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Abstract

The explosive growth of artificial intelligence (AI) has propelled large lan-
guage models (LLMs) from academic curiosities to everyday development
companions. By translating natural language descriptions directly into
source code, LLMs promise unprecedented boosts in programmer produc-
tivity and faster delivery cycles. Yet, this promise is overshadowed by
persistent concerns. Empirical studies show that automatically generated
code frequently embeds critical security weaknesses, subtle logic flaws, and
mismatches between user intent and program behavior. These shortcomings
can translate into exploitable vulnerabilities, unexpected production outages,
and costly maintenance overhead. Traditional manual reviews cannot keep
pace with the volume and velocity of LLM output, underscoring the urgency
for scalable, automated safeguards.

This thesis introduces CodeEnhancer, a fully automated, two-stage frame-
work that tackles these challenges holistically. Stage 1 combines best-practice
structured prompting with an iterative “generate-verify-refine” loop. Each
candidate program is scrutinized by Pylint for syntax compliance, Bandit for
CWE-mapped vulnerability patterns, and an LLM-based reasoning module
that cross-checks functional intent captured in a mandatory docstring. Struc-
tured, tool-specific feedback is fed back to the LLM until the code passes all
checks or a configurable iteration budget is exhausted, yielding a corpus of
high-quality, self-documented scripts with minimal human oversight.

Stage 2 shifts the focus from fixing problems after the fact to proactively
ensuring code quality. In this phase, GPT-4o is fine-tuned using two
complementary datasets. Secure code examples authored by experts from the
LLMSecEval benchmark, and refined outputs from Stage 1. This combined
training approach equips the model with both best-practice secure coding
techniques and practical remediation strategies, allowing it to recognize and
prevent common vulnerabilities during code generation.

Comprehensive experiments on the security-oriented LLMSecEval and
SecurityEval benchmarks confirm CodeEnhancer’s effectiveness. A GPT-4o
baseline produced vulnerable code in 43.6% of LLMSecEval tasks. A GPT-4o
variant further trained with the CodeEnhancer pipeline (framework-tuned
GPT-4o) lowered this rate to 18.4% prior to refinement and to only 8% after
one refinement cycle. On SecurityEval, the same framework-tuned GPT-4o
cut the final vulnerability rate. Functional correctness exhibited similar im-
provements, with 98.7% prompt adherence after refinement while preserving
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or enhancing execution efficiency. Importantly, the framework-tuned GPT-4o
achieved these gains in fewer iterations than both the baseline and a fine-
tuned model by secure code written by experts. Underscoring the synergistic
value of CodeEnhancer’s automatically generated training data.

Beyond empirical metrics, CodeEnhancer offers practical benefits. It
integrates seamlessly into CI/CD pipelines, requires no language-specific
test harnesses, and remains agnostic to future advances in static code
analysis (SAST) tools. Nevertheless, limitations persist. Current evaluations
target Python and static analysis. Extending coverage to languages with
stronger type systems and incorporating dynamic or formal constitutes next
steps. Additionally, broader datasets that capture domain-specific security
requirements will help generalize the approach.

In summary, CodeEnhancer demonstrates that pairing LLMs with itera-
tive static analysis, verification, and feedback-informed fine-tuning creates a
virtuous cycle that progressively decreases vulnerabilities and increases trust-
worthiness. The framework lays a scalable foundation for safely harnessing
AI-powered code generation across modern software engineering workflows,
paving the way for future research on multi-language support, dynamic
analysis, and continuous self-improvement loops.

Keywords: Large Language Models (LLMs), Code Generation, Software
Security, Static Analysis, Functional Correctness, Fine-Tuning
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Chapter 1

Introduction

1.1 Motivation

In recent years, the field of artificial intelligence (AI) has experienced
unprecedented growth, leading to the rapid development and adoption of
large language models (LLMs). These LLMs, such as GPT-4 [1], Code
Llama [2], and Codex [3], are revolutionizing software development. As a
result, software development processes have become more efficient. LLMs
generate code from natural language descriptions, accelerating development
cycles and automating complex tasks [1, 3]. This offers substantial potential
for boosting developer productivity and efficiency.

However, alongside these promising advancements, significant concerns
have emerged regarding the reliability, security, and correctness of code
generated by LLMs. Recent empirical studies have demonstrated that LLM-
generated code frequently exhibits a range of issues, including syntax errors,
logical inconsistencies, and, most critically, security vulnerabilities [4, 5]. If
these weaknesses are not properly identified and addressed, deploying such
code in production systems could result in critical security breaches and
substantial operational risks.

Ensuring the functional correctness of LLM-generated code also presents
substantial challenges. While LLMs are capable of producing code that
appears syntactically correct or that passes limited unit tests [3], there often
remains a gap between the user’s intent as described in the prompt and the
actual behavior of the generated code. Subtle misinterpretations or omissions
can lead to code that fails to fully implement required features or introduces
unexpected behavior—issues that are especially problematic in domains with
strict security or reliability requirements [6]. Manual code review and testing
can help, but these methods are labor-intensive and not scalable for the
volume of code that LLMs are now capable of generating.

To address these concerns, researchers and practitioners have explored
a range of validation and remediation strategies. Traditional approaches
include static application security testing (SAST) tools, such as Pylint [7]
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and Bandit [8], which are effective at detecting syntax errors and security
vulnerabilities. However, these tools alone are limited in their ability to
guarantee comprehensive security or functional correctness, especially for
complex or context-dependent [9, 10]. Self-correction by LLMs, where the
model tries to improve its own responses based on feedback, has so far
achieved only limited success. This is because models often have difficulty
spotting and fixing subtle mistakes without clear, structured guidance [11].

Motivated by these challenges, this thesis proposes a comprehensive
framework that tightly integrates LLM-based code generation with iterative
verification using SAST tools and targeted fine-tuning strategies. By sys-
tematically combining these approaches, the goal is to advance the security,
correctness, and overall quality of LLM-generated Python code. This re-
search aims to contribute not only to the improvement of AI-assisted software
engineering practices but also to the development of scalable solutions for
deploying trustworthy code in real-world applications.

1.2 Problem Definition

LLMs have shown impressive results in generating source code from natural
language descriptions. However, several practical, critical problems remain.

First, LLM-generated code often includes security vulnerabilities, such as
command injection and insecure data handling [4, 5]. These weaknesses are
difficult to detect and fix automatically. Second, functional correctness is
not guaranteed. Code may look correct or pass basic tests [3], but still fail
to match the user’s real intent [6]. This gap between user requirements and
actual code behavior is especially serious in domains where mistakes can have
costly consequences. Third, current verification methods have clear limits.
Manual code review is slow and cannot scale. Self-correction by LLMs is
unreliable without structured feedback [11]. Fourth, most current research
only focuses on a single aspect, such as security [4] or functional correctness
[3]. There is a lack of frameworks that address all these problems together
in an integrated way.

Because of these problems, it remains challenging to safely and reliably
use LLM-generated code in real-world software projects. There is a need for
new frameworks that can systematically detect, validate, and remediate both
security and correctness issues.

This thesis focuses on addressing these research challenges. The goal is to
develop an integrated approach that combines LLM-based code generation
with iterative validation and targeted fine-tuning, to produce Python code
that is both secure and functionally correct.
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1.3 Research Approach

To address the problems described in the previous section, this thesis
proposes a two-stage framework. The first stage uses an iterative validation
pipeline. This pipeline combines LLM-based code generation with multiple
validation steps. The system first uses static application security testing
(SAST) tools, such as Pylint and Bandit, to detect syntax errors and security
vulnerabilities. In addition, the framework uses the LLM itself to validate
functional correctness by comparing the intended behavior in the prompt
with the actual code logic. The feedback from all these checks is returned to
the LLMs, which try to fix the issues. This process repeats until the code
passes all validations or a set number of rounds is reached.

In the second stage, the research applies targeted fine-tuning to the LLMs.
The fine-tuning uses secure code examples: code that has been refined by the
framework itself. By training the LLMs on these datasets, the model learns
to generate more secure and correct code from the start. The aim is to reduce
both vulnerabilities and functional errors in newly generated code.

The effectiveness of this approach is evaluated through experiments
on benchmark datasets, LLMSecEval and SecurityEval. Performance is
measured in terms of vulnerability rates, functional correctness rates, and
other relevant metrics. By systematically combining validation and fine-
tuning, this research aims to create a practical and scalable solution for
improving the security and reliability of LLM-generated Python code.

1.4 Contributions

The main contributions of this thesis include:

• Presenting the design and implementation of a comprehensive two-
stage framework, CodeEnhancer that integrates an iterative LLM-
SAST validation pipeline with a subsequent targeted LLM fine-tuning
methodology for enhancing Python code security.

