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Abstract

Wireless communication networks face immense pressure to support expo-
nentially increasing data demands and ultra-low latency requirements, yet
conventional half-duplex systems waste significant spectral resources due to
their inability to transmit and receive simultaneously. This dissertation ad-
dresses the pressing need for enhanced throughput and reduced latency by
advancing the concept of Physical-Layer Network Coding (PNC) into prac-
tical full-duplex operation.

Current wireless relay systems encounter severe performance bottlenecks
due to residual self-interference (RSI) inherent in full-duplex operation, which
persists even after analog cancellation. To overcome this fundamental limi-
tation, we propose Concurrent Physical-Layer Network Coding (CPNC), the
first full-duplex PNC framework that maintains compatibility with 5G New
Radio specifications while incorporating a fixed processing delay δ to en-
able pipelined operation and systematic RSI management. CPNC achieves
an average normalized throughput (ANT) of 1.73 at high SNR—a 73% im-
provement over conventional half-duplex PNC’s theoretical limit of 1.0, while
approaching 86.5% of the ideal full-duplex capacity.

To fully exploit CPNC’s potential under realistic interference conditions,
we introduce REST-UNet (Residual Attention U-Net), an innovative deep
learning receiver architecture that jointly performs interference suppression,
channel estimation, and XOR symbol detection through learned transforma-
tions. REST-UNet uniquely integrates multi-scale feature extraction with
channel and spatial attention mechanisms, achieving approximately 62% un-
coded BER reduction compared to conventional LS+MMSE+LDPC process-
ing and 44% reduction over state-of-the-art DeepRx at 10 dB SNR, while
maintaining robustness to channel variations up to 250 Hz Doppler shift.

The seamless integration of REST-UNet into the CPNC framework cre-
ates the first comprehensive AI-enhanced full-duplex PNC system. Extensive
simulations across diverse ITU indoor scenarios reveal critical design param-
eters: a minimum RSI suppression threshold of -15 dB for reliable operation,
an optimal relay timing window of about 30 µs, and consistent performance
gains across various propagation conditions. The integrated system main-
tains BER below 10−5 even with practical RSI levels, demonstrating feasibil-
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ity for real-world deployment.
This research pioneers the convergence of concurrent network coding with

AI-enhanced signal processing, delivering practical solutions to the funda-
mental challenges of full-duplex communication. The proposed framework
not only demonstrates substantial throughput gains and latency reduction
but also lays the foundation for future 6G wireless systems, where ultra-
reliable low-latency communication (URLLC) is paramount.

Keywords: Physical-Layer Network Coding (PNC); Full-Duplex Communi-
cation; Residual Self-Interference; Deep Learning; REST-UNet; Concurrent
Network Coding; 5G New Radio; URLLC
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ĉA Estimated codeword from node A
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Chapter 1

Introduction

Wireless communication has become a foundational infrastructure for con-
temporary and future societies [4]. It underpins everything from personal
connectivity to national critical services, enabling ubiquitous access to infor-
mation, seamless human–machine interaction, and large-scale machine-type
connectivity. As digital transformation accelerates and cyber–physical sys-
tems proliferate, the requirements placed on wireless networks are no longer
incremental but transformative: networks must deliver orders-of-magnitude
higher throughput (toward the terabit-per-second regime), millisecond-level
end-to-end latency, extreme reliability, and the capability to connect billions
of heterogeneous devices [1]. Meeting these demands compels the exploration
of new architectures and physical-layer strategies that transcend the limita-
tions of conventional half-duplex relaying and strictly orthogonal access.

1.1 Research Background
The past decades have witnessed an explosive surge in wireless traffic, ser-
vice diversity, and the tight coupling between cyberspace and the physical
world. Looking beyond 5G, 6G communication will support the fol-
lowing expected scenarios of applications in future wireless network
systems:

• Enhanced Mobile Broadband-Plus (eMBB-Plus): In 6G, eMBB
-Plus will replace 5G’s eMBB. It targets Tbps-level aggregate through-
put, wide-area coverage, and superior Quality of Experience (QoE) for
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ultra-high-resolution XR/VR/AR streaming, holographic communica-
tions, and real-time digital-twin rendering [5].

• Ultra-Low Latency and High Reliability (ULLHR) Commu-
nications: Mission- and safety-critical services—such as cooperative
autonomous driving (V2V/V2I), remote/tactile control, telemedicine,
and industrial closed-loop control—demand end-to-end latencies of only
a few milliseconds (or even sub-millisecond), extremely low jitter, and
“six-nines” (or higher) reliability under highly dynamic topologies [6].

• Massive Machine-Type Communications-Plus (mMTC-Plus):
Smart factories and Society 5.0 (Super Smart Society) feature billions
of heterogeneous sensors and actuators engaged in continuous monitor-
ing, collaborative robotics, and AI-driven decision making [7].

