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Abstract

The study of dog social signals in dog-human interaction has significant aca-
demic and social importance; however, it remains relatively underexplored.
Understanding dogs’ emotional states enhances the human-dog connection
and brings meaningful, practical benefits. In an effort to support continued
exploration in this field, this thesis investigates effective multimodal machine
learning approaches for classifying dog emotions based on vocal and behav-
ioral patterns using a small-scale dataset. This study focuses exclusively on
YouTube videos where dog social signals are detected and labeled by animal
experts. This thesis is conducted using a dataset that includes 7 classes of
emotions per voice type.

This research field receives limited research attention, and there are few
dog social signal datasets. In many real-world scenarios, such as bioacoustic
analysis or emotion classification, labeled datasets are limited and expensive
to obtain. Data scarcity is both a motivation and a challenge, particularly
for data-driven machine learning. Research on dog emotions mainly focuses
on unimodality, such as dog faces, poses, or voices. However, multimodal
machine learning, leveraging different modalities that provide additional con-
text, presents an effective method for emotion classification. Even though
showing its remarkable ability, multimodal classification tasks often require
large volumes of labeled data to effectively train deep learning models. Pre-
trained models show their powerful ability to present robust representations
while addressing limited dataset problems with transfer learning. However,
in unexplored research areas such as this one, there are few available in-
domain pre-trained models. Despite advances in multimodal classification,
current models struggle to effectively classify dog social signal due to limited
datasets, background noise, and limited resources.

This research aims to investigate effective methods for modeling dog so-
cial signals for classification on small-scale datasets using a multimodal ma-
chine learning approach. To achieve this goal, this study first develops a
multimodal classification baseline for dog social signals using generic pre-
trained models as unimodal encoders. Additionally, a joint feature modula-
tion (JFM) is proposed for multimodal fusion, which enables adaptively con-
trol the combination of pretrained representations, thereby preserving their
rich information and even creating a more informative fused representation,
which in turn enhances overall results. Although pre-trained models provide
a strong starting point, they often fail to fully capture the domain-specific
characteristics of inputs. This leads to suboptimal performance, particularly



in fine-grained classification tasks. To further improve the feature represen-
tations, this work proposes an approach to continue pretraining the unimodal
encoder. The acoustic encoder is trained on available unlabeled data with
initialization from cross-domain pretrained weights, enabling it to capture
complex, discriminative acoustic features and make robust representations,
thereby mitigating the problem caused by data scarcity and enhancing model
robustness.

The multimodal model is built based on feature-level fusion with uni-
modal encoders. AudioSet pretrained AST (Audio Spectrogram Transformer)
is used to encode spectrogram input to acoustic embedding, and S3D pre-
trained on Howto100M dataset is used to encode video into visual embed-
ding. Further ablation studies are conducted using human speech and image-
pretrained models to evaluate the effectiveness of cross-domain transfer learn-
ing in improving the audio unimodal feature representation. Data augmenta-
tion and PCA visualization will assist in generalization and interpretability.
After training, models will be evaluated using accuracy and F1-score.

The expected outcome is this multimodal-based classification model with
higher accuracy and robustness compared to the majority, non-parametric
handcrafted feature model, and unimodal baselines. Results confirm the
effectiveness of this proposed multimodal pretrained model based approach.
Moreover, compared to simple early fusion methods, the proposed JFM fusion
demonstrates improved performance across both metrics, proving to be more
effective in our setting. However, this has not met our expectations. To en-
hance the acoustic encoder and ultimately improve multimodal performance,
this work explores continued pretraining to inject in-domain discriminative
features into unimodal embeddings based on cross-domain pretrained mod-
els. Although this experiment remains incomplete due to various limitations,
it demonstrates strong potential for future development.

In conclusion, these results, achieved with a small and noisy dataset under
simple settings and a transfer learning framework, nonetheless highlight the
potential of multimodal classification of dog social signals and serve as the
baseline for future references on this task. This work aims to contribute a
reproducible research pipeline for dog social signal prediction to contribute
to human-computer-animal research, hopefully guiding the development of
more robust and efficient approaches.

Keywords: Dog social signal, dog emotions classification, multimodal clas-
sification, multimodal fusion, cross-domain transfer learning
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Glossary

Table 1: Glossary of terms and abbreviations (abbr.)

Term Abbr. Definition

Convolution
Neuron Network

CNN A type of deep neural network

Inflated 3D
CNN

I3D
Model architecture, more detail in

section 4.1

Separable 3D
CNN

S3D
Model architecture, more detail in

section 4.1

gated
multimodal unit

GMU,
gated.

More detail in section 5.2

Vision
Transformer

ViT
Model architecture, more detail in

section 4.1

Audio
Spectrogram
Transformer

AST
Model architecture, more detail in

section 4.1

Spectrogram Spec. Visual representation of sound

Video Vid.

Concatenation concat

Linear probling LP

Tranfer learning technique that we
frozen pretrained weights and train
linear classifier head for downstream

dataset

Finetuning FT
Tranfer learning technique that we

train all model weights for
downstream dataset
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Chapter 1

Introduction

1.1 Background

For centuries, dogs have been more than loyal companions. They have stood
by humans by playing vital roles, including military, security, therapy, and
medical assistance. Recent studies have also shown that dogs play a positive
role in supporting human mental health12. As our bond with dogs continues
to grow, so does our responsibility to support not only their physical needs,
but also their mental and emotional well-being. Understanding a dog’s emo-
tional state offers more than just insight into their inner world, it strength-
ens the human-dog relationship and leads to practical benefits. Moreover, it
is commonly shared among dog trainers that when a dog exhibits signs of
anxiety during training, implementing calming techniques, such as offering
breaks, and using a soothing tone of voice, can help reduce stress and build
the dog’s confidence [56]. Additionally, distress is often expressed through
several ways, such as fear and aggressive behaviors, yet many owners fre-
quently overlook the more subtle signs of canine stress, even in their pets
[55]. Improved emotional awareness can enhance dog training, support be-
havior correction, and aid in the early detection of stress or health issues.
When machines play animal expert roles, they can help us to automati-
cally understand dogs’ emotional state, which not only assists with timely
dog care but also reduces the reliance on human experts. These advances di-
rectly contribute to better dog welfare, more effective health monitoring, and
more humane and adaptive care environments. Beyond its social impact, this

1“Research Results of a 40% Reduction in Risk of Developing Dementia in Elderly Dog
Owners” (NHK Online, December 31, 2023, 6:25 a.m.)

2Taniguchi Y, et al. (2022) Evidence that dog ownership protects against the onset
of disability in an older community-dwelling Japanese population. PLoS ONE 17(2):
e0263791
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work also holds strong academic value. By leveraging state-of-the-art tech-
nology such as machine learning to automatically recognize dog’s emotions,
this study opens up new avenues for research in cross-species communica-
tion and contribute to the growth of animal-computer interaction research.
These contributions support not only the everyday lives of dog owners and
professionals but also the growth of a field that bridges technology and an-
imal welfare in meaningful ways. With this work, these findings serve as
a baseline for future research, hopefully guiding the development of more
robust and efficient approaches. This thesis aims to contribute to a more
sustainable and harmonious future, the one that considers the well-being of
all living beings, not just humans, but also our beloved animal companions.

These systems provide practical value and meaningful real-world appli-
cations. In today’s era of rapidly advancing artificial intelligence, machine
learning has shown exceptional capabilities in modeling complex data and
delivering increasingly accurate predictions. Such progress is enabling the
automation of a wide range of tasks and continues to reveal vast, seemingly
limitless potential. Motivated by these developments, this work aims to ex-
plore and develop an automatic dog social signal classification system using
state-of-the-art machine learning techniques.

1.2 Challenges

Unlike other research fields, this area has received limited attention, result-
ing in it being underexplored and lacking well-annotated datasets. While
studies using large datasets can provide good estimations of real-world sce-
narios and yield reliable insights and results, the scarcity of data in this field
imposes significant limitations. These range from constraints in comprehen-
sive analysis to difficulties in developing effective and generalizable models.
This is particularly challenging in the current data-driven machine learn-
ing era, where despite achieving remarkable results across diverse tasks and
datasets and even with techniques like transfer learning, models trained on
small datasets with large domain gaps are prone to severe overfitting and
produce untrustworthy results.

Furthermore, in terms of affective expression, movements such as tail
and ear movements, as well as posture, are important in the visual modal-
ity. However, social signal processing research lacks high-quality datasets for
thorough analysis and study. My main data sources, which are online videos,
are often of low resolution, unstable camera movements, motion blur, poor
lighting conditions, and frequent occlusions. Moreover, these videos typically
lack structured recording protocols. Such limitations restrict research efforts
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to investigate distinct emotional traits necessary for effective emotion classifi-
cation and hinder the development of robust feature representation learning
methods. Specifically in this scenario, because the extraction rate of dog
posture features was below 50%, it was impossible to conduct experiments
with these features due to their high rate of detection failure.

Additionally, the species gap poses a significant challenge for researchers,
especially those with limited expertise in handling bioacoustic data. It acts
as a barrier not only to developing robust models but also to newcomers
seeking to enter and make meaningful contribute to the field.

1.3 Research Scope and Objective

1.3.1 Objectives

This research studies to develop an effective dog social signal classification
for a small-scaled dataset. To achieve this overall aim, the study focuses on
the following objectives:

• Given the lack of prior multimodal studies on this dataset involving
dog social signal, this research aims to investigate effective methods for
modeling dog social signals using multimodal machine learning tech-
niques that integrate both acoustic and visual modalities for classifica-
tion.

• Due to the limited size and high noise levels in the available dataset,
a common challenge across this field, this research develops efficient
transfer learning approaches that leverage generic pretrained models
and feature-level fusion, aiming to enhance both the robustness and
generalization of the classification model.

• Generic pretrained models may lack domain-specific discriminative power
for this task. Therefore, this study evaluates the use of self-supervised
learning on additional in-domain datasets to enrich unimodal feature
representations and improve overall classification performance.

1.3.2 Scope

• Task: This research will focus on multi-class classification where the
objective is to assign a single class label based on information from
multiple input modalities.
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• Modalities: The research will primarily focus on the integration of
audio and video an/or image data.

• Fusion techniques: This research will work on early fusion or feature-
level fusion, where feature embedding in latent space are extracted and
fused to formed multimodal representation for classification.

• Dataset: The study will specifically use small-scaled dog social signal
dataset that has emotion per voice type annotation.

• Transfer Learning Techniques: The research will explore common
transfer learning techniques including, but not limited to, full fine-
tuning of the pre-trained model, freezing specific layers, and using the
pre-trained model as a fixed feature extractor.

• Evaluation Metrics: Model performance will be evaluated using
standard classification metrics such as accuracy, F1-score specifically
tailored for multi-class classification on the chosen dataset.

1.4 Thesis organization

This thesis is demonstrated in 7 chapters in total.
Chapter 1 presents an overview of the study, describes the multi-class dog

social signal classification problem, and explains the rationale for selecting
the topic, as well as its research objectives and scope. It is followed by the
proposed approach and the challenges encountered. Finally, it summarizes
the practical significance and contributions of the study.