• A rigorous evaluation demonstrating the framework’s effectiveness,
using the LLMSecEval benchmark [12] for validating the first stage,
and the LLMSecEval and SecurityEval benchmarks [13] for assessing
the performance of the fine-tuned models in the second stage. Notably,
this approach not only outperformed the expert-written examples in
terms of model performance but also proved to be more cost-effective.

• An analysis providing insights into the synergistic benefits of combining
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automated validation with model adaptation, contributing to the de-
velopment of more trustworthy and secure AI-assisted coding practices.

1.5 Thesis Structure

The remainder of this thesis is organized as follows.

• Chapter 2 reviews the research background and related work. It covers
large language models for code generation and validation, fine-tuning
methods, and static application security testing.

• Chapter 3 describes the proposed two-stage framework. It explains the
overall architecture, the code generation and validation pipeline, and
the fine-tuning process.

• Chapter 4 presents the experimental setup and results. It includes
information about datasets, model configurations, evaluation metrics,
and a detailed analysis of the findings.

• Chapter 5 discusses the limitations of the current approach and possible
directions for future work.

• Chapter 6 concludes the thesis by summarizing the main contributions
and results.

• Appendices and references are included at the end of the thesis.
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Chapter 2

Background and Related Work

2.1 Large Language Models for Code Genera-
tion

Background LLMs are advanced artificial intelligence models trained on
vast collections of natural language and programming code. These models,
such as AlphaCode [14] and Codex [3], have demonstrated remarkable
abilities to understand prompts written in natural language and to gen-
erate syntactically correct source code in various programming languages,
including Python. By predicting the next most likely token given the input
context, LLMs can create code snippets, complete functions, or even write
entire programs based on short descriptions provided by users.

The impact of LLMs on software development has been significant. Tools
like GitHub Copilot [15] and ChatGPT [16] are now integrated into daily
programming workflows. Developers can use LLMs to automate repetitive
coding tasks, speed up prototyping, and get real-time code suggestions or
bug fixes [15, 16]. As a result, LLMs are helping to increase productivity and
lower the barrier to entry for programming.

Related Work Despite these advantages, several challenges remain. The
code generated by LLMs does not always fully align with the user’s intent
[3]. Sometimes it only partially implements the required functionality or
fails to handle special cases. More importantly, LLMs can generate code
with subtle logic errors, inefficient implementations, or even serious security
vulnerabilities [6]. These vulnerabilities can have severe consequences if
deployed without conducting a thorough review.

The quality and security of LLM-generated code are not guaranteed by
the model itself. Because LLMs are trained on large datasets collected
from public code repositories and forums [1, 4], they may repeat insecure
or outdated coding patterns found in the training data. Additionally,
current LLMs do not always generalize well to complex or domain-specific
programming tasks, which can lead to unpredictable results.
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Previous research has also tested whether simply asking LLMs to generate
secure code in the prompt can prevent unsafe outputs [17]. However, these
efforts have shown clear limitations. Even when prompts explicitly request
secure or best-practice implementations, LLMs often continue to produce
code with vulnerabilities or overlook critical security steps. This suggests
that prompt engineering alone is not enough to ensure the security of
automatically generated code.

Therefore, these issues, there is a growing need for frameworks and tools
that can verify, refine, and improve LLM-generated code. This includes auto-
mated checks for syntax and security, interactive feedback mechanisms, and
methods for guiding the model toward secure and reliable code generation.
Fine-tuning LLMs on high-quality, secure code examples and integrating
external validation tools are promising approaches, but further research is
required to ensure that these models can consistently produce trustworthy
code in practical software engineering scenarios.

In summary, while large language models have opened new possibilities
in automated code generation, ensuring the quality, security, and correctness
of their outputs remains an open research challenge.

2.2 Static Application Security Testing

Background Static Application Security Testing (SAST) is a core tech-
nique for detecting issues in software at an early stage of development. SAST
tools analyze the source code, bytecode, or binary code of an application
without executing the program. This approach is often called “white-box
testing” because it inspects the internal logic and structure of the code.
SAST tools can automatically identify a wide range of security flaws, such as
injection attacks, buffer overflows, improper error handling, and insecure
cryptographic use. By finding vulnerabilities before the software is run,
SAST helps developers fix issues early, reducing the cost and risk of security
breaches after deployment.

A typical SAST process involves scanning the entire codebase for known
patterns of insecure practices or code smells, which are characteristics in the
source code that may indicate deeper problems [7, 18]. Integrating SAST into
the software development lifecycle enables continuous security assessment,
making it easier to maintain high security standards as code changes over
time.

For Python, Bandit [8] targets common security flaws, while Pylint [7]
checks for code smells, style issues, and syntax errors. More sophisticated
tools like GitHub’s CodeQL use semantic analysis to detect complex vul-
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nerabilities across multiple languages [19]. Researchers utilize these tools
extensively to evaluate the security posture of LLM-generated code [20].
However, studies caution against relying on a single tool, as their detection
capabilities vary across vulnerability types [21], and even advanced tools like
CodeQL can miss vulnerabilities. Enterprise tools like SonarQube [22] and
Checkmarx [23] also exist, offering broader capabilities and integrations but
come with different complexities and costs.

Related Work Hajipour et al. [24] introduced SimSCoOD, a benchmark
for evaluating the security of code generated by large language models. Their
findings indicate that while LLMs are capable of generating functionally
correct and, in many cases, secure code, there are still significant limita-
tions and open challenges in consistently ensuring code safety. The study
quantitatively demonstrates that current LLMs may still produce vulnerable
code under certain scenarios, highlighting the necessity for further research
on automated security verification.

Despite recent advances in large language model code generation, lim-
itations remain. Li et al. [25] conducted a comprehensive study using
static analysis tools and found that LLMs, while capable of producing high-
quality and secure code in various programming languages, still frequently
generate code with security vulnerabilities. Similarly, Hajipour et al. [24]
demonstrated through the SimSCoOD benchmark that, although LLMs can
often generate functionally correct and relatively secure code, they do not
consistently guarantee code safety. Both studies underscore that the current
generation of LLMs cannot fully address security concerns and highlight the
necessity for further improvements and robust automated security validation.

2.3 Large Language Models for Code Verifica-
tion

Background LLMs show potential but face challenges with complex vul-
nerabilities. Previous research [26]. investigated the zero-shot vulnerability
repair capabilities of Codex, finding it struggled with issues requiring contex-
tual understanding. Prenner et al [27] evaluated Codex using the QuixBugs
benchmark, noting that while some bugs were fixed, new errors were often
introduced. Alrashedy et al. proposed a feedback-driven method employing
static analysis tools like Bandit to enhance LLMs’ ability to repair security
issues, achieving significant improvements.
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Related Work Despite these advances, LLM-based validation still has
limits. LLMs may overlook edge cases, fail to detect complex logic bugs,
or not fully understand deep program semantics [28]. As a result, LLM
verification is often used alongside static analysis tools to create a more
reliable and comprehensive verification process.

Alrashedy et al. [29] presented a framework that integrates LLMs with
SAST tools to automatically patch security vulnerabilities in source code.
Their system uses the output of SAST tools to generate prompts for LLM-
based repair, representing one of the earliest pipelines combining static
analysis and generation in an automated feedback loop.

Separately, Keltek et al. [30] proposed LSAST, a hybrid system where
SAST tools such as Bearer are paired with LLMs to enhance vulnerability
detection coverage. While not explicitly aimed at code generation or repair,
LSAST exemplifies the complementary use of LLMs for security analysis and
code validation.

Overall, LLMs provide a way to verify security and functional correctness,
but their effectiveness depends on careful prompt engineering, structured
validation, and integration with other SAST tools.

2.4 Fine-Tuning Large Language Models

Background Fine-tuning is a process that takes pre-trained LLMs and
further trains them on a custom dataset for a specific task or domain [31].
Instead of training a model from scratch, fine-tuning allows developers to
adapt an existing model’s behavior by exposing it to examples that are closely
related to the intended application. During fine-tuning, the model learns
patterns, preferences, and constraints from the new data, making its outputs
better suited to the user’s needs. This approach is widely used to improve
the accuracy and relevance of LLMs in specialized scenarios, such as code
generation [3] or medical applications [32].

This additional training helps the model to learn domain-specific patterns,
best practices, and security guidelines that may not be well represented in
the original pre-training data. For example, LLMs can be fine-tuned on
a curated collection of secure code examples or specialized programming
tasks. As a result, the model improves its ability to generate code that is
not only syntactically correct but also aligns with domain-specific standards
and expectations.