While the three headline service classes delineate the dominant traffic pat-
terns of 6G, the IMT-2030 vision in Fig. 1.1 reminds us that these examples
are far from exhaustive. Future wireless systems must also underpin perva-
sive IoT ecosystems, immersive social platforms, integrated sensing-and-
communication (ISAC), ubiquitous AI-native services, and other yet-to-emerge
paradigms.

Across these use cases, several key performance indicators (KPIs) con-
sistently emerge: (i) extreme spectral efficiency and multi-Gbps to Tbps
throughput; (ii) sub-10 ms—down to sub-1 ms—end-to-end latency with
tight jitter bounds; (iii) ultra-high reliability and availability; (iv) massive,
flexible connectivity and scalability; and (v) energy- and cost-efficiency for
sustainable deployment.

Meeting such stringent KPIs requires rethinking physical-layer design,
interference management, resource allocation, and network architectures.
Challenges include accurate and timely acquisition of channel state in time-
varying environments, mitigation of various interference sources, synchro-
nization and coordination between densely deployed nodes, and balancing
algorithmic optimality against real-time computational complexity. This
chapter positions these macro-level demands and challenges, and prepares
the ground for the subsequent sections on research motivation, objectives,
methodology, and the structure of this thesis.
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Figure 1.1: Usage scenarios and overarching aspects of IMT-2030[1]

1.2 Problem Statement
With the rapid evolution of society toward hyper-connected, intelligent en-
vironments—dominated by applications such as smart factories, the Inter-
net of Things (IoT), autonomous driving, immersive XR/VR platforms, and
collaborative robotics—wireless networks are required to support unprece-
dented volumes of data and real-time, multi-directional interactions among
a massive number of devices. These emerging services impose stringent per-
formance demands: extremely high throughput to accommodate continu-
ous high-resolution data streams, ultra-low latency to enable instantaneous
control and feedback, and exceptional reliability to ensure mission-critical
operations function safely and predictably.

Challenge 1 — Throughput bottlenecks under conventional re-
laying. High data-rate services demand that every Hertz of spectrum be
used efficiently. Classical half-duplex relaying and strictly orthogonal access
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consume multiple time slots to exchange information, squandering spectral
resources. Physical-layer Network Coding (PNC) was introduced to tackle
this: by exploiting signal superposition and decoding a network-coded combi-
nation (e.g., XOR), PNC cuts the number of transmissions and lifts spectral
efficiency. Yet, in practice, imperfect CSI, synchronization errors, and resid-
ual interference prevent PNC from reaching its theoretical ceiling—leaving a
gap between desired and achievable throughput.

Challenge 2 — Latency floors that motivate simultaneous trans-
mit–receive operation. Emerging services also impose ultra-low latency
constraints. Even with PNC, if nodes still separate transmit and receive
phases, control/feedback loops suffer avoidable delays. This motivates en-
abling nodes to transmit and receive at the same time on the same band
(full-duplex operation) to collapse time slots and further trim latency. How-
ever, adopting full-duplex is not merely a switch; it fundamentally reshapes
the interference landscape and hardware/algorithm requirements.

Challenge 3 — Interference and channel impairments amplified
by full-duplex and multi-hop processing. Once full-duplex is intro-
duced, strong self-interference arises: the node’s own transmit signal, often
orders of magnitude stronger than the desired incoming signal, leaks into
the receiver. Even state-of-the-art analog/digital cancellation leaves residual
power that degrades detection. Simultaneously, PNC’s relay-based process-
ing means each information stream effectively experiences multiple channel
passages, accumulating noise, fading distortions, and multi-user interference.
Together, these effects lift the BER floor and erode the latency/throughput
gains that motivated PNC and full-duplex in the first place.

Toward intelligent interference mitigation: opportunities and
caveats of AI. Advanced artificial intelligence (AI) methods—especially
deep learning—offer a promising way to model nonlinear channel dynamics,
learn complex interference patterns, and make near-optimal decisions under
uncertainty without exhaustive analytical derivations. AI-based receivers
can, in principle, reduce bit error rates (BER), adapt to time-varying envi-
ronments, and approach real-time operation with carefully designed architec-
tures. However, AI also brings its own limitations: large labeled datasets are
often required for robust training; generalization to unseen channel conditions
can be fragile; inference complexity and latency must be tightly controlled
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to meet real-time constraints; and interpretability, stability, and power con-
sumption remain critical concerns in practical deployments.

1.3 Related Work and Motivation
A rich body of literature has shaped Physical-layer Network Coding (PNC)
from its information-theoretic origins through to practical implementations,
and more recently toward deep-learning-enhanced receivers. This section
provides a comprehensive review of these research strands—capacity analysis,
modulation/coding techniques, full-duplex (FD) integration, and AI-driven
detection—to establish the theoretical foundations and practical challenges
that motivate this thesis.

