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Abstract

Predicting outcomes in competitive sports is a complex and high-impact
task that benefits from recent advances in deep learning and multi-modal
data analysis. However, fine-grained outcome prediction in sports like bad-
minton remains underexplored, especially at the point-by-point level, where
rapid player movements and subtle contextual cues make prediction chal-
lenging. This study aims to address this gap by developing a model that can
accurately predict point outcomes using lightweight, scalable inputs derived
from broadcast videos.

To this end, we propose a novel point-by-point winning prediction model
for badminton, leveraging two complementary modalities: player posture and
environmental audio. The Badminton Winning Prediction dataset, consist-
ing of 12 full-length singles matches, was manually annotated and prepro-
cessed to extract synchronized features from both video and audio streams.

Our proposed architecture consists of two key components. First, a
Cross-Modal Fusion Module integrates Mel-Frequency Cepstral Coefficient
(MFCC) and delta features extracted from environmental audio, with 2D
body keypoints extracted using MMPose, through a bi-directional cross-
modal attention mechanism, to form stage-level representations. Second,
a Cross-Stage Fusion Module combines rally and non-rally segments via at-
tention and gated mechanisms to capture temporal interactions across game-
play phases. The fused features are then aggregated over a sliding window of
consecutive points and passed into a classification head (Linear, Long Short-
Term Memory (LSTM), or Transformer) for point-wise outcome prediction.

Extensive experiments show that our multi-modal fusion strategy signif-
icantly outperforms single-modal baselines and simple fusion methods. No-
tably, the inclusion of non-rally segments and audio information contributes
to improved accuracy and F1-score, highlighting the value of contextual cues
beyond active play. Our best model achieves an accuracy of 88.75% in binary
classification, demonstrating the practical feasibility of fine-grained predic-
tion using lightweight and scalable inputs.

These results demonstrate that our multi-modal fusion approach effec-
tively captures predictive information in badminton matches. In particular,
even a simple linear classifier achieves excellent performance, highlighting
the strength of the fused features. The significant improvements gained by
incorporating audio cues and non-rally segments confirm the importance of
contextual information beyond active play.
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The proposed framework not only advances badminton analytics but also
offers a generalizable approach for other racket sports such as tennis and table
tennis, especially in scenarios with limited camera views or sensor inputs.

Keywords: Badminton, Multi-modal Fusion, Winning Prediction, Atten-
tion Mechanism, Sports Analytics
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Chapter 1

Introduction

1.1 Background and Significance

The development of Artificial Intelligence (AI) has spanned over seven
decades since Alan Turing proposed the concept in 1950. Interestingly, the
first known system for sports analysis is believed to have emerged around
1951, marking the inception of AI applications in sports. Since then, the
rapid advancement of AI technologies has had a profound impact on the
sports industry. AI has now been tightly integrated with a wide range of
sports, offering invaluable support to coaches, athletes, referees, and specta-
tors. These technologies have made sports safer, fairer, smarter, and more
engaging for audiences [11].

In everyday exercise and fitness activities, AI plays a crucial role. The
widespread adoption of wearable devices has made it possible to collect phys-
iological signals from the human body, enabling real-time monitoring of exer-
cise conditions and the development of healthier training plans [13]. Beyond
recreational fitness, AI applications in professional sports events are even
more significant. For example, in National Basketball Association (NBA)
games, multi-view 3D reconstruction systems provide immersive replay expe-
riences for spectators and serve as a visual aid for referees in blind spots [8]. In
football, AI-driven visual analysis offers real-time match insights to coaches,
helping devise targeted strategies during games and review performances
afterward [28]. In training scenarios, motion capture and recognition tech-
nologies assist athletes in identifying incorrect movements, allowing for more
effective skill refinement [18].

However, single-modal information has inherent limitations in its descrip-
tive power. To obtain more comprehensive insights, multi-modal AI technolo-
gies have increasingly been adopted in sports. For instance, combining visual
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data with physiological sensors allows for accurate fatigue detection, reduc-
ing the risk of injuries caused by over-training [15]. The integration of audio,
visual, and positional signals provides a more complete understanding of ath-
letes’ physical and psychological states, improving coaching effectiveness and
analytical precision.

The proliferation of advanced sensors and sophisticated data processing
techniques in sports has also led to a surge in time-series data generation [16].
This data, representing sequences of athlete behaviors, game events, or en-
vironmental conditions, opens new avenues for time-series modeling. Such
models can uncover underlying patterns and trends in performance, strategy,
and training plans. More importantly, time-series models enable the fore-
casting of future events or outcomes, transforming traditional approaches to
match prediction, performance optimization, and injury prevention.

Among these applications, match outcome prediction is one of the most
impactful and challenging problems. In sports such as tennis, time-series
models have already been applied with success [23]. A match’s outcome is
primarily influenced by a player’s performance (e.g., posture or movement)
but is also affected by environmental factors, such as crowd noise or at-
mosphere. Therefore, it is essential to integrate both athlete behavior and
contextual environmental signals into a unified multi-modal framework for
accurate prediction.

Winning prediction is a crucial task in sports analytics. However, most
existing approaches focus on analyzing the outcomes of previous games, of-
ten relying on post-match statistics or video analysis [12]. This retrospective
nature limits their applicability during ongoing matches, making point-by-
point prediction especially challenging. As the fastest racket sport, bad-
minton poses a distinct challenge, with rapid exchanges and short rallies
that require precise, real-time data analysis.

1.2 Research Problem

Despite the increasing application of AI in sports analytics, several unresolved
challenges remain, particularly in the context of point-by-point prediction
for fast-paced games like badminton. First, the majority of existing methods
concentrate on full-match outcome prediction. These models typically rely
on post-match statistics or highlight data, which limits their applicability in
live match scenarios. Real-time or intra-match prediction, especially at the
level of individual points, remains underexplored.

Second, while many studies utilize visual information such as player posi-
tion, ball trajectory, or action recognition, they often overlook the potential of
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multi-modal data integration. Crowd noise, environmental sounds, and even
players’ vocal reactions can reflect momentum shifts, psychological states,
or fatigue levels, all of which may influence game outcomes. Ignoring such
auditory information reduces the depth and accuracy of predictive models.

Third, badminton itself poses unique challenges. Unlike tennis or football,
badminton rallies are extremely short, with intense back-and-forth exchanges
and frequent shifts in rhythm. This fast-paced nature makes it difficult to ex-
tract and process meaningful temporal features from a single modality. Fur-
thermore, due to the dominance of single-camera footage in publicly available
datasets, it becomes crucial to develop methods that can operate effectively
under limited visual perspectives while still leveraging multi-modal informa-
tion.

Therefore, the central research problem of this thesis lies in how to effec-
tively fuse visual and auditory modalities in a time-series framework to enable
point-by-point winning prediction in badminton matches using limited-view
data.

1.3 Research Objectives

This thesis aims to propose a novel multi-modal point-by-point winning pre-
diction model tailored to badminton, a sport with rapid dynamics and limited
visual coverage. The first objective is to extract player posture information
from single-camera video footage using pose estimation techniques. This al-
lows for capturing subtle changes in athlete movement and posture over time,
which are indicative of their performance and physical condition.

