JAIST Repository

https://dspace.jaist.ac.jp/

Python Code Verification and Improvement Using

Title Large Language Models
Author(s) z= RIR

Citation

Issue Date 2025-09

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/20038
Rights

- Supervisor: BEURAN, Razvan Florin, 5 Ui B2 i
Description

WHgekl, B+ (HHR)

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Python Code Verification and Improvement Using Large Language Models

2310402 Jongmin Lee

The explosive growth of artificial intelligence (AI) has propelled large language
models (LLMs) from academic curiosities to everyday development companions. By
translating natural language descriptions directly into source code, LLMs promise
unprecedented boosts in programmer productivity and faster delivery cycles. Yet, this
promise is overshadowed by persistent concerns. Empirical studies show that
automatically generated code frequently embeds critical security weaknesses, subtle logic
flaws, and mismatches between user intent and program behavior. These shortcomings
can translate into exploitable vulnerabilities, unexpected production outages, and costly
maintenance overhead. Traditional manual reviews cannot keep pace with the volume and
velocity of LLM output, underscoring the urgency for scalable, automated safeguards.

This thesis introduces CodeEnhancer, a fully automated, two stage framework that
tackles these challenges holistically. Stage 1 combines best practice structured prompting
with an iterative “generate-verify-refine” loop. Each candidate program is scrutinized by
Pylint for syntax compliance, Bandit for CWE-mapped vulnerability patterns, and an
LLM-based reasoning module that cross-checks functional intent captured in a mandatory
docstring. Structured, tool-specific feedback is fed back to the LLM until the code passes
all checks or a configurable iteration budget is exhausted, yielding a corpus of high quality,
self-documented scripts with minimal human oversight.

Stage 2 shifts the focus from fixing problems after the fact to proactively ensuring
code quality. In this phase, GPT-40 is fine-tuned using two complementary datasets.
Secure code examples authored by experts from the LLMSecEval benchmark, and refined
outputs from Stage 1. This combined training approach equips the model with both best
practice secure coding techniques and practical remediation strategies, allowing it to
recognize and prevent common vulnerabilities during code generation.

Comprehensive experiments on the security-oriented LLMSecEval and SecurityEval
benchmarks confirm CodeEnhancer’s effectiveness. A GPT-40 baseline produced
vulnerable code in 43.6% of LLMSecEval tasks. A GPT-40 variant further trained with
the CodeEnhancer pipeline (framework-tuned GPT-40) lowered this rate to 18.4% prior
to refinement and to only 8% after one refinement cycle. On SecurityEval, the same
framework-tuned GPT-40 cut the final vulnerability rate. Functional correctness
exhibited similar improvements, with 98.7% prompt adherence after refinement while
preserving or enhancing execution efficiency. Importantly, the framework-tuned GPT-40
achieved these gains in fewer iterations than both the baseline and a fine-tuned model by
secure code written by experts. Underscoring the synergistic value of CodeEnhancer’s
automatically generated training data.

Beyond empirical metrics, CodeEnhancer offers practical benefits. It integrates
seamlessly into CI/CD pipelines, requires no language specific test harnesses, and
remains agnostic to future advances in static code analysis (SAST) tools. Nevertheless,
limitations persist. Current evaluations target Python and static analysis. Extending
coverage to languages with stronger type systems and incorporating dynamic or formal
constitutes next steps. Additionally, broader datasets that capture domain specific security
requirements will help generalize the approach.

1



In summary, CodeEnhancer demonstrates that pairing LLMs with iterative static
analysis, verification, and feedback informed fine-tuning creates a virtuous cycle that
progressively decreases vulnerabilities and increases trustworthiness. The framework
lays a scalable foundation for safely harnessing Al powered code generation across
modern software engineering workflows, paving the way for future research on multi
language support, dynamic analysis, and continuous self-improvement loops.

Keywords: Large Language Models (LLMs), Code Generation, Software Security,
Static Analysis, Functional Correctness, Fine-Tuning



