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Abstract

Smart contracts are self-executing programs that run on blockchain plat-
forms, most notably Ethereum. They automate transactions and enforce
agreements without intermediaries, forming the foundation of decentralized
finance (DeFi), non-fungible tokens (NFTs), and decentralized applications
(dApps). Despite their growing importance, smart contracts remain prone
to security vulnerabilities. Exploited bugs can lead to irreversible financial
losses, service disruptions, and systemic failures. Although machine learning-
based tools have emerged to aid vulnerability detection, two critical chal-
lenges remain: (1) limited fault localization at the function level, and (2) a
lack of interpretable, human-readable explanations that enable developers to
understand and fix issues effectively.

This thesis addresses both challenges by proposing a unified framework
that combines graph-based neural network modeling with explainable lan-
guage model techniques. Specifically, the contributions consist of: (1) a
function-level vulnerability detection system using Sub-Graph Neural Net-
works (Sub-GNNs), and (2) an explanation generation mechanism based on
synthetic data and Chain-of-Thought (CoT) prompting using large language
models (LLMs). These two components aim to improve both the technical
granularity and practical usability of smart contract security analysis.

The first part of the thesis introduces a novel function-level detection
method that decomposes smart contracts into subgraphs centered around
individual functions. While prior approaches using Graph Neural Networks
(GNNSs) operate at the contract level, they fail to pinpoint specific sources of
vulnerabilities, limiting their value for debugging and remediation. To over-
come this, we construct function-level subgraphs that incorporate control-
flow and data-flow dependencies, preserving the semantic and structural con-
text of each function. We then apply a Sub-GNN model to perform vulnera-
bility classification at this finer granularity. Empirical evaluation on a curated
synthetic dataset demonstrates that the proposed method achieves high pre-
cision in localizing faulty functions. Although it trades off a small margin
of global classification accuracy compared to full-graph models, the local-
ized predictions are significantly more actionable for developers. A bench-
mark comparison quantifies this trade-off and validates the effectiveness of
subgraph-based analysis in practical settings.

To facilitate this line of work, we develop a synthetic dataset of smart con-
tracts with function-level vulnerability labels. The dataset includes diverse
vulnerability types such as reentrancy, integer overflows, access control flaws,



and unhandled exceptions. Each function is annotated with corresponding
vulnerability types and contains metadata for constructing control and data
flow graphs. This dataset fills a gap in the current landscape, which largely
lacks fine-grained, labeled corpora for training and evaluating function-level
detectors.

The second component of the thesis tackles the issue of explanation.
While detecting a vulnerability is important, understanding why it occurs
and how to resolve it is crucial for real-world usability. Most existing detec-
tion tools output low-level indicators such as line numbers or vulnerability la-
bels without offering semantic explanations. To address this gap, we propose
an explanation generation system that produces structured, human-readable
justifications for detected vulnerabilities. We construct another synthetic
dataset where each entry consists of a vulnerable function, its formal label,
and a professionally formatted explanation describing the issue, its cause, and
suggested remediation steps. These explanations are derived from real-world
audit patterns and follow a consistent template.

Together, these two components form a comprehensive framework for
smart contract vulnerability analysis. The Sub-GNN-based detector provides
precise localization of faulty functions, while the CoT-guided explanation
generator delivers semantic insight into the causes and consequences of the
vulnerabilities. This dual capability bridges the gap between vulnerability
detection and developer comprehension.

The thesis concludes with a discussion of future directions. On the detec-
tion side, extending the Sub-GNN architecture to support inter-function and
inter-contract reasoning could enable the modeling of call chains and com-
plex compositional vulnerabilities. On the explanation side, integrating user
feedback to iteratively refine generated explanations could support interac-
tive auditing tools. Furthermore, we propose exploring multimodal models
that combine graph-based embeddings with textual features to enhance both
detection and explanation tasks.

Keywords: Smart Contracts, Vulnerability Detection, Graph Neural
Networks, Subgraph Analysis, Function-Level Classification, Chain-of-Thought
Prompting, Large Language Models, Security Analysis, Solidity, Synthetic
Dataset, Blockchain Security.
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Chapter 1

Introduction

The rapid proliferation of blockchain technology has ushered in a new era
of decentralized applications, where smart contracts-self-executing programs
deployed on platforms like Ethereum-form the backbone of trustless compu-
tation [I6]. These contracts enable automated financial operations, digital
asset exchanges, governance mechanisms, and various decentralized finance
(DeF1i) protocols without the need for intermediaries. Smart contracts, pri-
marily written in domain-specific languages such as Solidity, are immutable
once deployed [22], meaning any flaws embedded in the code become per-
manent and directly exploitable. As a result, the security of smart contracts
is a critical concern, with several high-profile exploits leading to substantial
financial and reputational damage within the blockchain ecosystem.

Despite significant advancements in static analysis and machine learn-
ing-based vulnerability detection tools, two fundamental challenges continue
to hinder robust and practical smart contract security analysis [13], 12 [19].
First, existing tools largely operate at the contract level, identifying whether
a vulnerability exists somewhere in the contract without specifying the exact
source of the problem. This lack of fine-grained fault localization limits the
utility of detection tools for developers and auditors who must still manually
investigate the contract to isolate the bug. Second, many tools lack explana-
tory power; they provide binary labels or low-level alerts without articulating
the underlying reasoning or impact of the detected issue. Consequently, de-
velopers often receive insufficient guidance to understand or remediate the
vulnerabilities found.

This thesis tackles both of these open problems by introducing a unified
framework that leverages advances in graph-based deep learning and explain-
able artificial intelligence (XAI). The central goal is to improve not only the
precision of smart contract vulnerability detection but also its interpretabil-



ity, thus aligning technical rigor with practical usability. The research is
structured around two core contributions:

1. Function-Level Vulnerability Detection via Sub-Graph Neu-
ral Networks (Sub-GINNs): A novel method for identifying vulner-
abilities at the granularity of individual functions rather than entire
contracts. This is achieved by constructing semantic subgraphs using
control and data flow analyses, allowing the detection model to focus
on localized program behavior.

2. Explanation Generation via Synthetic Data and Chain-of-Thought
Prompting: A systematic approach to produce high-quality, human-
readable explanations for vulnerabilities, utilizing synthetic datasets
enriched with detailed annotations and a structured prompting mech-
anism that enables large language models (LLMs) to generate inter-
pretable reasoning steps.

The first component addresses the granularity gap in current vulnerabil-
ity detection methods. While prior work in graph neural networks (GNNs)
has shown promise in modeling smart contract semantics [25], these models
typically analyze whole-contract graphs, making them ill-suited for pinpoint-
ing faults to specific functions. In contrast, this research decomposes each
contract into per-function subgraphs that retain structural and semantic in-
formation. These subgraphs serve as the input to a Sub-GNN model trained
to classify the vulnerability status of each function. Experimental results
demonstrate that this approach enables precise fault localization, supporting
more actionable insights for developers. Although it incurs a modest drop in
global F1 score compared to contract-level methods, the ability to directly
isolate vulnerable functions presents a significant usability improvement.

To facilitate this research, a synthetic dataset is constructed, comprising
function-level Solidity examples with injected vulnerabilities across several
common categories, including reentrancy, integer overflows, access control
violations, and unchecked exceptions. Each instance is labeled and paired
with its corresponding control/data-flow subgraph. This dataset, released
alongside the thesis, serves both as a training resource and an evaluation
benchmark, addressing a current gap in fine-grained vulnerability datasets
for smart contracts.

The second component of this thesis centers on the interpretability chal-
lenge. Even when a vulnerability is correctly flagged, developers often strug-
gle to understand its root cause or the rationale behind the detection. Cur-
rent tools rarely explain why a given segment of code is vulnerable or how



it should be fixed [12, I3]. To fill this explanatory void, the thesis intro-
duces a complementary explanation generation system built atop synthetic
training data. Each data point pairs a vulnerable function with a structured,
high-quality explanation that outlines the cause, implications, and suggested
remediation of the vulnerability.

This explanation generation process is guided by CoT prompting, a tech-
nique that improves reasoning transparency in LLMs by encouraging step-by-
step outputs. By decomposing the explanation into intermediate reasoning
stages-such as identifying the vulnerable code path, characterizing the vul-
nerability type, and assessing its impact-CoT prompting enhances the clarity
and actionability of the generated content. Evaluations using GPT-family
models show that CoT-enhanced explanations significantly outperform base-
line outputs in terms of coherence, readability, and usefulness to developers.

Together, these two contributions form a complete pipeline for vulnerabil-
ity detection and understanding. The Sub-GNN framework identifies where
vulnerabilities exist with fine granularity, while the explanation generation
module provides insights into why they occur and how to address them.
This dual emphasis on precision and interpretability aligns with the increas-
ing demand for practical, developer-friendly security tools in the blockchain
domain.

This research makes the following key contributions:

e A novel Sub-GNN-based model for function-level smart contract vul-
nerability detection.

e A publicly available synthetic dataset of annotated, vulnerable Solidity
functions, along with their control/data-flow subgraphs.

e A high-quality explanation dataset tailored for vulnerability reasoning,
constructed to support both supervised and generative learning tasks.

e An explanation generation framework using chain-of-thought prompt-
ing, empirically shown to improve explanation quality across multiple
metrics.

By advancing both the granularity and interpretability of smart con-
tract vulnerability analysis, this work aims to bridge the gap between auto-
mated detection and human-centered understanding, ultimately contributing
to more secure and trustworthy decentralized applications.



Chapter 2

Related Work

2.1 Smart Contract Vulnerability Detection

2.1.1 Static Analysis Tools

Static analysis has been a foundational approach for detecting vulnerabilities
in smart contracts, particularly those written in Solidity. These tools typi-
cally analyze source code or compiled bytecode without executing the con-
tract, aiming to uncover potential vulnerabilities such as reentrancy, arith-
metic overflows, or access control violations before deployment. Over the
years, several prominent tools have been developed, each employing distinct
analysis techniques and offering various levels of precision, coverage, and
usability.

Mythril [4] is among the earliest and most widely used symbolic exe-
cution engines for Ethereum smart contracts. It translates bytecode into
an intermediate representation and explores feasible execution paths using
constraint solvers. Mythril can detect a range of common vulnerabilities,
such as reentrancy and integer arithmetic bugs, by simulating different envi-
ronmental conditions and control errors. While powerful in theory, symbolic
execution suffers from path explosion and scalability limitations, particularly
for contracts with complex state transitions or multiple functions

Oyente [7], one of the first vulnerability detectors for Ethereum, intro-
duced a modular pipeline combining symbolic execution with control flow
graph (CFG) construction to detect specific vulnerability patterns. Oyente
was instrumental in demonstrating the feasibility of static analysis for smart
contract security, but its relatively limited set of vulnerability checks and
high false positive rates restricted its adoption in production environments.