Related Work More recent work has shifted toward improving the ability
of LLMs to produce secure code through fine-tuning. Early LLMs for
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Figure 2.1: Workflow of fine-tuning a large language model.

code generation, such as Codex [3], demonstrated impressive capabilities in
producing syntactically correct and useful code. Li et al. [33] conducted an
empirical study on fine-tuning models using security patch commits, showing
measurable improvements in vulnerability reduction. Similarly, Weyssow et
al. [34] explored parameter-efficient fine-tuning (PEFT) methods for code
generation, though their study focused more on syntax and structural quality
rather than vulnerability mitigation.

Despite these benefits, fine-tuning is not without challenges. The effec-
tiveness of this approach depends heavily on the quality and diversity of the
fine-tuning dataset. There is also a risk of overfitting [24], where the model
becomes too specialized and loses its generalization ability. Additionally,
some security threats or domain requirements may be underrepresented,
making it difficult to achieve comprehensive coverage [33].

In conclusion, fine-tuning is a powerful tool for adapting LLMs to new
tasks and domains. By combining large-scale pre-training with targeted,
domain-specific learning, this method helps create models that are better
suited for practical software engineering applications, especially in areas
where correctness and security are critical. However, practitioners should
be aware that the success of fine-tuning depends heavily on the quality and
diversity of the fine-tuning data. Overfitting, loss of generalization, and
insufficient coverage of rare security threats remain important challenges.
Careful dataset construction and regular evaluation are needed to ensure
robust and trustworthy outcomes.
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2.5 Functional Correctness Evaluation

Background Verifying that generated code behaves as intended is a chal-
lenge in the evaluation of code generation models. Traditionally, functional
correctness has been assessed using code similarity metrics such as Code-
BLEU [35] and CodeBERTScore [36], which directly compare the generated
code to a reference implementation. Another widely adopted approach is
execution-based testing, exemplified by benchmarks like HumanEval [3] and
The Mostly Basic Programming Problems (MBPP) [37]. In this setting, the
generated code is evaluated based on its ability to pass a set of predefined unit
tests [38]. While these methods provide useful indicators of functional cor-
rectness, they may not fully capture the specification or intention expressed
in the prompt, especially in cases where multiple correct implementations
exist or the test cases do not exhaustively cover all requirements.

Related Work To address the limitations of traditional evaluation meth-
ods, recent research has proposed several advanced metrics that aim for
better alignment with prompt specifications. For example, CodeScore [39]
introduces a model that predicts execution outcomes rather than relying
solely on reference code comparison. ICE-Score [40] leverages an LLM to
assess the correctness of generated code directly against the input prompt,
enabling more flexible and context-aware evaluation. Similarly, SBC-Score
[41] utilizes a reverse-generation approach, where requirements are inferred
from the generated code and then compared back to the original prompt using
semantic similarity, lexical overlap, and completeness measures. Building on
these developments, our framework incorporates a functional correctness veri-
fication step that uses LLM reasoning to evaluate code based on specifications
derived from the input prompt.

2.6 Comparative Analysis

As shown in Table 2.1, previous studies have mostly addressed individual
aspects of code generation and validation. For example, Codex [3] focused
on functional code generation, but did not target security or error repair.
Alrashedy et al. [29] and Pearce et al. [42] incorporated LLM-based repair
and static analysis, but did not employ fine-tuning or address syntax issues
in depth. Other works, such as Li et al. [33] and Weyssow et al. [34], explored
fine-tuning and parameter-efficient techniques, but focused mainly on either
security or functional correctness, not both.
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In contrast, CodeEnhancer combines all these elements into a single,
unified framework. It supports Python code generation, iterative static
and dynamic validation, automated repair, and domain-adaptive fine-tuning.
CodeEnhancer is the only approach in the comparison that explicitly ad-
dresses syntax errors, security vulnerabilities, and functional correctness
together. It also works with real-world, natural language prompts rather
than synthetic or artificial examples.

However, CodeEnhancer is not only this integration, but also the use
of an automated self-refinement loop. Outputs from the verification and
refinement steps are systematically fed back into the fine-tuning data. This
enables the model to learn directly from its own corrections across multiple
iterations, resulting in improvements in security and functional correctness.
In our experiments, this feedback-driven approach led to models fine-tuned
by CodeEnhancer’s code that outperformed both models fine-tuned by secure
code examples written by experts and the baseline, demonstrating that high-
quality, self-generated data can be more beneficial for fine-tuning than relying
solely on expert-written code.

The next chapter introduces the methodology behind CodeEnhancer.
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Chapter 3

CodeEnhancer Framework

3.1 Overall Architecture

The CodeEnhancer framework is designed to systematically enhance syntax,
security, and the overall quality of Python code generated by LLMs. The
framework adopts a two-stage architecture that combines the strengths of
automated static analysis, iterative feedback, and large-scale model fine-
tuning, as shown in Figure 3.1.

Figure 3.1: Overall architecture of CodeEnhancer, illustrating the relation-
ship between the code generation & verification refinement pipeline (Stage 1)
and the fine-tuning methodology (Stage 2).

In the first stage, CodeEnhancer employs an integrated pipeline that
generates candidate code snippets using LLMs and immediately subjects
them to a sequence of automated verification steps. These steps include
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syntax checking, security vulnerability analysis with SAST tools, and func-
tional correctness verification. Feedback from these verification steps is
automatically fed back into the generation process, prompting the LLM to
iteratively refine the code.

In the second stage, the system further improves the baseline model’s
ability to generate secure and reliable code by fine-tuning the LLM using
a dataset composed of verified and refined code from Stage 1. This two-
stage, closed-loop process not only increases the robustness and reliability of
generated code in the short term but also enables the long-term evolution of
the LLM toward higher coding standards.

Figure 3.1 illustrates the overall architecture, showing how these stages in-
teract to create a continuously improving cycle of code generation, validation,
and model enhancement. This modular and extensible design ensures that
CodeEnhancer can be adapted to new coding domains, security standards,
and advances in LLM technologies.

3.2 Stage 1: Code Generation, Verification &
Refinement

The first stage of the CodeEnhancer framework is dedicated to the robust
and reliable generation of Python code through a multi-step, feedback-driven
process. At its core, Stage 1 integrates the strengths of both LLMs and
SAST tools by introducing a rigorous pipeline that combines code generation,
automated verification, and iterative correction.

Initially, the LLM generates code based on a structured prompt that
encodes the intended functionality in clear terms. This code is then subjected
to a sequence of automated checks, each targeting a distinct aspect of
code quality: syntactic correctness, security, and alignment with the user’s
intended functionality. Whenever an issue is identified in any of these
dimensions, detailed feedback is formulated and provided to the LLM, which
then revises its output accordingly. This process repeats, with each iteration
bringing the code closer to the required standards.

By this approach, Stage 1 is able to systematically eliminate common
sources of error in LLM-generated code, such as syntax mistakes, overlooked
security vulnerabilities, or subtle deviations from user intent. This iterative
methodology ensures that the resulting code is not only executable and safe,
but also meets the exact requirements specified in the prompt.
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3.2.1 Code Generation with Structured Prompting

LLMs often produce syntactically correct yet structurally inconsistent or
incomplete code when prompted with free-form instructions [3]. To ad-
dress this, our framework adopts a structured prompting approach that
demonstrates the desired output format and enforces a consistent generation
template across diverse tasks.

The process initiates with a natural language prompt provided by the
user, describing the desired code functionality. To enhance clarity and
facilitate subsequent verification, we employ a structured prompt template
that explicitly instructs the LLM to include not only the functional code
but also a detailed docstring. This structured prompt is designed to elicit
from the LLM not only the functional code but also a detailed docstring
that clearly restates the user’s request, specifies the purpose of the code, and
describes the steps required to achieve the intended functionality. The LLM
processes this prompt to generate an initial Python code snippet along with
the embedded docstring, which serves as a functional specification.

The core idea is to guide the LLM to include a module-level docstring at
the top of each Python file, formatted with three required fields:

1. Input Prompt – a restatement of the original user request.
2. Intention – the purpose or goal of the function.
3. Functionality – a precise description of how the function achieves that

goal.

By requiring this explicit structure, the framework ensures that the gen-
erated code is not only easier for humans to understand and review but is also
machine-readable for downstream evaluation tasks. For example, automated
functional correctness checks can use the detailed docstring as a specification
to semantically compare against the actual code logic. This structured
prompting approach also reduces ambiguity, supports more reliable iterative
improvement, and encourages the LLM to generate code that is directly
aligned with the original intent of the user.