1.3.1 Information-Theoretic Foundations of PNC

The concept of Physical-layer Network Coding emerged as a paradigm shift in
wireless relay networks, fundamentally challenging the traditional ”decode-
and-forward” approach. Zhang’s seminal work [8] introduced the two-way
relay channel (TWRC) model, demonstrating that by exploiting the additive
nature of electromagnetic waves, a relay node could extract network-coded
information directly from superimposed signals. This breakthrough showed
that the traditional four-phase communication process could be reduced to
just two phases, effectively doubling the spectral efficiency. The key insight
was that the relay need not separate individual messages; instead, it could
compute and forward a function of the received signals, typically their XOR
combination.

Building upon this foundation, Popovski and Yomo [9] extended the anal-
ysis to practical wireless environments, quantifying achievable rate gains un-
der various fading distributions and signal-to-noise ratio (SNR) conditions.
Their work revealed that PNC maintains significant advantages even in re-
alistic channel conditions, though performance gains are sensitive to channel
symmetry and power control strategies. This analysis was crucial in estab-
lishing PNC’s viability beyond idealized theoretical models.

The capacity region characterization received rigorous treatment from
Ong et al. [10], who precisely delimited scenarios where PNC achieves op-
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timal information-theoretic performance. Their work established that PNC
is capacity-achieving for symmetric channels and near-optimal for moder-
ately asymmetric configurations, providing clear guidelines for system de-
sign. Furthermore, they identified the critical role of side information at
end nodes, showing how network coding exploits this structure to approach
cut-set bounds.

A significant theoretical advancement came through the compute-and-
forward framework introduced by Nazer and Gastpar [11]. This approach
formalized PNC within the structured lattice code framework, enabling re-
lays to decode integer linear combinations of transmitted codewords. The
elegance of this framework lies in its ability to transform the interference
problem into a feature: carefully designed lattice codes ensure that the
superposition of codewords remains decodable as another valid codeword.
Subsequent refinements by Sezgin et al. [12] tightened capacity bounds for
asymmetric channels, while Wilson et al. [13] developed optimal mapping
strategies for finite-field network codes. Nam et al. [14] further extended
these results to multi-way relay channels, demonstrating that the gains of
PNC scale favorably with network size.

1.3.2 From Theory to Practice: Implementation Chal-
lenges and Solutions

While theoretical analyses established PNC’s promise, translating these gains
into practical systems revealed numerous implementation challenges. Real-
world wireless systems suffer from hardware impairments, synchronization
errors, and channel estimation inaccuracies that can severely degrade PNC
performance.

Hardware Impairments and Synchronization

Early implementation efforts faced significant challenges from carrier fre-
quency offsets (CFO) and timing misalignments between end nodes. Lu et
al. [15] developed one of the first real-time PNC prototypes, implement-
ing sophisticated algorithms to handle oscillator drifts and sampling clock
offsets. Their system demonstrated that with careful design, PNC could
maintain reliable operation even with CFO values up to 10 ppm, though
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performance degradation became noticeable beyond 5 ppm. The key inno-
vation was a joint CFO estimation and compensation scheme that exploited
the correlation structure of superimposed training sequences.

RF non-linearities posed another practical hurdle. Power amplifier dis-
tortions and I/Q imbalances can destroy the linear superposition property
that PNC relies upon. Practical solutions included digital pre-distortion
techniques and careful operating point selection to maintain linearity while
achieving reasonable power efficiency.

Constellation Design and Mapping Strategies

A critical implementation aspect involves designing constellation mappings
that preserve the network coding structure after superposition. Zhang et
al. [16] tackled this challenge for high-order QAM constellations, developing
systematic mapping rules that ensure unique decodability of the XOR oper-
ation from received superimposed symbols. Their approach introduced the
concept of ”clustering” in the constellation space, where multiple superpo-
sition outcomes mapping to the same network-coded symbol are grouped to
maximize minimum distance.

The constellation design problem becomes more complex with asymmetric
channels. Adaptive mapping strategies that adjust to channel conditions
while maintaining the network coding structure were explored, leading to
significant performance improvements in practical scenarios. These designs
must balance multiple objectives: maintaining sufficient Euclidean distance
between decision regions, ensuring unique decodability of the network-coded
information, and adapting to varying channel conditions.

Channel Coding Integration

Integrating channel coding with PNC presented unique challenges and op-
portunities. Chen et al. [17] pioneered the design of LDPC codes specifically
tailored for PNC systems. Unlike traditional point-to-point codes, PNC-
optimized codes must account for the fact that the relay observes a noisy
superposition rather than individual codewords. Their approach involved
modifying the parity-check matrix structure to align with the XOR map-
ping at the physical layer, achieving near-capacity performance in symmetric
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channels.
Iterative detection and decoding schemes further enhanced performance.