Securify [8] approached the problem differently by formalizing security



properties as compliance and violation patterns within an intermediate rep-
resentation of the contract. It uses Datalog queries to reason about contract
behavior, offering a balance between precision and scalability. However, Secu-
rify’s analysis is constrained by the expressiveness of its predefined property
templates, which may fail to generalize to novel or compound vulnerability
cases.

Slither [5] stands out for its developer-oriented design and extensibility.
Built on a custom static analysis framework, it translates Solidity source code
into a rich Abstract Syntax Tree (AST) and intermediate representations
(e.g., SSA form). Slither offers a suite of prebuilt detectors, visualization
tools, and taint tracking mechanisms. Its speed and flexibility make it suit-
able for integration into CI pipelines and auditing workflows. Nevertheless,
its rule-based architecture can lead to both false positives and false negatives,
especially in contracts that use unconventional programming idioms.

Table 2.1: Comparison of Static Analysis Tools for Solidity Smart Contracts
Tool Analysis Type Granularity
Mythril Symbolic Execution Contract-level
Oyente | Symbolic Execution + CFG | Contract-level
Securify | Formal Verification (Datalog) | Contract-level
Slither AST + Dataflow Analysis Function-level

While these tools have proven effective at detecting certain classes of vul-
nerabilities, they all suffer from a common set of limitations. First, they
generally operate at the contract level, identifying whether a contract ex-
hibits a vulnerability but failing to localize the exact source, such as a spe-
cific function or code segment. Second, their reliance on handcrafted rules or
path exploration heuristics makes it difficult to adapt to previously unseen
vulnerability types or code patterns. Third, most static tools offer limited
explanatory capability-alerts are typically reported as warnings with mini-
mal contextual information, leaving developers to infer the root cause and
remediation steps manually.

These shortcomings motivate the development of machine learning—based
techniques, particularly graph-based models, which can learn structural pat-
terns of vulnerable code and generalize beyond predefined rules. However,
static analysis tools remain a valuable baseline and often serve as the ground
truth or annotation source for training and evaluating learning-based sys-
tems. In this thesis, we build upon these foundations by introducing a
function-level detection model that improves the granularity and interpretabil-
ity of smart contract vulnerability analysis.



2.1.2 Machine Learning Approaches

In recent years, machine learning (ML) has emerged as a promising alterna-
tive to traditional static analysis techniques for smart contract vulnerability
detection [I3] 12 22]. Unlike rule-based or symbolic execution tools, ML-
based models can learn patterns of vulnerability from labeled data, enabling
generalization to previously unseen code structures and reducing reliance on
handcrafted heuristics. These approaches typically fall into two broad cate-
gories: feature-based models and representation learning models.

Feature-based methods represent one of the earliest applications of ML to
smart contract security. These approaches rely on manually engineered fea-
tures extracted from source code, bytecode, or abstract syntax trees (ASTSs).
For instance, Zhu et al. [24] proposed using opcode sequences by replaying
real-world transactions from the Ethereum Mainnet in a fully synchronized
node, while the author leveraged a plugin called ”SODA” to label opcode se-
quences with vulnerability classes and train a deep classification model using
LSTM neural networks. Other work has leveraged features such as the num-
ber of external calls, the presence of certain control-flow structures, or data-
flow reachability metrics [12, [13]. While these methods have demonstrated
moderate success, their effectiveness is inherently constrained by the qual-
ity and completeness of the feature engineering process. Furthermore, these
models struggle to capture complex semantic interactions between different
parts of the code, especially in multi-function or compositional contracts.

To overcome these limitations, more recent work has focused on repre-
sentation learning, particularly using neural networks to automatically learn
latent code representations. One class of such models includes sequence-
based deep learning approaches, such as Recurrent Neural Networks (RNNs)
and Transformers, applied to tokenized contract code or opcode sequences.
For example, ContractWard (Wang et al.,) [20] extracts bigram features
from simplified operation codes. They then applied five machine learning
algorithms combined with two sampling techniques, notably using XGBoost
with SMOTETomek, to train efficient and accurate detection models. While
sequence-based models are more flexible than traditional classifiers, they of-
ten fail to preserve structural information inherent in program logic, such as
control and data dependencies.

A more structurally aware direction is the use of graph-based models,
where smart contracts are represented as graphs-such as ASTs, CFGs, Pro-
gram Dependency Graphs (PDGs), or custom interprocedural representa-
tions. Meanwhile, GNNs have shown strong performance in this setting.
For example, Zhuang et al. [25] employ a Degree-free Graph Convolutional
Neural Network (DR-GCN) and a Temporal Message Propagation Network



(TMP) to learn from the normalized graphs for vulnerability detection.

However, these models predominantly operate at the contract level, pro-
viding a binary vulnerability label for the entire contract. This coarse gran-
ularity limits their utility for real-world developers, who require precise lo-
calization of bugs for remediation. Moreover, most GNN-based models are
trained on contract-level datasets, such as SmartBugs or curated subsets of
Etherscan, which lack fine-grained annotations at the function or statement
level.

In addition to detection, a few recent studies have explored multitask
learning, combining vulnerability classification with auxiliary tasks such as
type inference or code summarization, aiming to improve generalizability and
interpretability. Others have experimented with code embedding techniques
(e.g., Code2Vec [1], CodeBERT [9], or GraphCodeBERT [I1]) to extract
semantic representations of functions, which are then used in downstream
classification tasks. While such methods introduce valuable inductive biases,
they often treat code as flat sequences or bags of tokens, ignoring relational
and hierarchical structures critical for vulnerability reasoning.

Despite these advancements, several challenges remain. First, there is a
scarcity of fine-grained, well-annotated datasets that support function-level
learning and evaluation. Second, many ML models act as black boxes, of-
fering little to no explanation for their predictions. Lastly, the integration
of learned detectors with developer workflows is still limited due to a lack of
actionable feedback (e.g., why a function is vulnerable, what exact lines are
problematic, or how to fix them).

Table 2.2: Summary of ML-Based Vulnerability Detection Approaches

Work Input Level

Zhu et al. [24] Opcode sequences | Contract
Wang et al. (ContractWard) [20] Bigram opcodes | Contract
Zhuang et al. [25] CFG/PDG graphs | Contract
Alon et al. (Code2Vec) [1] AST paths Function
Feng et al. (CodeBERT) [9] Code tokens Function
Guo et al. (GraphCodeBERT) [I1] | Code+data flow | Function

This thesis aims to address these limitations by proposing a Sub-Graph
Neural Network (Sub-GNN) approach for function-level vulnerability detec-
tion. By decomposing contracts into semantically meaningful function-level
subgraphs and training a GNN to classify vulnerabilities at this finer gran-
ularity, we enhance the utility of detection outputs for developers. Further-
more, by pairing detection with a dedicated explanation-generation module,



we extend beyond classification to deliver interpretable and actionable in-
sights, helping bridge the gap between ML-based detection and practical
smart contract auditing.

2.1.3 Subgraph-Based Vulnerability Detection

Subgraph-based techniques for software vulnerability detection represent an
emerging direction that seeks to overcome the limitations of coarse-grained,
contract-level analysis by introducing finer-grained reasoning at the function
or code-block level. While the majority of existing graph-based models op-
erate on entire program graphs such as full Control Flow Graphs (CFGs),
ASTs, or Code Property Graphs (CPGs), they tend to provide only binary
contract-level predictions, making them insufficient for pinpointing specific
buggy regions.

Only a few studies to date have explored subgraph-level vulnerability rea-
soning in the context of smart contracts or software systems more broadly.
These early-stage efforts typically treat functions or code regions as isolated
subgraphs and attempt to classify their vulnerability status. For instance,
some models extract function-level subgraphs based on syntactic or control /-
data dependencies and feed them into lightweight graph encoders such as
GCN or GAT. However, such approaches are still rare, and function-level
datasets with vulnerability annotations are limited. Line-level detection,
while explored in traditional bug localization tasks, remains underdeveloped
in the security domain due to challenges in data labeling and structural con-
sistency.

Subgraph-based reasoning has been more extensively explored in related
domains, such as malware detection, program repair, and bug localization. In
these areas, researchers have used subgraph matching to identify malicious
patterns, refactorable segments, or fault-prone code regions. For example,
subgraphs representing suspicious control flow motifs or resource misuse pat-
terns have been used as templates for detecting malware variants. Similarly,
in software fault localization, line-level or block-level subgraph extraction has
enabled high-precision localization of logic faults. These techniques demon-
strate that subgraph abstraction can enhance interpretability, reduce input
complexity, and support modular learning principles that are increasingly
relevant to vulnerability detection as models scale to larger codebases.



2.2 Dataset for Smart Contract Security

The availability of high-quality datasets is fundamental for developing and
evaluating machine learning models for smart contract vulnerability detec-
tion. As highlighted in the survey by Feng et al. [3], datasets in this domain
vary significantly in terms of source, labeling quality, vulnerability type cov-
erage, and granularity.

Early datasets such as Etherscan-based collections consist of verified smart
contracts scraped from the Ethereum blockchain. While these datasets are
large-scale and diverse, they often lack explicit vulnerability annotations,
requiring downstream tools like Mythril, Oyente, or Slither to label them
heuristically. This indirect labeling approach may introduce noise and limits
the utility of the dataset for supervised learning.

To address this, curated benchmark datasets such as SmartBugs Wild [6]
and SolidiFI-Benchmark [I0] have been introduced. SmartBugs Wild con-
tains real-world contracts labeled using static analyzers and includes a wide
range of vulnerability types such as reentrancy, timestamp dependence, and
unchecked return values. However, the annotations are primarily contract-
level, limiting their use for fine-grained vulnerability localization tasks. SolidiF1-
Benchmark improves labeling fidelity by including expert-reviewed vulnera-
bilities across multiple tools, but still lacks consistent function-level granu-
larity.

Another direction involves the construction of synthetic datasets, where
vulnerabilities are systematically injected into otherwise benign contracts.
This allows for precise control over the location and type of vulnerability, en-
abling reliable function-level or even statement-level supervision. Synthetic
datasets have been successfully used to train and evaluate subgraph-based
models, particularly for fine-grained fault localization and explanation gen-
eration. However, as noted in [3], synthetic datasets may introduce distri-
butional bias if the injected patterns deviate significantly from real-world
vulnerability characteristics.

Despite these advancements, several challenges remain. First, there is
a lack of large-scale, open-source datasets with function-level annotations
and paired explanations, which are crucial for training interpretable models.
Second, existing benchmarks often focus on a narrow subset of vulnerabilities,
limiting model generalizability. Finally, there is a need for standardization
in evaluation protocols and labeling formats to ensure fair comparison across
models.

To support this thesis, we introduce a synthetic, function-level dataset
covering a diverse set of vulnerability types, including reentrancy, arithmetic
overflows, access control, and exception mismanagement. Each function is



annotated with vulnerability labels, subgraph metadata, and a correspond-
ing human-readable explanation. This dataset fills an important gap in the
existing literature and enables systematic evaluation of both detection and
explanation components in our proposed Sub-GNN framework.