Chapter 2 provides an overview of key terms and methods that are used in
later chapters. It also presents a brief summary of prior research in relevant
areas on dog social signal classification using machine learning.

Chapter 3 introduces the main dataset, detailing the annotation proce-
dures, label definitions, dataset statistics, and the supplementary datasets
used in the experiments.

Chapter 4 describes the backbone architectures used for each modality,
based on models from prior work, and explains how features are extracted,
processed, and fused within the multimodal framework for classification.

Chapter 5 presents the experimental results, including a description of the
conducted experiments, the outcomes, and a comparative analysis between
the proposed multimodal approach and baseline methods on the dataset.

Chapter 6 presents ablation studies to validate the use of additional uni-
modal pretraining and frozen pretrained encoders in downstream tasks. This
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chapter provides empirical evidence supporting the proposed approach to
improve multimodal performance, particularly in scenarios involving small,
noisy datasets.

Chapter 7 presents the conclusion, summarizing the key points of the
thesis, and outlining potential directions for future work.
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Chapter 2

Related work

This chapter provides a review of existing literature related to multimodal
machine learning, dog social signal classification, and transfer learning. It
begins by introducing the general concepts of each unimodal learning and
multimodal fusion method, followed by an overview of transfer learning ap-
proaches. The chapter then discusses dog social signals and highlights prior
studies related to dog social signal classification tasks. Finally, it identifies
the limitations and research gaps in the current literature.

2.1 Multimodal machine learning

2.1.1 Concepts

A modality refers to a specific type of data or sensory input, for example,
images (vision), speech signals (audio), or text (language). Human com-
munication is inherently multimodal. We express intent, emotion, and social
signals through language, voice, facial expressions, and body gestures [58, 45].

Over the past few years, multimodal learning has emerged as a power-
ful approach to enable machines to understand and reason across multiple
sources of information, such as text, images, audio, and video. This paradigm
aims to mimic human perception, which naturally integrates signals from var-
ious modalities to make sense of the world. For AI systems to advance in
their understanding of the world, the ability to interpret and reason over
multimodal information is essential [5]. The importance of multimodal inte-
gration was recognised early on through the work of McGurk and MacDonald
[31], who showed that combining auditory and visual cues can substantially
enhance speech perception. Later studies confirmed that incorporating visual
information, such as lip movements, significantly improves speech recognition
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performance [41]. Since then, the field has continued to evolve, culminating
in the recent emergence of multimodal large language models that leverage
diverse multimodal datasets and adapt to various tasks, marking a significant
step towards achieving artificial general intelligence (AGI).

2.1.2 Unimodal representations - Audio

The waveform shows how audio sample values vary over time, representing
changes in sound amplitude. This is referred to as the time-domain repre-
sentation of sound, as illustrated in Figure 2.1. Alternatively, the frequency

Figure 2.1: Waveform, visualization of sound in time domain

spectrum, or frequency-domain representation, is also commonly used to vi-
sualize audio, as shown in Figure 2.2. The spectrum captures a static snap-
shot of the frequencies present at a specific moment, and it can be derived
from the time-domain waveform using the discrete Fourier transform (DFT).

By performing DFTs on successive short-time segments and stacking
these frequency snapshots, we obtain a spectrogram. A spectrogram dis-
plays how the frequency content of a signal evolves over time, combining
information on time, frequency, and amplitude in a single plot. The Short
Time Fourier Transform (STFT) performs this computation, generating an
informative visual representation of sound, as shown in Figure 2.3. A mel
spectrogram is a type of spectrogram widely used in speech processing and
machine learning. Unlike a regular spectrogram, which has a linear frequency
axis measured in hertz (Hz), the mel spectrogram uses the mel scale, which
better reflects how humans perceive sound. This is because our ears are more
sensitive to lower frequencies, and this sensitivity decreases logarithmically as
frequency increases. To generate a mel spectrogram, the Short Time Fourier
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Figure 2.2: (Frequency) Spectrum, visualization of sound in frequency do-
main

Figure 2.3: Spectrogram, visual representation of sound
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Transform (STFT) is first applied to divide the audio into short frames and
obtain their frequency spectra. These spectra are then passed through a
mel filterbank, which converts the frequency values into the mel scale. Sim-
ilar to standard spectrograms, it is common to represent the amplitude of
mel frequency components in decibels, resulting in what is called a log-mel
spectrogram due to the logarithmic transformation used in this conversion.

When working with audio, state-of-the-art models demonstrate impres-
sive capabilities by utilizing various types of features. Applying deep learning
to audio typically involves first converting the audio into an appropriate rep-
resentation before feeding it into the model. These representations include
raw audio features, as used in models like Wav2vec2 [4], and spectrogram-
based features employed by models such as AVES [22] and AST [19]. Ad-
ditionally, handcrafted features like MFCCs remain widely used and are
particularly popular in many audio processing tasks. Recent studies have
demonstrated that self-supervised learning approaches achieve outstanding
performance by first training audio representation models on large unlabelled
datasets, which are then applied to various downstream tasks. This strat-
egy has yielded impressive results across multiple benchmarks, particularly
when working with small-scale downstream datasets [22, 19, 4], and in some
cases, strong performance is achieved even without additional fine-tuning.
By leveraging the rich and transferable acoustic representations learned by
these generic audio models, the need for large amounts of labelled data is sig-
nificantly reduced. Moreover, this approach has shown strong transferability
across domains, for example, when models pretrained on human speech are
applied to bioacoustic tasks [52]. Given that data plays a critical role in
the success of data-driven machine learning, this paradigm offers significant
promise for the future. However, domain mismatch and data scarcity con-
tinue to pose major challenges.

2.1.3 Unimodal representations - Video

Video analysis and understanding are fundamental problems in computer
vision. Unlike images, videos consist of sequences of frames, introducing
an additional temporal dimension that has attracted significant research at-
tention in recent years. Extracting effective features that capture both the
spatial and temporal aspects of video remains a challenging task. Learning
robust video representations is particularly difficult due to factors such as
variations in viewpoint and background, changes in illumination, and occlu-
sions, all of which can prevent models from fully capturing the intended scene
[48]. Therefore, developing modern feature extraction methods is also essen-
tial to overcome these challenges and achieve robust and meaningful video
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representations.
CNN-based model: Two-stream architectures are designed to model

both the spatial and temporal components of video. For example, the Slow-
Fast [15] network introduces a dual-pathway approach, where the slow path-
way captures semantic information at a lower frame rate, while the fast path-
way focuses on learning fine-grained temporal dynamics at a higher frame
rate. With the rise of deep learning and the success of convolutional neural
networks (CNNs) in image tasks, 3D CNNs have been extended to process
videos by incorporating the temporal dimension into convolution operations.
However, 3D convolutions are computationally expensive. To address this,
the S3D[62] model factorizes 3D convolutions into separate spatial and tem-
poral kernels, significantly reducing computational cost while also achieving
notable improvements in accuracy.

Transformer-based model: Inspired by the Vision Transformer (ViT),
which uses the attention mechanism to effectively model long-range contex-
tual information in images, TimeSformer[6] extends this approach to videos.
It divides video frames into patches and treats the entire video as a sequence
of these patches, which are then fed into a transformer encoder to learn video
representations. Although transformer-based models are highly effective in
capturing long-range dependencies, they typically demand substantial com-
putational resources and large-scale training data. These requirements can
limit their practicality in real-world applications where resources are con-
strained.

Self-Supervised learning for video: Without access to large anno-
tated datasets, it is challenging for models to learn robust and generaliz-
able video representations for specific tasks. Self-supervised learning offers a
promising solution by reducing the reliance on labelled data while enhancing
performance in video-related domains. M. C. Schiappa et al. [53] categorize
self-supervised learning approaches for videos into four main types: pretext
tasks, generative learning, contrastive learning, and cross-modal agreement.
Pretext tasks involve training models on carefully designed tasks that require
a deep understanding of the input data, enabling them to learn generalizable
features useful for downstream applications. Generative approaches, on the
other hand, focus on reconstructing parts of the original input, such as pre-
dicting masked frames or generating future frames in a sequence. Contrastive
learning trains models to bring positive pairs of inputs closer together in
the feature space while pushing negative pairs apart, effectively learning dis-
criminative representations. Cross-modal objectives typically use contrastive
losses, such as Noise Contrastive Estimation (NCE) For instance, MIL-NCE
[32] introduces an end-to-end framework for learning visual representations
from uncurated instructional videos by aligning video and text embeddings.
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This method produces robust representations that outperform many super-
vised approaches on downstream tasks, demonstrating the potential of learn-
ing generic video representations through joint video-text embedding.

2.1.4 Fusion

Multimodal fusion is one of the original and widely researched areas with a
large number of approaches. It is the concept of integrating multiple sources
of information and modalities to make a prediction. According to Baltrušaitis
et al. [5], multimodal fusion methods can be broadly categorised into model-
agnostic approaches and model-based approaches.

Model-agnostic approaches include early fusion, late fusion, and hy-
brid fusion techniques. Early fusion combines features from different modal-
ities immediately after encoding, typically through simple operations such
as concatenation. It can be further categorised into data-level fusion, which
integrates data directly at the input stage, and feature-level (intermediate)
fusion, which merges feature embeddings extracted from each modality. Late
fusion integrates the outputs of separate unimodal models at the decision
level, often using methods such as majority voting or weighted averaging to
produce the final prediction. Hybrid fusion seeks to leverage the strengths
of both early and late fusion by combining features at multiple levels within
the model.

Model-based approaches include kernel-based methods, graph-based
methods, and neural network-based approaches. Neural network-based meth-
ods, such as attention mechanisms and multimodal Transformers, have demon-
strated strong capabilities in capturing complex inter-modal relationships.
However, these approaches still face challenges, including data bias and high
computational costs.

2.2 Tranfer learning

To build an effective model for a specific application, machine learning ap-
proaches typically require large-scale datasets to perform well. A common
practical heuristic suggests that the number of training examples should ex-
ceed the number of trainable parameters by at least an order of magnitude to
avoid severe overfitting. Traditionally, however, machine learning models are
designed to operate in isolation and need to be rebuilt from scratch whenever
the feature space distribution changes. This approach requires large datasets
and incurs high computational costs for each new task, leading to ineffi-
cient use of knowledge and poor scalability. Transfer learning has emerged
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Figure 2.4: Overview of transfer learning settings [38]

to address these challenges by utilising knowledge learned from one task to
improve performance on other related tasks.

Transfer learning has increasingly proven to be effective, enhancing model
accuracy, reducing training time, and requiring less data, which makes it
applicable to a wide range of tasks and datasets with both scholarly and
industrial success. By leveraging knowledge from a large, high-quality source
dataset and transferring it to a target task with a smaller dataset, transfer
learning improves both accuracy and generalisation. This is often achieved
by reusing features, weights, or representations from pretrained models to
facilitate better learning on the target task. However, when applying transfer
learning, it is important to consider which parts of the knowledge should
be transferred, when transfer learning is appropriate, and which transfer
techniques or algorithms will enhance performance without causing negative
transfer. Depending on the domain and the availability of data, transfer
learning strategies can be categorised as illustrated in Figure 2.4.