3.2.2 Syntax, Security & Functional Correctness Verifi-
cation

The Code verification component iteratively refines the quality and security
of LLM-generated code by detecting and correcting errors across multiple
dimensions. This process integrates LLMs with SAST tools using three
verification components, as follows:

1. Syntax Error Verification: The framework employs Pylint to verify
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the syntactic correctness and structure of the generated code. This
includes identifying missing or misplaced elements such as parentheses,
indentation inconsistencies, or improper use of reserved keywords.
Identified issues are logged, and corrective prompts are sent to the
LLM, which iteratively refines the code to align with these standards.
This ensures that the generated code is both executable and adheres
to basic syntactic conventions. Figure 3.2 provides an example of a
syntax issue detected by Pylint, illustrating the type of feedback used
for iterative correction.

Pylint Issue

E0001: Parsing failed:
’invalid decimal literal (Code, line 4)’
(syntax-error)

Figure 3.2: Example of a code syntax issue detected via Pylint.

2. Vulnerability Verification: To ensure security, the framework inte-
grates Bandit, a SAST tool specifically designed for Python. Bandit
scans the code for vulnerabilities, such as command injections, insecure
data storage, or improper use of sensitive configurations like hardcoded
passwords. Each detected vulnerability is linked to a specific CWE
identifier for precise categorization and tracking. When vulnerabilities
are detected, they are logged with detailed descriptions, including
CWE identifiers and severity levels. The framework then prompts the
LLM to revise the code accordingly, aiming to eliminate the detected
issues while preserving the original functionality. By leveraging the
functionality of Bandit, the system proactively reduces the risk of
having security vulnerabilities. Figure 3.3 shows an example of a
security issue identified by Bandit, which serves as the basis for the
targeted code correction through iterative refinement.

3. Functional Correctness Verification: Ensuring that the code per-
forms as intended is crucial for practical deployment. For this purpose,
the LLM compares the generated code’s logic against its associated
docstring. The docstring serves as a functional specification, and the
LLM identifies discrepancies by parsing the described behavior and
matching it with the implemented logic. To avoid conflicts between
functional correctness and security, the verification does not enforce
exact implementation details. Instead, it considers the code correct
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Bandit Issue

"code": "os.system(’ls’)",
"filename": "test.py",
"issue_confidence": "HIGH",
"issue_severity": "MEDIUM",
"issue_text": "Use of os.system detected.",
"line_number": 12,
"test_name": "os_system",
"test_id": "B605".

Figure 3.3: Example of a code vulnerability issue detected via Bandit.

as long as it achieves the same intended behavior, even if different
libraries or algorithms are used to improve security or performance.
For example, if the docstring states that the function fetches user data
from a database, yet the implemented code only contains a placeholder
without actual database queries, the framework flags this mismatch
during verification. The LLM then autonomously modifies the code
to align it with the specified requirements. This step not only verifies
the functional correctness but also improves the code’s adherence to
intended design and usability standards. As illustrated in Figure 3.4, if
the code logic does not align with the functional description provided
in the docstring, the framework can automatically detect and address
such mismatches.

3.2.3 Iterative Refinement

If any issues are detected during the validation stage, the findings from Pylint,
Bandit, and the functional correctness check are collected and formatted into
a structured feedback report. This report typically includes:

1. The specific tool that flagged the issue
2. The code snippet containing the issue
3. An explanation of the issue, as provided by the tool or the LLM

This structured feedback is crucial for guiding the LLM effectively in
the refinement step. The feedback, along with the original prompt and
the current (flawed) code version, is passed back to the LLM. The LLM is
instructed to revise the code specifically to address the reported issues while
preserving the original docstring and intended functionality. This generate-
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Functional Correctness Issue

Docstring:
Input Prompt: Write a function that returns the sum of two numbers.
Intention: To compute and return the sum of a and b.
Functionality: This function takes two numbers as input and returns
their sum.

Code:
def add_numbers(a, b):

return a - b

LLM Response:
Incorrect. The code subtracts b from a, but the docstring says it should
return the sum.

Figure 3.4: Example of a functional correctness issue detected via LLM

verify-refine cycle repeats iteratively. The loop terminates under one of the
following conditions:

1. All the validation steps (syntax, security, functional correctness) are
passed successfully.

2. A predefined maximum number of iterations is reached.

This iterative process allows the framework to progressively improve the
code. The final output of this stage is either a verified code snippet or the
best version achieved within the iteration limit.

3.3 Stage 2: LLM Fine-Tuning for Code En-
hancement

While the iterative verification and correction process in Stage 1 ensures
the immediate quality and security of generated code, Stage 2 is focused on
achieving sustainable, long-term improvements in the LLM’s inherent coding
capabilities. Here, the framework harnesses the validated output of Stage 1
to build a dataset specifically tailored for supervised fine-tuning of the LLM.
This approach eliminates the need for manual dataset construction or expert
annotation, instead leveraging the framework’s own rigorous standards to
curate a repository of secure, functionally correct code paired with clear
prompt specifications.
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In Stage 2, the fine-tuned models are trained to internalize the patterns
of secure coding, robust error handling, and alignment with user intent
as demonstrated in the validated code corpus. This not only reduces the
frequency of critical errors in future code generations but also decreases
reliance on costly, repeated verification cycles. As the fine-tuned LLM is re-
integrated into Stage 1, the framework is able to close the loop and iteratively
boost the quality and security of code produced in subsequent iterations.
Over time, this process drives the evolution of the model toward becoming a
more reliable and security-aware coding assistant.

3.3.1 Dataset Preparation and Model Training

A key innovation of the CodeEnhancer framework lies in its fully automated,
quality-assured dataset construction process for model fine-tuning. Rather
than relying on labor-intensive manual curation or external expert input,
the system systematically gathers input prompts and their corresponding
code outputs from Stage 1, but includes in the fine-tuning dataset only
those code samples that have successfully passed all layers of automated
validation—syntax, security, and functional correctness. This ensures that
every training example reflects best practices in both secure programming
and clear functional specification, as encoded in the structured docstring.

To support both comprehensive evaluation and targeted ablation studies,
two distinct fine-tuning datasets are constructed. The first dataset consists
of pairs of input prompts and the final, framework-refined code, with doc-
strings optionally excluded to focus the model on implementation quality.
The second dataset pairs the same prompts with expert-written, security-
vetted code samples sourced from the LLMSecEval benchmark. This dual-
dataset strategy enables direct comparison between models fine-tuned on
machine-refined versus expert-crafted code, shedding light on the efficacy
and limitations of automated code improvement pipelines.

Automating dataset creation in this way not only increases efficiency and
scalability, but also enhances reproducibility and reduces human bias. By
continuously updating the fine-tuning corpus with the latest high-quality
outputs from Stage 1, the framework is able to rapidly adapt to new coding
styles, security standards, and emerging user requirements.

3.3.2 Fine-Tuning Strategy

After fine-tuning, the newly trained models are seamlessly integrated back
into the CodeEnhancer pipeline, taking the place of the previous baseline
LLMs for future code generation tasks. This closed-loop strategy allows
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the framework to benefit from continual, data-driven improvements in code
quality and security as the model is exposed to ever-more rigorous standards.

We anticipate that models fine-tuned on framework-refined code will
demonstrate a clear advantage over those trained solely on expert datasets
or left unrefined, both in terms of initial code quality and in their ability to
avoid common vulnerabilities and functional errors. This, in turn, is expected
to reduce the computational and human resources needed for repeated
correction cycles. In Chapter 4, we will provide a comparative analysis
of baseline, framework-fine-tuned, and expert-fine-tuned models, measuring
improvements across multiple dimensions, including security compliance,
functional correctness, and overall code reliability. This iterative fine-tuning
and redeployment process enables the CodeEnhancer framework to maintain
a high standard of performance as both security and functional correctness
change over time.
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Chapter 4

Experimental Results

4.1 Preliminary Experiment

The main objective of this preliminary experiment was to evaluate whether
explicitly prompting LLMs to “generate secure code” actually leads to safer
code being produced. Building upon the methodology introduced by Tony et
al. [17], who demonstrated that explicit secure coding prompts and iterative
self-improvement strategies can reduce vulnerabilities in code generated by
GPT-3, GPT-3.5, and GPT-4, this study aims to verify whether similar
prompting techniques are also effective for GPT-4o. Specifically, we assess
if instructing GPT-4o with security-focused prompts results in more secure
code, thus extending previous findings to the latest generation of LLMs.
Based on the findings of this prior work, we additionally incorporate explicit
secure coding instructions into the code generation stage of our CodeEn-
hancer framework to further investigate the impact of such prompts in a
practical pipeline setting.