By exchanging soft information between the PNC demapper and channel de-
coder, these systems could approach theoretical limits even with practical,
finite-length codes. The design of efficient message-passing schedules and ap-
proximation techniques for reducing computational complexity became active
research areas.

Multi-Antenna Systems and Beamforming

The extension to multiple-input multiple-output (MIMO) scenarios opened
new dimensions for PNC optimization. Lee and Hong [18] developed joint
precoding and beamforming strategies for multi-antenna relays, showing that
spatial processing could mitigate channel asymmetry effects. Their work
demonstrated that with M antennas at the relay, the system could support
up to M simultaneous two-way exchanges, dramatically increasing network
capacity.

Spatial processing also provided additional degrees of freedom for inter-
ference management. By carefully designing transmit precoders at end nodes
and receive beamformers at the relay, the effective channels could be shaped
to enhance PNC performance while suppressing unwanted interference terms.

OFDM Integration and Frequency-Selective Channels

Modern wireless systems predominantly use OFDM, necessitating PNC adap-
tation to frequency-selective channels. Wu et al. [19] developed subcarrier
pairing and power allocation algorithms that maximize PNC throughput in
OFDM systems. The key insight was that different subcarriers experience
different channel conditions, and intelligent resource allocation could exploit
this diversity.

Liu et al. [20] further advanced this work by introducing adaptive modula-
tion schemes that adjust constellation size and coding rate on a per-subcarrier
basis. Their system demonstrated that with proper adaptation, PNC-OFDM
could maintain high spectral efficiency even in severely frequency-selective
channels with delay spreads exceeding the cyclic prefix length.
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1.3.3 Full-Duplex Integration: Promises and Challenges

The emergence of full-duplex (FD) radio technology offered another dimen-
sion for improving spectral efficiency. By enabling simultaneous transmission
and reception on the same frequency band, FD operation promised to dou-
ble spectral efficiency—a gain that compounds multiplicatively with PNC’s
benefits.

Self-Interference Cancellation Achievements

Breakthrough demonstrations by Choi et al. [21] and Bharadia et al. [22]
achieved over 100 dB of self-interference cancellation through combinations of
antenna isolation, analog cancellation circuits, and digital processing. These
prototypes proved that FD operation was feasible in practice, spurring intense
research activity.

However, Sabharwal et al. [23] provided a comprehensive analysis show-
ing that residual self-interference remains a fundamental limitation. Even
with state-of-the-art cancellation, residual interference power typically ex-
ceeds thermal noise by 20-30 dB, creating an elevated noise floor that impacts
system performance. Everett et al. [24] further characterized the statistical
properties of residual self-interference, showing that it exhibits memory ef-
fects and non-Gaussian characteristics due to nonlinear distortions in the
cancellation process.

FD-PNC Integration Challenges

Despite the individual successes of FD and PNC technologies, their combi-
nation presents unique challenges that have received limited attention. Early
explorations already hinted at FD-PNC’s potential. Rankov and Wittneben
[25] analytically characterized the full-duplex two-way relay channel (TWRC)
and showed that, under ideal self-interference (SI) suppression, the sum-rate
can double relative to half-duplex operation. Building on this theory, Te-
dik et al. [26] implemented a single-antenna FD-PNC prototype with BPSK
signalling and confirmed a two-fold throughput gain, albeit under the as-
sumption of more than 70 dB analog SI cancellation and a narrowband
flat-fading channel. These pioneering studies, however, neither considered
modern OFDM numerology nor addressed the severe BER floors that arise
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when residual SI, multipath fading and linear receivers intersect. Li et al.
[27] provided one of the first theoretical treatments of FD-PNC systems, de-
riving capacity bounds and optimal power control strategies. Their analysis
revealed that the benefits are highly sensitive to the residual self-interference
level: while ideal FD-PNC could theoretically quadruple spectral efficiency
compared to half-duplex systems without network coding, practical gains are
often limited to 2-3× due to self-interference effects.

Wu et al. [28] explored relay selection strategies in FD-PNC networks,
showing that the optimal relay choice differs significantly from half-duplex
scenarios. The presence of self-interference creates complex trade-offs: relays
with better self-interference cancellation capabilities might be preferred even
if they have worse channel conditions to end nodes.

Most concerning are the results from Zhang et al. [29], who demonstrated
severe BER floors when applying conventional linear receivers (zero-forcing
and MMSE) to FD-PNC systems. Their analysis showed that the combina-
tion of residual self-interference, amplified noise from linear processing, and
channel estimation errors creates a performance wall that cannot be overcome
by simply increasing transmit power. These results highlight the inadequacy
of traditional signal processing approaches for FD-PNC systems and motivate
the exploration of more sophisticated, nonlinear detection methods.