Two popular methods for deep transfer learning to downstream tasks are
full fine-tuning (FT) and linear probing (LP). Fine-tuning updates all of the
model parameters, whereas linear probing only trains the classifier head while
keeping the lower layers frozen. However, when pretrained features are strong
and there is a significant domain shift, fine-tuning can result in worse out-of-
distribution (OOD) accuracy than linear probing, as it may distort the useful
pretrained representations. In such cases, a two-step strategy combining LP
followed by FT (LP-FT) can achieve higher performance by leveraging the
strengths of both methods [26]. Many approaches aim to build generic and
generalisable models across various modalities to create robust representa-
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tions that achieve promising results in different conditions and tasks. In
scenarios involving extremely small or noisy target datasets, linear probing
with a strong, generic pretrained model is an effective strategy as it keeps the
pretrained encoder frozen, preserving its high-quality generic feature embed-
dings and reducing the risk of overfitting to limited or low-quality data. This
approach maintains the informative representations learned from the source
data and provides a strong baseline for initial analysis and benchmarking.

2.3 Dog social signal in human-dog interac-

tion

A social signal is a communicative or informative cue that conveys social
information, such as social interactions, attitudes, relationships, or emotions
[44]. This study aims to investigate whether dog social signals can be au-
tomatically extracted from audio and video data using multimodal machine
learning approaches.

Vocal expressions of emotion follow basic rules that encode an animal’s
internal state into specific acoustic features, which human use these struc-
tural patterns to interpret and assign emotions to dog vocalizations that fit
the context during cross-species interactions [14]. In particular, dogs growl
and bark encode emotional states through specific acoustic features, allowing
humans to perceive a dog’s inner feelings across different contexts. According
to the Source-Filter Framework, emotional arousal alters vocal parameters,
such as call length, pitch (fundamental frequency), and formant dispersion,
which signal changes in size perception and emotional valence. Farago et.al
[14] investigated how human listeners recognize the dog growl types. From
the experiment, human listeners could successfully recognize the emotional
content (aggression, fear, despair, happiness, playfulness) and recognize the
growl’s context above chance levels. Play growls were rated higher on happi-
ness and playfulness and lower on aggression and fear, while food guarding
growls were judged most aggressive. Threatening growls were rated with
both high aggression and fear. The study also clarified key acoustic features
related to the vocal type. Jégh-Czinege et. al [25] also investigated how
dog barks convey emotional states through their acoustic features, includ-
ing primarily pitch, tonality, and inter-bark intervals, and they investigated
how features influence how humans perceive both the dog’s emotions and the
level of annoyance caused by the barking. In a playback experiment with 153
Hungarian participants across different ages and living environments, listen-
ers rated various dog bark sequences based on the dog’s apparent emotional
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state (happy-playful, scared-desperate, aggressive-angry) and the perceived
annoyance. One of the important functions of barking is to evoke specific
attention in humans. From these findings, “barking” as a vocal expression
conveys various types of emotional inner-states of dogs. Acoustic features
contained in barking sounds can be used as clues to identify the emotion
categories of dogs. Automatically detecting a dog’s social signal for specific
attention-evoking to humans and others is a challenge in computational so-
cial signal processing. Lenkei et al. [28] investigated the role of ”whine” as
a vocal expression by focusing on the vocal activity of dogs with Separation-
Related Problems (SRP). The SRP is used to refer to a set of problem be-
haviors shown by dogs when the owner or the attachment figure is absent
[2]. The study found that separation-related problems (SRP) in dogs mani-
fest through various behaviors, notably barking and whining, depending on
the dog’s inner emotional state and the owner’s interaction style. Whining
during separation is typically associated with fear and anxiety, while barking
is linked more closely to frustration. Furthermore, the study by Lenkei et al.
[29] provided empirical evidence that separation-related behaviors in dogs
are not homogeneous but rather reflect distinct emotional profiles, under-
scoring the need for individualized intervention strategies based on the dog’s
temperament and behavioral tendencies.

It has long been recognized, since the work of Charles Darwin [37], that
facial expressions provide crucial information for classifying emotional states.
Boneh-Shitrit, Tali, et al. [7] investigated the automated recognition of dog
emotional states from facial expressions using DogFACS [59], a facial action
coding system developed specifically for dogs, together with deep learning
methods. In their study on binary classification of dog emotions, specifically
frustration (negative) versus anticipation (positive), the DogFACS-based ap-
proach showed promise. However, the deep learning model outperformed it,
achieving an accuracy of over 89%, demonstrating the strength of deep learn-
ing for emotion classification tasks. DogFACS cannot exhaustively capture
all possible behavioral variations, and many videos do not display identifi-
able DogFACS variables. Despite this, the deep learning model successfully
classifies these cases based solely on images, highlighting its ability to detect
fine-grained pixel-level details that may be imperceptible to the human eye.
More works on dog visual features such as dog face or body [16] show that
we can use visual features to predict dog emotions. Such proofs indicate the
potential of using visual features to help us understand a dog’s emotional
state. In this thesis, both acoustic and visual features are incorporated in a
multimodal pipeline for effective dog social signal classification.
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2.4 Dog social signal processing

This research field receives limited research attention, and there are few dog
social signal datasets. The current most related dataset to ours, Abzaliev
[1] introduces a dataset with 14 dog vocalizations for 4 classifications tasks
that are parallel with speech classification (dog recognition, breed recogni-
tion, gender identification, and context grounding). Mohandas, Prabu, et al
[34] work on bark recorded two different dog species with various contexts for
barking classification. However, apart from only dog bark, other dog vocal-
izations (growl, whine) also carry expressions of the dog’s inner state. This
work investigates a video dataset, including audio and video, with annotated
emotion based on dog vocalization. This study not only includes a broader
scope of vocalization but also enables multimodal study and analysis.

The current most related to this tasks is context classification using dog
bark [35]. In this work, handcraft features extracted passed through a Naive
Bayes classifier, even with substantial audio samples, the overall accuracy
remains relatively low, which may be due to the simplicity of the baseline.
Other work [23] also classifies dog bark for context classification with a small
dataset using handcraft features but without an outstanding result. These
methods apply traditional handcraft features of audio and simple classifi-
cation methods without impressive results. Meanwhile, we can leverage a
pre-trained model with minimum training efforts that produce praiseworthy
results. The works of context classification using dog barks [18] yield notable
performance using various deep learning models. However, creating a dataset
of this size and richness is a non-trivial task, especially under real-world con-
ditions where data availability and consistency are limited.

For a small and noisy dataset, transfer learning using a pre-trained model
for downstream tasks is popular with efficient computing and outstanding
performance. Several audio pre-train models have remarkable results on
speech benchmarks. However, these are mostly audio tasks that are human
speech-related, and few models are trained for bioacoustics data. Sarkar et
al [52] investigates the benefits of different pretrained models, general pur-
pose, human speech pre-trained ones for bioacoustic data. Results suggest
the general-purpose audio pre-trained model is suitable for bioacoustic tasks
without pre-training on animal vocalizations. This work investigates whether
representations learned from general-purpose pretraining contain meaningful
information for emotion classification. Moreover, experiment with cross do-
main transfer learning in section 6.2.2 is conducted in other to understand
how transferable learned representations are across domains and species, and
whether domain-specific fine-tuning can close the performance gap. This is
a potential solution that opens up the possibility of leveraging knowledge
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learned from a well-annotated source domain to improve performance in a
target domain where data is limited or noisy. In addition, experiment with
two general pre-trained models for multimodal classification for both visual
and acoustic modality is conducted to gain more insights into the effectiveness
of leveraging generic pre-trained models for dog social signal classification.

18



Chapter 3

Dataset

3.1 Source dataset selection

Dog social signal dataset is a portion of the dog video data contained in
AudioSet [17]. AudioSet is a large-scale dataset with 1, 789, 621 videos from
YouTube, which was manually annotated with 632 audio event categories.
All segments have 10 seconds long, except for those with shorter durations.

3.2 Dog social signal annotation

As detailed in Section 2.3, dog vocalizations serve as crucial social signals,
with distinct barks conveying diverse functions. Consequently, dog vocal
expressions are categorized into three primary types: bark, whine, and growl.

Definition of internal state labels

Based on animal behavior knowledge and extensive clinical experience, the
internal state labels of dogs are defined by a professional animal scientist as
follows:

“Attention”: As a positive internal state, when a dog has a favorable
attitude toward its owner or interaction partner and wants to seek their
attention, this state is labeled as “Attention.”

“Aggressive”: As a negative internal state, when a dog feels aversion
toward another entity and wants to avoid it, or when it wants the other entity
to go away and is in an aggressive state toward it, this state is labeled as
“Aggressive.”

“Anxiety”: When a dog appears to be feeling anxiety, this label is
assigned.
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“Conflict”: When a dog experiences two opposing motivations—for ex-
ample, wanting to socialize with a person but simultaneously feeling afraid of
how the person might react—it may display signals through body language
and vocalizations that seem contradictory. In such moments, the dog’s bark-
ing reflects this internal motivational conflict. Additionally, when they are
conflicted, they are also likely to feel frustration.

Annotation procedure

First, the expert who defined the labels was watching 7760 videos in AudioSet
and selecting videos in which the dogs seemed to signal their internal states
(defined in Section 3.2) with various vocal expressions. The expert also
carefully annotates the segments (start and end times) of the scenes where
the dogs is barking or whining or growling in the videos, expressing their
internal state labels. Finally, total 550 videos were annotated with 8 labels.
Table 3.1 shows the labels and number of samples. Labels indicate internal
states corresponding to a dog vocal sound of the subject at the moment of
audio recording. The videos were carefully labeled by annotation teams of
professional animal scientists. Only a subset of videos containing sounds
corresponding to specific vocal type labels and one dog per video is filtered
and used for training.

Annotator agreement

The labels are subjectively annotated based on the experience of an expert.
The validity of the labels defined in this study is verified by measuring the
agreement rate of subjective labels. They independently commissioned an
animal behavioral researcher (second coder) with less experience than the
expert annotator to annotate a portion of the table samples and calculated
the agreement rate. The second coder was provided with training to under-
stand the label definitions and spent approximately 10 hours learning the
relationship between the videos and the labels. As a validation test, the
second coder annotated 42 independent samples which are not overlapped
with samples the coder have learned in the training phase. As a result of the
validation test, for seven class categories of the internal label, the agreement
values (Cohen’s Kappa) were 0.48, which is regarded as moderate agreement
[27]. Although training more annotators is necessary, the validity of certain
label definitions has been demonstrated.
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Table 3.1: Statistics of the dataset

Type Label Numerical label #Segments

Bark Aggressive 0 175

Attention 1 68

Conflict 2 142

Whine Anxiety 3 26

Attention 4 50

Growl Aggressive 5 37

Attention 7 5

Conflict 6 47

Total 550

Statistics of annotated labels

At this point in this research, the dataset is characterized by significant class
imbalance and a relatively small sample size as seen in Table 3.1. There are
31.82% labeled bark/aggressive, 25.82% labeled bark/conflict, and 12.37%
labeled bark/attention, in a total of 70% samples belonging to the same
group of bark. These labels are associated with the highest number of sam-
ples. On the other hand, labels such as growl/attention and whine/anxiety
have less than 1% and 5% of the total number of samples respectively. The
considerable imbalance in sample distribution between classes may bias the
model towards the majority class labels, skewing predictions. To deal with
this problem, I intentionally perform augmentation (such as adding noise,
rir effect) to increase the number of the lesser label to reduce this negative
impact. Future work on data collection and annotation could help with this
problem. Moreover, due to the scarcity of the growl/attention label, I only
do experiments with 7 labels (growl/attention is not used).