4.1.1 Datasets

The LLMSecEval dataset [12] is employed in the preliminary experiment.
This dataset is specifically constructed to evaluate the security and robust-
ness of LLM-generated code. This dataset is based on the MITRE CWE
Top 25 Most Dangerous Software Weaknesses and covers 21 distinct CWE
categories, including common issues such as buffer overflows (CWE-120),
command injection (CWE-77), and improper input verification (CWE-20).
It contains 150 carefully designed natural language prompts, each crafted to
induce specific coding vulnerabilities in Python when processed by LLMs.

Figure 4.1 shows an example of a natural language prompt from this
dataset. These prompts simulate real-world development scenarios where
insecure code may be inadvertently generated.
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LLMSecEval Prompt Example

Generate Python code for the following:
The code reads a value from the command line and adds 1000 to it.

Figure 4.1: Example of a natural language prompt from the LLMSecEval
dataset.

4.1.2 Methodology

For the experiment, we compared two groups of prompts. The baseline
group used the original LLMSecEval prompts to generate Python code. The
enhanced group used modified prompts, in which we explicitly instructed
the model to generate code that is both free from syntax errors and secure
against vulnerabilities. Using these two prompt settings, we generated code
for all the 150 tasks in the LLMSecEval benchmark and compared the results
between the two groups.

4.1.3 Results and Analysis

Figures 4.2 and 4.3 show that, out of 150 prompts, the baseline group
(original prompts) produced 64 vulnerable code snippets (42.7%), in which
a total of 74 CWE vulnerability instances were detected. In comparison, the
enhanced group (enhanced prompts) generated 66 vulnerable code snippets
(44.0%), with a total of 79 CWE vulnerability instances identified. Notably,
the enhanced group not only resulted in a higher number of vulnerable code
snippets, but also exhibited an increase in the total number of vulnerabilities.
Furthermore, the enhanced group included additional CWEs, such as CWE-
605 and CWE-703, which were not found in the baseline group.

These findings indicate that simply adding explicit secure coding instruc-
tions to the prompt does not necessarily reduce the number or diversity of
vulnerabilities. In some cases, it may even introduce new types of security
weaknesses. This highlights the limitations of prompting-based methods and
suggests the need for further measures, such as post-processing, to effectively
enhance the security of LLM-generated code.

Although the enhanced group was designed to prioritize security, the re-
sults suggest that LLMs may not fully internalize or generalize secure coding
practices solely from prompt instructions. The increase in both the number
and diversity of vulnerabilities implies that certain types of weaknesses,
such as command injection and code injection, remain difficult to eliminate
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with prompting alone. In some cases, the explicit instruction to generate
secure code may have led to unintended logic changes or alternative insecure
patterns. This observation highlights the challenge of relying exclusively on
natural language instructions for secure code generation.

Therefore, these results underscore the necessity of combining secure
prompts with additional validation steps, such as automated static analysis
or repair mechanisms, as implemented in our CodeEnhancer framework.
By integrating multiple layers of security assurance, the framework aims to
address both persistent and newly introduced vulnerabilities that prompting
alone cannot mitigate.

4.2 Experiment Setup

This section introduces the experiment setup for the main experiments
we conducted, in particular, the datasets and LLMs used, as well as the
evaluation metrics. Specifically, we evaluated Stage 1 of the framework using
Experiment #1, and Stage 2 using Experiment #2.

4.2.1 Datasets

In our experiments, we utilized two datasets, as described next.

LLMSecEval: As explained in Section 4.1.1, LLMSecEval is a benchmark
dataset based on the MITRE CWE Top 25, comprising 150 natural language
prompts targeting Python vulnerabilities. This dataset serves as the main
evaluation source for both stages of our framework.

SecurityEval: For Experiment #2, we use the SecurityEval dataset [13],
which covers a broader and more diversified set of security-sensitive tasks.
Unlike LLMSecEval, SecurityEval targets various vulnerability types beyond
the MITRE Top 25 and is designed to challenge the generalization capabilities
of LLMs. The dataset consists of 121 natural language prompts that span
69 distinct CWE categories, offering wide coverage across both common and
less frequently addressed vulnerabilities (see example in Figure 4.4).

SecurityEval is used in Experiment #2 to provide a fair test of how well
the models can handle new and different tasks. Since the models were fine-
tuned using outputs from LLMSecEval, evaluating them on the same dataset
could make the results less meaningful. SecurityEval introduces new prompts
and more diverse vulnerabilities, making sure the test reflects new real-world
situations and shows how well the models can adapt to new challenges.
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SecurityEval Prompt Example

import yaml
def yaml_load(filename):

’’’
use the filename variable to open a file,
load its contents into a variable with yaml,
and return it
’’’

Figure 4.4: Example of a natural language prompt from the SecurityEval
dataset.

4.2.2 LLM Configurations

We used different LLM models in each experiment, as explained next.

Baseline Model (Experiment #1): In this study, we employed GPT-4o
for both code generation and verification tasks. GPT-4o was chosen for its
advanced performance, versatility, and state-of-the-art capabilities in han-
dling diverse coding scenarios. Although LLMSecEval was originally tested
using a GPT-3 based model (code-davinci-002, now discontinued), for our
framework we used GPT-4o, which offers superior contextual understanding
and iterative refinement capabilities, making it ideal for generating secure
and functional Python code. Using GPT-4o, the framework ensures the
generation of secure, functional, and high-quality Python code, addressing
diverse vulnerabilities and improving practical usability.

Baseline and Fine-Tuned Models (Experiment #2): In Experi-
ment #2, we evaluated three model variants:

1. Baseline: Basic GPT-4o model, used as a baseline for comparison.
2. Fine-Tuned Model Using Expert Examples: GPT-4o fine-tuned

on expert-written secure code examples provided in the LLMSecEval
dataset.

3. Fine-Tuned Model Using Framework Output: GPT-4o fine-
tuned on the outputs refined through our verification pipeline in
Experiment #1 using LLMSecEval.

For each model, we executed our full framework five times, resulting in
five sets of code outputs before and after refinement.
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4.2.3 Evaluation Metrics

Multiple evaluation criteria are used to assess the models comprehensively.
In all cases, the iterative refinement process is performed with a maximum
limit of 5 iterations.

Syntax Errors: We use Pylint strictly for detecting syntax errors in the
generated code, not for PEP-8 style checks.

Vulnerabilities: We use Bandit to identify security vulnerabilities accord-
ing to the CWE categories, focusing on the number of detected vulnerabilities
and their resolution rates after refinement.

Functional Correctness: Functional correctness is first manually eval-
uated by inspecting whether the code accurately implements the intended
functionality described in the prompt and the embedded docstring.

In addition, we employ three advanced metrics to assess the quality of
the generated code:

1. CodeBLEU: Measures syntactic and semantic similarity based on n-
gram match, AST structure similarity, and data flow consistency [35].

2. CodeBERTScore: Uses transformer-based contextual embeddings
to assess semantic alignment between the generated code and the
reference [36].

3. ICE-SCORE: Evaluates how well the generated code complies with
the given instructions and its likelihood of being executable, using an
LLM-based review system [40]. It uses two separate 0–4 scales to
independently assess usefulness (how helpful the code is for solving the
task) and functional correctness (how accurately the code implements
the intended behavior).

4.3 Experiment #1: Code Generation, Verifica-
tion & Refinement

The Experiment #1 evaluation was conducted on 150 Python code snippets,
each generated using prompts from the LLMSecEval dataset. These prompts
are specifically designed to test an LLM’s ability to handle security-sensitive
tasks aligned with CWE categories.
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4.3.1 Syntax Error Verification

No syntax errors were detected in any of the 150 Python code snippets
generated during experiment #1 of our framework evaluation. While prelim-
inary experiments using earlier versions of LLMs had occasionally resulted
in syntax issues such as indentation errors or missing delimiters, all code
generated using the GPT-4o model in this study passed syntax verification
on the first attempt. This suggests that GPT-4o has improved capabilities
in producing syntactically correct Python code when guided by a well-
structured prompt and docstring.

4.3.2 Vulnerability Verification

During the vulnerability verification phase, a total of 64 code snippets
with vulnerabilities were detected in the initial code generated from the
LLMSecEval dataset. After the iterative refinement process, this number
was reduced to 11, corresponding to a resolution rate of 82.8%, as illustrated
in Figure 4.5. This result highlights the effectiveness of our verification
framework in addressing the majority of security issues through automated
feedback and code correction.
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Figure 4.5: Percentage of code snippets with vulnerability issues before and
after iterative refinement (LLMSecEval, 150 samples).

Our analysis showed that the unresolved CWE-78 vulnerabilities after
iterative refinement were primarily caused by the use of Python’s subprocess
module. This module, often used for executing shell commands, introduces
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risks when user inputs are directly concatenated into commands. Although
Bandit flagged the use of the subprocess module with warnings, the
framework failed to address these vulnerabilities effectively by enforcing
strict verification of user inputs. The lack of input sanitization allowed
these security issues to persist, underscoring the critical importance of
incorporating comprehensive input verification mechanisms to mitigate risks
associated with shell command execution.

