specific goals while receiving feedback in the form
of rewards, either positive or negative.

RL typically adopts the concept of the MDP, represented as
(S, A, P, R,~), where S denotes the state space. A represents
the action space. P,(s,s") = Pr(s;y1 = 8 | 84 = s,a; = a)
is the probability of transitioning from state s to state s’ by
taking action a at time ¢. R,(s,s’) is the immediate reward
resulting from the transition. v € [0, 1] is the discount fac-
tor, determining the importance of future cumulative rewards
compared to immediate rewards.

One significant challenge in RL is the credit assignment
problem (CAP), where immediate rewards may not clearly
reflect the environment’s ultimate goal. Frequently, rewards
for actions are sparse or delayed until the end of an episode,
making it difficult to understand how each action in a sequence
impacts the final outcome. To address CAP, we adopt Yu
et al.’s concept in SeqGAN [51], in which the Monte Carlo
method is employed to estimate intermediate action rewards
aiming to generate sequences of discrete tokens in sentence
generation.

RL distinguishes itself by its ability to self-learn through
interactions with the environment, eliminating the need for
training data. It can guarantee the optimal policy when state-
action pairs and their associated Q-values are known. However,
achieving this ideal condition is a formidable task in most real-
world applications due to the vast number of state-action pairs.
To address this complexity, we use function approximators,
such as CNN, to estimate Q-values, enabling RL to navigate
complex state-action spaces effectively.

As shown in Table I, RL stands out among other PCG
techniques, particularly in scenarios where online generation
and training data are crucial. PCG techniques have been exten-
sively employed to generate game levels in the literature. For

IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

TABLE I
COMPARISON BETWEEN THE THREE PCG METHODS
Training Evaluation Learning Generation

data function cost cost
PCGML necessary - high low

Search-based .
PCG (GA) - necessary - high

Reinforcement .

Learning - necessary high low

instance, Khalifa et al. [52] have demonstrated the feasibility
of PCGRL for generating game levels on simplified research
platforms. To formulate the generation problem into MDP, they
introduced three representation modules: Narrow, Turtle, and
Wide. Additionally, they employed the Change Percentage to
finish the episode of RL. Earle et al. [53], and Jiang et al.
[54] employed PCGRL that provided users with a degree of
control over maze generation outcomes. In their work, Earle
et al. trained the model using conditional input and reward
shaping by encoding the goal into the state representation
of the level, while Jiang et al. prepared multiple generators
and evolved generators based on criteria. Delarosa et al. [55]
introduced a co-creation design tool utilizing a mixed-initiative
approach, balancing user input and Al suggestions through RL.
Zakaria et al. [56] proposed a controllable generator capable
of producing playable levels without the need for tailoring
the reward function. Instead of adopting conditional input
and reward shaping, they utilized the denser feedback from
multiple level sizes, starting from small to desirable size.

III. SUPER MARIO LEVELS

This paper builds upon our previous research, where we suc-
cessfully applied our PCG method to a relatively simple turn-
based RPG. In this study, we extend our approach to the iconic
platformer game Super Mario to showcase its adaptability
and effectiveness in more complex gaming environments. This
section offers insights into Super Mario levels as the target
content. It discusses the characteristics of desirable levels and
the configuration of the two Super Mario platforms employed.

A. Components

Super Mario is a world-famous platformer game developed
by Nintendo. During the gameplay, players control Mario,
passing through various obstacles and reaching the goal on
the right-most side within the time limit. A Super Mario level
is characterized by a two-dimensional layout featuring various
types of tiles, which serve as either obstacles or useful items.
In this work, we divide a level into a set of fixed-size tile
patterns as shown in Fig. 1.

Obstacles within these levels encompass enemies, holes,
and walls, while useful items include coins and mushrooms.
Certain tile types, enemy behaviors, and complex elements
have been excluded from our research. Table II summarizes
the 6 tile types (total 14 tiles) utilized in this study. In
the gameplay, Mario cannot pass through wall types except
destroyed brick tiles, which can be demolished through the
head-bump action while powered up. Mario or any objects that

NAM ET AL.: USING REINFORCEMENT LEARNING TO GENERATE LEVELS OF SUPER MARIO BROS. WITH QUALITY AND DIVERSITY 5

Level: A series of patterns
1

Pattern: A fixed size of layouts in a level I

Fig. 1. An example of tile patterns in Super Mario levels
TABLE II
MARIO TILES USED IN THIS PAPER

Tile Tile Type Tile Tile Type Tile Tile Type Tile Tile Type

o wall = . wall u) item @ . wall
(brick) (coin brick) (coin) (coin box)
E-m wall u wall o wall L ground

(item box) (empty block) (block) (block) ©

]]) - e -
(pipe) wall (hole) hole (zoomba) enemy (koopa) enemy
i enemy etc
(shell) (goal)

fall into a hole are destroyed. Enemy tiles can cause damage to
Mario upon physical contact. The arrangement of wall, hole,
and enemy tiles significantly influences gameplay enjoyment
and difficulty, as levels with excessive wall stacks, wide holes,
or an abundance of enemies can become overly challenging
and unplayable.

B. Desirable Characteristics

Super Mario has a diverse player base with varying skill
levels, making appropriate and diverse difficulty levels es-
sential for an enjoyable gaming experience [57], [58], [59].
Additionally, avoiding monotony is crucial in level design
[60]. Monotony occurs when levels feature redundant patterns
that require repetitive actions, potentially leading to player
disengagement. In this paper, we define desirable level char-
acteristics in Super Mario as follows:

o Appropriate difficulty and playability: Levels should be
playable and match players’ perceptions of challenge.
This involves well-placed enemy and hole tiles, signifi-
cantly impacting a level’s difficulty. The level’s challenge
can be assessed by analyzing human players’ play logs.

« Non-Monotonous gameplay: Engaging gameplay relies
on diverse action sequences. When similar patterns are
placed locally, players may repeatedly perform the same
actions in a short time. Thus, level design should pri-
oritize the concatenation of patterns with various action
sequences, ensuring a richer and more engaging gaming
experience.

« Natual connection: A well-made level comprises subse-
quent patterns with similar features in appearance to the
previous ones. Levels become unnatural when different
features of patterns are concatenated abruptly.

This study adopts cloned versions of Super Mario. Some
features are excluded because they exist in a few specific levels
or are too complicated. Two clone platforms, Python Mario
[61] and Mario Al Framework [62], are employed.

State
(level)

Action
(adding a pattern)

A R 0.8
E Reward
(quality of the complete level)

Fig. 2. Illustrations of MDP for generating levels

IV. GENERATION OF SUPER MARIO LEVELS

RL typically employs the MDP framework for problem
formulation. In our case, we use MDP to represent the
generation of Super Mario levels, as illustrated in Fig. 2. Each
action corresponds to adding a pattern to a blank slot, with
deterministic state transitions resulting in the exact pattern
from the action being added. This process continues until all
blank slots are filled, at which point the evaluation function is
used to provide a reward.

This MDP-based approach is versatile and adaptable across
various game genres. By formulating the problem as an
MDP, RL algorithms can learn effective policies (i.e., which
actions to take given certain states) based on provided reward
functions. Once the learning process is complete, this policy
can efficiently serve as a content generator, offering substantial
cost-effectiveness benefits.