2.3 Code Vulnerability Explanation

Explaining why a given code snippet is vulnerable is critical for enabling
developers and security auditors to not only detect but also remediate secu-
rity issues effectively. Recent research has explored a range of approaches for
producing human-readable explanations of code vulnerabilities, ranging from
rule-based systems to prompting large language models (LLMs). We catego-
rize these efforts into two broad classes: traditional explanation approaches
and language model-powered explanation.

2.3.1 Traditional Explanation Approaches

Prior to the advent of large language models, vulnerability explanation pri-
marily relied on static rules, symbolic reasoning, or manually engineered
heuristics. Traditional tools such as Slither, Oyente, and Mythril provide
vulnerability labels along with metadata like affected line numbers, code
patterns (e.g., unsafe external calls, unchecked return values), or execution
traces. These outputs offer partial insight into the nature of the vulnerability
but often fall short in terms of semantic clarity and contextual understanding.

Rule-based explanation frameworks typically hardcode vulnerability tem-
plates (e.g., ”Unchecked low-level call on line X”) or link to documentation
of common weaknesses enumerations (CWEs). While effective for known bug
patterns, these methods suffer from poor generalization and are limited in
their ability to capture nuanced or novel security issues. Furthermore, the
generated explanations tend to be terse, technical, and often incomprehensi-
ble to non-experts.

Several works in traditional software engineering have proposed using
static analysis in tandem with fault localization metrics (e.g., suspiciousness
scores or data-flow slicing) to guide explanation generation. However, these
approaches are rarely targeted at smart contracts, and their outputs are
generally diagnostic rather than explanatory in nature.
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2.3.2 Language Model-Powered Explanation

Recent advances in LLMs have introduced new opportunities for generating
rich, human-readable vulnerability explanations. Unlike static tools, LLMs
can synthesize explanations by reasoning over both syntax and semantics,
and they can incorporate natural language cues directly into their outputs.

Several recent studies [I5 [I7] have shown that models such as GPT-
4, CodeGemma, and CodeLlama can not only detect vulnerabilities with
high accuracy but also provide natural language rationales when guided by
prompt engineering or CoT prompting. These methods typically involve
framing the input code and task instructions in a way that elicits a structured
explanation, covering aspects like the affected code region, vulnerability type,
cause, and potential remediation.

In particular, Sultana et al. [I7] report that CoT-style prompting im-
proves the clarity and utility of explanations across LLMs. They experiment
with one-shot and few-shot prompting strategies on real-world datasets (e.g.,
DiverseVul [2]) and observe that models like CodeGemma outperform ear-
lier baselines in generating coherent justifications, achieving a recall of up
to 87% for vulnerability detection and offering contextualized rationales in
plain English. Similarly, Hou et al. [15] emphasize that LLMs fine-tuned for
code tasks can be further adapted for explanation tasks by training them to
generate vulnerability descriptions conditioned on annotated examples.

Despite these promising developments, several challenges remain. First,
there is a lack of standardized datasets that pair code snippets with high-
quality, function-level explanations. Second, evaluating explanation quality
remains subjective and underexplored; common metrics such as BLEU or
ROUGE fail to capture the functional adequacy or clarity of an explanation.
Lastly, current LLMs still struggle with multi-function reasoning and compo-
sitional bugs, motivating further research on incorporating structural priors
(e.g., ASTSs or control/data flow graphs) into explanation pipelines.

This thesis builds upon this line of work by introducing a synthetic
dataset that aligns function-level smart contract code with corresponding
vulnerability explanations and by applying CoT-enhanced prompting strate-
gies to generate interpretable and actionable outputs. Our results show that
explanation-aware LLM prompting significantly improves both detection and
developer usability.
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Chapter 3

Methodology

3.1 Problem Statement

Let C denote a smart contract composed of a set of functions { f1, fo, ..., fu}-
Each function f; can be represented as a program graph G; = (V;, E;), where
nodes V; correspond to syntax or semantic entities (e.g., statements, vari-
ables), and edges F; represent structural relationships such as control flow,
data flow, or call dependencies.

We define two core tasks:

1. Function-Level Vulnerability Detection. Given a function-level
graph G}, the goal is to learn a function-level classifier

fg:Gi%in{O,l}

where y; = 1 indicates that function f; is vulnerable, and 0 otherwise. The
model Fy is parameterized (e.g., by a Subgraph Neural Network) and trained
on a dataset D = {(G;, y;)},, where N is the number of labeled functions.

2. Vulnerability Explanation Generation. For functions where y; = 1,
the goal is to generate a natural language explanation e; = G4(G;), describ-
ing:

e Bug Name: the vulnerability type,
o Affected Area: vulnerability localization,
e Description: description of the vulnerability,

e Impact Assessment: the severity of the vulnerability,
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e Mitigations: potential fixes or mitigations.

Here, G, is a sequence-to-sequence model (e.g., an LLM with Chain-of-
Thought prompting) that maps a structural input graph (or its code represen-
tation) to a textual explanation. The goal is to design a model that accurately
predicts vulnerable functions and generates clear, actionable explanations-
bridging structural learning (via Sub-GNN) and natural language reasoning
(via LLM-based CoT prompting).

3.2 Synthetic Dataset for Function-Level
Analysis

Despite growing interest in applying machine learning to smart contract vul-
nerability detection, existing datasets are primarily limited to contract-level
annotations, which significantly constrains the training of models capable
of fine-grained analysis. To support function-level vulnerability detection-
central to our problem formulation (see Section [3.1)-we construct a compre-
hensive synthetic dataset explicitly annotated at the function granularity.
The dataset includes diverse vulnerability types (e.g., Reentrancy, Access
Control, Unchecked Low-Level Calls), and each vulnerability is program-
matically injected into semantically valid smart contracts with precise label-
ing of injection locations.

Our dataset construction process follows a structured pipeline comprising
three major stages: (1) collection and filtering of clean contracts, (2) assem-
bly of representative vulnerability patterns, and (3) automated injection of
vulnerabilities into selected locations in the clean contracts. A high-level
overview of the procedure is illustrated in Figure [3.1], and a formalized ver-
sion of the injection process is shown in Algorithm [I]

3.2.1 Clean Contract Collection and Validation

We begin by acquiring a corpus of real-world, open-source smart contracts
from EtherscanE], a widely used Ethereum block explorer and repository for
verified Solidity contracts. Etherscan provides access to source code, byte-
code, ABI definitions, and metadata for publicly deployed smart contracts,
making it a valuable resource for dataset curation.

To collect clean source code, we implement a custom web crawler and API
client that systematically queries verified contracts via Etherscan’s developer

"https://etherscan.io/
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APIE]. The process includes the following steps:

1.

API Key Registration: First, we register an account to obtain an
API key for authenticated requests to the Etherscan API.

Address Collection: We collect contract addresses either by pars-
ing newly deployed contracts block-by-block or by downloading public
datasets like SmartBugs, which already include known contract ad-
dresses.

Contract Source Retrieval: For each address, we invoke the ‘get-
sourcecode’ endpoint:

https://api.etherscan.io/api?module=contract
kaction=getsourcecode
&address=<CONTRACT_ADDRESS>
&apikey=<API_KEY>

The response includes JSON-formatted fields such as ‘SourceCode’,
‘ABI‘, ‘ContractName‘, ‘CompilerVersion‘, and ‘OptimizationUsed".

. Filtering for Solidity Contracts: We retain only those contracts

whose ‘SourceCode’ is non-empty and ‘CompilerVersion‘ begins with
v0.4, v0.5, v0.6, or v0.8, ensuring compatibility with modern static
analysis tools and injection scripts.

Source Code Preprocessing: Retrieved contracts are stored in struc-
tured directories with filenames matching the contract address. Each
file is normalized by removing Etherscan wrapping artifacts, resolving
imports if possible, and verifying that the code compiles with solc.

Using this method, we collect and preprocess over 2,000 verified con-
tracts. For this study, we focus on 2,188 contracts curated from the Smart-
Bugs dataset [6], which provides on-chain verified Solidity contracts with
metadata, ensuring reproducibility. To ensure the reliability of downstream
vulnerability injection and label assignment, we rigorously filter out contracts
that may contain latent or pre-existing vulnerabilities. We adopt a consensus-
based filtering approach by applying three widely-used static analysis tools:

2https://docs.etherscan.io/
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1. Slither [5] Slither is a static analysis framework for Solidity that per-
forms vulnerability detection, optimization advice, and code metrics extrac-
tion. It uses an intermediate representation of Solidity called SlithIR.

e Input: A single Solidity source file (with resolved imports).

e Command: slither <contract.sol> --detect-all

Output: Vulnerabilities are printed to stdout and can be redirected
to JSON using the --json flag.

Format: Includes issue type, location (line, column), and source map-
ping.
If any high-severity issues (e.g., ‘reentrancy’, ‘arbitrary-from‘, ‘tx.origin‘) are

detected, the contract is excluded.

2. Mythril [4] Mythril is a symbolic execution engine for EVM bytecode
that detects security issues such as integer overflows, callstack depth issues,
and unguarded call instructions.

e Input: Solidity source file or EVM bytecode.
e Command: myth analyze <contract.sol> -o json
e Output: JSON report listing detected issues.

e Format: Each finding includes a title, severity, description, and source
location.

Contracts producing critical issues (e.g., ‘External Call to User-Supplied Ad-
dress’, ‘SWC-107¢) are discarded.

3. Oyente [7] Oyente is one of the earliest tools for symbolic execution
of smart contracts. Though less maintained, it still detects reentrancy and
transaction-ordering bugs.

e Input: Compiled bytecode using solc --bin.
e Command: python oyente.py -s <contract.sol>

e Output: Console output with flags like ‘Transaction Order Depen-
dency’, ‘Reentrancy’, or “Time Dependency".

e Format: Console printouts indicating specific vulnerability types and
function locations.
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Contracts flagged for transaction ordering or timestamp dependencies are
excluded.

Subsequently, we follow strict filtering criteria and output formatting. To
form a high-confidence clean set C' = {cy, ¢s, ..., ¢, }, we only retain contracts
that:

e Successfully compile using solc;
e Are not flagged by any of the three tools above;

e Have valid source code with sufficient function-level granularity (i.e.,
>2 function definitions).

Each clean contract ¢; is stored with metadata:

e address: Ethereum address of the deployed contract.
e name: Contract name (from AST).

e source path: Path to the cleaned Solidity source file.

e compiler version: Extracted from Etherscan metadata.

tool_report: JSON object with scan results from Slither, Mythril,
and Oyente.

These contracts form the basis of our injection dataset pipeline. The
filtering process is deterministic and reproducible, and all scripts are made
available with logging at each stage for future auditing and replication.