Interestingly, Bandit’s analysis of secure code examples written by ex-
perts from LLMSecEval revealed similar CWE-78 issues in cases where
the subprocess module was employed. In these instances, even expert-
designed secure code examples were flagged with the same errors as the
framework’s generated code. Upon further inspection, it was observed that
both the refined code snippets and the secure examples often adopted similar
approaches to mitigate these vulnerabilities. These approaches typically
included isolating user inputs or implementing explicit whitelisting mecha-
nisms to reduce risks. While these refinements improved the overall security
posture, they did not entirely eliminate the vulnerabilities, highlighting the
limitations of the current strategies in fully addressing CWE-78 issues when
the subprocess module is involved.

4.3.3 Functional Correctness Verification

As illustrated in Figure 4.6, among the 150 code snippets generated and
evaluated, the LLM itself identified 7 cases as having potential functional cor-
rectness issues during the iterative verification process due to inconsistencies
between the implemented logic and the corresponding docstring, i.e., 4.7% of
the total. This self-diagnosis mechanism illustrates the model’s capacity to
reason about its own outputs through prompt-guided verification. Notably,
through iterative refinement, codes with issues were successfully resolved
within several feedback iterations. This indicates that the framework is not
only effective in detecting subtle discrepancies but also capable of resolving
a majority of them autonomously, without relying on external feedback.

In particular, the types of issues detected by the LLM included missing
essential module imports, the need for improved input handling for enhanced
functionality, and the use of more appropriate modules in place of suboptimal
choices. In each case, the LLM attempted to revise the implementation to
better align with the requirements stated in the docstring. These findings
highlight the utility of our approach for both identifying and incrementally
improving code quality based on explicit functional specifications.
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Figure 4.6: Percentage of code snippets with functional correctness issues
before and after iterative refinement (LLMSecEval, 150 samples).

4.3.4 Quantitative Results Using Code-Level Metrics

In addition, we conducted a quantitative evaluation by using three code-level
metrics, as follows.

CodeBLEU Evaluation: To further evaluate the impact of the code
verification& refinement stage, we compared the CodeBLEU scores of code
snippets. The comparison was conducted across three categories: the initial
code generated before the iterative refinement process, the refined code after
completing the iterative refinement process, and the secure code examples
from the LLMSecEval dataset, which served as benchmarks.

As shown in Table 4.1, the CodeBLEU score improved slightly after
the iterative refinement process. A notable increase was observed in the
dataflow match metric. Importantly, when analyzing all 150 code snippets
individually, the majority of the CodeBLEU evaluation metrics showed
an improvement after the iterative refinement process, with some metrics
remaining consistent. These results suggest that the refinement process
brought the generated code closer to the secure code examples in terms
of syntactic and functional correctness, providing evidence of a consistent
enhancement throughout the verification/refinement process.

While the overall CodeBLEU scores were relatively low, this can be
attributed to the nature of the secure code examples used as benchmarks. As
described in earlier sections, these examples were manually refined by human
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experts based on outputs from the code-davinci-002 model, leading to high-
quality reference implementations. In contrast, our framework generates code
based on GPT-4o, which inherently introduces architectural and stylistic
differences. Consequently, achieving a high overlap with these expert-
crafted samples, which were derived from a different base model, presents
a significant challenge for automatically generated code. This challenge
is further amplified when the reference and test samples are produced by
entirely different models, which often exhibit divergent coding styles and
architectural tendencies. Therefore, directly fine-tuning the model on expert-
written code from a different base model may not only limit the effectiveness
of the adaptation, but could also introduce unexpected issues, such as
hallucinations or inconsistencies in the generated outputs.

Table 4.1: Experiment #1: Average CodeBLEU score comparison of secure
code examples versus initial/final code snippets (LLMSecEval, 150 samples).

Metric Initial Code Final Code
N-gram Match Score 0.074 0.073

Weighted N-gram Match Score 0.091 0.091
Syntax Match Score 0.418 0.421

DataFlow Match Score 0.366 0.381

CodeBERTScore Evaluation: Additionally, we further evaluated the
effects of the code verification stage using CodeBERTScore metrics on code
snippets. This evaluation considered three categories: the initial outputs
before iterative refinement, the refined outputs after the process, and the
expert-provided secure code examples from the LLMSecEval dataset as
benchmarks.

Table 4.2 presents a detailed CodeBERTScore comparison among three
pairs: (1) secure expert-written code versus initial generated code, (2) secure
expert-written code versus final refined code, and (3) initial versus final code
snippets. The results indicate that the similarity between the initial and final
code snippets is extremely high, showing that most changes during refinement
are minimal and localized. When comparing both the initial and final
outputs to the secure code examples, the scores remain similar, suggesting
that the refinement process brings only marginal improvements in terms of
overall semantic similarity to the expert-written code. However, recall and
F3 metrics show a very slight increase after refinement, indicating a small
gain in alignment with expert code after the iterative process. These results
demonstrate that while the refinement process enhances certain aspects of
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code quality, it primarily preserves the original structure and only makes
minor, targeted corrections rather than large-scale modifications.

Furthermore, a manual review comparing the refined outputs with the
initial outputs highlighted the framework’s ability to incorporate additional
functionalities, such as enhanced verification mechanisms, improved robust-
ness, and more comprehensive input handling. Importantly, even after the
code verification experiment, the refined code snippets retained a level of
functional and semantic consistency comparable to expert-designed secure
code examples, while offering extended capabilities beyond those included in
the expert examples.

Table 4.2: Experiment #1: Average CodeBERTScore comparison of secure
code examples versus initial/final code snippets, and initial versus final code
snippets (LLMSecEval, 150 samples).

Metric Secure
vs. Initial

Secure
vs. Final

Initial
vs. Final

Precision 0.820 0.816 0.988
Recall 0.821 0.822 0.994

F1 0.820 0.819 0.991
F3 0.820 0.821 0.994

While this finding underscores the strength of LLMs in applying precise
and minimal edits during refinement, it also aligns with the limitations
discussed in Section 4.3.2. Specifically, the framework’s tendency to preserve
the original code structure may contribute to its inability to resolve more
deeply embedded or architectural security issues—such as those observed in
unresolved CWE-78 cases. These results highlight a key trade-off in the
refinement process: balancing minimal intervention with the need for more
comprehensive structural transformation when required.

ICE-SCORE Evaluation: To further assess how well each code variant
fulfilled the instructional intent conveyed through the input prompts, we
employed ICE-SCORE metrics on both the initial code and final code across
the full set of 150 code snippets.

As shown in Table 4.3, both the initial and final codes achieved nearly
perfect scores, with only a very slight decrease observed after refinement.
This suggests that, although iterative refinement involved additional actions,
such as patching vulnerabilities or adding exception handling, these modifica-
tions did not adversely impact the code’s overall alignment with the original
prompt or its usefulness.
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Table 4.3: Experiment #1: Average ICE-SCORE comparison of initial versus
final code snippets (LLMSecEval, 150 samples).

Metric Initial Code Final Code
Functional Correctness 3.987 3.953

Usefulness 3.960 3.893

Remarks: Overall, our quantitative results using code-level metrics demon-
strate that the refinement process was able to address security concerns
and enhance robustness without compromising the intended functionality
or instructional fidelity of the code outputs.

However, these results also highlight an important limitation: existing
evaluation metrics alone cannot fully capture the effectiveness of our frame-
work. While improvements are observable in standard code-level metrics,
some nuanced aspects of security, code robustness, and instruction alignment
may not be fully reflected by current quantitative measures. Therefore, there
remains a need for more comprehensive or specialized evaluation metrics to
accurately assess the broader benefits and subtleties of our approach.

4.4 Experiment #2: LLM Fine-Tuning for Code
Enhancement

Experiment #2 investigates the effectiveness of fine-tuned LLMs using
different training sources to improve the intrinsic security and quality of
generated Python code. While Experiment #1 validated the performance of
an unmodified GPT-4o model using the LLMSecEval dataset, Experiment #2
employs both the LLMSecEval and SecurityEval datasets for evaluation.
LLMSecEval continues to play a key role, as the outputs generated from
this dataset in Experiment #1 also serve as one of the fine-tuning sources.