Additionally, various recording conditions, bad-quality videos, and noises,
such as human voices or other object voices in between audio recordings, are
also challenges for us.
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Label ID Number of samples

bark /m/05tny 2292

yip /m/07r k2n 2022

howl /m/07qf0zm 737

bow-wow /m/07rc7d9 3325

growling /m/0ghcn6 461

whimper /t/dd00136 1157

bay /m/07srf8z 0

Total 9994

Table 3.2: Statistics of dog voice types from AudioSet

3.3 Support dataset

3.3.1 Dog audio from AudioSet dataset

The dog audio data used in this study is a subset of the AudioSet, compris-
ing approximately 13, 705 video annotations of familiar domesticated canid
sounds, including Bark, Yip, Howl, Bow-Wow, Growling, Whimper, and Bay.
These voice types are statistically listed as below table 3.2
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Chapter 4

Methology

4.1 Model overview

4.1.1 Pretrained acoustic - AST

Transformer

The Transformer architecture is a sequence-to-sequence model consisting of
an encoder-decoder structure, as illustrated in Figure 4.1. The vanilla Trans-
former is constructed from blocks that combine multi-head attention mech-
anisms with position-wise feed-forward networks.

Attention mechanism The introduction of attention mechanisms and
the Transformer architecture has revolutionized natural language processing
(NLP), leading to major advancements not only in NLP but also in computer
vision and other fields [Vaswani et al., 2017]. The attention mechanism
enables a model to focus selectively on different parts of the input sequence,
enhancing its ability to capture contextual relationships. The Scaled Dot-
Product Attention is formulated as:

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V (4.1)

where Q, K, and V denote the query, key, and value matrices, respectively,
and dk is the dimensionality of the key vectors, used to scale the dot product
[57].

In the Transformer encoder, self-attention is applied with Q = K =
V = X, where X is the output from the previous layer, forming the core
of the autoencoder-like architecture utilized by models such as BERT [10].
Transformer decoder employs both masked self-attention, ensuring that each
position in the output sequence attends only to earlier positions (thus pre-
serving the autoregressive property crucial for generation tasks, as in GPT
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Figure 4.1: Transformer architecture

[46]), and cross-attention, where the queries come from the decoder’s previ-
ous layer outputs, while the keys and values are derived from the encoder
outputs. Together, the encoder-decoder architecture forms a sequence-to-
sequence model, exemplified by models such as T5 [47]. Since its intro-
duction, the generative Transformer paradigm has driven continuous break-
throughs in NLP.

Multi-Head Attention utilizes multiple sets of (Q,K, V ) projections
for a single input, enabling the model to capture different types of rela-
tionships within the sequence and thereby achieve a more comprehensive
understanding of the data [57].

Since their introduction in 2017, Transformers with attention mechanisms
have revolutionized natural language processing (NLP), fundamentally trans-
forming approaches to a wide range of NLP tasks and driving remarkable
progress across the field. More recently, this architecture has also been suc-
cessfully extended to other domains.. For example, the introduction of the
Vision Transformer (ViT) has demonstrated the great potential of applying
Transformer architectures to CV tasks [11].

Audio Spectrogram Transformer

The Vision Transformer (ViT) utilizes a transformer architecture that pro-
cesses images by segmenting them into sequences of patches, embodying the
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Figure 4.2: The scaled dot-product attention architecture (left) and the
multi-head attention mechanism (right) are composed of multiple attention
layers that function concurrently

idea that “an image is worth 16×16 words”. Figure 4.3 shows the overall
ViT architecture and how the image is divided into patches and then flat-
terned before being fed into the transformer. This method has demonstrated
outstanding performance across a wide range of computer vision benchmarks
[39]. Audio classification methods that operate on spectrogram inputs typi-

Figure 4.3: Vision Transformer architecture

cally rely on convolutional neural networks (CNNs) to exploit their inductive
bias, capturing local spatial patterns and maintaining translation equivari-
ance. These CNN-based models often incorporate attention mechanisms on
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top to capture long-range global dependencies, achieving state-of-the-art re-
sults in various audio classification tasks. [30, 20, 49]. Inspired by ViT’s
success in computer vision, the Audio Spectrogram Transformer (AST) was
proposed as a fully attention-based, convolution-free model for audio classi-
fication, as illustrated in Figure 4.4.

Figure 4.4: Audio Spectrogram Transformer architecture

An audio waveform of t seconds is first converted into log Mel filterbank
features with 128 frequency bins, computed using a 25 ms Hamming window
and a 10 ms hop size, resulting in a spectrogram of size 128 ∗ 100t. This
spectrogram is then divided into 16 × 16 patches with an overlap of 6 frames
in both frequency and time dimensions. Consequently, the number of patches
becomes 12[(100t–16)/10], which forms the input sequence to the AST model.
Experimental results showed that using a patch overlap of 6 increases the
sequence length, leading to a quadratic rise in computational cost. However,
this configuration achieved the highest performance among all tested settings
on the AudioSet benchmark, including non-overlap, 2, 4, and 6 overlap.

The AST model adopts a standard transformer architecture similar to
ViT. However, while ViT is designed for 3-channel RGB image inputs, AST
operates on single-channel spectrogram inputs. To align the patch embedding
layer with ViT’s pretrained weights, the weights corresponding to the three
input channels in ViT are averaged, effectively adapting them for AST’s
single-channel input by replicating the averaged weights across the single
channel. In ViT with an input resolution of 384×384 and a patch size of
16×16, the image is divided into 24×24 patches. In contrast, AST processes
spectrograms that yield 12[(100t–16)/10] overlapping patches, depending on
the audio duration t. Because of this difference in the number and arrange-
ment of patches, AST adapts ViT’s positional embeddings by cropping along
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the first dimension and applying bilinear interpolation along the second di-
mension. The [CLS] token positional embedding is directly reused without
modification. This positional embedding adaptation, involving cropping and
bilinear interpolation, plays a critical role in enabling effective knowledge
transfer from ViT to AST, as demonstrated in the paper’s experiments.

Once the AST architecture is established, the model is initialized with
ViT weights pretrained on ImageNet, specifically using weights from DeiT.
Experiments conducted on three benchmark datasets: AudioSet[17], ESC-50
[43], and Speech Commands v2 [60], demonstrate its superior performance
compared to CNN-attention hybrid models and SOTA benchmarks on these
datasets. The ESC-50 dataset contains 2,000 five-second environmental au-
dio recordings spanning 50 classes, while Speech Commands includes 105,829
one-second recordings across 35 command labels. Remarkably, AST achieves
strong results even on these relatively small datasets, highlighting the sub-
stantial benefits of transfer learning from ImageNet-pretrained weights. This
study demonstrates that ImageNet pretraining significantly reduces the need
for large-scale in-domain audio data for AST, supporting its potential as
a generic and effective audio classifier capable of handling varying audio
lengths.

Transformer architecture with attention mechanism using spectrogram
feature produces a concise and meaningful representation for audio [63] but
requires a large amount of data to train. Since image and spectrogram have
similar formats, many researchers have explored cross-domain transfer learn-
ing from vision to audio domain. Audio Spectrogram Transformer [19] shows
the effectiveness of ImageNet pretraining, which can help reduce the neces-
sity for in-domain audio data and produce remarkable results even without
AudioSet [17] pretraining for speech classification tasks. Given the limited
data availability and scarcity of pretrained models in this field, this approach
shows strong potential as a generic audio representation. Therefore, this
study adopts it as the audio encoder.

4.1.2 Pretrained video - S3D

Inflated 3D ConvNet

Two-dimensional convolutional neural networks (2D CNNs) have achieved
remarkable success in learning image representations and performing a wide
range of image tasks. Given that videos can be viewed as sequences of con-
secutive images capturing motion over time, many studies have explored ex-
tending 2D CNN architectures to video analysis. Carreira and Zisserman[8]
introduced the I3D (Inflated 3D ConvNet) architecture, which extends the
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Figure 4.5: The I3D architecture based on Inflated Inception-V1 (left) and a
detailed view of its inception submodule (right).

ImageNet-pretrained Inception V1 model by inflating its 2D convolutional
filters into 3D convolutions along the temporal dimension. This architecture
is illustrated in Figure 4.5. This approach enables I3D to perform convolu-
tions across both spatial and temporal dimensions, effectively capturing mo-
tion dynamics in videos. Their experiments demonstrated that I3D achieves
strong performance on multiple action recognition benchmarks, highlighting
its ability to learn rich spatiotemporal representations. Furthermore, they
showed that initializing I3D with inflated weights from ImageNet-pretrained
models consistently outperformed training from scratch, underscoring the
significant benefits of leveraging transfer learning for video-based tasks.

Separable 3D CNN

However, 3D CNNs are computationally intensive and susceptible to overfit-
ting due to their large number of parameters. To address these limitations,
Xie et al. [62] proposed the S3D (Separable 3D CNN) architecture, which
factorizes standard I3D convolutions (with kernel size kt × k × k) into sep-
arate spatial and temporal convolutions. Specifically, S3D replaces each 3D
convolution with a temporal convolution of size kt × 1× 1 followed by a spa-
tial convolution of size 1 × k × k, where kt denotes the kernel size along the
temporal, and k denotes the kernel denotes width/height of kernel in spatial
dimensions. The overview of S3D model architecture is illustrated in Figure
4.6 This factorization significantly reduces the number of parameters and
computational cost while improving accuracy compared to conventional 3D
CNNs. Furthermore, their results suggest that replacing lower-layer 3D con-
volutions with more efficient 2D convolutions yields top-heavy models that
are not only more computationally efficient but also achieve higher accuracy.
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Figure 4.6: Overview of the S3D model architecture (left), with details of
the temporally separable convolution (Sep-Conv) module (middle) and the
temporally separable inception blocks (Sep-Inc) (right).

Importantly, retaining 3D convolutions in higher layers remains beneficial,
as they effectively capture temporal dependencies among high-level semantic
features.

The Fast-S3D architecture improves computational efficiency by replacing
the 3D convolutions in the lower layers with 2D convolutions while retaining
separable 3D convolutions in the top two layers, achieving an optimal trade-
off between speed and accuracy. Additionally, the S3D-G variant enhances
the original S3D by incorporating context gating immediately after each tem-
poral convolution of size [k, 1, 1]. In context gating, the output features Y
are computed as:

Y = σ(W · avg pool(X) + b) ⊙X (4.2)

where σ denotes the sigmoid activation function, W and b are learnable pa-
rameters, and ⊙ represents element-wise multiplication along the channel
dimension. The average pooling is performed across both spatial and tempo-
ral dimensions. This mechanism enables the model to adaptively upweight
informative dimensions of the input X while downweighting less relevant
ones, functioning similarly to a lightweight self-attention mechanism. The
addition of context gating leads to improved accuracy with only a minimal
increase in computational cost.