Our approach to Super Mario level generation faces two key
challenges associated with the dimensionality of RL states and
actions and the evaluation of difficulty as elaborated below:

1) Dimension of RL States and Actions: A Super Mario
level has a 15xn two-dimensional structure. The level genera-
tion process progressively adds 15x4 tile patterns to the level
matrix, starting from the left-most side. Given this setup, it
is logical to represent Super Mario levels as states of MDP.
Consequently, the 15x4 patterns serve as the actions for the
RL agent.

However, training RL models with high-dimensional con-
tinuous action spaces can be challenging, as discussed in
[17]. To address this challenge, we employ low-dimensional
vectors as the output of the RL agent and subsequently
map these vectors to their corresponding level patterns. This
transformation from vectors to patterns and vice versa also
presents some difficulties. Therefore, we utilize CGAN as
a function approximator to output the appropriate pattern
based on the vector input. The detailed descriptions of the
MDP formulation methodology and function approximator are
explained separately in Sections IV-A and IV-C.

2) Difficulty Evaluation: Assessing the difficulty of gener-
ated Super Mario levels is essential to ensure an engaging and
appropriately challenging gaming experience. One common
method is to evaluate the difficulty of using play logs, which
can be costly when involving human resources. To overcome
this limitation, we introduce human-like Al agents and eval-
uate the difficulty of levels through their play logs. These Al
agents are designed to incorporate human nature, ensuring that
difficulty evaluation aligns with human perspectives. Detailed

RL agent

vector

[0.70.20.1]

actlon a

| ,,,,
.

- reward N Function

A} .

:. Approximator
/

4
{
l‘\ 6,) leflculty evaluation

gmhuman-like / (3)

(1) state s

(4)Matching

actual raw

(6,) Monotony evaluation ~ output output

Fig. 3. The overall process of the level generation

configuration of the human-like Al agents and the evaluation
method are described in Sections IV-B3 and IV-D.

A. Overall Level Generation Processes

The overall process of the level generation is shown in
Fig. 3. (1) A level is transformed into a state (15xn matrix
with three channels). (2) The RL agent generates an action
represented as a vector instead of a pattern. (3) The vector
is converted to the naturally connected pattern through the
function approximator. (4) The mapped pattern is repaired
through the Matching process. (5) The repaired pattern is
sequentially added to the incomplete level. (6;) Monotony is
evaluated for intermediate actions. (62) Human-like Al agents
evaluate the difficulty of the completed level.

B. Markov Decision Process

This section explains the formulation of MDP for Super
Mario level generation, encompassing state representation,
action representation, state transition, and reward functions.

1) State Representation (Incomplete Level): Super Mario’s
level comprises intricate arrangements of walls, enemies, and
holes. Various approaches can be employed to represent an
incomplete level as a state for RL. Options include employing
raw images of the level or utilizing a structured 15xn matrix
consisting of 10 different tiles. We opt for a semantic reduction
of this 10-tile matrix into three binary matrix channels repre-
senting walls, enemies, and holes. This method is particularly
suitable for CNN to comprehend the state and generate actions
effectively. The goal information is excluded since it is always
on the right-most side.

To illustrate, an example Super Mario level depicted in
Fig. 4(a) is transformed into the binary channel representation
showcased in Fig. 4(b). In this representation, each color chan-
nel—red, green, and blue—corresponds to walls (c), enemies
(d), and holes (e), respectively.

Both complete and incomplete levels are a series of patterns
represented as a matrix of the same size. Incomplete patterns
are depicted as vectors filled with -1, while those generated
by the function approximator are represented as vectors filled
with 0.

IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

(b) © (@ (e)

Fig. 4. An example of level representations. (a) is an example of a Super
Mario level. (b) is an integrated image of (c), (d), and (e). (c) is a wall channel
image, (d) is an enemy channel image, and (e) is a hole channel image.

TD3’s Vi€[0,1] —— o
Actor Hv2e0 | > ppproximator | ™
v3€[0,1]
action a ﬂ

vielo,1])
v3€[0,1] Critic

level s, action a

level s

- min[Q, (s,a), Q,(s, a)]

Fig. 5. TD3 for level generation in this study (top: actor, bottom: critic)

2) Action Representation and State Transition: The RL
model generates an action as a vector composed of three
real values within the [0, 1] range. This vector is then trans-
formed into a 15x4 pattern, consisting of 3 channels, as
illustrated in Fig. 4 through the function approximator. For
the function approximator, the CGAN model that considers
natural connectivity between patterns [14] is used. CGAN
takes the vector as input and outputs the corresponding pattern.
The generated pattern is sequentially integrated into the level
matrix. The generation process terminates when the level is
filled by patterns.

Since the function approximation requires a vector of real
values as input, we adopt the TD3 [63]. The actor component
of TD3 takes the incomplete level matrix as input and produces
a three-value vector within the [0, 1] range. Then, the critic
model evaluates the Q-value of the state-action pair, as shown
in Fig. 5.

3) Reward Function: A level evaluation function is defined
and used as the reward function of the MDP, encompassing
three quality criteria: playability, difficulty, and monotony.
High evaluation scores indicate high-quality levels.

First, playability is assessed using a strong A* Al agent
implemented by Baumgarten [64]. A level is considered
unplayable if this agent cannot complete it. Difficulty or
monotony evaluation is omitted if the level is not playable.

Second, human-like Al agents, designed to mimic human-
like mistakes, evaluate the level’s difficulty. A new concept of
virtual damage is introduced to evaluate the level’s difficulty
for human players. The total damage (totalgy,q) is calculated
using Eq. (1), which is a summation of the virtual damage
inflicted by enemies (enemyagmg) and holes (holegmg). It is
assumed that jumping over a hole to avoid damage requires
more movement than avoiding an enemy due to their size dif-
ference, especially when the hole is relatively large. Therefore,
we assumed that avoiding damage inflicted by falling into a
hole is more challenging for players than avoiding enemies. As

NAM ET AL.: USING REINFORCEMENT LEARNING TO GENERATE LEVELS OF SUPER MARIO BROS. WITH QUALITY AND DIVERSITY 7

3 L Target (3.25 — 3.75)
Y
=5 08
32 06
£ 5 04
8§ 02
S o0
Qo
% 0 1 2 3 4 5 6 7 8

Total damage

Fig. 6. Difficulty appropriateness (rq;z) based on the total damage
(totalgmg)

aresult, the holegng is assigned a slightly higher coefficient of
1.1. These coefficient settings were obtained through empirical
trial and error tests on the game.

totalgmg = enemyamg - 1 + holegmg - 1.1 (D)

The difficulty is assessed through multiple trials with
human-like Al agents to capture various player behaviors.
For each trial, the agent takes a different trajectory of ac-
tions. The details of human-like AI agents are explained in
Section IV-D. The average value of the calculated totalgpg
represents the level’s difficulty, with higher values indicating
greater difficulty. The difficulty appropriateness (rg;) is then
computed using the function shown in Fig. 6, where the y-axis
represents difficulty appropriateness (745) associated with the
total damage value. The rationale behind this function is to
ensure that the generated levels are neither overly easy nor
too difficult.