3.2.2 Vulnerability Snippet Curation

The next stage involves preparing a diverse and representative set of 287
vulnerable code snippets S = {s1, Sa, . .., Sm }, €ach corresponding to a known
vulnerability class L(s;) € S, where S comprises:

e ACCESS_CONTROL

ARITHMETIC

DENIAL_OF_SERVICE

FRONT_RUNNING

REENTRANCY
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e TIME MANIPULATION
e UNCHECKED_LOW_LEVEL_CALLS

e BAD_RANDOMNESS

These snippets are curated from the SolidiFI repository [10] and aug-
mented with semantic annotations and structural constraints. Each snippet
is suitable for direct injection, either as a source-code template or AST node,
and is designed to activate realistic, semantically meaningful vulnerabilities.

Access Control (ACCESS_CONTROL): Access control vulnerabilities result
from missing or improperly implemented authorization checks. The injected
snippets often remove require(msg.sender == owner) or introduce un-
guarded state-modifying logic (e.g., transferring funds or modifying critical
variables). When injected, they allow unauthorized users to invoke privileged
functions, affecting the global integrity of the contract and breaking assumed
trust boundaries. This compromises functions like mint, updateConfig, or
selfDestruct, leading to privilege escalation and unauthorized control.

Arithmetic Bugs (ARITHMETIC): This class covers integer overflows and un-
derflows, especially in older Solidity versions or in unprotected calculations
without the SafeMath library. Typical snippets include unchecked operations
like balance -= amount or count++. Post-injection, these bugs silently in-
troduce numeric inconsistencies, which may cascade into allocation errors,
faulty loop conditions, or token mismanagement. They impact any logic
that depends on numeric values, making validation and assertions unreliable
across functions.

Denial of Service (DENIAL_OF_SERVICE): DoS vulnerabilities occur when
a contract’s logic can be blocked or indefinitely stalled. Common patterns
include looping over unbounded storage arrays or failing to handle exter-
nal call failures. Injected snippets emulate this by, for example, inserting
unbounded loops over dynamic data structures or storage-intensive logic in-
side frequently called functions. Once injected, these vulnerabilities affect
availability, making functions non-executable under gas limits and stalling
business logic, especially during mass operations like token distribution.

Front Running (FRONT_RUNNING): Front-running vulnerabilities stem from
the predictability and public visibility of transaction ordering. Injected snip-
pets demonstrate exploitable state updates based on externally visible vari-
ables such as msg.value, tx.origin, or prior storage reads. When injected,
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they allow attackers to anticipate and preemptively act upon sensitive state
changes (e.g., by sandwiching transactions). This introduces fairness issues,
particularly in time-sensitive auctions, token sales, or liquidity pool updates,
and corrupts the expected execution ordering semantics.

Reentrancy (REENTRANCY): Reentrancy is introduced by inserting unsafe
low-level calls (e.g., recipient.call.value(amount) ("")) before updating
the contract’s internal state. Upon injection, such snippets allow external
contracts to recursively invoke the same function before the original call
completes, leading to duplicated withdrawals or corrupted balances. The
injected vulnerability affects all state-manipulating logic sharing the same
storage and fundamentally violates the atomicity assumptions of contract
execution.

Time Manipulation (TIME MANIPULATION): This vulnerability arises when
critical contract logic depends on timestamps or block numbers that can
be influenced by miners. Injected code patterns include require(now <
unlockTime) or if (block.timestamp % 10 == 0). Once injected, these
enable adversaries to manipulate time-based access control, locking mecha-
nisms, or randomness seeds. As a result, the injected contract may permit
early withdrawals, extend auctions unfairly, or bypass timed constraints-thus
undermining time-sensitive logic across the contract.

Unchecked Low-Level Calls (UNCHECKED_LOW_LEVEL_CALLS): Snippets in
this category add low-level calls without checking the return value (e.g.,
addr.call.value(x) ("") without a success check). Post-injection, the con-
tract continues execution under the false assumption that the call succeeded,
causing silent failures. These bugs often impact fund transfers, callback
mechanisms, or event-triggered chains, breaking error-handling semantics
and causing inconsistent state transitions or silent value loss.

Bad Randomness (BAD_RANDOMNESS): Randomness vulnerabilities emerge
from using manipulable sources like block.timestamp, blockhash, or
block.difficulty as entropy. Injected snippets demonstrate insecure gen-
eration patterns such as

uint r = uint(keccak256(abi.encodePacked (
now, blockhash(block.number - 1))))

Such randomness can be predicted or influenced by miners or front-runners.
Once injected, the randomness becomes attackable, affecting lotteries, game
logic, and any probabilistic decision-making in the contract.
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Each injected vulnerability is crafted to preserve the compilability of the
host contract and to localize the defect to function-level regions. Despite
localized injection, these vulnerabilities often exhibit cascading side effects-
altering interprocedural control flow, invalidating invariants, and weakening
systemic safety guarantees. Our approach ensures that each modified con-
tract ¢; contains both semantic and structural annotations, enabling function-
level supervision and model evaluation for granular vulnerability detection.

3.2.3 Injection and Annotation via SolidiFI

{ Vulnerable source code

Abstract Syntax Tree
Bug snippets

7N

[ Clean source code ]—)[ Compiler / \ \

d \ I I\
y 6) 6 Inject locations

A A \ /

v

[ Find suitable injecting locations ] [ Synthetic dataset ]

Figure 3.1: Bug Injection with SolidiFI

The process of injecting vulnerabilities and annotating smart contracts
operates on a filtered corpus of verified, clean contracts C' = {cy, ¢a,..., ¢, }
and a curated set of vulnerability snippets S = {s1, s2,..., S }. We follow a
systematic pipeline to transform these clean contracts into a labeled dataset
C"={d,d,,...,c}, where each ¢ contains exactly one injected vulnerability
along with metadata describing the injection. The process is reflected in
Figure [3.1 and Algorithm [T}

The first step is to ensure that the original contracts are free of pre-
existing vulnerabilities. For this, we apply a consensus-based filtering strat-
egy using static analysis tools 7, namely Slither, Mythril, and Oyente. Each
contract ¢ € C' is scanned by all tools. If no known vulnerability is reported
by any tool, the contract is considered clean and added to a filtered set
Ceean € C'. This ensures that injected bugs can be confidently attributed to
our injection process, without interference from latent flaws in the source.

Once we obtain the filtered set Cgean, We initialize the output dataset
C" < (. For each contract ¢ € Ceean, We begin by flattening the contract
if it spans multiple source files. This step uses slither-flat under the
OneFile strategy. We determine the root file by analyzing the contract’s
import hierarchy and either matching the declared ContractName or selecting
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Algorithm 1 Vulnerability Injection Process for Creating a Labeled Smart
Contract Dataset

Require:
e C'={cy,ca,...,¢,}: Set of clean smart contracts.
o S ={s1,59,...,8n}: Set of vulnerable code snippets from SolidiFI.
e Static analysis tools T e.g., Slither, Mythril, Oyente.

Ensure:

o " = {d,d,...,c.}: Set of synthetic vulnerable contracts with
corresponding vulnerability labels.

1: Clean Contract Filtering(C,T):

2:  for each contract ¢ € C' do

3 if not is_vulnerable(T,c) then

4 Add ¢ to filtered set Coean.

5: end if

6: end for

7

8: Initialize C” + () {Set of injected, labeled contracts}

9: Vulnerability Injection(C,S):

10:  for each contract ¢ € Cyypn do

11: Parse ¢ with SolidiFI to obtain AST and potential injection points.
12: c.potential inject_locations + SolidiFI(c)

13: for each position p € c.potential_inject_positions do

14: if p.is_low_level () then

15: Sample s € S.

16: Insert s at p.src of smart contract c.

17: Compile and verify the modified contract ¢

18: if ¢ is compilable then

19: Label ¢ with the vulnerability type of s and the injection lo-

cation(s).

20: Add ¢ to dataset C".
21: else
22: Discard ¢; try a new snippet s or a new injection point p.
23: end if
24: end if

25:  end for
26: return C’ {Final dataset of labeled, vulnerable contracts}
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the most-imported file in the tree. After flattening, the unified Solidity file
is saved to a dedicated directory for processing.

Next, we compile the flattened contract using solcx to generate its Ab-
stract Syntax Tree (AST). The compiler version is selected according to meta-
data obtained from the original contract, and the full AST output is stored as
a JSON file. We then parse this AST to enumerate potential injection posi-
tions. These are typically statement-level nodes within functions or modifiers
that satisfy certain properties (e.g., visibility is public or external, or the
node is a control-flow block). Each injection point p is tagged with its source
location via the src field, formatted as start:length:file_index, which
facilitates precise source-code rewriting.

For each injection point p € c.potential_inject_positions, we ran-
domly sample a vulnerability snippet s € S. Each snippet is designed to
represent one of the vulnerability classes described in Section m (e.g.,
reentrancy, bad randomness, access control). Before injection, we verify that
s is structurally compatible with the context at p, including checks for vari-
able scoping, type safety, and syntactic validity. If compatible, we insert s
directly at the location specified by p.src within the source string of c.

After insertion, we recompile the modified contract ¢ using the same
solcx configuration. If the compilation fails-due to syntax errors, missing
declarations, or unresolved imports-the contract is discarded, and we retry
with a different snippet or location. If compilation succeeds, we proceed to
annotate ¢’ with relevant metadata. Each entry is labeled with the vulnerabil-
ity type L(s), the name of the function or block where the injection occurred,
the precise src coordinates, and a copy of the inserted code snippet. This
information is stored in both human-readable CSV and machine-parseable
JSONL formats.

This process is repeated iteratively over all contracts in Ceean. The output
is a function-level labeled dataset of synthetic smart contracts with real-world
codebases and realistic injection semantics. Each sample in C” is guaranteed
to be compilable, traceable to a known vulnerability, and useful for training
and evaluating detection models at fine granularity.

3.3 Function-Level Vulnerability Detection Via
Sub-Graph Neural Networks (Sub-GNNs)

3.3.1 Subgraph Neural Network Architecture

Our proposed model, denoted FunctionLevelSubGCN, is a subgraph-aware
neural architecture designed to classify vulnerability presence at the function
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level. It operates on annotated Abstract Syntax Graphs (ASGs) represent-
ing each contract and leverages both global graph structure and localized
subgraph context to improve fine-grained detection.

Let G = (V, &) be the ASG of a smart contract, where each node v € V
is associated with a node type embedding x, € R%» and each edge (u,v) € £
encodes either structural, semantic, or data dependencies. For each function
/i in the contract, we define a function-level subgraph G, = (Vy,, &) C G.

Abstract Syntax Graph

Sub-GNN Module Function-level Embeddings
Inter-Message Passing '

~ccccoo |

—_—> l d Classification label

[eeoeees

Node - type mapping
One-hot representation nd

Figure 3.2: Sub-Graph Neural Network Architecture

The input to the model includes:

e A node feature matrix X € RM*dn where d;, = 44 denotes the one-hot
encoded node type dimension.

e A global edge index Egiobal for full-ASG message passing.
e A subgraph edge index &, for function-specific message passing.

e A subgraph assignment vector g € {1,..., G}l mapping each node to
its function subgraph.