1.3.4 Deep Learning Revolution in Wireless Commu-
nications

The application of deep learning (DL) to wireless communications has emerged
as a transformative approach, offering new tools to tackle longstanding chal-
lenges in receiver design.

End-to-End Learning Paradigm

O’Shea and Hoydis [30] introduced the revolutionary concept of treating the
entire communication link as an autoencoder. By jointly optimizing trans-
mitter and receiver neural networks through gradient descent, their approach
could discover novel modulation schemes and detection algorithms tailored
to specific channel conditions. This work challenged the traditional separa-
tion of communication system components and demonstrated that end-to-end
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learning could discover solutions superior to conventional designs in certain
scenarios.

Neural Network Architectures for Detection

The adaptation of successful computer vision architectures to wireless com-
munications yielded impressive results. Ye et al. [31] showed that convo-
lutional neural networks (CNNs) could jointly perform channel estimation
and symbol detection, outperforming traditional MMSE approaches by 3-5
dB in severe multipath channels. The key advantage was the CNN’s ability
to learn and exploit channel correlation patterns that are difficult to model
analytically.

Honkala’s DeepRx framework [32] demonstrated remarkable generaliza-
tion capabilities across different 5G numerologies and channel conditions. By
training on diverse scenarios and employing domain adaptation techniques,
the system could maintain near-optimal performance without explicit knowl-
edge of current channel statistics—a significant advantage in rapidly varying
environments.

Advanced Architectures and Attention Mechanisms

Recent advances have incorporated more sophisticated neural network archi-
tectures. Huang et al. [33] applied transformer-based attention mechanisms
to MIMO detection, showing that attention weights could automatically learn
to focus on relevant spatial streams while suppressing interference. This
approach achieved near-maximum likelihood performance with polynomial
rather than exponential complexity scaling.

Residual networks, explored by Kim et al. [34], addressed the training
difficulties of deep detection networks. By incorporating skip connections and
careful normalization, these architectures could be trained to much greater
depths, enabling more complex function approximation while maintaining
stable gradient flow.

Graph Neural Networks for Large-Scale Systems

The application of graph neural networks (GNNs) to massive MIMO detec-
tion, pioneered by Jeon et al. [35] and extended by Jiang et al. [36], repre-

11



sents a particularly promising direction. By representing the MIMO system
as a graph where nodes correspond to antennas and edges capture channel
correlations, GNNs can efficiently process high-dimensional problems. The
message-passing structure of GNNs naturally aligns with iterative detection
algorithms while offering learnable, adaptive processing.

Limitations and Open Challenges

Despite these advances, applying DL to FD-PNC systems remains largely
unexplored. Existing DL receivers are designed for point-to-point chan-
nels or conventional MIMO systems, not accounting for the unique chal-
lenges of network coding and full-duplex operation. The combination of self-
interference, network coding constraints, and ultra-low latency requirements
presents a complex optimization landscape that standard neural architectures
may struggle to navigate.

1.3.5 Motivation and Research Gap

The comprehensive review of existing literature reveals several critical obser-
vations that motivate this thesis:

First, while PNC has strong theoretical foundations and proven imple-
mentation feasibility, practical deployments still face significant performance
gaps. Real-world impairments—hardware non-idealities, synchronization er-
rors, and channel estimation inaccuracies—degrade performance far below
theoretical predictions. Traditional linear processing methods lack the flexi-
bility to adapt to these complex, often non-linear impairment patterns.

Second, full-duplex technology offers compelling benefits for latency re-
duction and spectral efficiency improvement, yet its integration with PNC
remains poorly understood. The limited existing work reveals fundamental
challenges: residual self-interference creates an elevated noise floor, conven-
tional receivers exhibit error floors, and the joint optimization of FD and
PNC parameters presents a complex, non-convex problem. The few stud-
ies addressing FD-PNC rely on simplistic channel models and conventional
linear receivers that fail to capture real-world complexities.

Third, deep learning has demonstrated remarkable success in wireless
communications, particularly in scenarios with complex interference pat-
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terns and non-linear channel effects. However, these advances have not been
systematically applied to FD-PNC systems. The unique challenges of FD-
PNC—including the need to preserve network coding structure while man-
aging self-interference—require specialized neural architectures and training
strategies that have not been developed.