Lastly, monotony corresponding to the gameplay trajectory
is evaluated. The decision of action sequences in a pattern is
mainly affected by the layout of wall and hole tiles. Levels
with the same adjacent patterns can lead to repetitive action
decisions and monotonous gameplay. Monotony is evaluated
by comparing the layout of wall and hole tiles in the current
pattern (p,) with those in the previous four patterns (p,_1,
DPn—2, Pn—3, Pn—4)- A higher penalty is assigned to patterns
that share wall/tile placements with their adjacent counterparts.
For instance, if p,, has the same wall/tile placements as both
Pn—1 and p,_o, the penalty assigned to p,_; is twice as
much as that of p,_o. This measure ensures that adjacent
patterns result in different gameplay trajectories. Let id(p, q)
be a function that id(p,q) = 1 if and only if two patterns, p
and g, have the same wall and hole tiles. Then, the monotony
evaluation value (r,,0n0) iS computed using Eq. (2).

Tmono = 1- (8/15 : Zd(pnvpnfl) + 4/15 : Zd(pnvpn72)
+2/15 : id(pnapnf?)) + 1/15 ’ id(pn7pnf4)> @)
Monotony is assessed after generating a pattern, whereas
difficulty evaluation occurs once the level is entirely gener-
ated. The weight assigned to the monotony evaluation value
(Wmono) 1s specified as 0.01 due to its nature as an interme-
diate action.

C. Function Approximator: From a Vector to a Pattern

CGAN is employed as the function approximator to map
a vector to the corresponding pattern, considering the nat-
ural connection from previous patterns. Natural connectivity

real connection
or
fake connection

real patterns
x4

generated
x3 pattern

Fig. 7. A structure of CGAN for Super Mario pattern generation

implies that subsequent patterns maintain similar features in
appearance to the preceding ones. CGAN inputs a vector and
the three previous patterns as a condition and outputs the
subsequent naturally connected pattern as shown in Fig. 7.
The vector is the action output of the RL agent, and the
corresponding pattern is fixed through the matching and is
added to the current incomplete level. Matching is an algo-
rithm that selects the closest pattern by comparing the output
noise pattern with all existing pattern data based on Euclidean
distance. By using this function approximation, the generated
levels ensure natural connectivity. The details of this function
approximator and repairing its outputs through matching are
readily available in our previous work [14], where a more
comprehensive explanation is provided.

D. Human-like Al Agents for Evaluation

We employ human-like Al agents to assess the difficulty of
the generated levels, and the evaluation results serve as rewards
for our RL model. We consider two aspects of human-like
failures: input timing and input time span.

By nature, human players usually try to take specific actions
to avoid dangers. However, input timing to execute actions
in a given situation may be delayed or hastened due to
failure caused by inaccuracies of human nature. Fig. 8 shows
examples of failures caused by input timing of the jump.
Mario needs to jump over the hole to avoid falling (a). Due
to the delay (b) or hasten (c) in the jump input, Mario falls
into the hole. These kinds of inaccuracies are prevalent in
Super Mario. In addition, human players may sometimes press
buttons longer than necessary.

From these human-like aspects, we can estimate the diffi-
culty of the generated level as perceived by human players.
Given that humans exhibit diverse gameplay behaviors, our
human-like AI agents mimic these stochastic behaviors. In
each episode, we utilized multiple Al agents to simulate the
level, with each agent following a different action trajectory.
This approach ensures that the AI agents can effectively
represent variations in human gameplay styles. Here are the
key details of our human-like Al agents:

o Our human-like Al is derived from the A* AI agent but
with a focus on mimicking human behavior. In contrast
to the original A* agent, which prioritizes efficiency and
minimal jumping, our agents are encouraged to jump
over obstacles like walls when possible. This is to mimic
humans’ tendency to jump over walls in Super Mario
gameplay to obtain items placed on the walls or vertical

(b)

Fig. 8. Examples of ideal movements by humans (a) and failures due to the
inaccuracies of human nature (b)-(c)

TABLE III
MEAN AND STANDARD DEVIATION OF THE NUMBER OF INDICATORS OF
Al AGENTS’ HUMAN-LIKE BEHAVIORS AT EACH LEVEL

Level 1-1 1-2 5-1 8-1 8-2
Original A* jump (times) | 14.6 ((1.01) 102 (#0.6) 12 (20) 169 (22.7) 17 @0)
Jump count (times) 33 (*7.2) 27.0 (32.4) 19 (#2.6) 294 (:11.4) 27.9 (24.0)
enemyamg (times) 35@215) 43 (1.0) 5.1(:1.3) 33 (£1.6) 0.7 (20.9)
hole g (times) 15(*1.0) 16 (x0.5) 2(1) 45(2.5) 74 (22.0)
Long press (seconds) 36.5 (+6.9) 303 (+1.7) 25.8 (+2.2) 35.9 (¢14) 30.2 (+3.4)

spaces. Humans also tend to constantly jump to avoid
enemies or holes. To encourage jumping, we introduce
additional rewards.

¢ To account for delayed or hastened input timing, the Al

agent simulates virtual damage occurrences that could po-
tentially be caused by input timing inaccuracies, referred
to as virtual damage. This simulation occurs randomly
(30%) and limitedly once per pattern. It is important
to note that this simulation does not actually happen
in actual gameplay. For instance, if an action is taken
at frame ¢, we virtually perform the same action at
frames ¢ + 1 and ¢t 4+ 2 (delayed action) or frames
t — 2 and t — 1 (hastened action). If the A* search
indicates damage, it corresponds to scenarios depicted
in Fig. 8(b) and Fig. 8(c), respectively. The locations
where virtual damage occurs represent potential damage
caused by input timing inaccuracies. The frequency of
these occurrences is used in Eq. (1) to calculate totalgyg.

o Our human-like Al agents are also modified to occasion-

ally execute the same actions for the next two frames
instead of relying on the outcome of an A* search. Long
presses also occur randomly (30%) and limitedly twice
per pattern. The configuration of Al agents was selected
based on empirical testing.

The data presented in Table III illustrates the average count
and standard deviations of behaviors exhibited by the original
A* agent and human-like AI agents across 10 trials, each
conducted on 5 different reproduced Super Mario original
levels. These results highlight the variability observed among
trials, reflecting distinct player behaviors for each trial.

Moreover, Fig. 9 illustrates the reproduced Super Mario
original level along with the locations of virtual damages
observed in 50 Al agent trials. It is important to note that some
virtual damages may overlap and are presented separately.
These virtual damages consistently coincide with risky spots
for human players within the levels. Consequently, virtual
damages serve as reliable indicators of level difficulty.

V. PCGRL CONSIDERING QUALITY AND DIVERSITY

Our PCGRL technique emphasizes enhancing the quality
and diversity of the generated Super Mario levels to ensure

IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

Fig. 9. The original level (1-1) with virtual damages indicated by symbols
(yellow square: dmg > 20, green diamond: 10 < dmg < 20, white circle:
dmg < 10) from 50 Al agent trials

an engaging gameplay experience. Below, we describe the
methods used to achieve these objectives.