Video representation from Uncurated Instruction Videos[32]

Miech et al. [32] introduced the MIL-NCE (Multiple Instance Learning and
Noise Contrastive Estimation) training loss to learn strong video representa-
tions from uncurated instructional videos in the HowTo100M dataset. This
approach enables training high-quality video representations from scratch by
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Figure 4.7: MIL-NCE for learning video representations from uncurated
datasets. Given a video x and a set of associated positive narra-
tion candidates P , MIL-NCE leverages multiple positive pairs—such as
(x, y), (x, y1), (x, y2), (x, y3), (x, y4) (left), which better captures fine-grained
object references like ’sander’ in (x, y3) and specific action descriptions in
(x, y4) that standard NCE may miss. This method promotes multiple cor-
rect positives while downweighting inaccurate ones using a discriminative
ratio against negatives N (right).

effectively leveraging the weak and noisy supervision inherent in available
large-scale datasets. One significant challenge in HowTo100M is that ap-
proximately 50% of clip-narration pairs are not temporally aligned, making
it difficult for standard methods to associate narration content with corre-
sponding visual events. MIL-NCE addresses this by treating the task as
multiple instance learning: For each video clip, multiple candidate captions
are considered as potential positive matches, thereby increasing the likeli-
hood that caption accurately describes the visual content. During training,
a 3.2-second clip is randomly sampled from a video, and a bag of positive
candidate captions (P) is constructed using the captions temporally nearest
to the clip, as illustrated in Figure 4.7. Negative samples are formed by
pairing sampled clips with narrations that do not belong to its positive bag.
The MIL-NCE objective is formulated as:

max
f,g

n∑
i=1

log

( ∑
(x,y)∈Pi

ef(x)
⊤g(y)∑

(x,y)∈Pi
ef(x)⊤g(y) +

∑
(x′,y′)∼Ni

ef(x′)⊤g(y′)

)
(4.3)

For specific sample indexed by i, the sampled video x and narration y, Pi

denotes the set of positive pairs, Ni is the set of negative pairs. Two para-
materized mapping f : X → Rd, and g : Y → Rd map sampled video and
text narration into d-dimension vector space. Joint probability of a pair of
video and narration is estimated by ef(x)

⊤g(y). . This objective encourages
learning a shared embedding space in which videos and texts semantically
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related are positioned closely together, while unrelated pairs remain distant,
enabling robust representation learning from noisy supervision.

By employing 3 to 5 positive candidates and 512 negative candidates along
with a simple bag-of-words language model, this approach achieves superior
performance on text-to-video retrieval tasks, effectively learning meaning-
ful video representations solely from paired video and narration data. Re-
markably, it accomplishes this without relying on any manually annotated
datasets, demonstrating the power of MIL-NCE pretraining for leveraging
weak supervision. The resulting S3D-G representations outperform prior
methods, including both self-supervised and fully supervised approaches,
across various downstream video tasks such as action recognition and action
segmentation. This highlights the effectiveness of MIL-NCE in capturing rich
semantic information directly from large-scale uncurated instructional videos.
Given the critical need for robust and generalizable visual encoders in video
understanding, S3D-G[32] pretrained with MIL-NCE on HowTo100M[33] is
utilized as the visual modality encoder in this study.

Figure 4.8: An Overview of multimodal dog social signal classification
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4.2 Feature extraction based on pre-trained

model

4.2.1 Acoustic feature embedding

Humans can recognize some of the most motivational dogs’ inner states us-
ing audio features [36]. Dog vocalizations alone have acoustic properties
related to emotions, physiological reactions, attitudes, or some particular
internal states [18]. Animal sound pre-trained models are capable of captur-
ing species-specific distinctive characteristics, which leads to a better under-
standing of animal communicational expression and contributes to improved
performance in bioacoustic tasks. Nevertheless, the bioacoustic pre-trained
model and general purpose pre-trained model show comparable results overall
[52] on several different bioacoustic tasks. Furthermore, upon investigating
the ImageNet pre-trained ViT model in section 6.2, I observe a remarkable
dog vocalization ability despite the huge domain gap. Additionally, AST
[19] is the modified architecture of ViT and pre-trained on AudioSet [17], a
large-scale dataset with a wide range of categories. Given its strong poten-
tial as an audio representation model, I ultimately selected the AST model
as audio embedding model. For acoustic feature embedding, a 10.24-second
audio segment is processed through AST feature extraction to generate a
1024×124 spectrogram, which is then fed into the pre-trained AST model.

4.2.2 Visual feature embedding

Even though vocal features contain context and emotional information, I
have answers from animal experts that visual features also provide useful
indicators and are critical in several scenarios that help to annotate those of
dog emotions in this dataset. Considering that S3D model [62] with 3D CNN
architecture is a well-known model for video understanding tasks, I integrate
S3D-G [32], a pre-trained models on HowTo100M [33], into the multimodal
pipeline to encode video for visual feature extraction, and how its visual
representations influence task performance. In visual modality, video is put
through an extraction pipeline, in which 32 224x224 frames sre extracted to
input into the S3D pre-trained model.

I experimented with various types of visual features, such as dog poses
and object-centric representations, such as dog bounding boxes from video
frames. To make the input more subject-centered, I applied object detec-
tion models to identify dogs and extracted features based on their bounding
boxes. While these visual cues are proven effective indicators of emotion, this
approach yielded suboptimal results on the dog social signal dataset. This
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may be attributed to several factors, including the noisy nature of YouTube
videos, frequent occlusions, and diverse camera angles that often fail to cen-
ter on relevant objects. As a result, the detection models could successfully
extract these features from only around 50% of the videos. Given these limi-
tations, the current video understanding approach proves more reliable. For
future work, I suggest curating more targeted or controlled video datasets,
which could improve object-based feature extraction and potentially yield
better performance.

4.3 Multimodal social signal modeling

This study addresses the task of classification dog social signals, aiming to
identify 7 of dog voiced-based emotion classes (bark/conflict, bark/aggressive,
bark/attention, whine/anxiety, whine/attention, growl/aggressive, growl/conflict).
In this work, I conduct experiments with unimodal classification (audio,
video) and multimodal classification (audio + video) to evaluate the per-
formance of the proposed methods and analyze the contribution of these
modalities.

As stated in [42], ”Emotions are physical, and there are visible or audible
signs of emotions. For example, if a computer tries to understand emotion,
not just by the name, but by listening to the human voices, noticing their
gesture, and appraising the situation that they are in”. Since visual features
provide rich contextual information for identifying emotions, while acoustic
features capture subtle vocal emotion cues, I establish a multimodal base-
line for analyzing dog emotions. An overview of this approach is presented
in Figure 4.8. In this multimodal model, I leverage pretrained weights as
unimodal encoders to construct a feature-based fusion classification pipeline.
Specifically, each modality’s input data is passed through its respective en-
coder to obtain a latent embedding, and these embeddings are then fused
via concatenation. The resulting multimodal representation is fed into a
classifier composed of three non-linear fully connected layers. To accelerate
training and improve stability, I apply a normalization layer after the em-
bedding concatenation. Additionally, to evaluate the contribution of each
modality, I conduct experiments using the unimodal models independently,
allowing us to assess their individual and combined effectiveness within the
multimodal pipeline.
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Chapter 5

Experimentation

5.1 Experiments: Pre-trained baseline for dog

social signal classification

Understanding the challenges posed by the dataset, I conduct experiments
using unimodal (audio and video) and multimodal approaches, leveraging
transfer learning with powerful pretrained models for each modality. These
experiments serve as baselines for this task, supporting future research and
facilitating the development of more effective methods.

5.1.1 Baselines

To provide a more comprehensive evaluation, I conduct experiments using
baseline models alongside the proposed method:

• Majority: As a basic reference, I use the majority class baseline to es-
tablish a minimum performance benchmark for evaluating the proposed
methods.

• eGeMAPS: For the second baseline, I train a non-parametric Deci-
sion Tree model using 88 features extracted from the OpenSmile [13]
eGeMAPSv02 [12] feature set.

• Unimodal classification: AudioSet pre-trained AST [19] is used for au-
dio unimodal classification (Pretrain acoustic), and Howto100M [33]
pre-trained S3D-G [32] for video unimodal classification (Pretrain vi-
sual).
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• Multimodal classification model: For multimodal approaches, I select
pre-trained AST for the audio encoder and pre-trained S3D for the
visual encoder.

5.1.2 Experimental Settings

With a relatively small dataset, I employ a transfer learning approach on gen-
eral pre-trained models to establish minimal training baselines for this bench-
mark. I keep the feature extraction module as in the pre-trained pipeline,
more details about feature extraction and feature embedding are described
in section 4.2, and transfer learning those pre-trained models with frozen
pre-trained weights. Those pre-trained models used in this work are publicly
available in Huggingface [61] hub.

Parameters: I optimize all models using Adam optimizer for cross-entropy
loss. For all settings, I select the learning rate in [1e − 2, 1e − 3] and batch
size in [32, 128], and models are trained for 30 epochs. For multimodal clas-
sification pipelines, 32 frames are extracted from video segments with frame
step = 9.

Experimental results are recorded as five-fold cross-validation using the
StrategiedFold object of the scikit-learn library [40]. This object splits the
dataset into consecutive folds and preserves the percentage of samples for
each class in folds. In the 5-fold cross-validation setup, each fold uses a hold-
out set as the test set, while the remaining data serves as the training set.
Approximately 30% of the training set is further allocated for validation. As
one video can produce multiple data samples with annotation (start time,
end time), and label ID. In order to prevent data leaks, the splits are made
based on video IDs and labels, ensuring that clips with the same video ID and
label are assigned to the same train, validation, or test set. For training splits
within each fold, data augmentation methods (rir affects, or adding noise)
are added to the lesser labels to reduce the effect of dataset imbalance.

Evaluation Metrics: In this paper, to evaluate model results, I adopted
two common metrics accuracy and macro F1 score. Results are reported as
the mean and standard deviation across all 5 folds. Accuracy is computed
based on the total number of correctly predicted samples in the test set.
The macro F1 score is calculated as the average of the F1 scores for each
individual label in the test set.

5.1.3 Experimental results

Overall results are reported in Table 5.1, and Table 5.2 reports more details of
the f1 score comparison of each label for each model. I also observe that the
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Table 5.1: Performance results of dog social signal classification. Numbers
in bold are the best metric values recorded, while those underlined are the
second-best ones.

Feature Model Accuracy7 F17

Majority - 0.321 ± 0.000 0.069 ± 0.000

eGeMAPS (acoustic) Decision Tree 0.406 ± 0.032 0.323 ± 0.072

Spectrogram AST 0.503 ± 0.051 0.472 ± 0.070

Video S3D 0.294 ± 0.060 0.220 ± 0.046

Video + Spec. S3D-AST 0.533± 0.027 0.477± 0.033

multimodal model outperforms all baselines across all labels, while the ma-
chine learning approach using a pretrained acoustic model shows promising
results as the second-best performer.