Dual-Channel Message Passing. The model consists of L = 3 GNN
layers. At each layer [, it performs parallel message-passing over:

1. The global ASG G using Egiobal to capture cross-function dependencies.

2. The local function subgraphs Gy, using &, to capture intra-function
control /data flow.

The main difference between inter- and intra-message passing layers is illus-
trated in figure |3.3

e In inter-message passing, edges can cross between functions (messages
flow across functions).
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Inter-Message Passing Intra-Message Passing

Figure 3.3: Inter- versus Intra-Message Passing

e In intra-message passing, only edges inside each function remain while
the rest are masked. That means each function forms an isolated sub-
graph where GAT attention only operates locally.

Each message-passing operation uses a GATv2Conv layer. The global prop-
agation result at layer [ is given by:

Hf(gl = GATVQCOHVg?u (H =, Eglobal) » (3.1)
and the subgraph-local propagation is:
Hs(lll)b = GATVQCOHng (H(Z_1)7 gsub) ) (32)

where H(®) = X is the initial node embedding matrix. The results from both
channels are concatenated and passed through a linear transformation and
nonlinearity:

HO = Ret0 (W [ | 1)) 59

where W® € R?¥4 projects the concatenated embeddings back to the hidden
dimension.

Subgraph-Level Pooling. After L propagation layers, each node embed-
ding AP s mapped to a corresponding function via the subgraph member-
ship vector g. A custom max pooling function maxpool(:) is applied per
function:

z = max h{D, (3.4)

veVy,

where z; € R? is the pooled embedding representing function f;. This ag-
gregation captures the most salient semantic features of the function by pre-

serving the maximum response across all nodes in the subgraph.
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Prediction Head. The pooled embedding z; is passed through a final lin-
ear layer to produce class logits:

gi = Woutzi + bout: (35)

where Wy € R?*? and b,y € R2. The output 9; is then interpreted as the
logit vector over the binary classes: vulnerable and non-vulnerable. Op-
tionally, a dropout-activated linear block with ReLU may be applied before
this layer for regularization.

Loss Function. The model is supervised using cross-entropy loss over all
function-level predictions:

L==> yilogo(@")+(1—y)log(l—a(@")), (3.6)
fieC

where y; € {0,1} is the ground truth label, and ¢ denotes the softmax-
normalized class probability.

The architecture incorporates hierarchical message propagation by learn-
ing both full-graph (contract-wide) and subgraph-local (function-scoped) em-
beddings through dedicated GNN channels. By combining attention-based
convolution, subgraph-aware pooling, and function-level supervision, the model
can excel at pinpointing vulnerabilities in the correct semantic scope, espe-
cially for interaction-induced bugs that span across multiple functions. This
design is also modular and extensible, allowing for the future integration of
inter-contract dependencies or richer type-aware node features.

3.3.2 Semantic Augmentation via Pretrained Function
Embeddings

While the Sub-GNN architecture effectively captures intra- and inter-function
structural dependencies, certain vulnerability patterns may span beyond syn-
tactic graph structure and depend on latent semantic cues present in function
names, control logic, or developer conventions. To incorporate such high-
level semantic information, we introduce an additional embedding stream de-
rived from pretrained function-level embeddings. Specifically, we employ the
Salesforce/codet5p-110m-embedding model [21], a lightweight encoder-
only variant of CodeTbh+, to generate fixed-length representation vectors for
each function.

We adopt codet5p-110m-embedding due to its favorable trade-off be-
tween performance and efficiency. It comprises only 110M parameters, sup-
ports fast inference through an encoder-only architecture, and has been pre-
trained on a diverse corpus of programming languages, including Solidity.
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This model is open-source, robust, and suitable for embedding code frag-
ments without requiring downstream fine-tuning. Its architecture is designed
for embedding-based retrieval and classification tasks, making it a compelling
choice for static code analysis in resource-constrained settings.

Embedding Extraction and Fusion. During preprocessing, we tokenize
each function’s source code and extract its corresponding semantic embed-
ding using the CodeT5+ model. Each resulting vector is of dimension 256
and is stored alongside the graph-structured data. After the message-passing
phase of the Sub-GNN, we apply custom max pooling over node embeddings
to generate one vector per function, yielding a set of function-level structural
representations. These pooled vectors are concatenated with the correspond-
ing CodeTbH+ semantic embeddings to form hybrid representations:

z; = ReLU(W |z, || &]),

where z; is the graph-based subgraph representation of the i-th function, e;
is the CodeT5+ embedding, || denotes concatenation, and W is a learnable
linear transformation matrix mapping the joint feature to the hidden space.

The fused embeddings z; are passed through an additional feedforward
layer and projected into the output space via a final linear classifier. This
produces logits over vulnerability labels for each function, integrating both
structural and semantic signals. This dual-stream approach enhances the
model’s ability to detect cross-function or semantically obfuscated vulnera-
bilities that may not manifest in purely graph-local structures.

Certain vulnerabilities-such as those involving improper use of access
modifiers or inconsistent state updates-may involve functions that are not
directly connected in the abstract syntax graph but share semantic relation-
ships through naming, parameter patterns, or shared responsibilities. The
incorporation of pretrained embeddings helps capture such latent relation-
ships and augments the Sub-GNN with a richer contextual understanding.
Furthermore, the low computational footprint of codet5p-110m-embedding
makes it a practical solution for scaling to large datasets without sacrificing
performance or interpretability.
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3.4 Vulnerability Explanation Via Synthetic
Data and Chain-of-Thought Prompting

3.4.1 Bug Explanation Synthesis

The next essential part of this work involves the generation of structured
and interpretable vulnerability explanations. These explanations bridge the
gap between automated detection and actionable remediation, facilitating
not only understanding but also further supervised training of explanatory
models. The primary objective of this stage is to generate consistent and
technically accurate descriptions of vulnerabilities using a large language
model, specifically GPT-4o.

To ensure consistency, reduce ambiguity, and enforce semantic alignment
between the label and the content of the explanation, the system utilizes a
structured prompt formulation strategy. Each data instance is represented
as a pair

V=(Cy)

, where C denotes the Solidity code containing the vulnerability, and y is
the ground-truth label indicating the type of vulnerability, selected from a
predefined taxonomy ) (e.g., reentrancy, access_control, unchecked -
low_level call, etc.). The input to GPT-4o is a triplet

P = (Instruction, C, y)

, where the instruction explicitly requests a vulnerability analysis in a fixed
output format. To minimize the risk of misclassification during generation,
the label y is supplied directly to GPT-40 as part of the prompt. This helps
constrain the model’s generative space and focus its reasoning process on the
relevant vulnerability type.

The generation is guided by a structured template, which defines a struc-
tured template for the explanation: Bug Name, Affected Area, Description,
Impact Assessment, and Mitigation. Figure |3.4] presents the specific format
used in the prompting process. The prompt instructs GPT-40 to assume the
role of a smart contract security expert and produce an explanation follow-
ing this structured schema. This format was designed to balance technical
completeness with human readability, ensuring that each explanation cap-
tures the essential aspects of the vulnerability while remaining interpretable
to both expert and non-expert audiences.

A core component of this methodology is the use of CoT prompting,
which instructs GPT-40 to reason through the explanation in a step-by-step
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Structured Template

You are a smart contract security expert. Analyze the following Solidity code
snippet and explain the vulnerability.
The vulnerability type is [Correct Vulnerability Label]. Use the following format:

### Bug Name: [Correct Vulnerability Label]
#4444+ Affected Area:

#+4 4 Description:

##+4 Impact Assessment:

### Mitigation:

Figure 3.4: Structured Template for Bug Explanation Synthesis

manner. Rather than producing an answer in a single pass, the CoT frame-
work encourages the model to decompose the task into smaller reasoning
units. The model begins by parsing the provided code snippet, identifying
relevant functional blocks such as fallback functions, state variable declara-
tions, and external calls. It then isolates critical program locations likely to
be associated with the vulnerability, denoted as

L, C L(C)

, where £(C) is the set of all logical statements within the contract. The
model proceeds to trace how the vulnerable behavior arises by identifying
violations of best practices, such as failing to update internal state before
interacting with external addresses or lacking appropriate access controls.

By enforcing this decomposition, CoT prompting enhances the trans-
parency of the reasoning process. For example, in the case of a reentrancy
vulnerability, GPT-40 will first identify the external call occurring within
the function, then note the order of operations, and finally reason about
how recursive invocation can lead to repeated balance withdrawals before
the state is updated. The model concludes by suggesting concrete mitiga-
tions, such as the adoption of the Checks-Effects-Interactions pattern or the
inclusion of OpenZeppelin’s ReentrancyGuard. A full example of the output
generated under this schema is shown in Figure |3.5] where GPT-40 demon-
strates a structured and technically sound breakdown of the vulnerability, its
consequences, and remediation.

The explanation generation function can be formally expressed as

fexplain(ca y) - &
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GPT-40’s Example Output with Structured Template

### Bug Name

Reentrancy Vulnerability

### Affected Area
The ‘withdraw' function in the contract.

### Description
The ‘withdraw' function transfers Ether to an external address before updating

the contract’s state. This allows an attacker to recursively call the ‘withdraw’
function before the balance is deducted, enabling them to drain the contract’s
funds.

### Impact Assessment

This vulnerability can lead to significant financial losses, as attackers can
exploit it to steal all Ether stored in the contract. It is a critical issue that
compromises the integrity and security of the smart contract.

##4 Mitigation

To mitigate this vulnerability, apply the Checks-Effects-Interactions pattern.
Ensure that the contract's state is updated before transferring Ether to
external addresses. Additionally, consider using reentrancy guards or the
‘ReentrancyGuard’ utility provided by OpenZeppelin.

Figure 3.5: GPT-40’s Example Output with Structured Template

, where £ is the structured explanation output comprising the five prescribed
sections. This generation process is stateless and parallelizable, making it
suitable for large-scale data generation pipelines. In practice, multiple vul-
nerability instances can be processed concurrently through batched API calls
to GPT-4o0, achieving high throughput and significantly reducing the time
and labor traditionally associated with manual explanation writing.

Scalability is a key component of this methodology. It takes a lot of re-
sources to manually analyze and document smart contract vulnerabilities,
and auditors may not always do this consistently. On the other hand, thou-
sands of thorough explanations with consistent structure and quality can be
produced using the automated method outlined here. This is especially use-
ful for training models that benefit from explanation-aware supervision or
for research applications involving sizable smart contract corpora.

In addition to directing the model’s focus, the explicit inclusion of the
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ground-truth label y in the prompt reduces the possibility of hallucinations,
which are a frequent problem in generative language models when incorrect
or unsupported information is introduced. The approach improves the gener-
ated content’s semantic fidelity by tying the explanation to a recognized vul-
nerability type. This method, however, is predicated on the accuracy of the
labels supplied during the data synthesis stage. The significance of accurate
labeling during data generation is highlighted by the fact that any labeling
noise added upstream will spread throughout the explanation pipeline.