A. Method for Quality Enhancement

We proposed an evaluation function that yields small evalu-
ation values, typically ranging from O to 0.01, for intermediate
actions. Further details on this function are provided in Sec-
tion IV-B3. However, CAP arises from sparse reward signals
from the small range of evaluation values. To effectively
address this challenge, we have integrated virtual simulation
(VS), a technique proven effective in handling CAP and
enhancing content quality, as demonstrated in our previous
work [15].

In this approach, RL virtually generates multiple completed
levels for each intermediate action using the current policy,
along with an exploration policy. The average evaluation of
these virtually simulated levels is then used as the immediate
reward for the intermediate actions. The experimental details
and settings are given in Section VI-A2.

B. Methods for Diversity Enhancement

Diverse content is a fundamental aspect of PCG, aiming to
offer players fresh and engaging experiences while extending
the longevity of games. Consequently, PCG methods should
prioritize generating diverse and enjoyable levels rather than
solely focusing on producing the single “best” one. One
approach to enhancing diversity is incorporating it as a factor
within the reward function.

However, our designed evaluation only focuses on quality
criteria of individual levels, and simultaneous comparison
of evaluation values of multiple levels can be complicated.
Rather than altering the evaluation function, we propose two
alternative methods to enhance diversity:

1) Randomized Initialization: We employ the RI technique
introduced in our previous work. This approach introduces
randomness into multiple starting patterns for each level rather
than using an entirely empty level. Our previous findings
demonstrated that this approach effectively balances the trade-
off between quality and diversity.

Quality and diversity often exist in a trade-off relationship.
For instance, if patterns are not randomly generated at the
initial stage, RL tends to seek the “best” actions (patterns)
and generates only the highest-quality levels, potentially com-
promising diversity. Conversely, if all patterns are randomly
assigned, diversity may increase, but the overall quality of
generated levels can decrease.

NAM ET AL.: USING REINFORCEMENT LEARNING TO GENERATE LEVELS OF SUPER MARIO BROS. WITH QUALITY AND DIVERSITY 9

Our RI technique randomly initializes several patterns and
lets the RL model complete the remainder of the level. The key
parameter in this approach is the number of randomly initial-
ized patterns, which directly impacts the balance between level
quality and diversity. Unlike the change percentage technique
employed in [52], both their method and ours may reduce
the step size of the episode. Change percentage restricted
changes from the initial levels. In contrast, our approach
encourages more diversity by introducing randomness to the
initial state, as the episode results depend on this initial
condition. Comprehensive results illustrate this trade-off in
Section VI-B.

2) Diversity-Aware Greedy Policy: Diversity obtained from
RI is insufficient since it only depends on the initial states.
We propose the DAGP as a subsequent method to further
enhance diversity. This approach selects not-bad-but-distant
actions based on Q-values, unlike the greedy policy that
always opts for the best actions. By accepting slightly worse
actions, DAGP introduces controlled stochastic noise into level
generation, resulting in increased diversity. As a result, DAGP
can generate relatively different levels with high quality even
when starting with the same initial patterns.

The key to DAGP is the selection of not-bad-but-distant
actions. Improper action selection can lead to either low
evaluation scores or levels that are too similar. We present
the noise introduction algorithm to select not-bad-but-distant
actions as follows:

1) Determine the length of the level and train the RL model
using Ornstein—Uhlenbeck (OU) noise [16] with e-greedy
policy.

ii) Decide the location and number of noise patterns, which
can be predetermined or randomly selected during gen-
eration. Then, specify the number of candidate patterns
(n) and the KL-divergence (klpqttern) to serve as the
difference criteria between a candidate pattern and the
best pattern.

iii) Patterns that are not noise are generated using the greedy
policy. The action selection within noise pattern genera-
tion is depicted in Fig. 10. Start by generating n random
candidate actions. Exclude candidates within the gray
area due to their similarity to the best action. The distance
between two patterns is measured using KL-divergence.
Candidates within the gray area (where Eklpgtterrn iS less
than the criteria value (d) indicate similarity to the best
action. The size of the gray area (d) and the number
of candidates (n) are adjustable hyperparameters. In this
paper, experiments under several settings were tested in
Section VI-B. Among the remaining candidates, select
the one with the highest Q-value. The not-bad-but-distant
candidate is the one that is not similar enough to the
best action and is of sufficient quality (Q-value). If all
candidates are rejected, the action is greedily selected.

VI. EXPERIMENTS AND DISCUSSIONS

The experiment was conducted using the following hard-
ware components: GPU (GeForce GTX 1070), CPU (Intel
Core i7-7700 3.60GHz), and RAM (16GB).

selected

| |
(Q=0.7)

good but close

Fig. 10. Example of choosing an action that is not-bad-but-distant by DAGP

A. High-quality Level Generation

We used TD3 to generate Super Mario levels with the
PCGRL method and employed VS to address the CAP to
enhance the level quality. Quality evaluation was conducted
by comparing levels generated with TD3 alone and TD3 with
VS (VS-TD3). RL rewards were considered both monotony
and difficulty. The total episode reward (r;,t4;) Was calculated
using Eq. (3).

Ttotal = Tdiff + Wmono § Tmono (3)

Below are the generation processes and results.
1) Preparation of Patterns:

o 10 original Super Mario levels were reproduced using
Python Mario.

« Additional 12 custom levels were manually generated by
humans.

o Each level was divided into multiple 15x4 patterns.

o A total of 6,232 patterns (Pat;c4q;) Were extracted using
a sliding window algorithm with a sliding size of 1.

« For a level L with length n, we obtained n — 3 patterns
PL, (x=1.4), PLy (x=2..5), .., PL,_s.

2) Experimental Setup:

o The network settings of TD3 is noted in Table IV, where
Conv x means a convolutional layers with z filters of size
3 x 3,Pool means a max pooling with pool size 2 x 2, and
FC z means a fully-connected layers with = nodes. The
layer composition was set up according to the general
manner [65] of the CNN.

« Level length was set to 41. Each level was represented
by a 15x40 matrix, requiring generated 10 patterns with
the last tile reserved for the goal.

o Three imaginary previous patterns (ipi, ip2, ¢p3) in
Fig. 11 (1) were given to CGAN to generate the first
pattern (p;) in Fig. 11 (2). Imaginary patterns are selected
by a series of three consecutive patterns from Paticgai.
Then, next pattern (ps) is generated using ipo, ip3, and
p1. These imaginary patterns are only used for generating
the first three patterns.

o The first two patterns (p;, p2) from Fig. 11 (2) were
generated by inputting random noises to CGAN and
applying matching and used as the initial states.

e With two patterns randomly initialized, the RL actor
generates the remaining 8 patterns (see Fig. 11 (3)).