The second objective is to incorporate contextual auditory features by
extracting sound-based information such as crowd reactions, racket sounds,
and court ambiance. These signals provide additional insights into match
intensity and situational dynamics. By aligning the audio and visual data
streams across temporal sequences, the model seeks to exploit both modali-
ties for richer predictive power.

A further objective is to develop and evaluate a multi-modal fusion frame-
work capable of learning joint representations from both modalities. This
framework will employ deep learning techniques to handle sequential input
and output a binary classification result for each point, predicting whether
the player of interest will win or lose that point.

Ultimately, this research aims not only to improve point-level prediction
accuracy in badminton but also to provide a generalizable multi-modal mod-
eling approach that can be adapted to other racket sports such as tennis
or table tennis, particularly in scenarios with constrained video sources or

3



real-time requirements.

1.4 Originality

While prior studies have made significant progress in sports analytics, most
existing models either rely on single-modal information or primarily focus
on specific gameplay phases such as rally segments. For instance, Yu et
al. [23] introduced Chained Long Short-Term Memory (CLSTM), a chained
LSTM-based model for predicting stage-wise winning percentages in tennis,
capturing the sequential nature of match progression. Similarly, Nitin et
al. [19] proposed an end-to-end system for analyzing player movements based
solely on video data during rally periods in badminton.

In contrast, this research presents a novel point-by-point prediction frame-
work tailored specifically for badminton, which inherently involves rapid and
complex shifts between rally and non-rally stages. The proposed approach in-
tegrates multi-modal data—including visual features (player posture and mo-
tion) and auditory cues (audience response, environmental noise)—to achieve
a more holistic representation of match dynamics. Furthermore, the model
introduces a new cross-modal global-local fusion mechanism that adaptively
focuses on modality relevance depending on the game stage, thereby enhanc-
ing prediction accuracy across diverse contexts. This stage-aware, multi-
modal fusion strategy represents a significant departure from existing meth-
ods and contributes a new direction for fine-grained performance analysis in
racket sports.

1.5 Organizations of Thesis

This thesis is organized into six chapters as follows:
Chapter 1 introduces the background and significance of the research,

defines the core problem, sets out the research objectives, and highlights the
originality of this work.

Chapter 2 presents a literature review covering the foundations of bad-
minton, existing research on win prediction in racket sports, and relevant
methods in pose estimation and multi-modal learning, which collectively form
the basis for this study.

Chapter 3 describes the process of constructing the Badminton Winning
Prediction (BWP) dataset, including data collection, manual annotation,
feature extraction, and preprocessing steps.

Chapter 4 describes the proposed prediction model in depth, including
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its overall architecture, the cross-modal and cross-stage fusion modules, and
three types of classification heads (Transformer block, LSTM, and linear
classifier). Baseline methods are also introduced for comparative analysis.

Chapter 5 describes the experimental setup, main results, and ablation
studies. It includes comparisons of fusion methods, classification strategies,
modality contributions, and input stage designs. A discussion of the results
highlights the implications and effectiveness of the proposed approach.

Finally, Chapter 6 summarizes the main contributions of this work, dis-
cusses its limitations, and proposes directions for future research in the do-
main of multi-modal winning prediction in racket sports.
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Chapter 2

Literature Review

2.1 Foundation of Badminton

2.1.1 Badminton Rules

Badminton is a fast-paced racket sport played in either singles (one player
per side) or doubles (two players per side), as defined by the Badminton
World Federation (BWF) [4]. In this thesis, we focus exclusively on singles
matches. The game is played on a rectangular court divided by a net, and
players aim to score points by hitting the shuttlecock over the net into the
opponent’s side such that it cannot be returned [4].

Matches follow the 3-games × 21-points rally scoring system, officially
adopted by the BWF in 2006: each game is played to 21 points, with every
rally awarding a point regardless of serve. A player must win by at least a
2-point margin, and if the score reaches 29-29, the first to reach 30 wins that
game [2].

Each rally begins with a serve, and ends when the shuttlecock hits the
ground or a fault is committed. Serving alternates based on rally winners: if
the server wins, they continue serving; otherwise, the receiver becomes the
server [2]. Matches are officiated under BWF Laws of Badminton by a chair
umpire and service judge, who enforce rules and declare faults [32].

Additional operational rules include: the winner of each game serves first
in the next game; players change ends after the first game, and in the third
game when one side reaches 11 points; and the serve must be delivered un-
derarm, shuttle height below 1.15m, feet stationary until contact, and no
undue delay in service motion as per Laws 7–9 of the official statutes [32].
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2.1.2 Characteristics of Match Stages

A badminton match can be conceptually divided into two alternating stages:

Rally Stage

The rally stage refers to the active play period when the shuttlecock is in
motion, starting from the serve until the point ends [19]. During this stage,
both players are moving quickly, executing strokes, footwork, and positioning.
This is where the most dynamic and informative actions occur in terms of
player performance, strategy, and physical execution.

Non-Rally Stage

The non-rally stage refers to the period between two rallies [19]. It includes
the time immediately after a point ends and before the next serve begins.
During this stage, players may:

• Retrieve the shuttlecock

• Walk back to position

• Wipe sweat, adjust equipment

• Receive verbal guidance or instructions from the umpire

Although this stage contains less visible activity, it includes useful con-
textual information:

• Auditory signals such as umpire announcements of scores

• Verbal cues indicating fouls or service faults

• Emotional or fatigue-related body language

In our model, both stages are treated as equally important components.
Each stage (rally + preceding non-rally) is grouped and labeled with a
win/loss outcome depending on which player scored in the rally. This group-
ing enables the model to learn predictive cues not only from rally dynamics
but also from transitional moments and acoustic context.
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2.1.3 Scoring and Victory Conditions

To summarize the core mechanics:

• Each game is played to 21 points, win by 2.

• If 29–29, the player who scores the 30th point wins the game.

• A match is best of 3 games.

• Points are awarded at the end of each rally (rally point scoring system).

• The serve changes sides based on rally outcomes.

The combination of technical play during rallies and strategic behavior
during non-rally stages creates a rich set of modalities from which winning
potential can be inferred.

2.2 Review of Machine Learning Applica-

tions in Sports and Badminton

Zhao et al. [31] conducted a comprehensive survey on the applications of
machine learning in sports. They reviewed a wide range of machine learning
algorithms, datasets, and virtual environments currently used in the sports
domain. Their study covered more than ten different sports and the cor-
responding machine learning methods applied to each. Furthermore, Zhao
et al. [31] expressed optimistic prospects for future research in multimodal
approaches, practical applications, and synthetic data generation in sports
analytics.

Tan et al. [5] conducted a comprehensive survey on the analysis of the
sport of badminton. With the development of technology, manual analysis of
badminton players has been gradually replaced by advanced methods such as
badminton smashing analysis, badminton service recognition, and badminton
swing and shuttle trajectory analysis.

Building on these foundational studies, recent research has increasingly
explored the integration of multiple data modalities—such as video, audio,
and sensor signals—to enhance the accuracy and robustness of sports perfor-
mance analysis. Multimodal deep learning has shown potential in capturing
complex interactions between players and their environments, enabling more
fine-grained predictions of match outcomes and player behavior.