Fourth, emerging applications in industrial IoT, autonomous vehicles,
and haptic communications demand ultra-low latency and high reliability
(ULLHR) that current FD-PNC solutions cannot provide. Meeting sub-
millisecond latency targets while maintaining packet error rates below 10−5

requires fundamental advances in detection algorithms and system design.
These observations reveal a clear research gap: the need for an interference-

resilient, low-latency, and high-reliability detection framework that intel-
ligently integrates AI capabilities into FD-PNC systems. This thesis ad-
dresses this gap by developing novel neural network architectures specifically
designed for FD-PNC, incorporating domain knowledge through physics-
informed learning, and demonstrating practical feasibility through compre-
hensive simulations and prototype implementations. By bridging the divide
between FD-PNC’s theoretical promise and practical limitations through
principled application of deep learning, this work aims to enable next-generation
ULLHR wireless services.

1.4 Research Objectives
Building upon the identified research gaps, this thesis pursues three tightly
coupled objectives that progressively advance from theoretical framework
development through AI-enhanced detection to system-level integration:

1. Design and validate a 5G-compatible FD-PNC framework: De-
velop a comprehensive full-duplex physical-layer network coding archi-
tecture seamlessly integrated with 5G New Radio (NR) specifications,
including OFDM numerologies, frame structures, and reference signal
patterns. Establish theoretical performance bounds considering practi-
cal constraints such as residual self-interference, channel estimation er-
rors, and hardware impairments, validated through extensive link-level
simulations. Key performance indicators focus on system throughput
improvements compared to half-duplex baselines, latency reduction,
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and complexity-performance trade-offs under varying channel condi-
tions. The emphasis on throughput and latency aligns directly with
URLLC requirements by enabling reliable communication with ultra-
low latency and high throughput.

2. Develop an AI-based receiver architecture for joint interfer-
ence and channel learning: Design a novel neural network-based re-
ceiver that jointly addresses the compound challenges posed by residual
self-interference, superimposed PNC signals, and time-varying wireless
channels. The receiver will leverage deep learning’s non-linear approx-
imation capabilities combined with domain-specific, physics-informed
architectural enhancements. Detection accuracy must meet future 6G
and URLLC standards, achieving stringent BER/FER performance cri-
teria. Robustness to distribution shifts under realistic operating con-
ditions will be assessed.

3. System integration and comprehensive performance charac-
terization: Integrate the AI-enhanced receiver into the FD-PNC pro-
cessing chain, addressing practical implementation challenges such as
pilot pattern adaptation, soft-output generation for channel decoders,
and latency budget allocation. Evaluate the comprehensive perfor-
mance of the combined REST-UNet CPNC system, particularly ana-
lyzing BER performance across varying indoor scenarios and signal-to-
noise ratios (SNR). Ensure compliance with URLLC standards, thor-
oughly investigating the system’s resilience to residual self-interference
and verifying critical system parameters through detailed performance
analyses.

1.5 Research Approach
The research follows a systematic progression that mirrors the hierarchical
nature of the objectives, ensuring each phase builds upon validated founda-
tions from the previous stage.

Phase 1: FD-PNC Framework Development and Characteriza-
tion
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We begin by establishing a rigorous mathematical framework for 5G-
compatible FD-PNC systems. This framework encompasses a unified baseband-
to-RF signal model that captures the complete signal flow: simultaneous
transmission and reception at the FD relay, residual self-interference after
cascaded analog and digital cancellation stages, superimposed signals from
multiple users exploiting the PNC principle, and realistic channel effects in-
cluding frequency-selective fading and Doppler spread. Critical hardware
impairments—I/Q imbalance, power amplifier non-linearity, and ADC quan-
tization noise—are incorporated to ensure practical relevance.

These theoretical results guide the development of a high-fidelity link-level
simulator implemented in MATLAB/Python, featuring modular architecture
for component-wise analysis and bit-accurate signal processing chains. Base-
line receivers (zero-forcing, linear MMSE, and sphere-decoding-based near-
ML detection) are implemented and benchmarked across diverse scenarios,
revealing fundamental performance limitations and establishing the perfor-
mance gap that motivates AI-based solutions.

Phase 2: AI Receiver Design and Training
The core innovation lies in reformulating the FD-PNC detection problem

as a learnable mapping from received signal observations to transmitted in-
formation symbols. This abstraction bypasses traditional signal processing
blocks, enabling the neural network to discover optimal detection strategies
unconstrained by conventional assumptions. The AI receiver architecture
specifically addresses how to effectively utilize attention mechanisms to learn
channel impairments and variations in real-time signal conditions. Multi-
head attention modules are incorporated to dynamically focus on relevant
temporal and spectral components of the received signals, enhancing the
network’s ability to capture frequency-selective fading and Doppler effects.