TABLE IV
TD3 SETUP
Parameter Value
Conv 32—32—Pool—
Layers 64—64—Pool—
FC 256—128—128
Memory size 40000

Actor:5 x 10~
Critic: 5 x 1077
Target network soft update (5 x 10~?)
Batch size 32
Discount factor 0.99
OU noise with e-greedy
(€ 0.5 — 0.1 at 30% of episodes)

Learning rate

Exploration

Used in CGAN The generated Level

(1) Imaginary three
patterns

(2) initial states (3) Patterns generated by RL

Fig. 11. Imaginary patterns and generated patterns

o VS was applied at the beginning of the training, with the
number of episodes set to 5. This means that 5 stages
are generated for each intermediate action. Since there
were 7 intermediate actions per episode, excluding the
last action, training took approximately 36 times longer
per episode. Each evaluation involved 10 trials of Al
agents. A total of 360 trials of simulation from AI agents
were conducted.

3) Training Result: TD3 and VS-TD3 were trained for 160
hours and 168 hours, respectively. Within this timeframe, TD3
was trained for 30,000 episodes, while VS-TD3 was trained
for 1,100 episodes. The learning curves are shown in Fig. 12.
Fig. 12 (a)-(c) illustrate the average evaluations during the test
phase for TD3 while Fig. 12 (d)-(f) show the same for VS-
TD3. In each set of three graphs, the red, green, and blue
curves correspond 0 7'q;f, Tmonos and Ttotql, TESPECtively.

In Fig. 12 (a)-(c), we present the evaluation values and
standard deviations of 25 levels during the test phase of TD3.
The increasing evaluation values demonstrate the RL model’s

Ttotal

010 20 30 40 50 60 70 80 90 100110

(b) 74;7=0.691 (©) "mono=0.075

W

() raq;r=0.817

(d) Ttota1=0.869

(f) TmonOZO-OSI

Fig. 12. Average level evaluations: (top) TD3’s performance in a 25-trial test
phase for the 10-pattern level. (bottom) VS-TD3’s performance in a 5-trial test
phase for the 10-pattern level. Each value in all curves indicates the average
reward of the last 20% episodes.

IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

() 74i7=0.592, T'1m0n0=0.075

(©) 741 =0.936, Frmono=0.08

Fig. 13. Examples of levels generated during (a) early (b) mid (c) end of
training

ability to learn level generation. Fig. 12 (d)-(f) shows the
evaluation values and standard deviations of 5 levels during
the test phase of VS-TD3. VS-TD3 was trained for fewer
episodes due to the longer time per episode. Despite this, VS-
TD3 achieved better rewards than TD3 in the early stages of
training. During testing, 2 out of 50 levels generated by TD3
and 2 out of 50 levels generated by VS-TD3 were unplayable,
indicating a need to recreate those levels for practical use.
Due to the lengthy duration required for each episode in VS-
TD3 training, relatively few episodes were conducted for fair
comparison. Nevertheless, VS-TD3 obtained a better reward
than TD3 in the very early training. In many training trials,
the difficulty evaluation 74 tends to be trained first, with
the monotony evaluation 7,,,,, trained subsequently. Though
Tmono 1S decreasing in the early training phase for VS-TD3,
it is expected to have a higher 7,,on, value if more time is
given.

Fig. 13 shows the levels generated during the training of
TD3, sampled from Fig. 12 (a)-(c). Fig. 13 (a) represents a
level generated in the early training phase, exhibiting low
difficulty (0.18) and monotony evaluation value (0.047). As
training progressed, the evaluation of monotony was learned
first. The level in Fig. 13 (b) becomes relatively difficult
(0.592) with a high monotony evaluation value (0.075). Then,
TD3 generated a level in Fig. 13 (c) that is appropriately
difficult (0.936) and non-monotonous (0.08).

Furthermore, we compared the time required to achieve
high-quality levels between random generation, TD3, and VS-
TD3. For the random generation, it selects random patterns
from patjeqq;. Random generation involves the generate-and-
test process, which takes 20 seconds and requires approxi-
mately 40 trials to obtain a level with a high evaluation value.
Meanwhile, both TD3 and VS-TD3 could generate a level
with an expected average evaluation value of 0.8 within 1-2
seconds, including playability assessments. This indicates that
random generation is not insufficient for producing a high-
quality level on demand. Our approach, on the other hand,
successfully generates a level with quality on demand.

4) Generated Levels: Fig. 14 illustrated examples of levels
generated using three methods. Levels (a)-(b) are generated by
TD3, levels (c)-(d) by inputting random vector to the function
approximation, and level (e) by random generation. Levels
(a)-(b) are non-monotonous with distinct patterns, with proper
layout and number of holes and enemy tiles to ensure adequate

NAM ET AL.: USING REINFORCEMENT LEARNING TO GENERATE LEVELS OF SUPER MARIO BROS. WITH QUALITY AND DIVERSITY 11

et TH

TN 7 T WP

(@) 7aifr=0.1, Frmono=0.057

(©) 74ify=0.236, Fimono=0.064

(©) rqifr=0.953, Tmono=0.075

Fig. 14. Examples of levels generated by TD3 (a)-(b), the process of inputting
random vectors into the function approximator (c)-(d), and the selection of
random patterns (e)

difficulty. In contrast, level (c) has too few holes and enemies,
and level (d) has too many holes. Thus, their evaluation values
are low. Although level (e) exhibits a high evaluation value
of 0.953, each pattern is independent and shares no apparent
connection. This is because random generation does not have
the function approximation that ensures natural connections
among patterns.

The experimental results showcase the capability of our
PCGRL method to consistently produce Super Mario levels
that receive high evaluations in terms of non-monotony and
proper difficulty as perceived by human players. In addition,
the generated levels also exhibit natural connections of pat-
terns.

B. Diverse Level Generation

Following the successful generation of high-quality Super
Mario levels, our next step was to obtain diverse levels while
maintaining quality. To achieve this, we employed RI and
DAGP.

1) Diversity Assessment: The diversity of levels is assessed
using two indicators as follows:

o The number of different tiles between the two levels:
This is a straightforward way to evaluate the differences
between levels.

o The KL-divergence between two levels (K Ljeqer): Each
wall and enemy tile are converted to the value of 2
and 3, respectively. Then, KL-divergence of (40x15)-
dimensional vectors of two patterns are calculated. The
value of K Lj.,e; between two levels indicates a compar-
ison of the distribution of tile arrangement. Low K Ljcye;
value means both levels have similar wall and enemy
arrangements, even if the tiles are different.

Fig. 15 shows four patterns with three blocks. Compared
to the first pattern, other patterns have the same number of
different tiles, which is 6. However, players may feel that the
respective second and fourth patterns are the most and least
similar to the first pattern. The K Lj.,.; value can help to
distinguish these similarities.