Motivated by these trends, the present study proposes a multimodal deep
learning framework for point-by-point prediction of badminton match out-
comes. By combining pose and audio features, this work contributes to
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the expanding field of intelligent sports analytics through fine-grained, data-
driven modeling.

2.3 Winning Prediction in Racket Sports

2.3.1 Tennis Winning Prediction

Kovalchik evaluated the predictive performance of 11 published models using
data from 2,395 singles matches, offering guidance for the future development
of tennis win prediction models [3]. His study compared multiple machine
learning methods, including logistic regression and ELO-based approaches,
revealing that probabilistic models often outperform naive baselines in pro-
fessional tennis.

Gao et al. compiled, cleaned, and utilized the largest known tennis match
database to date, employing the Random Forest method to predict match
outcomes [10]. They extracted over 20 features including player rankings,
recent performance, and surface type. Their results showed that ensemble
methods provide better generalization and robustness in noisy sports envi-
ronments.

Yu et al. proposed combining a chained model with an LSTM network
and introduced a novel dynamic model (CLSTM), as shown in Figure 2.1,
which leverages the sequential interdependence of matches to predict the
winning probability at each stage of a tennis match [23]. Their framework
incorporated time-dependent player state features and demonstrated supe-
rior performance in stage-wise predictions compared to conventional static
models. However, a notable shortcoming is that by focusing solely on sequen-
tial dependencies within rallies, the model overlooks potentially informative
relationships that occur outside of rally segments, such as between-point
strategies or momentum shifts.

2.3.2 Badminton Winning Prediction

Sharma et al. proposed a badminton match result prediction model using
the Naive Bayes method trained on historical match records [12]. Although
simple, their model demonstrated that probabilistic learning can capture
basic outcome patterns based on past matchups, player names, and win-loss
ratios.

Jo et al. developed a sequential win probability prediction model based
on the Extended Sequential Probability Ratio Test (EXSPRT) [30]. They in-
troduced a scoring difficulty index calculated from technical, situational, and
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Figure 2.1: The Work Flow of CLSTM [23].

temporal indicators such as shot type, rally length, and current score. This
model dynamically adjusted win probabilities after each rally and showed
improved interpretability over traditional classification methods. The frame-
work, shown in Figure 2.2, emphasizes the importance of rally context in
point-level prediction.

Yuan et al. focused on elite player An Se-young and trained machine
learning models to classify rally outcomes (win/loss) in women’s singles [22].
They extracted handcrafted features such as stroke type frequency, player
movement speed, and opponent error statistics. Among several classifiers,
SVM and XGBoost achieved high accuracy, highlighting the viability of fea-
ture engineering in badminton analysis.

Sheng et al. designed a recognition system for 23 badminton technical ac-
tions using vision-based learning and applied the recognized actions in match
outcome prediction [27]. Their pipeline used convolutional networks for ac-
tion detection and integrated temporal dynamics to link action sequences
with game results. This study demonstrated the potential of fine-grained
action recognition in supporting tactical analysis and prediction.
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Figure 2.2: Sequential Win Prediction Framework using EXSPRT [30].

2.4 Pose Estimation in Sports and Bad-

minton

Pose estimation tools such as OpenPose [7] and MMPose [17] extract 2D key-
points from videos and have been widely applied in sports analytics. These
methods are particularly useful for detecting joint trajectories and player
movement patterns.

Figure 2.3: Example of pose estimation in a badminton match using Open-
Pose [7].
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In sports, pose-based analytics are used for performance evaluation, tac-
tical modeling, and injury prevention [14]. Badiola-Bengoa et al. conducted
a comprehensive survey of Human Pose Estimation (HPE) applications in
sports and highlighted its potential for both elite and amateur training [9].

In the context of badminton, Jiang et al. proposed a lightweight pose
estimation-based training system by improving OpenPose, specifically tai-
lored to support technical skill evaluation and motion correction in bad-
minton drills [29].

Figure 2.3 shows an example of OpenPose applied to a real-world bad-
minton match, where it successfully detects body keypoints of both players
and surrounding personnel. Such visualizations can aid in extracting pose
features, tracking movement, and understanding player behavior for perfor-
mance analysis.

2.5 Multi-modal Learning in Sports Analyt-

ics

The integration of multiple data modalities—such as visual, audio, textual,
and positional information—has become increasingly common in sports an-
alytics due to its potential to capture complementary aspects of player be-
havior and game context.

As shown in Figure 2.4, Goka et al. [21] proposed a model to predict
shooting events in soccer by jointly processing visual and audio cues. The
visual stream consisted of frame-level spatial features, while the audio stream
captured crowd reactions and environmental sounds. Their model used a
temporal convolutional network to encode each modality and then fused them
via concatenation, leading to improved event recognition accuracy compared
to unimodal baselines.

Takamido et al. [24] developed an interpretable AI system called PassAI
to classify successful and failed passes in professional soccer. Their approach
integrated player tracking trajectories with player statistics (e.g., pass accu-
racy, stamina) and applied SHapley Additive exPlanations (SHAP) values to
identify which features influenced the model’s predictions. This work high-
lighted the benefits of combining spatial and tabular data for tactical analysis
and model explainability.

Multi-modal learning enables models to extract richer representations and
improve generalization, especially in scenarios where single-modal inputs may
be insufficient or ambiguous.
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Figure 2.4: Overview of multi-modal shot prediction in soccer videos [21].

2.6 Fusion Strategies and Attention Mecha-

nisms

Fusion methods in multi-modal systems are generally categorized into early
fusion (feature-level), late fusion (decision-level), and hybrid strategies that
combine both [20]. In sports analytics, early fusion is often used when tempo-
ral alignment is tight (e.g., synchronized video and audio), while late fusion
allows for flexible integration across asynchronous modalities.

To dynamically weigh the relevance of different modalities, attention
mechanisms have been increasingly adopted. For example, As shown in Fig-
ure 2.5, Li et al. [26] proposed a cross-modal attention framework for emotion
recognition, where visual features guided the selection of salient audio seg-
ments, improving model robustness to noise. Their architecture included a
dual-encoder with self-attention and a cross-modal fusion layer, leading to
significant improvements over late fusion baselines.

Xv et al. [25] tackled highlight localization in long-form sports videos by
aligning visual and textual fragments. They used a transformer-based ar-
chitecture with query-guided attention to link semantic keywords with video
snippets. Their results demonstrated that attention-based fusion outper-
forms naive alignment strategies in complex, multi-event scenarios.

These findings highlight the importance of context-aware fusion in han-
dling heterogeneous modalities. In badminton, where the game context
rapidly alternates between high- and low-activity segments, adaptive atten-
tion mechanisms can enable the model to focus on pose features during rallies
and audio cues during breaks, motivating the design of our proposed Bad-
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Figure 2.5: CCMA: CapsNet for audio–video sentiment analysis using cross-
modal attention [26].

minton Winning Prediction Model framework.
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Chapter 3

Badminton Winning Prediction
Dataset Creation

3.1 Dataset Overview

To train and evaluate our badminton winning prediction model, we con-
structed a Badminton Win Prediction (BWP) dataset. The dataset consists
of 12 full-length singles matches collected from the official YouTube channel
of the Badminton World Federation (BWF TV) [33]. These include 6 men’s
singles and 6 women’s singles matches, each approximately 50 minutes in
duration, with clear video and audio quality suitable for multi-modal feature
extraction.

