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Python Code Verification and Improvement Using Large Language Models 

2310402  Jongmin Lee 

The explosive growth of artificial intelligence (AI) has propelled large language 

models (LLMs) from academic curiosities to everyday development companions. By 

translating natural language descriptions directly into source code, LLMs promise 

unprecedented boosts in programmer productivity and faster delivery cycles. Yet, this 

promise is overshadowed by persistent concerns. Empirical studies show that 

automatically generated code frequently embeds critical security weaknesses, subtle logic 

flaws, and mismatches between user intent and program behavior. These shortcomings 

can translate into exploitable vulnerabilities, unexpected production outages, and costly 

maintenance overhead. Traditional manual reviews cannot keep pace with the volume and 

velocity of LLM output, underscoring the urgency for scalable, automated safeguards. 

This thesis introduces CodeEnhancer, a fully automated, two stage framework that 

tackles these challenges holistically. Stage 1 combines best practice structured prompting 

with an iterative “generate-verify-refine” loop. Each candidate program is scrutinized by 

Pylint for syntax compliance, Bandit for CWE-mapped vulnerability patterns, and an 

LLM-based reasoning module that cross-checks functional intent captured in a mandatory 

docstring. Structured, tool-specific feedback is fed back to the LLM until the code passes 

all checks or a configurable iteration budget is exhausted, yielding a corpus of high quality, 

self-documented scripts with minimal human oversight. 

Stage 2 shifts the focus from fixing problems after the fact to proactively ensuring 

code quality. In this phase, GPT-4o is fine-tuned using two complementary datasets. 

Secure code examples authored by experts from the LLMSecEval benchmark, and refined 

outputs from Stage 1. This combined training approach equips the model with both best 

practice secure coding techniques and practical remediation strategies, allowing it to 

recognize and prevent common vulnerabilities during code generation. 

Comprehensive experiments on the security‑oriented LLMSecEval and SecurityEval 

benchmarks confirm CodeEnhancer’s effectiveness. A GPT‑4o baseline produced 

vulnerable code in 43.6% of LLMSecEval tasks. A GPT‑4o variant further trained with 

the CodeEnhancer pipeline (framework‑tuned GPT‑4o) lowered this rate to 18.4% prior 

to refinement and to only 8% after one refinement cycle. On SecurityEval, the same 

framework‑tuned GPT‑4o cut the final vulnerability rate. Functional correctness 

exhibited similar improvements, with 98.7% prompt adherence after refinement while 

preserving or enhancing execution efficiency. Importantly, the framework‑tuned GPT‑4o 

achieved these gains in fewer iterations than both the baseline and a fine-tuned model by 

secure code written by experts. Underscoring the synergistic value of CodeEnhancer’s 

automatically generated training data. 

Beyond empirical metrics, CodeEnhancer offers practical benefits. It integrates 

seamlessly into CI/CD pipelines, requires no language specific test harnesses, and 

remains agnostic to future advances in static code analysis (SAST) tools. Nevertheless, 

limitations persist. Current evaluations target Python and static analysis. Extending 

coverage to languages with stronger type systems and incorporating dynamic or formal 

constitutes next steps. Additionally, broader datasets that capture domain specific security 

requirements will help generalize the approach. 
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In summary, CodeEnhancer demonstrates that pairing LLMs with iterative static 

analysis, verification, and feedback informed fine-tuning creates a virtuous cycle that 

progressively decreases vulnerabilities and increases trustworthiness. The framework 

lays a scalable foundation for safely harnessing AI powered code generation across 

modern software engineering workflows, paving the way for future research on multi 

language support, dynamic analysis, and continuous self-improvement loops. 
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