Fig. 15. Four patterns with three blocks

TABLE V
COMPARISON OF QUALITY AND DIVERSITY INDICATORS FROM 500
LEVELS GENERATED WHEN THE FIRST ¢ PATTERNS WERE RANDOMLY

INITIALIZED.
c T 2 3 q
KLicver 1569 (20.812) 1.817 (20.734) 1.939 (z0.686) 1.911 (20.644)
Different tiles 89 (248) 100 (£42) 107 (£42) 105 (£39)
Reward 0.728 (20.365) 0.687 (£0.392) 0.685 (£0.377) 0.670 (+0.394)
c 5 6 7 8
Kool T.979 (#0.644) 2.025 (+0.626) _ 2.000 (20.626) _ 1.939 (20.570)
Different tiles 110 (241) 111 (£39) 110 (£40) 107 (£37)
Reward 0.680 (:0.377) 0.589 (0.384) 0547 (£0.346) 0.493 (20.343)

2) Result: Generation of diverse levels generally requires
a well-trained model. Thus, we employed VS-TD3, the model
used to generate high-quality levels. First, RI was used to
generate 500 levels, each integer ¢ € [1, 8], where the first ¢
patterns were randomly generated. Table V shows the average
K Ljcpe1, numbers of different tiles and rewards for each c.
Note that the levels contained 10 patterns. As expected, the
result demonstrated the increasing trend of diversity while the
average rewards decreased when more patterns were randomly
initialized.

Second, a combination of DAGP and RI was used. RI was
used to generate the first two patterns, and DAGP was applied
to generate 4'", 5", and 6" patterns. In DAGP, n candidates
were generated and candidates with at least d away from the
actor’s action were gathered. KL-divergence between patterns
(K Lpqttern) 1s used as a distance threshold d. Then, DAGP
selected the one with the highest Q-value. The influence of
DAGP is investigated by generating levels from the same
initial levels used in RI. Several configurations of d and n
were tested, and 500 levels were generated from each setting.
The DAGP settings of d=0.05, 0.1, 0.2, and n=5, 10, 20, 40
are used.

We compared the quality and diversity of level genera-
tion among different approaches: applying only RI (RL-RI),
RI with DAGP (RL-RI2+DAGP), Supervised learning with
DAGP (SL-DAGP), and random generation. For SL-DAGP,
we prepared two network models similar to the actor-critic
model, having the same structures as TD3, except they have a
batch normalization layer [66] to prevent overfitting. Random
generation is employed to prepare training data for SL. Two
types of data are collected: 1) levels above 0.7 evaluation
values for training the action. 2) levels covering the full
evaluation range for training the critics. The critic’s training
data should contain levels with all ranges of evaluation to
better predict the evaluations of state-action pairs. It took 27
and 5 hours to obtain 10,000 levels, respectively.

Fig. 16 displays the Pareto frontier of the average rewards
(x-axis) versus different tiles and K Ljeqe;. Our findings indi-
cate that while random generation can produce diverse levels,

—a—RL-RI2Z+DAGP —a—RL-RI

——SL-DAGP —e—Random

Different tiles
g

03 0.4 0.5 0.6
Reward

(a) The number of different tiles

—=—RL-RI2+DAGP —4—RL-RI —e—SL-DAGP e Random

2.2
2.1

19
18

KL ever

1.7

16

15

14
03 0.4 05 06 07 08
Reward

(b) KLjeyer

Fig. 16. Quality-diversity comparison between applying only RI, RI with
DAGP, and random generation

o a0 o=

(b) 74i5=0.824, T10n0=0.075 (©) 7qir=0.840, T10n0=0.073

Fig. 17. Levels generated by the actor policy (a) and DAGP (b, c) with the
same first two patterns (bottom)

it is inefficient in generating high-quality content. RL-RI and
SL-DAGP, on the other hand, demonstrate the capability to
generate quality levels, although diversity is compromised.
However, the combination of RL-RI2+DAGP shows its su-
periority in the generation of high-quality and diverse levels.

3) Generated Levels: Fig. 17 shows examples of levels
generated by VS-TD3 (a) and DAGP (b)-(c) with the same
first two patterns. Compared to level (a), which represents
the level with the highest evaluation score, levels (b)-(c) still
have relatively high evaluation scores with good diversity
indicators of K Ljc,.; being 1.748 and 1.586, and the number
of different tiles being 126 and 103, respectively. These
results demonstrate that by applying DAGP, the RL model
can maintain high-quality level generation while introducing
greater diversity, as evidenced by the relatively high evaluation
scores and diversity indicators in levels (b) and (c).

C. Human Subject Evaluations

We further conducted a questionnaire on human subjects to
know whether our criteria are well reflected or not based on
the Likert scales. Participants evaluated the levels based on
our defined criteria, including natural connection, difficulty,

IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

monotony, and diversity. Responses obtained from 33 partic-
ipants are shown in Fig. 18. From Fig. 18 (a), 5 levels from
random generation (R) and 5 levels from inputting random
vectors to the function approximator (V) were subjects of eval-
vation. Levels R1-R5 did not consider the natural connectivity,
whereas V1-V5 levels considered the natural connection from
previous patterns. The result shows that levels generated by
the function approximator seem more naturally connected in
human perceptions.

From Fig. 18 (b)-(c), 24 levels were gathered from random
generation, inputting random vectors to the function approxi-
mator, DAGP, to evaluate our difficulty (b) and monotony (c)
criteria. Note that a 7-point scale is employed in assessing
difficulty, allowing for a clear distinction between the percep-
tion of whether the levels are challenging, properly difficult,
or easy. Because our difficulty criterion value (rg;g) are low
for levels that are too easy or too difficult, we employed a
difficulty value as shown in Eq. (4) to distinguish between easy
and difficult levels. Pearson correlation coefficients are 0.805
and 0.693 for difficulty and monotony, respectively, indicating
our evaluations are highly correlated to human perceptions of
the levels.

if totalgmg < 4
otherwise

Dif ficulty value = {rdiﬁ’ “4)

2-T a5,
Lastly, from Fig. 18 (d), 8 sets of evaluation subjects,
each consisting of 3 levels, were assessed to verify whether
K Ljeye; is a suitable diversity indicator. Levels in four sets
(C) exhibit low K Ljeq¢; values among them, indicating similar
tile arrangements, while levels in the other four sets (F) have
high K Lj.,.; values, suggesting diverse tile arrangements
among levels. Participants’ evaluations indicate that level sets
with high K L, values (F) are perceived as more diverse,
whereas sets with low K L., values (C) are less diverse,
demonstrating a positive correlation between K Lj.,.; and
human perception of diversity.

VII. CONCLUSION

In this paper, we introduce a novel PCGRL technique
technique for generating diverse and high-quality Super Mario
levels. Our approach formulates the level generation problem
into an MDP. One primary key to this work is the development
of an evaluation function that encompasses critical quality
criteria, including playability, difficulty, and monotony, to
ensure game longevity and engagement.

We addressed challenges posed by the high dimensionality
of RL states and actions by employing function approximation,
which not only mitigated dimensionality issues but also facil-
itated natural connectivity among level patterns. Additionally,
we tackled the challenge of assessing difficulty from a human
perspective by introducing human-like Al agents that emulate
human inaccuracies. To enhance the quality and diversity, we
introduced three novel methods: VS, RI, and DAGP.