Detail results show the highest F1 score of each voice types group:

• Bark: bark/aggressive achived highest average f1 of 63.4% on multi-
modal (full-vid)

• Whine: whine/attention achived highest average f1 of 68.6% in pre-
trained acoustic.

• Growl: growl/conflict achived highest average f1 of 53.3% on multi-
modal (full-vid)

These labels correspond to those with the highest number of samples in each
group, which points to the severe imbalance of this dog social signal dataset.

Compared to other pre-trained machine learning models, acoustic hand-
craft feature eGeMAPS shows limited performance. Though handcraft fea-
ture shows its ability in various emotion classification tasks, pretrained acous-
tic has 23.9% accuracy higher (46.1% f1 higher) than the eGeMAPS baseline,
and multimodal (full-vid) has 31.3% accuracy higher (47.7% f1 higher) than
the eGeMAPS baseline. This evidence shows effective of the proposed meth-
ods leverages the ability of pre-trained models to capture discriminative fea-
tures from data, and produce good results. The domain gap between general-
purpose pre-trained and the task-specific, limited dataset, initially seems un-
suitable for training. However, the results demonstrate the effectiveness of
leveraging robust pre-trained representations to achieve strong performance,
surpassing traditional handcrafted acoustic features. Moreover, results from
the confusion matrices: Figure 5.1 shows that, in pretrained acoustic (5.1.b),
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I observe clear vocal distinctions. Similarly, in the multimodal pipeline, Fig-
ure 5.1.c, I see that these models are more likely to confuse bark/aggression
with bark/conflict than with growl/aggression. This trend supports the claim
that vocal features play a dominant role. It also aligns with the hierarchical
structure of the labels, as child labels are more likely to be confused with
their sibling categories rather than unrelated ones. This is also challenging
for non-professional scientists to distinguish. However, this pattern is not
observed in eGeMAPS acoustic model, despite its learning from the acous-
tic features of audio. These impressive results stem from training a single
classifier head on models which pre-trained on general data that may not be
ideally suited for such a fine-grained task. They demonstrate the proposed
methods’ potential. I anticipate a significant performance boost in future
work with the addition of more annotated data.

The pretrained acoustic model (AST) achieved the second-best perfor-
mance across both metrics, surpassing 56.7% accuracy higher than the ma-
jority baseline (over 500% F1 score) and 23.9% accuracy (46.1% F1 score)
higher than the eGeMAPS acoustic feature baseline. This result marks a
strong initial performance. Additionally, AST shows a performance boost
compared to ViT, with 23.9% higher accuracy and a 29.3% higher F1 score.
While ViT demonstrates significant capability in vocalization recognition,
emotional cues may lie in finer details that are more species-specific and less
visually apparent than those in vocalizations. AST model, pre-trained on
AudioSet with diverse audio data, has learned to distinguish different dog
emotional states. Despite the promising results compared to the baseline,
there is still considerable room for further improvement.

The multimodal (full-vid) achieve best results of all baselines and models,
it achieves a 1.1% higher F1 score and higher 6% accuracy than AST, which
suggests it is better suited for this dataset. Context adds more information
for identifying correct emotions, and AST may be biased toward larger labels
due to the imbalanced dataset. Furthermore, using full video inputs allows
the model to exploit dynamic visual signals, such as movement and contex-
tual interactions, that can contribute significantly to overall performance.
However, the results remain relatively modest. One possible explanation is
the large number of occluded videos in this dataset, where dogs are obscured
by factors such as furniture or rear-facing camera angles. These occlusions
hinder the visual encoder’s ability to fully and effectively extract visual fea-
tures on dogs’ bodies. Additionally, this performance gap may stem from
the pre-trained visual model itself, which is optimized for general context
understanding and instructional videos that may struggle with fine-grained
features, such as subtle emotional cues.

Although I anticipated that the multimodal pipeline would benefit from
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the context provided by the visual features, this did not result in a significant
performance boost. I also face challenges of noise such as video shaking, blur-
ring, etc. Since the data comes from YouTube, there are no strict recording
policies in place, which limits the ability to fully exploit those visual fea-
tures. Another reason could be due to the late fusion strategy, the audio
modality plays a more dominant role than the visual modality in this con-
text of dog emotion prediction (pre-trained acoustic is over 70% accuracy and
100% f1 score higher than pre-trained visual). In this work, I assume that
each modality equally contributes to classification results by using concate-
nation, and future research on fusion strategy and the unequal contribution
of these modalities presents great opportunities. Expanding the dataset size
and quality with visual annotation could improve these results for further
finetuning.

(a) (b) (c)

Figure 5.1: Comfusion maxtrix from eGeMAPS (acoustic) (a), pre-
trained acoustic (b), and multimodal(full-vid)(c) from test set. (Label 0:
bark/aggression, 1: bark/attention, 2: bark/conflict, 3: whine/anxiety, 4:
whine/attention, 5: growl/aggressive, 6: growl/conflict )

5.2 Experiment: Multimodal fusion for effec-

tive representation

To effectively integrate information from multiple modalities, I investigate
several fusion strategies for multimodal classification. Specifically, I com-
pare three commonly used techniques: concatenation (concat), element-wise
addition (add), and gated fusion (gated). Concatenation merges modality
features by simply appending them, treating all modalities equally. While
it is easy to implement, it fails to capture the intrinsic correlations between
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modalities. Additive fusion combines modality embeddings via element-wise
addition, aiming to integrate complementary information into a unified rep-
resentation. However, both of these approaches may struggle to model com-
plex cross-modal dependencies effectively. More advanced methods, such as
cross-attention, allow one modality to attend to relevant features in another,
enabling richer interaction. Yet, such methods often require large and clean
datasets to achieve high performance, which may not be feasible in this case.
Given the limited size and noisy nature of this dog social signal dataset,
overly complex fusion strategies may not yield optimal results. Arevalo et
al. [3], introduced Gated Multimodal Unit (GMU), which introduces learn-
able gates that dynamically regulate the contribution of each modality to
the output of hidden units and benefit the model’s final decision. Motivated
by these insights, we designed a joint feature modulation mechanism to our
multimodal fusion that enables the model dynamically learns to control the
combination features based on the input data and effectively fuse multimodal
features from pretrained models. Generic pretrained models often generate
feature representations that include redundant or irrelevant information for
emotion classification, which can negatively impact performance. However,
both modalities still contain valuable complementary information. Our ap-
proach aims to amplify the shared features among modalities that express
the target emotion, while suppressing irrelevant or conflicting signals. To
achieve these goals, we proceed as follows: the unimodal embeddings are first
projected into a shared high-dimensional space, a joint feature modulation
(JFM) combines these high-dimensional features and the fused representa-
tion is fed through one linear layer classifier to make prediction. Our JFM
is fomulated as:

hv = σv(Wvxv)

ha = σa(Waxa)

z = σz(Wz[hv, ha])

h = z · (hv + ha)

For visual embedding xv and audio embedding xa, with corresponding trans-
formation weights Wv and Wa, the gated fusion mechanism computes hidden
representations hv and ha through non-linear activations σv and σa, respec-
tively. A gating vector z is computed using a joint transformation over the
concatenated representations [hv, ha], and the final representation h is ob-
tained as a weighted combination of hv and ha, controlled by the learned
gate z. The resulting joint multimodal representation is fed through a one-
layer linear classifier to make predictions. This approach introduces learnable
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Table 5.3: Comparision results of dog social signal classification amongst dif-
fereren fusion methods. Numbers in bold are the best metric values recorded,
while those underlined are the second-best ones.

Feature Model Pretrained Fusion Accuracy7 F17

Vid. + Spec. S3D-AST Howto100M-AudioSet concat.1024 0.532 ± 0.031 0.481 ± 0.051

Vid. + Spec. S3D-AST Howto100M-AudioSet add.1024 0.546 ± 0.028 0.492 ± 0.033

Vid. + Spec. S3D-AST Howto100M-AudioSet GMU.1024 0.526 ± 0.024 0.452 ± 0.022

Vid. + Spec. S3D-AST Howto100M-AudioSet JFM.1024 0.553 ± 0.020 0.496 ± 0.029

gates that dynamically scale the combination from both modalites enhance
fused embedding and benefit the model’s final decision. This makes it par-
ticularly suitable for my setting with constrained data and varying modality
quality.

To evaluate the impact of the proposed fusion strategies on this dataset,
I use models with simple concatenation as baselines. Each unimodal encoder
is pretrained and frozen for transfer learning, following the setup described
in Section 5.1. Unimodal embeddings are first projected into a shared latent
space by a nonlinear mapping layer. All experiment uses the same architec-
ture: a unimodal mapper, a specific fusion technique, and a final classifier
head. The fused multimodal embedding, which has dimension d, is then
passed to the classifier. Our notation reflects this dimension; for instance,
concatenation with a latent dimension of 1024 is denoted as concat1024. This
design enables a controlled comparison of fusion strategies, allowing us to as-
sess how effectively each method integrates information from multiple modal-
ities.

5.2.1 Results

The results are presented in Table 5.3. JFM fusion consistently achieves
the best performance across all the experimental settings. This approach
outperforms the concat baseline by 3.9% accuracy and 3.1% in terms of F1
score, and it exceeds additive fusion by 1.3% in accuracy and about 0.8% in
F1 score. We also experimented with different latent multimodal embedding
sizes [128, 256, 512, 1024], and in all settings, the fusion with joint feature
modulation consistently outperformed the additive approach with respect to
both metrics. While gated fusion benefits from being trained on a high-
quality dataset that teaches the model how to control the contribution of
each modality and shows remarkable results on various multimodal tasks,
our setting involves a small dataset, which, combined with transfer learning,
limits its ability to further learn and refine this control. Our JFM has a 5.1%
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increase in accuracy and a 9.7% increase in F1 score over GMU fusion. These
results suggest that JFM fusion is the most suitable and effective strategy
for this dataset.

5.3 Experiments: Improve performance with

unimodal feature extractor

From previous results and insights from ablation studies in section 6.1 and
section 6.2, I made a few following observations. First, generic models pro-
pose promising results; however, they may lack domain specific discriminative
power for this task, and in-domain data is key for good performance. Ad-
ditionally, learning representation typically demands vast amounts of data
and significant computational resources. Moreover, strong image pretrained
models such as ViT is promising for dog voice representation learning. This
motivates my approach that leverages powerful cross-domain pretrained mod-
els for initialization, apply in domain pretraining, and then freezes them for
downstream classification. This strategy not only reduces the need for ex-
tensive pretraining data and computational cost but also has the potential to
yield more robust representations, and ultimately leads to improved overall
results.

5.3.1 Model architecture overview

The following models are selected as backbones for encoder models::

• Audio modality: For audio data, I continue to use the AST model to
process spectrogram representations. Following the same configuration
as in earlier experiments, each 10.24-second audio clip is converted into
a 1024× 128 log-Mel spectrogram and passed through the AST model,
producing an audio embedding of shape (B,768), where B is the batch
size.