To avoid the effects of the potential overfitting to the LLMSecEval
dataset, SecurityEval is additionally utilized. SecurityEval provides a
broader and more diverse set of prompts designed to expose security flaws
across a wide range of vulnerability types, ensuring that evaluation results
reflect the models’ ability to generalize beyond the patterns present in the
fine-tuning data. For each dataset, code generation and iterative verification
refinement were performed up to five times per dataset, in accordance with
our framework’s methodology. This approach enables a systematic and fair
comparison of model performance across both benchmarks.

Three models are compared: the baseline GPT-4o model, a variant fine-
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tuned on expert-written secure code examples, and a model fine-tuned on the
outputs of our own verification framework. Through this evaluation, we aim
to determine which training strategy better equips LLMs to produce secure,
functional, and high-quality code without relying solely on post-generation
refinement mechanisms.

4.4.1 Syntax Error Verification

Across both the LLMSecEval and SecurityEval datasets, each prompt, after
code generation, was subjected to up to five rounds of iterative verification
and refinement. As discussed in Section 4.3.1, modern LLMs rarely produce
syntactically invalid Python code. In our evaluation, only two code snippets
exhibiting syntax errors were identified among the 121 initial outputs from
the SecurityEval dataset (that is 1.7%). These errors were promptly detected
and automatically corrected through the framework’s integrated verification
pipeline. By incorporating systematic syntax checking as an initial step, our
framework ensures that even rare or minor syntactic mistakes are preemp-
tively addressed, thus enhancing the reliability of downstream security and
functional verification. This approach further reduces the likelihood of the
propagation of such issues in automated code-generation workflows.

4.4.2 Vulnerability Verification

Vulnerability Reduction Across Models The vulnerability verification
experiment assessed the number and proportion of code snippets containing
security flaws before and after iterative refinement, as detected by Bandit.
Figure 4.7 summarizes the results for both the LLMSecEval (150 code
snippets) and SecurityEval (121 code snippets) datasets.

For LLMSecEval, the initial code generated by the baseline GPT-4o
model contained security vulnerabilities in an average of 65.4 out of 150
code snippets (43.6%), while the expert-tuned model exhibited 82.0 (54.7%)
vulnerable snippets. The framework-tuned model, reflecting the updated
results, produced only 27.6 (18.4%) vulnerable code snippets on average.
After five refinement cycles, these numbers were substantially reduced:
the baseline GPT-4o model averaged 11.4 (7.6%) residual vulnerable code
snippets, the expert-tuned model had 22.0 (14.7%) remaining vulnerable code
snippets, and the framework-tuned model reached just 10.0 (6.7%) residual
vulnerable code snippets. Notably, the framework-tuned model consistently
produced the smallest number and proportion of security flaws, both before
and after the iterative verification process.
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Figure 4.7: Experiment #2: Comparison of the percentage of code snippets
with vulnerability issues before and after iterative refinement for each tested
model when using the LLMSecEval (a) and SecurityEval (b) datasets; error
bars indicate the standard deviation across five experiment runs.



A similar trend was observed with the SecurityEval dataset. The
initial outputs from the baseline GPT-4o, expert-tuned, and framework-
tuned models contained an average of 74.0 (61.2%), 41.2 (34.1%), and 42.6
(35.2%) vulnerable code snippets out of 121 total samples, respectively.
After refinement, the final numbers dropped to 5.0 (4.1%) for the baseline
GPT-4o model, 11.0 (9.1%) for the expert-tuned model, and 4.2 (3.5%)
for the framework-tuned model. Once again, the framework-tuned model
achieved the lowest number and proportion of residual code snippets with
vulnerability, demonstrating the effectiveness of the self-refinement approach
in minimizing security issues.

Cumulative Security Improvement Figure 4.8 shows, for each model,
the cumulative percentage of code snippets that are free of vulnerabilities
after each refinement iteration. At iteration 0, the percentage represents
the proportion of secure code in the initial code generation. With each
refinement, this percentage increases as more vulnerabilities are resolved,
until it eventually plateaus when no further improvements can be achieved.

For instance, in SecurityEval, the framework-finetuned model starts with
64.9% secure code snippets at iteration 0, and quickly rises to 95.2% after just
one refinement, reaching 96.2% by iteration 2 and remaining stable thereafter.
The baseline model begins with a lower proportion of secure code (38.6%),
but reaches a similar final level (96.7%) after five iterations. The expert-
finetuned model starts at 63.6% and gradually climbs to 92.0%. These results
demonstrate that the framework-finetuned model not only generates more
secure code from the outset, but also achieves a high level of security with
fewer refinement iterations than the other models, highlighting the efficiency
and effectiveness of our framework.

Overall, the verification framework proves effective as a fine-tuning strat-
egy, enabling LLMs to generate more secure code with fewer iterations and
without relying on expert-written examples. While the expert-tuned model
was trained on curated data from security professionals, it still required
more revisions and left more vulnerabilities unresolved. In contrast, the
framework-finetuned model learned from its own refinement process, reducing
vulnerabilities proactively before verification.

This approach simplifies fine-tuning into a scalable and low-cost process,
minimizing human involvement. The results suggest that self-refinement
via automated verification can be a practical and competitive alternative
to expert-guided fine-tuning, achieving comparable or superior outcomes
without manual dataset construction.
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Figure 4.8: Experiment #2: Cumulative percentage of secure code snippets
generated after each refinement iteration when using the LLMSecEval (a)
and SecurityEval (b) datasets; error bars indicate the standard deviation
across five experiment runs, and labels show the average percentage for each
iteration.
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Distribution of Vulnerabilities per CWE Figure 4.9 presents the
distribution of vulnerabilities per CWE before and after the refinement
process for each model across the LLMSecEval and SecurityEval datasets,
respectively. The analysis reveals several noteworthy trends.

Before refinement (Figure 4.9(a)), the baseline model on LLMSecE-
val exhibited vulnerabilities spanning seven major CWE categories, with
especially high counts in CWE-94 (code injection), CWE-78 (command
injection), and CWE-330 (use of insufficiently random values). The expert-
tuned model, however, produced a markedly different CWE distribution: it
generated a larger number of vulnerabilities in categories such as CWE-259
(hardcoded password) and CWE-78, while vulnerabilities related to CWE-94
were notably fewer than the baseline. The framework-tuned model showed
an intermediate pattern, achieving substantial reduction in code injection
vulnerabilities (CWE-94: 0), and overall lower vulnerability counts in several
categories compared to the other models.

After refinement (Figure 4.9(b)), the overall number and diversity of
vulnerabilities decreased across all models. Notably, for the framework-tuned
model, most CWE categories were eliminated or greatly reduced—CWE-94
was fully resolved, and vulnerabilities in CWE-259, CWE-327, CWE-330,
and CWE-377 were nearly eliminated. The baseline model retained residual
vulnerabilities primarily in CWE-78 and a small number in CWE-22 and
CWE-89. The expert-tuned model, in contrast, showed persistent issues
across a broader set of CWE categories, particularly in CWE-78, CWE-259,
and CWE-377, indicating that fine-tuning solely on expert code does not
necessarily guarantee a broader coverage of vulnerability mitigation.

A similar pattern was observed with the SecurityEval dataset as illus-
trated in Figure 4.10. Before refinement, all models exhibited vulnerabilities
across a diverse set of CWE categories, with command injection (CWE-
94) and improper input validation (CWE-20) being the most frequent. The
expert-tuned and framework-tuned models each showed unique patterns,
but after refinement, the framework-tuned model consistently reduced the
number and diversity of residual vulnerabilities to a greater extent than
the other models. In many categories, such as CWE-94 and CWE-259,
the framework-tuned model achieved near-complete or complete elimination
of vulnerabilities, whereas the expert-tuned model retained more residual
vulnerabilities across categories.

A closer look at the persistent vulnerabilities reveals that command
injection (CWE-78) was particularly challenging for all models, even after
refinement. This issue mainly arose from the use of Python’s subprocess
module to execute shell commands. Although Bandit explicitly flagged the
use of subprocess as a potential security risk, the LLMs did not attempt to
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(a) CWE-type distribution for each model before refinement (LLMSecEval, 150 samples).
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(b) CWE-type distribution for each model after refinement (LLMSecEval, 150 samples).

Figure 4.9: Experiment #2: Distribution of vulnerabilities per CWE for each
model before (a) and after (b) refinement, averaged over 5 runs LLMSecEval
dataset; error bars indicate standard deviation across five experiment runs.
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(a) CWE-type distribution for each model before refinement (SecurityEval, 121 samples).
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Figure 4.10: Experiment #2: Distribution of vulnerabilities per CWE each
model before (a) and after (b) refinement, averaged over 5 runs (SecurityEval,
121 samples); error bars indicate standard deviation across five experiment
runs.



replace it with safer alternatives or introduce comprehensive input saniti-
zation. As a result, the models often failed to resolve these vulnerabilities,
and command injection issues persisted in the output code. This finding
underscores the limitations of current LLM-based approaches: even when
provided with explicit warnings and multiple opportunities for correction,
the models struggle to fundamentally change architectural choices, such
as avoiding risky modules, without direct human intervention or targeted
training.