The training dataset is generated using the validated simulator from
Phase 1, ensuring the neural network learns from realistic and diverse signal
conditions. Scenarios include various modulation schemes, diverse mobility
conditions (0-500 km/h), and distinct propagation environments (urban, sub-
urban, and rural). The training process emphasizes generalization to diverse
channel impairments without explicitly modeling self-interference or employ-
ing curriculum learning strategies. The performance is optimized based solely
on the accuracy of symbol detection, enabling focused training that enhances
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the AI model’s robustness and adaptability to complex channel dynamics.
Phase 3: Integration and System-Level Validation
The trained AI receiver is integrated into the FD-PNC processing chain

via interfaces designed to maintain 5G compatibility, emphasizing synchro-
nization with existing pilot structures and compatibility with turbo/LDPC
decoding schemes through soft-output generation. The integrated system
undergoes rigorous end-to-end BER performance evaluations, comparing the
AI receiver against conventional baseline approaches across various scenarios.

Robustness to environmental variations, including fluctuations in channel
characteristics, mobility-induced Doppler shifts, and hardware impairments
such as synchronization offsets and ADC quantization noise, is thoroughly
investigated. Extensive sensitivity analyses reveal performance resilience un-
der realistic deployment conditions, highlighting the practical advantages and
reliability of the proposed AI-based approach.

These comprehensive evaluations culminate in practical design guide-
lines that map application-specific requirements—particularly ultra-low la-
tency—onto recommended configurations. This guidance supports informed
deployment decisions for ultra-low latency and high-reliability (ULLHR) ser-
vices, demonstrating the AI receiver’s viability as a pivotal component in
next-generation wireless communication systems.

1.6 Research Methodology
This study adopts a five-phase workflow that couples rigorous theory with
data-driven development (Figure 1.2). Each phase is summarised below in
narrative form to avoid excessive subdivision.

Phase 1 — Literature Review & Theoretical Framing. A critical
survey of physical-layer network coding, full-duplex radio, and deep learn-
ing in wireless systems establishes current knowledge, uncovers gaps, and
sets quantitative performance targets. Parallel mathematical analysis de-
rives baseline limits and clarifies where analytical methods must yield to
simulation or learning.

Phase 2 — System Modelling & Data Generation. Guided by
Phase 1, we construct a multi-layer model that blends realistic radio-frequency
propagation, measured hardware impairments, and representative traffic pat-
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Figure 1.2: Overview of the research methodology

terns. The simulator then produces statistically rich datasets that span the
operational envelope; limited real measurements are injected to reduce the
simulation-to-reality gap.

Phase 3 — Model Development & Training. Custom neural ar-
chitectures are designed with domain knowledge in mind, implemented in
PyTorch, and trained using staged curricula that gradually raise task dif-
ficulty. Hyper-parameters are tuned automatically, while transfer learning
seeds training when suitable pre-trained weights exist.

Phase 4 — Optimisation & Refinement. Iterative experiments re-
fine both network structure and training protocol. Techniques such as prun-
ing, quantisation, and knowledge distillation trim latency and power without
sacrificing accuracy, whereas adversarial and domain-adaptation strategies
harden robustness.

Phase 5 — Comprehensive Testing & Analysis. The final mod-
els undergo exhaustive evaluation over standard benchmarks, stress tests,
and resource-profiling scenarios. Results are benchmarked against classical
receivers and theoretical bounds, with interpretability tools revealing the
learned signal features. Insights gained here loop back to earlier phases
whenever discrepancies surface.

Iterative Feedback & Knowledge Transfer. Because later findings
frequently motivate earlier revisions, feedback loops connect all phases. The
project concludes by releasing code, data, and guidelines under open licences
and by publishing the main results in peer-reviewed venues, ensuring repro-
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ducibility and community impact.

1.7 Thesis Organization
This dissertation is composed of five chapters. Each chapter is crafted to
move the reader from macro-level motivation to concrete system design,
and finally to empirical evidence and forward-looking insights. A detailed
overview follows.

• Chapter 1 — Introduction. Sets the stage by positioning future
wireless services (XR/VR, massive IoT, autonomous mobility, smart
factories) and distilling their stringent KPIs (Tbps-level throughput,
sub-ms latency, ultra-high reliability). It formulates the core research
problem as three coupled challenges (throughput, latency, interfer-
ence), articulates why combining network coding and simultaneous
transmit–receive operation is compelling yet difficult, and discusses the
promise and caveats of AI. The chapter then states the research gap,
refines the problem statement, and presents the thesis objectives, ap-
proach, and main contributions. A roadmap of the remaining chapters
is provided to orient the reader.