Each match was manually segmented into alternating rally and non-
rally stages. Each pair of consecutive non-rally and rally stages was grouped
into a stage and labeled with a win/loss outcome depending on which player
scored the point. After cleaning, filtering, and annotation, we obtained a
total of 1702 labeled stages (818 positive and 884 negative samples).

The total dataset duration is approximately 9 hours 21 minutes 49
seconds. The detailed breakdown of match durations, scores, and sample
counts is shown in Table 3.1. The average length of rally and non-rally stages
is shown in Table 3.2.

3.2 Dataset Creation and Preprocess

The process of dataset creation and preprocessing is shown in the Figure 3.1.
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Table 3.1: Sample counts per match (window size L = 3)
Match Name Game Scores Samples
BANSOD vs NGUYEN (QF) 21–15, 21–17 68
AN vs GAO (RO32) 21–16, 21–14 66
INTANON vs LI (RO32) 21–12, 21–6 54
MIYAZAKI vs NIDAIRA (RO32) 21–13, 21–17 66
SUNG vs BLICHFELDT (QF) 14–21, 14–21 64
WARDANI vs OHORI (RO32) 21–19, 21–18 73
Total of Women-Singles 391
SHETTY vs KOLJONEN (QF) 21–18, 21–18 72
CHOU vs GEMKE (QF) 13–21, 20–22 70
JAKOBSEN vs SANTHOSH (QF) 21–12, 21–17 65
POPOV vs LI (QF) 15–21, 18–21 69
WENG vs NISHIMOTO (QF) 21–10, 21–16 62
YANG vs GEMKE (RO32) 15–21, 11–21 62
Total of Man-Singles 400

Total 791

Table 3.2: Aggregate and average duration of rally and non-rally stages
Stage Type Total Duration (s) Average Duration (s)
Non-Rally 24009.93 27.82
Rally 9692.92 11.23

BWF TV

Video Set

Librosa

MMPose Player Filters 2D Key Points

MFCC+Δ+Δ2

Manual 
Annotation

Split By Manual 
Annotation

BWP 
Dataset

Timestamp of 
Stages

Figure 3.1: Overall process of The BWP Dataset creation.

3.2.1 Source and Format of Raw Data

All match videos were collected from the official BWF TV YouTube chan-
nel [33], which broadcasts full-length replays of professional badminton tour-
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naments. To maintain continuity and minimize interference from camera
switching, only matches filmed with a single fixed-angle camera were se-
lected. All videos are in MP4 format with 1080p resolution, recorded at 30
frames per second (fps), and contain 44.1 kHz stereo audio.

3.3 Manual Annotation

3.3.1 Label Definition

Each complete stage is defined as a pair of consecutive stage: one non-rally
stage followed by a rally stage. For each stage, we assign a binary label
(1 or 0) indicating whether the player on the camera-facing side wins the
upcoming rally. Specifically, label 1 denotes that the camera-side player wins
the point, and label 0 indicates a loss. This labeling standard is consistently
applied regardless of court switching between games. During dataset loading,
stage sequences do not span across game boundaries, so the definition of the
camera-side remains consistent.

In total, approximately 800 labeled stages were annotated across 12
matches. The distribution of win/loss labels is nearly balanced, as shown
in Table 3.3.

3.3.2 Annotation Strategy and Tool

Manual annotation was conducted using the ELAN tool [34], developed by
the Max Planck Institute for Psycholinguistics. ELAN is widely used in
academic fields such as psychology, linguistics, education, and behavioral
science. It supports multi-tier annotations for audio and video, and stores
annotations in an XML-based format.

Using ELAN’s segmentation interface, we manually marked the start and
end times of both non-rally and rally intervals. Each pair of non-rally and
rally stages together forms one annotated stage, and the corresponding label
applies to the entire stage. Figure 3.2 shows a screenshot of the ELAN
interface during the annotation process.

To ensure consistency, only the camera-facing player was labeled and
tracked throughout the match. Even when players switched courts between
games, we retained the labeling focus on the camera-side player without
adjustment.
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Figure 3.2: Manual annotation of rally and non-rally stages using ELAN [34].

3.3.3 Label Distribution

After manually annotating each stage of the 12 matches with a binary
win/loss label, we obtained a total of 1,702 labeled samples. A complete
stage—consisting of both the Rally and Non-Rally segments—shares the
same label. Table 3.3 shows the distribution of positive (win) and nega-
tive (loss) labelswith separate counts for each non-rally and rally label. The
dataset remains reasonably balanced, with a slight skew toward negative
samples.

Table 3.3: Label distribution in the annotated dataset
Label Count

Positive (Win) 818
Negative (Loss) 884

Total 1702

3.3.4 Audio Feature Extraction

The audio environment in professional badminton matches mainly consists
of player shouts, racket hitting sounds, and intermittent audience reac-
tions. These elements contribute informative acoustic cues that correlate
with player actions and rally intensity. To capture this information, we ex-
tracted MFCC, a widely used feature representation in speech and sound
analysis.
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Audio was extracted from the original video and convert stereo to mono.
We then computed 13-dimensional MFCCs along with their first-order (∆)
and second-order (∆2) temporal derivatives, resulting in a 39-dimensional
audio feature vector for each frame. The features were extracted using the
librosa library.

The MFCCs are computed by applying the Dscrete Cosine Transform
(DCT) to the log power of Mel-scaled filter bank energies:

MFCCn =
K∑
k=1

log(Ek) · cos
[
πn

K
(k − 0.5)

]
, (3.1)

where Ek is the energy in the k-th Mel filter, K is the total number of
Mel filters, and n is the MFCC coefficient index.

The first- and second-order deltas are computed as:

∆t =

∑N
n=1 n · (ct+n − ct−n)

2
∑N

n=1 n
2

, ∆2
t =

∑N
n=1 n · (∆t+n −∆t−n)

2
∑N

n=1 n
2

, (3.2)

where ct is the MFCC at time t, and N is the window size for delta
computation.

To align audio frames with video frames (30 fps), we computed the
hop length based on the sampling rate (44,100 Hz) and video frame rate
(30 fps), as follows:

hop length =
sampling rate

fps
=

44100

30
≈ 1470. (3.3)

This ensures that the number of audio frames extracted per second
matches the number of video frames, enabling frame-level alignment between
audio and pose modalities.

The MFCC extraction code is as follows:

mfcc = librosa.feature.mfcc(y=y, sr=44100, n_mfcc=13,

hop_length=1470)

delta = librosa.feature.delta(mfcc)

delta2 = librosa.feature.delta(mfcc, order=2)

3.3.5 Posture Feature Extraction

We used the MMPose [17] library to extract 2D body keypoints from each
frame of the match videos. Specifically, the human preset was used, which
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employs the RTMPose-m pose estimation model with RTMDet-m for person
detection. The extracted output includes 17 keypoints per person in (x, y)
format, along with confidence scores and bounding boxes.

Since each frame may contain multiple human detections, we designed
a tracking-based filtering algorithm to extract only the two main players
across the full match. The core idea is to select the two players closest to the
court center in a stable frame and then track them forward and backward
using bounding box Intersection over Union (IoU). If tracking fails, a fallback
selection mechanism is applied.