• Video modality: To capture spatiotemporal information from videos, I
use the S3D model. A video clip consisting of 32 frames is input into the
model to generate a rich video embedding, which captures both spatial
and temporal dynamics, resulting in a (B, 1024) video embedding.

To provide a more comprehensive evaluation, I select models with their origi-
nal pretrained weights as baselines in this experiment. Specifically, unimodal
AST pretrained on AudioSet and S3D pretrained on Howto100M are used as
baseline models, against which I compare the in-domain pretraining check-
points.
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5.3.2 Experiment settings

In this experiment, I use pretext tasks for in-domain pretraining and evaluate
the resulting checkpoints on downstream dog social signal classification tasks.
This setup provides a clearer view of the impact of pretraining and facilitates
more effective analysis and discussion. The processes of feature extraction
and embedding are described in greater detail in sections 4.2.

Pretext Tasks

To further pretrain the unimodal models, I apply modality-specific pretext
tasks tailored to each model. We first conduct study with audio modality .

For the audio modality, AST was initialised with ImageNet pretrained
weights [54]. I continue pretraining the AST model using a joint discrim-
inative–generative masked spectrogram patch modeling (MSPM) objective,
following the design proposed in [21]. This is performed using unlabeled au-
dio data from the AudioSet-Dog subset, as described in Section 3.3.1. For
the spectrogram X input, it is first divided into 512 patches x, which are
then projected into patch embeddings E. A random set I of N patch in-
dices is selected for masking. For each patch to be masked, its embedding
is replaced with a learnable mask embedding Emask. After adding positional
embeddings to the resulting patch embeddings, the sequence is fed into the
transformer encoder. For each masked patch xi, the corresponding encoder
output oi ∈ R768, is passed through two two-layer MLP heads that both map
it to the same dimension as the original patch xi ∈ R256. A classification
head then maps oi to a prediction ci, with the objective of selecting the cor-
rect patch for each masked position among all masked candidates. Negative
samples are drawn from the same spectrogram, and training is guided by a
discriminative InfoNCE loss objective Ld:

Ld =
1

N

N∑
i=1

log(
exp(cTi xi)∑N
j=1 exp(cTi xj)

) (5.1)

A reconstruction head maps oi to ri, with expectation that ri to be close to
xi and using MSE Lg loss:

Lg =
1

N

N∑
i=1

(ri − xi)
2 (5.2)

Model total loss is calculated with weights λ =10:

L = Ld + λLg (5.3)
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Downstream tasks

After continued pretraining with the pretext task, the best checkpoint model
was chosen and further evaluated with the downstream task, the dog social
signal classification task, which includes 7 classes of dog emotion per voice
types. The downstream evaluation follows a similar experimental setup to
that described in section 5.1. Pretrained models are frozen and used as
feature extractors, while a simple concatenation strategy is applied for mul-
timodal fusion. A classification head is then trained on top of the model for
this downstream task.

5.3.3 Experiment results

Experiment results on pretext tasks

Model Task Dataset Pretrained Accuracy F1 Loss

AST classification AudioSet dog ImageNet 0.142 - 0.046

Table 5.4: Pretext evaluation of model continue pretraining for domain adap-
tation

The early results for the pretext task are summarized in Table 5.4. Cur-
rently, the performance is limited, with accuracy reaching only 14% on vali-
dation set. This is significantly lower than the 80% reported in the original
paper [21]. The primary reasons for this underperformance are time and
resource constraints. Specifically, pretraining was conducted with a batch
size 16 times smaller and using a dataset over 100 times smaller than the
one used in prior work. Additionally, due to time limitations, I were unable
to run sufficient training trials to select optimal checkpoints. Future work
can address these limitations by allocating more time and computational re-
sources to thoroughly explore the pretraining phase, which is expected to
lead to improved performance on both the pretext and downstream tasks.

Experiment results on downstream tasks

The results for the downstream task are shown in Table 5.5. A noticeable
drop in performance is observed, which I attribute to the use of suboptimal
checkpoints. I believe that with longer pretraining, greater computational
resources, and more targeted pretraining tailored to the task, the AST model
could learn more robust representations. This, in turn, is expected to enhance
performance on the downstream task.
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Feature Model Pretrained Accuracy7 F17 macro

Spec. AST AudioSet 0.503 ± 0.051 0.472 ± 0.070

Spec. AST AudioSet Dog 0.374 ± 0.038 0.301 ± 0.068

Video + Spec. S3D- AST Howto100M - AudioSet 0.532 ± 0.027 0.477 ± 0.033

Video + Spec. S3D- AST Howto100M - AudioSet dog 0.420 ± 0.063 0.351 ± 0.081

Table 5.5: Performance results of downstream dog social signal classification

45



Chapter 6

Ablation Study

This section aims to investigate strategies for improving multimodal perfor-
mance. In particular, I focus on enhancing the unimodal encoders through
pretraining to obtain better representations, which can in turn benefit mul-
timodal learning.

The motivation for this approach is that pretrained models have demon-
strated strong performance on unseen data (see Sections 5.1, 6.2). Moreover,
high-quality annotated bio-data is inherently rare, difficult, and expensive
to obtain, which limits the effectiveness of fine-tuning for full adaptation
and feature learning. Furthermore, domain adaptation through fine-tuning
is computationally expensive, and in cases of significant domain shift, fine-
tuning on small datasets can distort useful pretrained features, potentially
leading to degraded performance. In contrast, unlabeled data is easier to
acquire, and several available datasets can be leveraged to build strong repre-
sentations. Recent studies have also shown that unsupervised representation
learning on large-scale online unlabeled datasets achieves remarkable perfor-
mance across various benchmarks. However, building a large-scale pretrain-
ing dataset is challenging in this field, even when labels are not required.
Additionally, recent findings [52] suggest that general-purpose audio pre-
trained models can perform well on bioacoustic tasks, even without being
specifically trained on animal vocalizations. This highlights the potential
of cross-domain adaptation to transfer knowledge from robust, high-quality
source domains to target domains with limited data. Therefore, I focus on
continued pretraining unimodal encoders to address these limitations, en-
hance unimodal representation and improve overall multimodal learning. To
assess this approach, I conduct the following experiments to verify its effec-
tiveness.
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6.1 Effect of Layer Unfreezing on Model Per-

formance

To understand the impact of fine-tuning strategies, I record classification
results when unfreezing different portions of the pretrained acoustic, AST
model. This allows us to evaluate the transferability of learned representa-
tions across layers, optimize adaptation strategies, and balance performance
gains with computational cost.

It is important to note that I do not apply unfreezing experiments to the
multimodal setting at this stage for the following reasons:

• The dataset contains audio-based labels without corresponding visual
annotations. From previous experiments, when extracting visual fea-
tures, I observed that the videos are highly noisy, making the visual
features potentially unreliable for current use. As a result, I plan to
postpone visual-based experimentation until a later phase when anno-
tated visual data becomes available.

• Fine-tuning a large multimodal model requires significantly more com-
putational resources, which are currently not available for this stage of
the project.

Settings are defined by which layers are unfrozen during fine-tuning,
where “Frozen” mean the only the classfier head is unfrozen, “L11” indicates
only the final transformer block with classifier head is unfrozen, “L10-11”
indicates the last two layers with classifier head are unfrozen, and so on, up
to “All layers”, where all model layers are fine-tuned. In this experiments,
the optimal configuration was found to be LP-FT, consisting of 10 epochs
of linear probing (LP) with a learning rate of 1e-3, followed by fine-tuning
(FT) for up to 30 epochs with early stopping and a learning rate of 3e-5. To
accommodate hardware limitations, I employed a batch size of 4 across all
settings, with gradient accumulation over 4 steps to simulate a larger effective
batch size. Results were evaluated using 5-fold cross-validation.

6.1.1 Experiment results

For detailed results, please refer to Table 6.1, and for a visual demonstration,
see Figure 6.1, 6.2.

As expected, fully unfreezing all layers of AST yields the best perfor-
mance, achieving a 12.0% improvement in accuracy and a 14.4% increase in
F1 score over the frozen baseline. However, I note that the L6–11 setting
(unfreezing layers 6 to 11) performs comparably, with only slightly lower

47



Table 6.1: Accuracy and F1-score results for progressive unfreezing experi-
ments.

Settings Accuracy7 ↑ F17 ↑ Loss ↓

Frozen 0.504 ± 0.054 0.472 ± 0.077 1.163 ± 0.119

L11 0.497 ± 0.015 0.465 ± 0.030 1.153 ± 0.084

L10-11 0.485 ± 0.028 0.468 ± 0.039 1.282 ± 0.213

L9-11 0.503 ± 0.031 0.471 ± 0.040 1.444 ± 0.174

L8-11 0.490 ± 0.039 0.468 ± 0.042 1.286 ± 0.237

L7-11 0.527 ± 0.013 0.470 ± 0.026 1.714 ± 0.292

L6-11 0.563 ± 0.047 0.528 ± 0.058 1.669 ± 0.250

L5-11 0.545 ± 0.034 0.509 ± 0.058 1.544 ± 0.325

L4-11 0.545 ± 0.015 0.496 ± 0.015 1.561 ± 0.338

L3-11 0.520 ± 0.029 0.483 ± 0.042 1.623 ± 0.340

L2-11 0.560 ± 0.063 0.524 ± 0.101 1.696 ± 0.359

L1-11 0.544 ± 0.033 0.501 ± 0.025 1.628 ± 0.288

L0-11 0.540 ± 0.073 0.477 ± 0.087 1.592 ± 0.407

All layers 0.567 ± 0.046 0.540 ± 0.076 1.717 ± 0.346
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(a)

(b)

Figure 6.1: Performance across different unfreezing configurations. Subfig-
ures show (a) accuracy and (b) macro F1-score, for each unfreezing setting.
Settings range from unfreezing only the classifier layer (leftmost) to unfreez-
ing all layers (rightmost).
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Figure 6.2: Testing loss across different unfreezing configurations. Settings
range from unfreezing only the classifier layer (leftmost) to unfreezing all
layers (rightmost).

gains (11.7% in accuracy and 11.9% in F1) while requiring approximately
six fewer transformer blocks to be fine-tuned. Despite these performance
improvements, both settings exhibit significantly higher losses: the fully un-
frozen model has a 47.6% increase in loss, and L6–11 has a 43.5% increase,
compared to the frozen encoder. This suggests that while the models predict
more correct samples, they also become more prone to confidently making
incorrect predictions, an undesirable trait for a well-generalized model.

Moreover, the frozen setting requires significantly less training time and
computational resources compared to all other configurations. Although the
reported results use the same training setup, such as batch size and number
of epochs, to allow fair comparison of performance, I also conducted experi-
ments adapted to available hardware with 16GB of VRAM to assess practical
efficiency. Under these constraints, the frozen setting completed training ap-
proximately three times faster than L6–11 and supported a batch size twice
as large. Moreover, L6–11 required only about 10% less training time than
the fully unfrozen model, and it also accommodated a batch size twice as
large.

