
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Python Code Verification and Improvement Using

Large Language Models

Author(s) 李, 宗珉

Citation

Issue Date 2025-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/20038

Rights

Description
Supervisor: BEURAN, Razvan Florin, 先端科学技術

研究科, 修士 (情報科学)

1

Python Code Verification and Improvement Using Large Language Models

2310402 Jongmin Lee

The explosive growth of artificial intelligence (AI) has propelled large language

models (LLMs) from academic curiosities to everyday development companions. By

translating natural language descriptions directly into source code, LLMs promise

unprecedented boosts in programmer productivity and faster delivery cycles. Yet, this

promise is overshadowed by persistent concerns. Empirical studies show that

automatically generated code frequently embeds critical security weaknesses, subtle logic

flaws, and mismatches between user intent and program behavior. These shortcomings

can translate into exploitable vulnerabilities, unexpected production outages, and costly

maintenance overhead. Traditional manual reviews cannot keep pace with the volume and

velocity of LLM output, underscoring the urgency for scalable, automated safeguards.

This thesis introduces CodeEnhancer, a fully automated, two stage framework that

tackles these challenges holistically. Stage 1 combines best practice structured prompting

with an iterative “generate-verify-refine” loop. Each candidate program is scrutinized by

Pylint for syntax compliance, Bandit for CWE-mapped vulnerability patterns, and an

LLM-based reasoning module that cross-checks functional intent captured in a mandatory

docstring. Structured, tool-specific feedback is fed back to the LLM until the code passes

all checks or a configurable iteration budget is exhausted, yielding a corpus of high quality,

self-documented scripts with minimal human oversight.

Stage 2 shifts the focus from fixing problems after the fact to proactively ensuring

code quality. In this phase, GPT-4o is fine-tuned using two complementary datasets.

Secure code examples authored by experts from the LLMSecEval benchmark, and refined

outputs from Stage 1. This combined training approach equips the model with both best

practice secure coding techniques and practical remediation strategies, allowing it to

recognize and prevent common vulnerabilities during code generation.

Comprehensive experiments on the security‑oriented LLMSecEval and SecurityEval

benchmarks confirm CodeEnhancer’s effectiveness. A GPT‑4o baseline produced

vulnerable code in 43.6% of LLMSecEval tasks. A GPT‑4o variant further trained with

the CodeEnhancer pipeline (framework‑tuned GPT‑4o) lowered this rate to 18.4% prior

to refinement and to only 8% after one refinement cycle. On SecurityEval, the same

framework‑tuned GPT‑4o cut the final vulnerability rate. Functional correctness

exhibited similar improvements, with 98.7% prompt adherence after refinement while

preserving or enhancing execution efficiency. Importantly, the framework‑tuned GPT‑4o

achieved these gains in fewer iterations than both the baseline and a fine-tuned model by

secure code written by experts. Underscoring the synergistic value of CodeEnhancer’s

automatically generated training data.

Beyond empirical metrics, CodeEnhancer offers practical benefits. It integrates

seamlessly into CI/CD pipelines, requires no language specific test harnesses, and

remains agnostic to future advances in static code analysis (SAST) tools. Nevertheless,

limitations persist. Current evaluations target Python and static analysis. Extending

coverage to languages with stronger type systems and incorporating dynamic or formal

constitutes next steps. Additionally, broader datasets that capture domain specific security

requirements will help generalize the approach.

2

In summary, CodeEnhancer demonstrates that pairing LLMs with iterative static

analysis, verification, and feedback informed fine-tuning creates a virtuous cycle that

progressively decreases vulnerabilities and increases trustworthiness. The framework

lays a scalable foundation for safely harnessing AI powered code generation across

modern software engineering workflows, paving the way for future research on multi

language support, dynamic analysis, and continuous self-improvement loops.

Keywords: Large Language Models (LLMs), Code Generation, Software Security,

Static Analysis, Functional Correctness, Fine-Tuning