Initial Frame Selection We set the initial reference frame to frame 9000
(corresponding to approximately 5 minutes in a 30 fps video). Empirically,
this frame always falls within the rally stage when both players are clearly
visible and positioned near the center of the court. This ensures stable ini-
tialization of player tracking across different videos.

The overall filtering process is described in Algorithm 1.

Algorithm 1: Player Filtering via Stable Tracking

Input: Keypoint JSON file containing all detected instances per
frame

Output: Filtered JSON file with two main players per frame
Set start frame ← 9000;
Select two players closest to image center at start frame as
stable players;
for each frame f from start frame to first frame (in reverse) do

Match instances in f with stable players using IoU;
if match fails for k consecutive frames then

Select two closest instances to screen center (fallback);
Reset failure counter;

else
Update stable players with matched instances;

Save matched/fallback players for frame f ;

Repeat the same process forward from start frame + 1 to last
frame;
Sort all frames and write filtered JSON output;

After this filtering process, only the two main players are retained per
frame. The final posture feature used for modeling is a tensor of shape
[2, 17, 2], representing 17 keypoints for each of the two players.
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3.3.6 Feature Synchronization and Normalization

To ensure consistent input lengths, we predefined the input duration for both
non-rally and rally stages. Initially, we set the input length to 500 frames,
and extracted the first 500 frames from each stage. However, we later revised
this strategy based on empirical observations. Specifically, we updated the
fixed input length to 600 frames per stage, which better matched the average
duration statistics reported earlier (see Table 3.2).

In addition, we changed the truncation strategy from head-cut (select-
ing the first 500 frames) to tail-cut (selecting the last 600 frames). This
adjustment ensured that the end of each stage—often containing decisive
movements or acoustic signals—was retained for learning.
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Chapter 4

Badminton Winning Prediction
Model

4.1 Model Overview

This chapter presents our proposed model for point-by-point badminton
win prediction, which is designed to leverage multi-modal informa-
tion—specifically, environmental audio and player posture—across different
stages of each point. The model incorporates two key components to capture
both intra-stage and inter-stage dependencies: the Cross-Modal Fusion Mod-
ule and the Cross-Stage Fusion Module. The full architecture is illustrated
in Figure 4.1.

For each point, we partition the gameplay into non-rally and rally stages
and extract two types of features from each stage: (1) audio features (MFCC,
∆, and ∆2), and (2) 2D keypoint-based posture features from both players.
The audio features are encoded by a Transformer-based encoder, while the
posture features are processed through a bi-directional cross-attention mech-
anism to capture the interaction dynamics between the two players.

The encoded audio and posture representations are then integrated by
the Cross-Modal Fusion Module. Although this module is built upon a bi-
directional attention framework, it is specifically tailored to reconcile the
heterogeneous nature of spatial posture data and temporal audio signals.
This stage-level fusion forms a strong semantic foundation for subsequent
reasoning.

To model the dependencies between the non-rally and rally stages within
the same point, we introduce the Cross-Stage Fusion Module. Instead of a
mere attention block, this module performs a dedicated fusion of the stage-
wise representations, allowing the model to explicitly combine and reason
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over inter-stage information. This cross-stage fusion is the central innovation
of our approach, enabling the capture of subtle dynamics across stages.

Finally, to incorporate temporal context across multiple points, we apply
a sliding window of length L = 3 over consecutive points. Fused represen-
tations from each window are concatenated and passed to a linear classifier,
which predicts the outcome of the final stage in the window. Through this
hierarchical pipeline—from modality-specific encoding and fusion to inter-
stage fusion and temporal aggregation—the model learns both fine-grained
interactions and broader momentum trends throughout a match.
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Figure 4.1: Proposed Badminton Winning Prediction Model framework.

4.2 Cross-Modal Fusion Module

The Cross-Modal Fusion Module is designed to integrate two heterogeneous
modalities—environmental audio and players’ posture—into a unified repre-
sentation for each stage (rally or non-rally). This fusion process captures
both global scene information and fine-grained body dynamics, enabling the
model to learn semantic correlations across modalities.

Architecture Overview

As shown in Figure 4.2, the module takes audio and posture features as
input. The audio features, extracted from environmental sound and encoded
through a Transformer-based encoder, yield the Audio Embedding. Posture
features, which represent the 2D coordinates of keypoints for both players,
are processed through a bi-directional cross-attention mechanism to generate
the Posture Embedding.
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Figure 4.2: Cross-Modal Fusion Module architecture.

These embeddings are then exchanged through a bi-directional attention
structure:

• Audio-guided Posture Attention: The posture embedding serves
as the query (Q), while the audio embedding provides the keys and
values (K,V ).

• Posture-guided Audio Attention: The audio embedding serves as
the query (Q), while the posture embedding provides the keys and
values (K,V ).

Each attention output is followed by a residual connection and a Layer
Normalization step. These are represented by the operator +, indicating
residual addition, and the box labeled “LayerNorm” in the diagram.

Finally, the attention-enhanced posture and audio embeddings are con-
catenated along the feature dimension (denoted by ⊕) to produce the final
fused representation.

Multi-Head Attention

The multi-head attention mechanism allows the model to jointly attend to in-
formation from different representation subspaces. Given a query Q ∈ RL×D,
key K ∈ RL×D, and value V ∈ RL×D, the attention output is computed as:

Attention(Q,K, V ) = softmax

(
QK⊤√

dk

)
V (4.1)

For multi-head attention, this is applied in parallel h times with different
learnable projections:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (4.2)

24



headi = Attention(QWQ
i , KWK

i , V W V
i ) (4.3)

where WQ
i ,WK

i ,W V
i ∈ RD×dk are learnable projection matrices and

WO ∈ Rhdk×D is the output projection.

Layer Normalization and Residual Addition

Each attention output is followed by a residual connection and a LayerNorm
operation:

X̂ = LayerNorm(X + Attention(Q,K, V )) (4.4)

LayerNorm normalizes the feature across dimensions to stabilize training:

LayerNorm(x) =
x− µ√
σ2 + ϵ

· γ + β (4.5)

where µ and σ2 are the mean and variance of input x, and γ, β are
learnable affine parameters.

Fusion Strategy

The final step in the module concatenates the enhanced audio and posture
representations:

Ffused = P̂ ⊕ Â (4.6)

Here, P̂ and Â denote the attention-enhanced posture and audio features,
respectively, after residual addition and layer normalization:
P̂ = LayerNorm(Pose+ Attentionpose←audio)

Â = LayerNorm(Audio+ Attentionaudio←pose)
The operator⊕ represents feature concatenation along the last dimension.

As a result, the fused feature Ffused ∈ RL×2D integrates modality-aware
information from both input streams without further projection layers. This
fused embedding serves as the stage-level representation for either the rally
or non-rally stage, and is subsequently passed to the Cross-Stage Fusion
Module.

4.3 Cross-Stage Fusion Module

The Cross-Stage Fusion Module integrates the fused embeddings from the
non-rally and rally stages within each point. Unlike simple concatenation
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or averaging, this module enhances inter-stage interactions through atten-
tion and selectively merges the stage-specific information via a gated fusion
mechanism.
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Figure 4.3: Cross-Stage Fusion Module architecture.