More fine-tuning does not necessarily lead to better performance. Exces-
sive fine-tuning can distort the useful representations learned during pretrain-
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ing, while also significantly increasing computational cost. Prior studies have
explored how many and which layers should be fine-tuned for downstream
tasks. In this case, fine-tuning layers L6–11 appears to strike a good balance,
preserving general knowledge from pretraining while allowing effective task-
specific adaptation. However, fine-tuning on a small and imbalanced dataset
can lead to overfitting, resulting in minimal performance gains. Furthermore,
unfreezing additional layers, particularly those closer to the input (i.e., lower
layers), further increases the computational burden without necessarily im-
proving generalization.

While the LP-FT approach yields a modest performance gain, it also
increases the model’s confidence in incorrect predictions. This is a sign of
reduced generalization. These suggest that the only viable path toward sub-
stantial improvement for this approach is the introduction of a significantly
larger dataset. This highlights the challenges of working with limited data
and the lack of abundant pretrained models in this domain. In light of these
constraints, linear probing or using a frozen pretrained model proves to be a
strong and promising baseline across modalities and domains. By leveraging
the rich and generalizable acoustic representations learned by large-scale au-
dio models, this approach reduces data requirements, computation resources,
and potentially achives good results, offering a practical foundation for fur-
ther development. However, challenges remain, such as the mismatch be-
tween the pretraining domain and the target task, and the possible loss of
important task-specific information. Improving the feature extractor may
help address these problems. I also explored using self-supervised learn-
ing with unlabeled data to learn dog-specific voice representations through
cross-domain adaptation. This approach can reduce the amount of labeled
data needed for downstream tasks and lower the need for a very large pre-
trained model and dataset. It shows promise for improving performance in
settings with limited data, which is especially helpful for underexplored ar-
eas. Although this part of my work is still ongoing, early results are shown
in Experiments 6.2 and 5.3.

6.2 Cross-domain adaptation for acoustic rep-

resentation learning

Since image and spectrogram have similar formats, many researchers have
explored cross-domain transfer learning from vision to audio domain. Audio
Spectrogram Transformer [19] shows the effectiveness of ImageNet pretrain-
ing, which can help reduce the necessity for in-domain audio data and pro-
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duce remarkable results even without AudioSet [17] pretraining for speech
classification tasks. Moreover, recent studies on self-supervised learning
(SSL) models pre-trained on human speech have shown remarkable success
towards bioacoustic data [51]. These models capture latent features to pro-
duce meaningful representations of human speech. Given that both humans
and animals have a similar voice production system, even without finetuning,
SSL pre-trained models can produce latent embeddings for effective bioacous-
tic classification [50, 9]. While the bioacoustic domain faces data scarcity,
domains such as image, and human speech are well-supported with extensive
datasets and readily available pre-trained models. This part is dedicated
to analyze how different domain pre-trained models model dog vocalization,
to assess whether their vocalization capabilities can be effectively leveraged
for emotion classification. Additionally, since I intend to develop an audio-
pretrained model for this task using unlabeled data, I are motivated to study
the effects of leveraging both ImageNet-pretrained models applied to spec-
trograms like ViT[11] and human speech-pretrained models like Wav2Vec 2.0
[4], to assess whether they can provide strong starting points and enhance
the effectiveness of audio pretraining.

In this part, I adopt Vision Transformer (ViT) pre-trained on ImageNet,
and Wav2vec2 , a SOTA self-supervised model for Automatic Speech Recog-
nition, for a dog emotion classification study to explore the ability of these
pre-trained models on capture abstract representation of cross-domain acous-
tic data. I aim to investigate the potential application of these cross domain
pretrained models as initializations for dog social signal classification.

6.2.1 Experiment settings

Both models are frozen and train only the classifier head to see how I can
transfer pre-trained knowledge on bioacoustic data. The Wav2Vec2 model
takes raw audio as input, whereas for the ViT model, I preprocess the spec-
trogram into an approximate 3-channel RGB format using Matplotlib [24].
To evaluate model performance, I establish a majority-class baseline, com-
monly applied when dealing with imbalanced data. Both models were trained
for 30 epochs with 5-fold cross-validation, following the same settings as in
the experiment 5.1.

6.2.2 Cross-domain transfer via pretrained feature rep-
resentations results

Results from Table 6.2 show impressive results for both ViT and Wav2vec2
with respectively 26.5%, and 36.8% improvement over majority baseline.
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Table 6.2: Cross domain transfer learning results of Image pretraining model
(ViT) and human speech pretraining model (Wav2vec2). Both model’s pre-
trained weights are frozen for feature extraction and training classifier head
for dog social signal recognition.

Domain Accuracy F1 %Improve

Majority 0.321 ± 0.0 0.069 ± 0.0 -

Image (ViT) 0.406 ± 0.048 0.365 ± 0.082 26.480%

Speech (Wav2vec2) 0.439 ± 0.046 0.393 ± 0.056 36.760%

Table 6.3: Dog vocalization results. A classification between bark, whine and
growl on ViT model.

Layer Finetuning Accuracy F1

classifier head 0.898 0.825

full finetuning 0.933 0.904

Even for dog audio, Wave2vec is able to capture discriminative acoustic fea-
tures of bioacoustic data, and satisfactorily classify a dog’s inner state using
those latent presentations with a minimum of only training classification.
Despite the huge gap between the audio spectrogram and ImageNet image,
ViT performs relatively well with more than 25% higher than the baseline,
suggesting that this image pretrained model can capture some distinct traits
that help differentiate between categories. In further investigation, I experi-
ment with 3 classes of dog vocalization (bark, whine and growl) on ViT. The
results from Table 6.3 shows that ViT yields a remarkable performance of
89.8% accuracy and 82.5% f1 score (macro average) when training only clas-
sification head. I conclude that vocal differences are visually discriminated
in spectrogram, and distinguishing between emotion classes remains a chal-
lenge, which I aim to address through further refinement of my classification
approach.

Even though both of the models have never experimented with such data,
these results of only training classifier heads of cross-domain pre-trained
weights have relatively impressive results. This could serve as a strong base-
line for further investigation. This also raises the question of how perfor-
mance could be further improved. One possibility is the inclusion of more
labeled data for further finetuning; however, collecting such data is particu-
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larly challenging and beyond the scope of my current work. I consider this an
important direction to revisit in future research. While cross-domain transfer
learning yields interesting results, the limited data currently available poses
challenges for in-depth analysis, the field remains an exciting direction for
continued research.

Figure 6.3: Visualization from eGeMAPS features embedding and ViT fine-
tuning embedding using PCA(2)

Through experiments, I made the following observations: Even though
the pre-trained acoustic (AST model) cannot classify dog social signals per-
fectly, this model demonstrates strong performance in dog vocalization. This
phenomenon is observed not only in AST but also in its pre-trained back-
bone, ImageNet pre-trained ViT, as evidenced by the results presented in
Table 6.3 from the study of cross-domain transfer learning in section 6.2.2.
These results provide evidence that vocal differences are visually displayed
in the spectrogram and effectively captured by these models. Audio process-
ing using machine learning is highly applicable and currently achieves high
results on several benchmarks. However, they are mostly centered on hu-
mans, and from these results, I understand that these techniques could also
applied well to non-human species such as canine vocalization. For deeper
understanding, I perform dimension reduction on ViT embedding which is
finetuned with the dog social signal dataset, and open smile features embed-
ding, then visualize using the PCA technique. From Figure 6.3, I notice that
embedding from the ViT model creates 3 parent clusters for bark, whine, and
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growl. These clusters are well-separated, meanwhile, the barrier between in-
traclasses is ambiguous. This naturally explains barking/aggression is more
similar to barking/conflict than growl/aggression. Unfortunately, I can not
detect such behavior in the Opensmile features set. These results provide
additional evidence that makes these models a compelling choice for learning
discriminative dog vocalization embedding.

These results show that strong pretrained models, such as those trained on
images, can serve as effective initializations for domain adaptation, consistent
with findings from prior work [19].
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Chapter 7

Conclusion

7.1 Summary

Working with a small-scale and noisy dataset, I proposed a promising mul-
timodal approach that leverages pretrained models to improve performance.
Experimental results demonstrate the effectiveness of this method, as the
multimodal setup using pretrained unimodal feature extractors outperforms
all baselines. Additionally, the proposed joint feature modulation allows the
model to dynamically control the combined feature representation. This
scaled additive fusion enhances complementary modality information, sup-
presses irrelevant or conflicting signals, and produces a richer multimodal
representation from the pretrained model, which ultimately leads to more
accurate predictions. On the other hand, the experimental results reveal that
current state-of-the-art multimodal approaches perform suboptimally on this
dog social signal dataset, underscoring the complexity and challenges of this
task. The limited performance reflects issues related to both dataset qual-
ity and model generalization. Key contributing factors include data scarcity,
class imbalance, and high levels of noise, all of which hinder effective learning.
The ablation study with gradual unfreezing reveals that, for small and noisy
datasets, frozen pretrained models deliver superior performance. Addition-
ally, experiments using audio and image-pretrained models independently
show strong results in capturing the discriminative characteristics of dog vo-
calizations, despite a significant domain gap. These findings suggest consid-
erable potential for further improvement through the use of unlabeled data to
enable more effective domain adaptation via pretraining from cross-domain
pretrained models and transfer learning for downstream classification, lead-
ing to more robust and generalizable representations and reducing the need
of a extremely large pretraining dataset and resources. However, due to time
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and resource constraints, I were unable to complete these experiments in the
current study. Future research with sufficient resources may build on this
approach to fully realize its benefits.

7.2 Contribution

In conclusion, contributions of this thesis is as following:

• This work proposes multimodal approach that models dog social signals
through acoustic and visual modalities for classification. To address
the limitations of a small-scale and noisy dataset, this work leverages
transfer learning with frozen generic pretrained models that are publicly
available.

• This study conduct experiments with other baselines, which not only
establish an initial benchmark for the task but also demonstrate the
effectiveness of the proposed method.

• This work proposes a joint feature modulation (JFM) for information
fusion, a scaled additive fusion to enhance the fused information, and
improve multimodal model performance.

• Through ablation studies, this research proposes an approach to im-
prove the multimodal pipeline by enhancing unimodal feature repre-
sentations via self-supervised in-domain pretraining from cross-domain
pretrained model. This method aims to produce more robust and gener-
alizable representations, while reducing the reliance on extremely large
pretraining datasets and computational resources.

7.3 Future work

While the initial results highlight the challenges posed by the dataset, they
also provide a foundation for future animal-human-computer research. Our
benchmark models establish a starting point, and there is significant room
for improvement. Future work may explore advanced deep learning meth-
ods, domain-specific adaptations, and improved fusion strategies to enhance
model performance in challenging scenarios, such as missing or low-quality
modalities. Moreover, in-domain pretraining from cross-domain pretrained
models is encouraged, as it leverages the strength of existing models to build
more robust representations while reducing the need for extensive pretrain-
ing resources and large datasets. Additionally, refining and expanding the
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dataset could enhance generalization and robustness. We hope this study
serves as a valuable reference for continued exploration toward more robust
and efficient methods in this domain.
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