A smart contract security analysis pipeline’s downstream components can
directly use the explanations that are produced. They will be used, for ex-
ample, as training data to improve language models that learn to generate
explanations for vulnerabilities from code. As an alternative, they can be
incorporated into auditing platforms’ user interfaces to help security experts
evaluate possible threats. The output can also be programmatically incor-
porated into structured reports or documentation systems since it follows a
predetermined schema.

3.4.2 Fine-tune Open-Source LLMs

To adapt a general-purpose code language model for the specific task of vul-
nerability explanation, we conducted supervised fine-tuning on the CodelLlama-
13b-hf model. The objective was to align the model’s autoregressive genera-
tion behavior with the structured output format required for smart contract
bug explanation, leveraging a synthetic dataset composed of labeled Solidity
examples.

The dataset used in this stage was generated by injecting 287 distinct vul-
nerability code snippets into a corpus of 2,188 clean smart contracts. Each
vulnerability snippet corresponded to a known bug type drawn from a prede-
fined taxonomy. The injection process resulted in 8,101 executable contracts
after filtering out contracts that failed to compile or execute correctly. This
final dataset was then partitioned into three disjoint subsets: Dipain (80%),
Dyal (10%), and Dies; (10%), ensuring that validation and testing were con-
ducted on unseen samples. Each training instance is represented as a tuple
(,y) € Dirain, where z is a Solidity source code snippet and y is the corre-
sponding textual explanation. For each contract, the target output follows a
five-field structured schema: Bug Name, Affected Area, Description, Impact
Assessment, and Mitigation.

Prior to training, a preprocessing pipeline was applied to the Solidity
inputs. This included stripping inline and block comments, normalizing in-
dentation, and ensuring consistent syntax formatting. These steps were nec-
essary to reduce variance in code style and simplify the mapping between
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code and explanation during sequence modeling. The final tokenized se-
quences were constrained to a maximum length of 4096 tokens, with padding
and truncation applied as needed using the CodelLlama tokenizer.

The fine-tuning process employed the HuggingFace Transformers frame-
work and used the CodeLlama-13b-hf base model, chosen for its high pa-
rameter count and pretraining on a diverse corpus of source code, including
Solidity. The training objective minimized the cross-entropy loss over the tar-
get tokens y, conditioned on the input prompt z. Let ¢, denote the model’s
predicted probability distribution at time step ¢, and y; the ground-truth
token. The loss function is defined as:

T
L=- Z log [yt
t=1

where T is the sequence length of the output.

The training was done with mixed precision and used Low-Rank Adap-
tation (LoRA) to ensure computational efficiency. This technique lim-
its weight updates to low-rank subspaces of the original model parameters.
Without sacrificing representational power, this method enabled model re-
finement with much lower memory usage and training time. Only a portion
of the transformer blocks’ projection layers were altered by the LoRA setup,
thereby freezing most of the parameters.

The AdamW optimizer was used for optimization, with cosine anneal-
ing for adaptive learning rate scheduling and a learning rate initialized at
no = 3 x 107%. Depending on the training hardware’s effective memory avail-
ability, training took place over five epochs with a dynamic batch size of
eight samples. Early stopping was implemented based on the validation loss,
which was tracked following each epoch, in order to avoid overfitting.

Following training, the optimized model was assessed on the held-out
test set using the same human-aligned evaluation framework as GPT-40 ex-
planations. Three criteria were specifically used to evaluate each generated
explanation: Clarity, which refers to the output’s grammatical coherence
and semantic fluency; Identification, which indicates the correctness of the
identified vulnerability and its location in the code; and Impact, which eval-
uates how well the explanation explains the possible repercussions of the bug
and its implications on contract behavior. An overall interpretability score
was generated by averaging the ratings of these dimensions on a 5-point
Likert scale.

The refined CodeLlama-13b-hf model yielded explanations with a quality
that was comparable to that of GPT-40, but with significantly lower inference
cost and latency, according to empirical results. This shows that employing
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optimized open-source models for high-throughput, readable security anal-
ysis is feasible. Furthermore, its output’s interpretability makes it a good
fit for automated vulnerability detection pipeline integration, especially in
situations where scalability and explainability are both crucial.

3.4.3 Evaluate The Explanations

We use a robust large language model, GPT-40, as an automatic evaluator
across a set of structured, semantically grounded metrics in order to evaluate
the performance of explanation-generation models both quantitatively and
qualitatively. The evaluation framework specifically concentrates on three
fundamental dimensions: Impact, Identification, and Clarity. These stan-
dards were selected in order to fully capture each generated explanation’s
linguistic fluency, technical precision, and contextual relevance. By assign-
ing evaluation to GPT-40, we leverage its domain expertise and sophisticated
reasoning skills to execute consistent, high-fidelity judging at scale.

A CoT format is used to prompt GPT-4o for each explanation in the
test set. By dividing each evaluation task into logically sequential sub-
questions, this design promotes methodical analysis. The model is specifically
instructed by the prompt to read the Solidity code snippet, look at the re-
lated vulnerability label, and methodically evaluate the explanation content.
In addition to increasing evaluation consistency, this multi-step prompting
structure makes the model externalize its reasoning process, which reduces
erroneous or hallucinogenic judgments.

The explanation’s linguistic quality is assessed by the first dimension,
Clarity. From beginning to end, GPT-40 evaluates the text’s logical struc-
ture, semantic coherence, and grammar. It also looks at how well the explana-
tion conveys technical insights to a wide range of readers, from inexperienced
developers to security experts, and whether it stays away from superfluous
jargon. This guarantees that the content produced is accurate, pedagogically
useful, and easily accessible.

The technical correctness of the explanation in respect to the related
code and ground-truth label is the focus of the second dimension, Identifi-
cation. GPT-40 checks to see if the explanation correctly identifies the type
of vulnerability, the pertinent lines or functions in the codebase, and the
prerequisites for exploiting the vulnerability. In order to demonstrate both
internal consistency and external validity against the labeled source code,
the explanation must demonstrate a type of semantic alignment. GPT-40
serves as an automated auditor during this stage, confirming that the model
accurately depicts the attack vector and causal relationships in the contract.

The third dimension, Impact, gauges how thoroughly and precisely the
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explanation takes into account the vulnerability’s practical repercussions.
GPT-40 assesses if the explanation includes a workable mitigation strategy
and if it describes believable outcomes, such as monetary loss, denial-of-
service, or data leakage. Crucially, this metric evaluates whether the recom-
mended mitigations are workable, in line with industry norms, and suitable
for the contract’s structure in addition to simply listing the consequences.

For each explanation e; in the test set Diest, the model assigns a numeric
score in the range [1, 5] to each of the three dimensions:

Score(e;) = <5§1arity, gident simpm> . siedl,2,3,4,5}

The final evaluation metric is the arithmetic mean of these scores, represent-
ing the overall interpretability and utility of the explanation:

clarit; i impact
Y Tty + S;dent + S;mp

Aggregate(e;) = — 3

This framework enables scalable and rigorous evaluation without the re-
source constraints of human annotation. Moreover, by relying on CoT rea-
soning, the system provides traceable justifications for each score, allowing
researchers to audit and interpret the evaluation process itself. As a result,
this methodology ensures that generated explanations are not only syntacti-
cally well-formed but also semantically rich and practically actionable-criteria
that are essential for the deployment of explainable vulnerability detection
in real-world smart contract auditing scenarios.
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Chapter 4

Experiments and Analysis

4.1 Vulnerability Classification Task

In the present research, we test our model on two primary datasets: (1) a
synthetic dataset created by inserting bugs into clean contracts, and (2) a
real-world benchmark of 135 smart contracts with verified vulnerabilities.
Function-level labels and ASTs for every contract are extracted from both
datasets.

Vulnerable contracts from SmartBugs and Solidifi are combined in the
real-world dataset. The marker @vulnerable_at_lines is used to anno-
tate vulnerability locations directly in the source code for SmartBugs. This
marker is then parsed to produce function-level bug labels. The accompa-
nying CSV log files for Solidifi contain bug information that includes line
numbers, bug types, and span lengths. Each contract’s vulnerable code seg-
ments are identified using these annotations.

Clean contracts from the SmartBugs Wild repository are injected with
predefined vulnerability templates to create the synthetic dataset. As ex-
plained in Section [3.2] each injection mimics common vulnerability classes
like reentrancy, access_control, arithmetic, time manipulation, denial -
of service, unchecked low level calls, and front running. This method
guarantees that a wide variety of representative security issues are present
in the dataset. The getAST() function is used to process all contracts, syn-
thetic or real, in order to extract their AST. The contract’s path, source
code, list of bugs (if any), AST, bug type, and data source (e.g., solidifi,
smartbugs, clean) are all included in each datapoint.

All processed data is serialized into a .pkl file (ast_data.pkl or ast_-
data trimmed.pkl), which serves as input for model training and evalua-
tion. Both synthetic and real-world contracts can benefit from fine-grained
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vulnerability detection at the function level thanks to the consistent data
representation.

4.1.1 Large Language Models vs. Sub-GNN on Func-
tion—Level Detection

To contextualize the effectiveness of our function-level Sub-GNN, we bench-
marked it against two state-of-the-art large language models (LLMs) spe-
cialised for code understanding: DeepSeek-Coder-V2-Lite-Instruct and
Qwen 2.5-7B-Instruct. Each LLM was queried in a strict zero-shot setting
with the following instruction:

Zero-shot prompt for function-level classification

Given a piece of Solidity code, can you tell me which functions contain vulner-
abilities?

Please provide the list of vulnerable functions as a Python list.

The Solidity code is as follows:

[REDACTED SOLIDITY CODE]

Figure 4.1: Zero-shot prompt for function-level classification

This prompt was appended with the full Solidity contract and submitted
to the models without any fine-tuning or in-context examples.

To assess the effectiveness of our Sub-GNN architecture at identifying vul-
nerable functions in real-world smart contracts, we conducted a comparative
evaluation against state-of-the-art large language models (LLMs) designed
for code understanding and generation. For this experiment, we employed
the SmartBugs Curated benchmark dataset, which consists of 234 manually
labeled real-world smart contracts, with vulnerability annotations provided
at the function level. This benchmark provides a realistic and challenging
setting for evaluating fine-grained detection models.

The comparison results are shown in Table[d.I] Our semantic-augmented
GNN variant, SubGCN-FLE (explained in Section [3.3.2)), achieved the
highest overall Fl-score of 0.6720 with a strong precision of 0.9545, in-
dicating that the majority of functions predicted as vulnerable were indeed
correct. However, its recall was relatively low (0.5185), suggesting that while
it was highly conservative and accurate in its positive predictions, it missed a
number of actual vulnerable functions. This behavior is consistent with the
model’s high-confidence thresholding, driven by the discriminative power of
function-level embeddings.
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Table 4.1: Function-level Detection Performance compared with Large Lan-
guage Models.