Architecture Overview

As shown in Figure 4.3, the module takes as input the fused non-rally and
rally embeddings from the previous stage. A learnable stage type embedding
(0 for non-rally, 1 for rally) is added to each input to explicitly encode stage
identity.

The two enriched embeddings are then passed through a multi-head self-
attention layer to model interactions between the stages. The resulting
attention-enhanced features are subsequently fused using a gating mecha-
nism.

Gated Fusion Mechanism

To dynamically control the contribution of each stage, the module employs
a learnable gate. Given the attention-enhanced non-rally and rally features,
denoted as fnon and frally, the gate vector g is computed as:

g = σ(Wg[fnon ⊕ frally]) (4.7)

where Wg is a learnable linear projection, ⊕ denotes feature concatena-
tion, and σ is the sigmoid activation function.

The final fused stage representation is given by a weighted combination:

Fstage = g ⊙ fnon + (1− g)⊙ frally (4.8)

where ⊙ denotes element-wise multiplication. This allows the model to
adaptively emphasize either stage based on the context.
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Output Representation

The output of this module is the stage-level embedding Fstage ∈ RB×2D,
which encodes both gameplay phases and their semantic relationships. These
representations are later aggregated across multiple points and passed to the
final classification head for point outcome prediction.

4.4 Baseline Methods

We implemented several baseline models to evaluate the effectiveness of our
proposed attention-based fusion and sequence modeling strategy:

4.4.1 Concatenation-based Fusion

To evaluate the effectiveness of the proposed Cross-Stage Fusion Module, we
design an ablation experiment by replacing it with a simple concatenation-
based fusion strategy. In this baseline, the modality-specific features from
the non-rally and rally segments are directly concatenated without any cross-
modal or cross-stage interaction. Specifically, given the non-rally features
Fnon ∈ RB×L×D and rally features Frally ∈ RB×L×D, the fused representation
is obtained as:

Fconcat = Concat(Fnon, Frally) ∈ RB×L×2D

This fused feature sequence is then passed through a temporal modeling
backbone such as a Transformer encoder or LSTM to capture sequential
dependencies and make stage-wise predictions. Since no explicit fusion or
interaction is performed between the modalities, this setup serves as a strong
baseline to assess the contribution of the proposed fusion mechanism.

4.4.2 CNN-based Cross-Stage Fusion

As another ablation setting, we replace the proposed Cross-Stage Fusion
Module with a lightweight convolution-based fusion approach. Instead of
modeling cross-stage interactions via attention, this method applies a tempo-
ral convolution over the concatenated non-rally and rally features to capture
local correlations.

Given non-rally features Fnon ∈ RB×L×D and rally features Frally ∈
RB×L×D, we first concatenate them along a new stage dimension to form:

Fstacked = Stack(Fnon, Frally) ∈ RB×L×2×D
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We then apply a 1-dimensional convolution across the stage axis:

Ffused = Conv1D(Fstacked, kernelsize = 2) ∈ RB×L×D

This fused feature sequence is subsequently passed to the temporal mod-
eling module (e.g., Transformer encoder or LSTM) for final stage-wise clas-
sification. By comparing this simple Convolutional Neural Network (CNN)-
based fusion to the full attention-based Cross-Stage Fusion Module, we can
evaluate the contribution of Cross-Stage Fusion Module in capturing more
informative interactions.

4.5 Classification Head

To investigate the impact of different sequence modeling strategies on stage-
wise outcome prediction, we compare three types of classification heads: a
simple Linear classifier, an LSTM-based model, and a Transformer-based
model. Each classification head takes as input the fused stage-level features
over a sliding window and outputs binary predictions for each stage.

4.5.1 Transformer Block

The Transformer-based classification head leverages self-attention to model
temporal dependencies across multiple stages. Given an input sequence X ∈
RB×L×D, where L is the number of stages in the sliding window and D
is the feature dimension, the Transformer Block captures global contextual
information using multi-head self-attention and feed-forward layers. The
architecture is shown in Figure 4.4.

H = TransformerBlock(X) ∈ RB×L×D

ŷ = Linear(H) ∈ RB×L×1

4.5.2 Long Short-Term Memory

The LSTM-based head uses a unidirectional Long Short-Term Memory [1]
network to sequentially encode the temporal dynamics of stage-level features.
The LSTM captures short- and long-range dependencies between stages:

H = LSTM(X) ∈ RB×L×D

ŷ = Linear(H) ∈ RB×L×1
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Figure 4.4: Transformer Blocks architecture.[6]

4.5.3 Linear Classifier

As a lightweight classification head, we apply a linear projection over the
fused feature vector X:

ŷ = Linear(X) = WX+ b

where W and b are learnable parameters of the linear layer.
This linear classification head is used to evaluate the effectiveness of the

preceding feature fusion method.
The experimental results demonstrate that, thanks to the strong and

effective multi-modal fusion, even a simple linear classifier can achieve the
best prediction performance among various classification heads tested.
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Chapter 5

Experiment and Results

5.1 Experiment Settings

In this section, we describe the experimental setup for evaluating our pro-
posed model. All experiments are conducted on the BWP dataset introduced
in Chapter 4. The dataset is split into training, validation, and test sets in
an 8:1:1 ratio. For each match, stage-level samples are randomly partitioned
and merged across the splits, ensuring every match appears in all three sub-
sets. This preserves diversity across gender, camera angles, and player styles,
thereby enhancing generalization and robustness.

5.1.1 Evaluation Metrics

To quantitatively evaluate the performance of our classification models, we
use the following metrics:

• Accuracy measures the proportion of correctly predicted samples
among all samples:

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision evaluates the accuracy of positive predictions:

Precision =
TP

TP + FP

• Recall (also known as Sensitivity) measures the ability to identify pos-
itive samples:

Recall =
TP

TP + FN
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• F1-score is the harmonic mean of Precision and Recall:

F1− score = 2× Precision×Recall

Precision+Recall

Here, TP , TN , FP , and FN denote true positives, true negatives, false
positives, and false negatives, respectively.

These metrics provide a comprehensive evaluation of classification per-
formance from multiple perspectives.

5.1.2 Window Size and Stage-wise Settings

We set the sliding window size L = 3 by default. Each window contains 3
stages, and prediction can be performed on either all 3 stages (multi-label) or
the last stage only (single-label). Padding is used when insufficient context
is available.

Preliminary Analysis and Input Strategy

We first conducted a pilot study to investigate how different input configura-
tions and output strategies affect model performance. Specifically, we used
a simple linear classification head and fused MFCC and posture features as
input. Each stage input was fixed to 500 frames using a head-cut padding
strategy—retaining the earlier part of the stage and truncating the tail.

To model short-term temporal dynamics, we adopted a Cross-Stage Fu-
sion Module with a sliding window of size 3. That is, each prediction con-
siders the current stage and the two preceding ones.

We also evaluated two output label strategies:

• Label 1: Only the outcome of the latest (third) stage in the window
is predicted.

• Label 3: Outcomes for all three stages in the sliding window are pre-
dicted in parallel.

The performance of these configurations is summarized in Table 5.1. Re-
gardless of the output setting, models trained on head-cut inputs consistently
hovered around 50% validation accuracy—close to a random baseline. This
suggests that early-stage frames lack strong predictive signals for outcome
classification.