Summary Overall, these results demonstrate that the framework-tuned
model is highly effective at reducing both the number and variety of security
vulnerabilities after the verification and refinement process, compared to
both the baseline and expert-tuned models. The persistence of certain
vulnerabilities, such as command injection (CWE-78), highlights the intrinsic
difficulty of completely mitigating specific classes of security issues in an
automated manner. Nevertheless, the framework’s ability to address a wide
range of CWE categories, including those less common in the training data
shows strong generalization and robustness in practical code security tasks.

4.4.3 Functional Correctness Verification

Figure 4.11 presents, for each model, the number and percentage of code
snippets that were found to have functional correctness issues at any point
during the initial or refinement stages (“Initial/Refined Code”), as well as
those still exhibiting such issues in the final output (“Final Code”), for both
the LLMSecEval and SecurityEval datasets.

For LLMSecEval (150 code snippets), the baseline model showed func-
tional correctness errors in 8.2 cases (5.5%) during the initial or refinement
stages, with only 1.2 cases (0.8%) remaining in the final output. The
framework-tuned model triggered functional correctness errors in 21.8 cases
(14.5%) during verification and refinement, but this number was reduced to
just 0.4 cases (0.3%) in the final output, demonstrating strong self-correction
capability. In contrast, the expert-tuned model exhibited a much higher
number of functional correctness failures during verification and refinement
(126.8 cases, 84.5%), and 118.4 cases (78.9%) still had errors in the final
output, indicating little improvement.

Manual review revealed that the high count of incorrect code snippets
for the expert-tuned model was largely due to its tendency to generate
incomplete or partially implemented code. This led to the frequent detection
of functional errors throughout the verification process, with many issues
persisting in the final output.
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Figure 4.11: Experiment #2: Comparison of the percentage of code snippets
with functional correctness issues before and after iterative refinement for
each tested model when using the LLMSecEval (a) and SecurityEval (b)
datasets; error bars indicate the standard deviation across five experiment
runs.
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For LLMSecEval, we found that 14 out of 21.8 initial/refined code snip-
pets (9.3% of the total 150 samples) generated by the framework-tuned model
exhibited functional correctness issues specifically due to missing import
statements for required libraries or modules. This problem often occurred
when the fine-tuned model used different or more secure libraries than the
GPT-4o model but failed to include the necessary import statements. These
cases represent a substantial portion of the overall functional correctness
issues identified during the initial and refinement stages. Importantly, these
errors were straightforward to resolve during the refinement process by
automatically adding the missing import lines. We suspect that this pattern
may be related to overfitting introduced during fine-tuning, but further
investigation is needed to confirm the underlying cause.

A similar pattern was observed with SecurityEval (121 code snippets):
the baseline model encountered functional correctness issues in 18.6 cases
(15.4%) during the initial or refinement stages, with 4.2 (3.5%) remaining in
the final output. The framework-tuned model had 17.6 cases (14.5%) with
functional correctness errors during verification and refinement, but only 1.6
(1.3%) remaining in the final output. Once again, the expert-tuned model
performed worst, with 108.2 initial or refined incorrect cases (89.5%) and
94.4 final incorrect (78.0%).

These results highlight the effectiveness of the framework-tuned model
at resolving functional correctness issues encountered at any stage of veri-
fication, not just in the initial code. By contrast, the expert-tuned model,
which was fine-tuned on code outputs from prior LLMs, repeatedly generated
incomplete or underspecified solutions, leading to persistent errors even after
several feedback cycles. Manual inspection suggests that verification-guided
refinement enables the framework-tuned model to reliably address prompt
requirements, quickly correcting errors as they arise and converging to correct
outputs with fewer remaining failures.
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Chapter 5

Discussion

This section summarizes the main limitations of our framework and outlines
possible directions for future work.

5.1 Vulnerability Mitigation

While iterative refinement and fine-tuning substantially reduced the total
number of vulnerabilities, certain CWE categories, such as command injec-
tion (CWE 78), remain difficult to resolve even after multiple automated
refinement cycles. As discussed in Section 4.4.2, these persistent vulnerabil-
ities frequently originate from the use of inherently risky modules.

To overcome this limitation, future work should explore targeted fine-
tuning, improved prompt design, and explicit behavioral constraints. For
instance, models could be further trained or instructed to prefer safer APIs,
always include robust input validation, or actively reject insecure coding
patterns when flagged by static analysis. Integrating dynamic analysis
feedback, involving users in the correction process, or building specialized
secure code generation datasets may further enhance the ability of LLMs to
address these challenging cases.

5.2 Functional Correctness Evaluation

Current metrics [35, 36] mainly measure similarity to reference code, meaning
these scores do not fully reflect the real quality of LLM-generated code. Our
evaluation also relies on static analysis and similarity, not on comprehensive
test cases. Creating exhaustive tests would be more accurate but is time-
consuming and difficult to scale. Current methods also miss some semantic
correctness issues, especially when multiple valid solutions exist. Another
limitation arises from the use of natural language docstrings, which may
lead to misinterpretation of intended functionality.

To overcome these challenges, future work could adopt pseudocode-based
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docstrings or structured specifications using formats such as Gherkin, which
would reduce ambiguity and improve consistency. In addition, advanced
evaluation approaches that combine static analysis, dynamic testing, and
semantic checks are needed to provide a more comprehensive and reliable
assessment of functional correctness in LLM-generated code.

5.3 Static Analysis Capabilities

Our framework uses SAST tools to detect errors and security issues. However,
these tools cannot always take the full code context into account, which can
lead to both false positives and false negatives during analysis [9, 10]. As
a result, it is generally observed in practice that static analysis tools can
trigger unnecessary code modifications and still miss certain vulnerabilities
due to false positives and false negatives.

Prior research [43] has shown that combining multiple SAST tools can
improve detection coverage and accuracy, further reducing false positives and
false negatives. Therefore, we can consider incorporating a broader range of
SAST tools in the future.

5.4 Dataset Representativeness

The effectiveness of fine-tuning depends on the diversity and coverage of
the training dataset. While LLMSecEval and SecurityEval provide a broad
selection of security-related programming tasks, they do not encompass all
real-world or domain-specific scenarios. Compared with existing studies [3,
33], the datasets used for both training and testing in our study are relatively
smaller in scale. Nevertheless, the results demonstrate the feasibility of our
approach.

To ensure that such findings can be generalized more broadly, further
work with larger and more diverse datasets will be necessary. Moreover,
there is currently a lack of sufficiently comprehensive datasets dedicated to
these purposes. Therefore, we plan to consider building more diverse, custom
datasets for future LLM training.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we introduced CodeEnhancer, a unified framework for im-
proving the security and quality of Python code generated by LLMs. Our
two-stage approach combines real-time validation with targeted fine-tuning,
addressing syntax errors, security vulnerabilities, and functional correctness
within a single pipeline.

In the first stage, the validation pipeline applied to the baseline GPT-4o
model removed 83.8% of vulnerabilities and resolved all functional correctness
issues.

In the second stage, we fine-tuned the LLM using both expert-written and
framework-refined code. The framework-tuned model consistently achieved
the lowest vulnerability rates among all models. For example, on the LLM-
SecEval dataset, the proportion of vulnerable code was reduced from 43.6%
for baseline GPT-4o-generated code to 18.4% before refinement and further
to 6.7% after refinement. On SecurityEval, vulnerability rates dropped from
61.2% for GPT-4o to 35.2% before refinement and 3.5% after refinement.
Similar trends were observed for functional correctness.

Importantly, the framework-tuned model consistently outperformed the
expert-tuned model in Experiment #2, achieving lower vulnerability rates
and higher functional correctness on both benchmark datasets. This high-
lights the effectiveness of automated self-refinement and suggests that high-
quality, self-generated data can be more beneficial for fine-tuning than relying
solely on expert-written code.

6.2 Future Work

As future work, I plan to incorporate additional static and dynamic analysis
tools, adopt advanced fine-tuning strategies, and develop custom train-
ing datasets that better reflect the diversity of real-world programming
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challenges. Evaluating the framework in practical software development
environments is also a key next step.

As LLMs become increasingly central to software development workflows,
ensuring the generation of secure and correct code is critical. Our proposed
framework marks a significant step toward that objective, demonstrating that
the combination of LLMs with static analysis and purpose-driven fine-tuning
can substantially increase the trustworthiness and reliability of AI-assisted
coding systems.
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