Model Precision Recall F1

SubGCN-FLE 0.9545 0.5185 0.6720
SubGCN-FLA 0.5455 0.4074  0.4664
DeepSeek-Coder-V2-Lite-Instruct 0.1801 0.5506  0.2715
Qwen2.5-7B-Instruct 0.1812 0.7911 0.2948

The SubGCN-FLA variant, which aggregates local node features via
dual-channel message passing without semantic embeddings (see Section,
showed significantly lower performance, with an F1-score of 0.4664. This drop
highlights the importance of incorporating semantic priors into graph-based
representations, as purely structural models may lack the discriminative ca-
pacity to distinguish nuanced vulnerabilities.

In contrast, the LLM baselines underperformed on this task. DeepSeek-
Coder-V2-Lite-Instruct achieved a precision of only 0.1801, with recall at
0.5506 and F1l-score of 0.2715. Similarly, Qwen2.5-7B-Instruct reached
higher recall (0.7911)—indicating it often marked vulnerable functions—but
had very low precision (0.1812), resulting in many false positives and a final
F1l-score of 0.2948. These results reflect a common issue with instruction-
following LLMs in code reasoning tasks: they tend to overgeneralize and
generate plausible-sounding but imprecise outputs when not fine-tuned or
guided by rigorous examples.

4.1.2 Function-Level Comparison with Existing GNN
Baselines

State-of-the-art GNN baselines for smart-contract analysis generally operate
at the contract granularity rather than the function granularity. To enable
a fair comparison, we aggregate our function-level predictions: a contract is
labelled vulnerable if any constituent function is predicted as VulnerableE]
Table summarises the F1, recall, and precision of our variants and of
widely cited baselines on the same synthetic benchmark.

With SubGCN-FLE (Function-Level Embedding), by leveraging
the semantic augmentation detailed in Section [3.3.2] this variant achieves
the highest F1 (0.9830) and near-perfect precision (0.9957). The seman-

IThis aggregation mirrors industry practice where a single exploitable function com-
promises the entire contract.
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Table 4.2: Models’ performance on Synthetic Benchmark

Model Granularity Sem. Aug. F1 Recall  Precision
SubGCN-FLE (ours) Fine Yes 0.9830 0.9708  0.9957
SubGCN-FLA (ours) Fine No 0.9710 0.9624  0.9798
TMP [25] Coarse No 0.9510 0.9948  0.9109
TransfomerGNN [23] Coarse No 0.9372  0.9886  0.8909
DRGCN [25] Coarse No 0.9366 0.9793  0.8975
GCN [14] Coarse No 0.9121  0.9886 0.8466
GAT [1§] Coarse No 0.9109 0.9845  0.8476
SubGCN-CLA (ours) Coarse No 0.9079  0.9845  0.8423

tic embeddings disentangle subtle usage patterns (e.g., re-entrancy gates vs.
benign external calls), yielding very few false positives. SubGCN-FLA
(Function-Level Aggregation) relying solely on dual-channel message
passing (Section , FLA still surpasses every external baseline, confirm-
ing that explicit aggregation of per-function signals is already a powerful
prior. SubGCN-CLA (Contract-Level Aggregation) also relying only
on dual-channel message passing, but the last aggregation layer is max pool
aggregation from all nodes in the graphs. This approach yield the lowest
performance. Other Baseline GNNs like TMP and TransformerGNN ob-
tain high recall but trail in precision, suggesting that their coarse-grained
representations over-generalise vulnerable patterns. Classic GCN and GAT
architectures exhibit the largest precision deficits, aligning with prior reports
that purely based on contract-level aggregation is not sufficient for analyzing
smart contracts.

Overall, the results underscore two conclusions: (i) semantic-aware em-
beddings elevate precision to industrially acceptable levels without sacrific-
ing recall, and (ii) a function-level perspective, when intelligently aggregated,
yields state-of-the-art contract-level detection while retaining the localisation
benefits crucial for remediation workflows.

4.2 Vulnerability Explanation Task

4.2.1 Explanation Performance Benchmark

We performed a comparative benchmark analysis across seven models, both
commercial and open-source, in order to thoroughly assess the caliber of vul-
nerability explanations produced by different large language models (LLMs).
To guarantee a fair and thorough assessment, the chosen models reflect a va-
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riety of architectural underpinnings, parameter scales, and training regimens.
Notably, open-source models like CodeLlama and Magicoder were chosen to
evaluate the performance of publicly available, code-specialized models un-
der various levels of fine-tuning, while commercial models like GPT-40 and
Claude-3-Haiku were included as state-of-the-art general-purpose LLMs with
known competence in code understanding.

As fundamental baselines, CodeLlama-7B and CodeLlama-13B shed light
on the ways in which explanation capability is impacted by model scale. We
can also directly measure the impact of targeted training on explanation
quality thanks to the inclusion of CodeLlama-13b-hf-finetuned, which has
been fine-tuned on our domain-specific synthetic dataset. The open-source
spectrum is further expanded by Magicoder-S-DS-6.7B and Magicoder-S-
CL-7B, which are made for tasks involving code reasoning and instruction
following. GPT-jo is the state-of-the-art in secure code analysis and natural
language understanding, while Claude-3-Haiku is a lightweight substitute
among commercial offerings.

Table 4.3: Performance comparison of different models in terms of clarity,
identification, and impact. The bold values indicate the highest scores in
each column.

Model Average Clarity Identification Impact
CodeLlama-7h-hf-base 2.7899 2.6087 2.9739 2.7870
CodeLlama-13b-hf-base 3.0014 2.6870 3.5304 2.7870
CodeLlama-13b-hf-finetuned (ours)  3.6638 3.2696 4.5696 3.1522
Magicoder-S-DS-6.7B-base 3.8333 3.6783 4.2174 3.6043
Magicoder-S-CL-7B-base 3.6971 3.5609 4.0261 3.5043
claude-3-haiku-20240307 3.3710 3.6130 2.7174 3.7826
GPT-40 4.0261 4.1783 3.6957 4.2043

With an average score of 4.03, GPT-40 performed the best overall, as
indicated in Table Its outstanding performance in Clarity (4.18) and
Impact (4.20) is the main factor contributing to this high average. The
high clarity score of GPT-40 indicates that its explanations are successful in
making technical material understandable in addition to being grammatically
correct and logically organized. According to its impact score, GPT-40 excels
at explaining the wider ramifications of vulnerabilities, like monetary loss or
user exploitation, and frequently offers doable mitigation techniques.

It’s interesting to note that, despite GPT-40’s superior clarity and im-
pact, the fine-tuned CodeLlama-13b-hf-finetuned outperformed it in the
Identification category, earning an astounding 4.57. This finding supports
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the theory that fine-tuning on a domain-specific explanation dataset signifi-
cantly improves a model’s capacity to identify and precisely characterize the
location and technical nature of smart contract vulnerabilities. A targeted
training process allows for more accurate vulnerability reasoning, even in
the absence of the wide generalization capabilities of commercial LLMs, as
evidenced by the fine-tuned model’s strong identification performance.

The Magicoder family of open-source models performed well overall,
particularly in Clarity and Identification. Magicoder-S-DS-6.7B outper-
formed even GPT-40 in the identification category, scoring 4.21 and 3.68
in clarity. This performance suggests that Magicoder’s training on a vari-
ety of code problems and instruction-following tasks translates well to real-
world vulnerability explanation tasks, particularly in situations where do-
main adaptation is not feasible. Notwithstanding their advantages, both
Magicoder variations were still inferior to GPT-40 in the Impact category.
This could be because they had a less thorough comprehension of the wider
ramifications of security vulnerabilities, which may call for more general-
purpose reasoning skills.

With an average score of just 2.79, CodeLlama-7B showed limited ef-
fectiveness on the lower end of the performance spectrum. The relatively
lower identification and clarity scores imply that smaller-scale models find it
difficult to balance the demands of both natural language articulation and
technical reasoning. Though it still trailed behind refined and commercial al-
ternatives, CodeLlama-13B outperformed its 7B counterpart, particularly
in identification (3.53), suggesting some scaling benefit.

Finally, the performance profile of Claude-3-Haiku was not entirely con-
sistent. It received the second-highest impact score (3.78) and strong clarity
(3.61), demonstrating a strong capacity to convey wider ramifications. How-
ever, in line with its more general-purpose training goal, its low identification
score (2.71) suggests a weakness in low-level technical reasoning.

In conclusion, the benchmark results show a definite trade-off between
domain-specific fine-tuned models and general-purpose LLMs. GPT-40 is
ideal for end-user-oriented explanation tasks because it raises the standard
for impact and clarity. However, fine-tuned open-source models such as
CodeLlama-13b-hf-finetuned provide better technical identification, in-
dicating that hybrid approaches that combine prompt engineering and fine-
tuning may provide the best results in tasks involving the explanation of
smart contract vulnerabilities.
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4.2.2 Evaluation of GPT-40 Score

We manually examined 50 randomly selected outputs in order to evaluate
the accuracy of GPT-40’s automated assessments in the vulnerability expla-
nation task. Human experts independently annotated these samples in three
evaluative dimensions: Impact, Identification, and Clarity. Finding out
how well GPT-40’s scoring matched human judgment in terms of both abso-
lute score values and ordinal ranking was the aim of this assessment. In order
to achieve this, we used two statistical correlation metrics: Kendall’s Tau,
which measures agreement in ranking order, and the Pearson correlation
coefficient, which captures linear relationships between scores. Table
displays the findings.

Table 4.4: Correlation coefficients between manual and GPT-40 evaluations.

Clarity Identification Impact
Pearson 0.100 0.860 0.321
Kendall’s Tau  0.062 0.708 0.310

The Identification dimension showed the highest correlation, with GPT-
40 achieving a Kendall’s Tau of 0.708 and a Pearson coefficient of 0.860.
Strong linear and ordinal agreement with human annotations is indicated by
these values, indicating that GPT-40 is very good at detecting the existence,
kind, and location of vulnerabilities in smart contract code. The structured
nature of vulnerability identification, where factual correctness—like iden-
tifying the bug type (e.g., reentrancy, arithmetic overflow) and pointing to
the pertinent code lines—can be objectively verified, is responsible for this
reliability. Additionally, the application of standardized explanation formats
and chain-of-thought prompting probably improved GPT-40’s accuracy and
focus during assessment. The model’s usefulness for scalable vulnerability
triage in automated pipelines was demonstrated when it was given enough
context and syntactic cues to consistently match expert reasoning in identi-
fying security flaws.