As shown, even the best-performing configuration only marginally outper-
forms random guessing. These results confirm that crucial decision-making
cues may lie later in the stage.
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Table 5.1: Results on head-cut 500-frame inputs using Cross-Stage Fusion
Module and Linear Classifier.

Output Accuracy Precision Recall F1-score

3 0.5525 0.5321 0.5512 0.6125
1 0.5323 0.6247 0.6791 0.5972

Revised Input Strategy

To address this limitation, we revised the input configuration in two ways:
(1) we increased the stage input length from 500 to 600 frames, and (2)
we switched to a tail-cut strategy, preserving the latter part of the stage
while discarding the early frames. This adjustment led to substantially bet-
ter training convergence and improved model accuracy. It also supports the
intuition that outcome-relevant behaviors—such as smashes, drop shots, or
unforced errors—tend to occur near the end of a rally. This revised set-
ting serves as the default configuration in the remaining experiments, unless
stated otherwise.

5.2 Main Results

We now present the main experimental results using the revised input strat-
egy (tail-cut, 600 frames) under two output configurations: a multi-label
setting that predicts all three stages within each window (3-label output),
and a single-label setting that predicts only the latest stage (1-label output).

Tables 5.2 and 5.3 report the performance across different classifier heads,
input types, and fusion strategies. All models use a sliding window size of
L = 3 and the default bimodal input (MFCC + posture) unless otherwise
noted.

In the 3-label setting (Table 5.2), the best performance is achieved
using a simple linear classifier with the Cross-Stage Fusion Module, reaching
an accuracy of 87.5%. Linear models slightly outperform Transformer and
LSTM heads in this task, possibly due to the limited data size or the relative
simplicity of multi-label prediction.

In the 1-label setting (Table 5.3), a similar trend holds, where the
linear classifier again achieves the highest accuracy (88.75%), outperforming
both LSTM and Transformer-based alternatives. The linear model also at-
tains the best F1-score of 0.9011, suggesting more consistent predictions on
the most recent stage.

Across both tasks, several consistent patterns emerge:
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Table 5.2: Main experimental results (3-label classification). Best accuracy
is bolded.
Classification Head Input Fusion Method Slide Winodw Size Accuracy Precision Recall F1-score

Linear Classifier MFCC, Posture Cross-Stage Fusion Module 3 0.875 0.8364 0.9328 0.881
Transformer MFCC, Posture Cross-Stage Fusion Module 3 0.8208 0.8654 0.7563 0.8072
LSTM MFCC, Posture Cross-Stage Fusion Module 3 0.7625 0.7385 0.8067 0.7711
Transformer Posture Only Cross-Stage Fusion Module 3 0.7458 0.7544 0.7227 0.7382
Transformer MFCC, Posture Concat 3 0.7125 0.7404 0.6471 0.6906
Transformer MFCC, Posture Cross-Stage CNN 3 0.6875 0.6897 0.6723 0.6809
Linear Classifier MFCC, Posture (Rally Stage Only) / 3 0.672 0.6324 0.625 0.6205
Transformer MFCC, Posture (Rally Stage Only) / 3 0.6 0.6117 0.5294 0.5676
Linear Classifier MFCC, Posture (Padding 500 head cut) Cross-Stage Fusion Module 3 0.5525 0.5321 0.5512 0.6125

Table 5.3: Main experimental results (1-label classification). Best accuracy
is bolded.
Classification Head Input Fusion Method Slide Winodw Size Accuracy Precision Recall F1-score

Linear Classifier MFCC, Posture Cross-Stage Fusion Module 3 0.8875 0.8723 0.9318 0.9011
LSTM MFCC, Posture Cross-Stage Fusion Module 3 0.85 0.9211 0.7955 0.8537
Transformer MFCC, Posture Cross-Stage Fusion Module 3 0.775 0.8611 0.7045 0.775
Transformer MFCC, Posture Concat 3 0.725 0.8056 0.6591 0.725
Transformer Posture Only Cross-Stage Fusion Module 3 0.7 0.8846 0.5227 0.6571
Linear Classifier MFCC, Posture (Rally Stage Only) / 3 0.6385 0.6948 0.5861 0.6582
Transformer MFCC, Posture (Rally Stage Only) / 3 0.5875 0.6667 0.5 0.5714
Transformer MFCC, Posture Cross-Stage CNN 3 0.5625 0.6286 0.5 0.557
Linear Classifier MFCC, Posture (Padding 500 head cut) Cross-Stage Fusion Module 3 0.5323 0.6247 0.6791 0.5972

• Multi-Modal inputs (MFCC + posture) consistently outperform
unimodal ones (e.g., posture only), confirming the complementary na-
ture of audio and visual cues.

• Cross-Stage Fusion provides clear improvements over simpler alter-
natives such as feature concatenation or CNN-based fusion, demon-
strating its effectiveness in leveraging temporal dependencies across
stages.

• Models trained on rally-stage-only inputs suffer substantial perfor-
mance drops, indicating the necessity of modeling both rally and non-
rally stages for accurate prediction.

• The head-cut input strategy (removing early frames) consistently
results in the worst performance, validating our use of tail-cut segments
as a more informative temporal window.

These observations reinforce the importance of full-stage temporal model-
ing and multi-modal integration for both stage-wise and latest-stage behavior
recognition. Further analyses on generalization and ablations are presented
in Section 5.3.
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Table 5.4: Comparison of Fusion Methods (Classification Head: Transformer,
L = 3, 3-label classification)
Fusion Method Accuracy Precision Recall F1-score
Cross-Stage Fusion Module (Ours) 0.8208 0.8654 0.7563 0.8072
Concatenation 0.7125 0.7404 0.6471 0.6906
CNN Fusion 0.6875 0.6897 0.6723 0.6809

Table 5.5: Comparison of Fusion Methods (Classification Head: Transformer,
L = 3, 1-label classification)
Fusion Method Accuracy Precision Recall F1-score
Cross-Stage Fusion Module (Ours) 0.775 0.8611 0.7045 0.775
Concatenation 0.725 0.8056 0.6591 0.725
CNN Fusion 0.5625 0.6286 0.5 0.557

5.3 Ablation Studies

5.3.1 Fusion Method Comparison

Table 5.4 and Table 5.5 compares the performance of different fusion
strategies with the same backbone classifier (Transformer). Our proposed
attention-based fusion outperforms early fusion and CNN-based fusion in all
metrics.

5.3.2 Classification Head Comparison

Table 5.6 and Table 5.7shows results of using different sequence models
while keeping the fusion method fixed (Cross-Stage Fusion Module). The
linear classifier achieves surprisingly strong overall performance, outperform-
ing more complex sequence models in both accuracy and F1-score. However,
Transformer and LSTM architectures still offer competitive recall and may
provide better temporal interpretability.