Our experimental results demonstrate the efficacy of our
PCGRL approach in producing promising Super Mario levels
with high quality and diversity. These findings lay a founda-
tion for advancing game development and procedural content

NAM ET AL.: USING REINFORCEMENT LEARNING TO GENERATE LEVELS OF SUPER MARIO BROS. WITH QUALITY AND DIVERSITY 13

Natural connection by respondents
Difficulty by respondents

0 02 04 0608 1 12 14 16 18 2
Difficulty value

(b) difficulty

1

Cc

3
2
4
1
R R R R RV VV VYV

(a) natural connection

N

~
Diversity by respondents

Monotony by respondents

0.04 005 006 007 008
Monotony reward

~
O I
O I
O I

(c) monotony (d) diversity

Fig. 18. Results from human subject evaluations based on levels generated
by the proposed method, verifying natural connection, difficulty, monotony,
and diversity

generation research, contributing innovative solutions to ex-
isting challenges in the field. We believe that the concept of
formulating PCG into MDP and applying RL is a generalizable
concept applicable to various games. As long as the PCG
problem can be formulated as an MDP, RL algorithms can
then be applied to learn good policy (i.e., what actions to
take for given states) based on a specified reward function.
It is also important to note that different MDP formulations
and designing a reward function may be required to address
challenges emerging from the nature of other games. After
learning, the policy serves as the content generator at relatively
low generation costs. Furthermore, human subject experiments
were conducted to assess how actual players perceive our
criteria, including natural connection, difficulty, monotony, and
diversity.

While our results confirmed the efficacy of our proposed
method, we acknowledge its limitations due to the stochas-
tic behavior of human-like AI agents. This can result in
variations in evaluation values, leading to a lack of high
positive correlations between Q-values and evaluation scores,
potentially affecting the performance of DAGP. To overcome
this limitation, future research endeavors could focus on
stabilizing evaluation values by increasing the number of
trials or exploring alternative strategies. Furthermore, our work
focused on evaluating difficulty and monotony as quality
criteria. Other essential aspects, such as the placement of coins
and mushrooms, can also impact the entertainment value of
Super Mario levels. These potential enhancements will not
only refine the PCGRL technique but also enrich the gaming
experience for players and contribute to the ongoing evolution
of PCG methodologies.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP23K11381.

REFERENCES

[1] E. Hauck and C. Aranha, “Automatic generation of super mario levels
via graph grammars,” in 2020 IEEE Conference on Games (CoG), 2020,
pp. 297-304.

[2] A. Gellel and P. Sweetser, “A hybrid approach to procedural generation
of roguelike video game levels,” in Proceedings of the 15th International
Conference on the Foundations of Digital Games, ser. FDG ’20, 2020.

[3] J. Togelius, M. Preuss, and G. N. Yannakakis, “Towards multiobjective
procedural map generation,” in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, ser. PCGames *10, 2010.

[4] G. Pickett, F. Khosmood, and A. Fowler, “Automated generation of
conversational non player characters,” in INT/SBG@AIIDE, 2015.

[5] D. Gravina and D. Loiacono, “Procedural weapons generation for unreal
tournament iii,” in 2015 IEEE Games Entertainment Media Conference
(GEM), 2015, pp. 1-8.

[6] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving
mario levels in the latent space of a deep convolutional generative
adversarial network,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2018, p. 221-228.

[7]1 Y. Tsujino and R. Yamanishi, “Dance Dance Gradation: A Generation of
Fine-Tuned Dance Charts,” in Entertainment Computing — ICEC 2018,
Cham, 2018, pp. 175-187.

[8] A. Liapis, C. Holmgérd, G. N. Yannakakis, and J. Togelius, “Procedural
personas as critics for dungeon generation,” in Applications of Evolu-
tionary Computation, 2015, pp. 331-343.

[9] T. Morita and H. Hosobe, “Video game agents with human-like behavior

using the deep g-network and biological constraints.” in /CAART (3),

2023, pp. 525-531.

N. Fujii, Y. Sato, H. Wakama, K. Kazai, and H. Katayose, “Evaluating

human-like behaviors of video-game agents autonomously acquired with

biological constraints,” in Advances in Computer Entertainment. Cham:

Springer International Publishing, 2013, pp. 61-76.

A. Summerville et al., “Procedural content generation via machine

learning (pcgml),” IEEE Transactions on Games, vol. 10, no. 3, pp.

257-270, 2018.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-

based procedural content generation,” in Applications of Evolutionary

Computation, 2010, pp. 141-150.

N. Shaker, J. Togelius, and M. J. Nelson, Procedural content generation.

Springer, 2016.

S. Nam, C.-H. Hsueh, and K. Ikeda, “Procedural content generation

of super mario levels considering natural connection,” in 2023 20th

International Joint Conference on Computer Science and Software

Engineering (JCSSE), 2023, pp. 291-296.

S. Nam, C.-H. Hsueh, and K. Ikeda, “Generation of game stages with

quality and diversity by reinforcement learning in turn-based RPG,”

IEEE Transactions on Games, 2021.

T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-

ing,” in 4th International Conference on Learning Representations, ICLR

2016, San Juan, Puerto Rico, 2016, Conference Track Proceedings.

A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures

for deep reinforcement learning,” Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 32, no. 1, Apr. 2018.

T. Shu, J. Liu, and G. N. Yannakakis, “Experience-driven pcg via

reinforcement learning: A super mario bros study,” in 2021 [EEE

Conference on Games (CoG), 2021, pp. 1-9.

T. Shu, Z. Wang, J. Liu, and X. Yao, “A novel cnet-assisted evolutionary

level repairer and its applications to super mario bros,” in 2020 IEEE

Congress on Evolutionary Computation (CEC), 2020, pp. 1-10.

D. Hooshyar, M. Yousefi, M. Wang, and H. Lim, “A data-driven

procedural-content-generation approach for educational games,” Journal

of Computer Assisted Learning, vol. 34, no. 6, pp. 731-739, 2018.

A. Zook, S. Lee-Urban, M. R. Drinkwater, and M. O. Riedl, “Skill-based

mission generation: A data-driven temporal player modeling approach,”

in Proceedings of the The Third Workshop on PCG’12, 2012, p. 1-8.

Y. Liang, W. Li, and K. Ikeda, “Procedural content generation of rhythm

games using deep learning methods,” in Entertainment Computing and

Serious Games, 2019, pp. 134-145.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Kaidan, C. Y. Chu, T. Harada, and R. Thawonmas, “Procedural gen-
eration of angry birds levels that adapt to the player’s skills using genetic
algorithm,” in IEEE 4th Global Conference on Consumer Electronics,
2015, pp. 535-536.

T. Oikawa, C.-H. Hsueh, and K. Ikeda, “Improving human players’ t-
spin skills in tetris with procedural problem generation,” /6th Advances
in Computer Games (ACG 2019), 2019.

D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G. N. Yannakakis,
“Procedural content generation through quality diversity,” in 2019 IEEE
Conference on Games (CoG), Aug 2019, pp. 1-8.

N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O’Neill,
“Evolving levels for super mario bros using grammatical evolution,”
in 2012 IEEE Conference on Computational Intelligence and Games
(CIG), 2012, pp. 304-311.

Z. Wang, J. Liu, and G. N. Yannakakis, “The fun facets of mario:
Multifaceted experience-driven pcg via reinforcement learning,” in Pro-

ceedings of the 17th International Conference on the Foundations of

Digital Games, ser. FDG ’22.
Computing Machinery, 2022.
P. Shi and K. Chen, “Learning constructive primitives for real-time
dynamic difficulty adjustment in super mario bros,” IEEE Transactions
on Games (TOG), vol. 10, no. 2, pp. 155-169, 2018.