Performance in the Clarity dimension, on the other hand, showed signif-
icantly less agreement. The evaluations of GPT-40 demonstrated little cor-
relation with human assessments of linguistic quality and readability, with
a Pearson score of just 0.100 and a Kendall’s Tau of 0.062. Human evalu-
ators commonly pointed out problems like excessive verbosity, inconsistent
logical flow, and overuse of domain-specific jargon, even though the gener-
ated explanations were frequently technically correct. These flaws made the
explanations less understandable and less instructive, particularly for users
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with different skill levels. This disparity emphasizes the inherent difficulty
of automating qualitative evaluations that involve audience sensitivity and
subjective language features, which are less bound by formal structure.

With correlation values of 0.321 (Pearson) and 0.310 (Kendall’'s Tau),
GPT-40 demonstrated a moderate level of alignment with human evaluators
in the Impact dimension. The model frequently fell back on broad severity
ratings that lacked nuanced risk contextualization, even though it showed a
respectable ability to infer possible outcomes of vulnerabilities. For instance,
rather than taking into account mitigating conditions like limited access con-
trol scope or non-critical contract logic, GPT-40 often assigned high-impact
labels to bugs like reentrancy or unchecked low-level calls based on their
theoretical exploitability. However, when assessing the practical implica-
tions of each vulnerability, human evaluators took into account real-world
context, including asset exposure, user privileges, and contract deployment
conditions. According to this gap, GPT-4o0 still lacks the domain-specific
calibration required for context-aware risk prioritization, even though it is
capable of reasoning over abstract threat models.

In conclusion, GPT-4o is a good fit for scalable code auditing and static
analysis augmentation because it shows great dependability in objective,
structurally based tasks like vulnerability identification. However, when deal-
ing with subjective aspects that rely on understanding real-world context or
subtle linguistic quality, its performance deteriorates. These results sug-
gest that in order to guarantee accuracy and usability, hybrid evaluation
workflows are currently required, in which GPT-40 performs preliminary as-
sessments and human-in-the-loop refinement follows. Future research could
concentrate on improving GPT-40’s performance in subjective evaluations
by using context-aware risk modeling, feedback-tuned fine-tuning loops, and
instruction tuning datasets made to make security explanations easy to un-
derstand.

4.3 FError Analysis: Limitations in Vulnera-
bility Explanations

To better understand the strengths and limitations of large language models
(LLMs) in vulnerability explanation, we performed a qualitative error anal-
ysis using an example smart contract function vulnerable to an Unhandled
Exception. This analysis compares the outputs of two representative models:
our fine-tuned CodeLlama-13B and the commercial GPT-40. Figures
and illustrate the explanations each model produced for the same buggy
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CodelLlama-13B-finetuned’s explanation on an Unhandled Excep-
tion bug case

### Bug name
Unhandled Exception

### Affected area
The affected area is the ‘callee.call.value(1 ether)(
checked_lankford_transferFrom* function.

)" line within the ‘call_-

### Description

The vulnerability arises from the use of ‘callee.call.value(1 ether)("”)" which
sends 1 ether to the ‘callee’ address without checking if the call was successful.
In Solidity, the low-level ‘.call* method returns a boolean indicating whether
the call was successful or not. However, in this code snippet, the return value
of the call is not checked. This means that if the call fails (e.g., the ‘callee’
address reverts or runs out of gas), the subsequent lines of code will still
execute. This can lead to unexpected behavior and potentially severe security
issues.

##+4 Impact assessment

The impact of this vulnerability is significant. If the call to the ‘callee’ fails,
the function will still proceed to execute the ‘transferFrom' and emit events.
This can lead to inconsistent states, where tokens are transferred or approved
despite the failure of the initial call. This can cause significant financial losses
or disruptions in the contract’s operations.

Figure 4.2: CodeLlama-13B-finetuned’s explanation on Unhandled Excep-
tion bug

code segment.

The results show significant behavioral variations between the models.
The main problem, which is the lack of a success check following the invoca-
tion of the low-level call, is accurately identified by the explanation produced
by Codellama-13B-finetuned (Figure . This behavior demonstrates how
well the model understands Solidity semantics, particularly how it handles
call failures and the security implications that follow. Furthermore, the ex-
planation shows a thorough and targeted comprehension of smart contract
exception handling pitfalls. It does not, however, offer any specific mitiga-
tion, such as including a ‘require(success)‘ check. This omission raises the
possibility of a flaw in the model’s fine-tuning data, which might have un-
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GPT-40’s explanation on an Unhandled Exception bug case

### Vulnerability: Reentrancy Attack

#F## Affected Area:
The affected area is the call to ‘callee.call.value(1 ether)("")" before any state
changes are made (e.g., updating the token balance).

#+4 4 Vulnerability Description:

The function ‘call_checked_lankford_transferFrom’ transfers 1 ether to an ex-
ternal contract (‘callee’) and then attempts to transfer tokens by calling ‘_to-
kenlmpl.transferFrom' function. The problem arises because the external call
(‘callee.call.value(1 ether)("")") transfers control to the ‘callee’ contract with-
out any checks to ensure the ‘callee’ contract is not malicious.

If the ‘callee’ contract has a fallback function, that function gets executed
upon receiving ether. If that fallback function calls back into the ‘call_-
checked_lankford_transferFrom" function or another function within the same
contract that affects the state (e.g., modifying balances), it can lead to unde-
sired reentrant calls. This can result in the contract being in an inconsistent
state, and potentially exploited to drain ether or perform unauthorized transfers.

#+4 Assessment of the Impact:

The impact of this vulnerability can be severe. If exploited, a malicious
‘callee’ contract could utilize reentrancy to drain ether from this con-
tract, conduct unauthorized transfers, or manipulate the internal state. This
could lead to significant financial loss or the loss of control of the contract logic.

##+# Solution to Fix the Vulnerability (Mitigation):

To mitigate this vulnerability, state-changing operations should be performed
before transferring control to external contracts. Specifically, move the critical
operations (balancing updates and emitting events) before making the external
call. Here's how to fix the vulnerable code: [REDACTED SOLIDITY CODE]

Figure 4.3: GPT-40’s explanation on Unhandled Exception bug

deremphasized remedial training or the explanation format’s "mitigation”
section.

On the other hand, GPT-40 incorrectly classifies the vulnerability as a
reentrancy attack (Figure . This is a semantic error because, despite
the external call’s potential as a vector, the code doesn’t include any state
changes before the external call, which is one of the prerequisites for reen-
trancy to be exploitable. This misclassification suggests that GPT-4o0 relies
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too much on surface-level patterns, where a reentrancy diagnosis is made just
by the presence of an external call. However, by incorporating a clearly stated
mitigation strategy, GPT-40 offers a more developer-focused and actionable
explanation. It specifically suggests moving state updates prior to the ex-
ternal call and implementing the Checks-Effects-Interactions (CEI) pattern,
which is a generally accepted best practice in Solidity development.

It’s interesting to note that both models show failure modes associated
with abstraction and context length. The security implications of the origi-
nal bug may be exacerbated by Codel.lama’s tendency to truncate or ignore
surrounding interactions, such as token transfers (‘transferFrom‘). However,
because it attempts to infer attack scenarios (like recursive fallback behavior)
that aren’t stated explicitly in the code, GPT-40’s more general contextual
reasoning can occasionally result in hallucinated risks. The models’ archi-
tectural biases are reflected in this divergence: GPT-40 excels at integrating
high-level reasoning, albeit at the expense of occasional technical errors, while
CodeLlama prioritizes syntactic precision over holistic context.

All things considered, this case study demonstrates the complementary
advantages and drawbacks of both models. Although CodeLllama-13B-finetuned
exhibits accurate vulnerability identification based on language-level compre-
hension, it is devoid of proactive repair techniques. Despite its propensity for
overgeneralization, GPT-40 provides more thorough, developer-friendly an-
swers along with mitigation recommendations. Future enhancements might
include adding carefully chosen mitigation examples to CodelLlama’s train-
ing data and tightening type and condition constraints to GPT-40’s diagnosis
logic to prevent misclassification.
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Chapter 5
Conclusion

This thesis combines language model-based explanation generation with graph-
based learning to provide a comprehensive framework for enhancing the accu-
racy and interpretability of smart contract vulnerability analysis. It fixes two
long-standing flaws in current tools: the lack of actionable, human-readable
explanations for issues found and the coarse granularity of contract-level vul-
nerability detection. This work offers a dual improvement to the developer-
facing usability of automated security analysis tools, encompassing both de-
tection and interpretability.

Regarding detection, we suggest a new Sub-Graph Neural Network (Sub-
GNN) model that can classify vulnerabilities at the function level. Compared
to conventional contract-level GNNs; the model more accurately localizes vul-
nerabilities by breaking down smart contracts into function-level subgraphs
built from control and data flow dependencies. The Sub-GNN provides sig-
nificantly better localization granularity and achieves competitive classifica-
tion performance, according to empirical evaluations on a synthetic dataset.
This function-level approach lessens the workload associated with manual
code auditing by enabling developers to more effectively detect and isolate
problematic code.

We present a sizable, artificially produced dataset of Solidity contracts
with function-level vulnerability annotations and structured semantic meta-
data to facilitate this fine-grained detection. This dataset has been carefully
selected to guarantee label fidelity and injection realism, and it covers a wide
range of vulnerability types, such as reentrancy, arithmetic errors, access
control flaws, and more. By making it possible to train and assess detection
models with fine localization capabilities, it closes a significant gap in the
state of the art.

Simultaneously, this thesis addresses the interpretability issue by creat-
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ing a pipeline for structured explanation generation driven by large language
models (LLMs). We guide models like GPT-40 and refined CodeLlama-
13B to produce human-readable vulnerability descriptions that include the
bug name, affected area, description, impact assessment, and mitigation by
combining synthetic data and CoT prompting. According to experimental
findings, CoT prompting improves the generated explanations’ coherence,
informativeness, and clarity, which increases their value for developers. Fur-
thermore, our automated evaluation pipeline using GPT-40 as a scoring agent
confirms the effectiveness of our fine-tuned models across explanation quality
dimensions including clarity, identification accuracy, and impact awareness.

These elements work together to create an end-to-end vulnerability anal-
ysis pipeline that combines semantic interpretation using LLMs with struc-
tural reasoning using Sub-GNN. By combining these two approaches, a more
useful and developer-friendly smart contract auditing workflow is made pos-
sible, allowing for both precise bug detection and clear explanation.

This work paves the way for a number of exciting avenues for further in-
vestigation. The ability of the Sub-GNN to detect compositional and cross-
contract vulnerabilities can be enhanced by adding support for inter-function
and inter-contract reasoning. On the explanation side, usability could be fur-
ther improved by utilizing LLMs to create interactive auditing assistants and
integrating user feedback. Furthermore, we envision the potential integra-
tion of textual representations and graph-based embeddings into a single
multimodal model for joint explanation and detection.

To sum up, this thesis advances the state of the art in smart contract
vulnerability detection and explanation by introducing new models, datasets,
and evaluation techniques. This work establishes the groundwork for blockchain
systems that are more secure and interpretable by bridging the gap between
automated classification and human-centered understanding.
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