Table 5.6: Comparison of Sequence Models (Fusion: Cross-Stage Fusion
Module, L = 3, 3-label classification)

Classification Head Accuracy Precision Recall F1-score
Linear Classifier 0.8750 0.8364 0.9328 0.8810
Transformer 0.8208 0.8654 0.7563 0.8072
LSTM 0.7625 0.7385 0.8067 0.7709
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Table 5.7: Comparison of Sequence Models (Fusion: Cross-Stage Fusion
Module, L = 3, 1-label classification)

Classification Head Accuracy Precision Recall F1-score
Linear Classifier 0.8875 0.8723 0.9318 0.9011
Transformer 0.85 0.9211 0.7955 0.8537
LSTM 0.775 0.8611 0.7045 0.775

Table 5.8: Modality Comparison (Fusion: Cross-Stage Fusion Module, Clas-
sification Head: Transformer, L = 3, 3-label classification)

Input Modality Accuracy Precision Recall F1-score
Pose + Audio 0.8208 0.8654 0.7563 0.8072
Pose Only 0.7458 0.7544 0.7227 0.7382

5.3.3 Modality Comparison

We conducted an ablation experiment to verify the effectiveness of multi-
modal learning. Specifically, we compare the full model using both audio
and posture features with a reduced version using only posture. Tables 5.8
and 5.9 show that the inclusion of audio features improves overall perfor-
mance, especially in precision and F1-score.

5.3.4 Stage Inputs Comparison

To evaluate the importance of non-rally stages in badminton matches, we
conducted experiments under two settings: using only rally stages (R) and
using both rally and non-rally stages (R+NR). We tested two classification
heads—a linear classifier and a transformer-based classifier—to ensure the
generality of the findings. Notably, stage fusion is applicable only in the
R+NR setting, as it requires the presence of both rally and non-rally fea-
tures for fusion. Therefore, in the R setting, the model directly classifies the
rally feature of each stage without fusion.

As shown in Table 5.10 and Table 5.11, using both rally and non-rally

Table 5.9: Modality Comparison (Fusion: Cross-Stage Fusion Module, Clas-
sification Head: Transformer, L = 3, 1-label classification)

Input Modality Accuracy Precision Recall F1-score
Pose + Audio 0.775 0.8611 0.7045 0.775
Pose Only 0.7 0.8846 0.5227 0.6571
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Table 5.10: Stage Inputs Comparison (Stage Input: R vs. R+NR, Fusion:
Cross-Stage Fusion Module, Classification Head: Transformer, L = 3, 3-label
classification)
Classification Head Input Stage Accuracy Precision Recall F1-score
Linear Classifier R+NR 0.875 0.8364 0.9328 0.881
Transformer R+NR 0.8208 0.8654 0.7563 0.8072
Linear Classifier R 0.672 0.6324 0.625 0.6205
Transformer R 0.6 0.6117 0.5294 0.5676

Table 5.11: Stage Inputs Comparison (Stage Input: R vs. R+NR, Fusion:
Cross-Stage Fusion Module, Classification Head: Transformer, L = 3, 1-label
classification)
Classification Head Input Stage Accuracy Precision Recall F1-score
Linear Classifier R+NR 0.8875 0.8723 0.9318 0.9011
Transformer R+NR 0.775 0.8611 0.7045 0.775
Linear Classifier R 0.6385 0.6948 0.5861 0.6582
Transformer R 0.5875 0.6667 0.5 0.5714

stages (R+NR) consistently outperforms using only rally stages (R) across
both classification heads. This result highlights the significance of the non-
rally stage in badminton match prediction. Due to the nature of the sport, the
non-rally period often contains valuable information—such as player move-
ment patterns, emotional cues, and audio context—which are not present
during fast-paced rallies. These additional cues contribute to a more com-
prehensive representation of each game stage, thereby enhancing the model’s
ability to predict match outcomes.

These results emphasize the necessity of utilizing full-stage information
when modeling competitive dynamics in badminton. Ignoring non-rally seg-
ments leads to a notable loss in contextual understanding, underlining the
unique temporal characteristics of the sport.

5.4 Discussion

The main key findings of this study are:
(1) Our multi-modal fusion approach effectively captures predictive in-

formation in badminton matches.
(2) Even a simple linear classifier achieves excellent performance, demon-

strating the strength of the fused features.
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(3) Audio cues and non-rally segments significantly contribute to improv-
ing prediction accuracy.

Our experiments reveal that badminton matches exhibit notable pre-
dictability at the point level. The relatively high accuracy across settings
indicates that historical stage-level features encapsulate meaningful patterns
that contribute to the upcoming point outcome.

In particular, our proposed Cross-Stage Fusion Module shows strong fit-
ting ability, as evidenced by the fact that even a simple linear classification
head can achieve comparable or superior performance to more complex se-
quence models. This suggests that the fused features themselves are highly
discriminative.

The inclusion of audio features, such as environmental cheering, proved
beneficial. Performance dropped when the audio modality was removed, indi-
cating that auditory cues play a non-negligible role in competitive matches.
Interestingly, the presence of crowd noise may influence even professional
players, subtly affecting their performance.

Another observation is that non-rally segments, which occupy a much
longer duration than rally segments in badminton, still hold valuable predic-
tive information. Our findings show that incorporating both rally and non-
rally stages leads to better prediction results, justifying the need to model
non-rally contexts instead of discarding them as irrelevant.
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Chapter 6

Conclusion

6.1 Summary of Contributions

This study proposed a novel multi-modal approach for point-by-point pre-
diction of badminton match outcomes by leveraging both human posture
and environmental audio signals. We introduced a Cross-Stage Fusion Mod-
ule that effectively integrates rally and non-rally stage features. Extensive
experiments demonstrate the following key contributions:

• We confirmed the predictability of badminton match outcomes based
on historical stage-level information, achieving high classification per-
formance. This implies practical potential in aiding match analysis for
players, coaches, and audiences.

• We proposed the Cross-Stage Fusion Module, which showed strong
feature modeling capacity. Even with a simple linear classifier, the
fused representations yielded highly competitive results, surpassing
more complex architectures in some settings.

• The inclusion of audio features, particularly audience cheers and envi-
ronmental sound, significantly improved prediction performance. This
highlights that even professional players are influenced by auditory con-
text, which provides additional cues for win/loss estimation.

• Our analysis revealed that non-rally stages, which occupy a larger por-
tion of match time compared to rally stages, contain valuable infor-
mation for prediction. This justifies the importance of modeling both
stages instead of focusing solely on rallies.
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6.2 Limitations

Despite promising results, several limitations remain in this work. First, the
dataset size was limited and confined to a specific set of matches, which may
impact the generalizability of the model. Second, we relied on pre-extracted
posture features and MFCC-based audio descriptors; more sophisticated or
learned representations could potentially yield better results. Additionally,
the classification task was treated as binary (win/loss), ignoring the broader
match dynamics such as confidence, fatigue, or momentum shifts.

6.3 Future Work

In future research, we plan to expand the dataset to cover more diverse
matches, including different player levels and tournament types. We also
aim to explore end-to-end feature extraction and modeling pipelines, poten-
tially integrating vision transformers or audio transformers for better modal-
ity encoding. Further, introducing continuous outcome prediction (e.g., win
probability curves) or interpretability modules could enhance the usability
of the model in real-time coaching or broadcasting scenarios.

In addition, we plan to extend this predictive framework to other racket
sports, enabling outcome prediction and match analysis using only single-
camera broadcast footage. Ultimately, we aim to make multi-modal sports
analysis a central focus, improving the accuracy and applicability of AI-
driven insights across various competitive settings.
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