J. Flimmel, J. Gemrot, and V. Cerny, “Coevolution of ai and level gen-
erators for super mario game,” in 2021 IEEE Congress on Evolutionary
Computation (CEC), 2021, pp. 2093-2100.

J. Zhang, T. Gao, and Q. Mi, “Side-scrolling platform game levels
reachability repair method and its applications to super mario bros,” in
2022 RIVF International Conference on Computing and Communication
Technologies (RIVF), 2022, pp. 232-237.

M. Beukman, S. James, and C. W. Cleghorn, “Towards objective
metrics for procedurally generated video game levels,” CoRR, vol.
abs/2201.10334, 2022.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” [EEE
Transactions on Computational Intelligence and Al in Games, 2011.

J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic person-
alised content creation for racing games,” in 2007 IEEE Symposium on
Computational Intelligence and Games, 2007, pp. 252-259.

D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic track genera-
tion for high-end racing games using evolutionary computation,” /EEE
Transactions on Computational Intelligence and Al in Games, pp. 245—
259, 2011.

A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Empowering quality
diversity in dungeon design with interactive constrained map-elites,” in
2019 IEEE Conference on Games (CoG), 2019, pp. 1-8.

A. Summerville and M. Mateas, “Super mario as a string: Platformer
level generation via Istms.” in Proc. Ist Int. Joint Conf. DiGRA/FDG,
2016.

S. Lee, A. Isaksen, C. Holmgard, and J. Togelius, “Predicting resource
locations in game maps using deep convolutional neural networks,” in
Proc. Artif. Intell. Interactive Digit. Entertainment Conf, 2016.

A. Summerville, M. Behrooz, M. Mateas, and A. Jhala, “The learning of
zelda: Data-driven learning of level topology,” in Proc. 10th Int. Conf.
Found. Digit. Games, 2015.

M. Awiszus, F. Schubert, and B. Rosenhahn, “Toad-gan: Coherent style
level generation from a single example,” Artificial Intelligence and
Interactive Digital Entertainment. AAAI pp. 10-16, 2020.

R. Rodriguez Torrado, A. Khalifa, M. Cerny Green, N. Justesen, S. Risi,
and J. Togelius, “Bootstrapping conditional gans for video game level
generation,” in IEEE Conference on Games (CoG), 2020, pp. 41-48.
E. Giacomello, P. L. Lanzi, and D. Loiacono, “Doom level generation
using generative adversarial networks,” in 2018 IEEE Games, Entertain-
ment, Media Conference (GEM), 2018, pp. 316-323.

R. Jain, A. Isaksen, C. Holmgard, and J. Togelius, “Autoencoders for
level generation, repair, and recognition.” In ICCC Workshop on
Computational Creativity and Games, 2016.

A. Sarkar, Z. Yang, and S. Cooper, “Controllable level blending between
games using variational autoencoders,” in Proceedings of the EXAG
Workshop at AIIDE, 2019.

S. Thakkar, C. Cao, L. Wang, T. J. Choi, and J. Togelius, “Autoencoder
and evolutionary algorithm for level generation in lode runner,” in 2079
IEEE Conference on Games (CoG), 2019, pp. 1-4.

A. Sarkar, A. Summerville, S. Snodgrass, G. Bentley, and J. Osborn,
“Exploring level blending across platformers via paths and affordances,”
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, no. 1, pp. 280-286, 2020.

New York, NY, USA: Association for

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

IEEE TRANSACTIONS ON GAMES, VOL. XX, NO. X, XXXXXX XXXX

F. Abraham and M. Stephenson, “Utilizing generative adversarial net-
works for stable structure generation in angry birds,” Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 19, no. 1, pp. 2-12, Oct. 2023.

M. Siper, A. Khalifa, and J. Togelius, “Path of destruction: Learning an
iterative level generator using a small dataset,” in 2022 IEEE Symposium
Series on Computational Intelligence (SSCI), 2022, pp. 337-343.

M. Siper, S. Earle, Z. Jiang, A. Khalifa, and J. Togelius, “Controllable
path of destruction,” arXiv preprint arXiv:2305.18553, 2023.

F. Schubert, M. Awiszus, and B. Rosenhahn, “Toad-gan: A flexible
framework for few-shot level generation in token-based games,” IEEE
Transactions on Games, vol. 14, no. 2, pp. 284-293, 2022.

P. Bontrager and J. Togelius, “Learning to generate levels from nothing,”
in 2021 IEEE Conference on Games (CoG), 2021, pp. 1-8.

L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in Proceedings of the Thirty-First
AAAI'17 Conference on Artificial Intelligence, p. 2852-2858.

A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “Pcgrl: Procedural
content generation via reinforcement learning,” Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, vol. 16, no. 1, pp. 95-101, Oct. 2020.

S. Earle, M. Edwards, A. Khalifa, P. Bontrager, and J. Togelius,
“Learning controllable content generators,” in 2021 IEEE Conference
on Games (CoG), 2021, pp. 1-9.

Z. Jiang, S. Earle, M. Green, and J. Togelius, “Learning controllable 3d
level generators,” in Proceedings of the 17th International Conference
on the Foundations of Digital Games (FDG), 2022.

0. Delarosa, H. Dong, M. Ruan, A. Khalifa, and J. Togelius, “Mixed-
initiative level design with RL brush,” CoRR, vol. abs/2008.02778, 2020.
Y. Zakaria, M. Fayek, and M. Hadhoud, “Start small: Training control-
lable game level generators without training data by learning at multiple
sizes,” Alexandria Engineering Journal, vol. 72, p. 479-494, Jun. 2023.
O. Missura and T. Girtner, “Player modeling for intelligent difficulty
adjustment,” in Discovery Science, 2009, pp. 197-211.

M. Csikszentmihalyi and M. Csikszentmihalyi, “Toward a psychology of
optimal experience,” Flow and the foundations of positive psychology:
The collected works of Mihaly Csikszentmihalyi, pp. 209-226, 2014.
C. S. Ikehara, M. E. Crosby, and P. A. Silva, “Combining augmented
cognition and gamification,” in Foundations of Augmented Cognition:
7th International Conference, AC 2013, Held as Part of HCI Interna-
tional 2013, Las Vegas, NV, USA, July 21-26, 2013. Proceedings 7.
Springer, 2013, pp. 676-684.

R. Koster, Theory of fun for game design. O’Reilly Media, Inc., 2013.
mx0c, super-mario-python, https://github.com/mx0c/super-mario-
python, 2021.

S. Karakovskiy and J. Togelius, “The mario ai benchmark and com-
petitions,” IEEE Transactions on Computational Intelligence and Al in
Games, vol. 4, no. 1, pp. 55-67, 2012.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function ap-
proximation error in actor-critic methods,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80. PMLR,
10-15 Jul 2018, pp. 1587-1596.

J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario ai
competition,” 08 2010, pp. 1-8.

R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional
neural networks: an overview and application in radiology,” Insights into
Imaging, vol. 9, pp. 611 — 629, 2018.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015.