• Chapter 2 — Background and Related Work. Provides the con-
ceptual and historical background required to understand the proposed
solution. It first reviews the theoretical underpinnings of physical-
layer network coding (capacity regions, compute-and-forward, struc-
tured codes), then surveys implementation-oriented advances (coding/de-
coding strategies, beamforming/precoding, high-order modulations, pro-
totype systems). Next, it examines full-duplex operation: cancella-
tion techniques, residual limits, and the sparse literature combining
FD with PNC. Finally, it discusses AI-driven PHY receivers (autoen-
coders, CNN/GNN-based detectors, attention and residual designs),
highlighting strengths and existing shortcomings in meeting ultra-low
latency/high reliability (ULLHR) targets. The chapter concludes with
a synthesized gap analysis that directly motivates the framework pro-
posed in Chapter 3.

18



• Chapter 3 — Proposed Framework and Methodology. Intro-
duces the complete 5G/NR-compatible FD–PNC framework and the
overarching research methodology. It formalizes the system model
(baseband-to-RF), including residual self-interference, multi-hop chan-
nel effects, fading/noise, and hardware impairments, and explains how
these are abstracted for AI learning as a standalone SISO mapping. The
chapter then details the methodological pipeline: (i) conceptual mod-
elling and theoretical bound derivation; (ii) impairment-aware simula-
tion design and dataset generation; (iii) AI receiver architecture design
principles (feature extraction, attention/residual use, loss formulation);
(iv) integration strategy back into the FD–PNC chain; and (v) evalua-
tion logic (metrics, baselines, robustness/ablation plans). This chapter
serves as the blueprint for the experiments that follow.

• Chapter 4 — Experiments and Evaluation. Presents the em-
pirical core of the thesis. It first describes the simulation platform,
parameter space (SNR, Doppler, cancellation depth, modulation or-
ders), and dataset construction (synthetic plus optional over-the-air
captures). It then reports extensive quantitative results: uncoded BER
and LDPC-coded BLER, achievable throughput (bps/Hz), end-to-end
latency, computational complexity, and energy estimates. Compar-
isons are drawn against conventional detectors (ZF, LMMSE) and near-
optimal benchmarks to expose BER floors and latency trade-offs. Ab-
lation studies isolate contributions of individual AI components (e.g.,
attention blocks, auxiliary channel estimation loss), while sensitivity
analyses explore robustness to CSI mismatch, hardware nonidealities,
bursty interference, and mobility. The chapter also discusses implemen-
tation feasibility, including quantization effects and inference latency
on representative hardware.

• Chapter 5 — Conclusions and Future Work. Summarizes the
principal findings, emphasizing how the three objectives were met: (i)
a deployable FD–PNC framework for current 5G systems, (ii) an AI
receiver that learns interference/channel behavior outside the legacy
pipeline, and (iii) successful reintegration with demonstrated gains
and robustness. It reflects on practical deployment lessons (complex-
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ity–performance trade-offs, dataset considerations, interpretability), and
outlines promising future directions such as multi-relay/multi-hop ex-
tensions, joint source–channel or cross-layer learning, domain adapta-
tion for non-stationary channels, and hardware co-design for on-device
AI inference. The chapter closes with a discussion of how these ad-
vances can inform the path toward 6G ULLHR communication sys-
tems.
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Chapter 2

Background

Modern wireless communication systems face unprecedented challenges in
meeting the exponential growth in data traffic and the stringent requirements
of emerging applications. The demand for higher spectral efficiency, lower
latency, and increased network capacity has driven researchers to explore rev-
olutionary approaches that challenge traditional communication paradigms.
This chapter establishes the theoretical foundations for AI-enhanced full-
duplex Physical-Layer Network Coding (PNC) systems by systematically
presenting the key technological components and their interconnections. We
begin with the architectural framework of Two-Way Relay Channels, progress
through the principles of Physical-Layer Network Coding and full-duplex
communication, examine signal detection challenges in interference-limited
environments, contextualize our approach within the 5G New Radio stan-
dard, and conclude with deep learning architectures that enable intelligent
physical-layer processing.

2.1 Two-Way Relay Channel
The two-way relay channel (TWRC), as illustrated in Fig. 2.1(a), is a canoni-
cal three-node model for bidirectional data exchange in which two end nodes,
A and B, communicate exclusively through a half-duplex relay R. In the con-
ventional store-and-forward protocol the exchange is completed in four
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orthogonal time-slots (TS) to avoid mutual interference at R [37, 25]:1

(1) TS1: A→R — node A sends xA; R receives y
(1)
R = hARxA + z

(1)
R ;

(2) TS2: R → B — relay forwards a processed version x
(2)
R ; B receives

yB = hRBx
(2)
R + zB;

(3) TS3: B→R — node B sends xB; R receives y
(3)
R = hBRxB + z

(3)
R ;

(4) TS4: R→A — relay forwards x
(4)
R ; A receives yA = hRAx

(4)
R + zA.

Here hij denotes the complex channel coefficient from node i to node j and
z• is additive white Gaussian noise (AWGN).

Only one fourth of the total transmission time is effectively used for each
direction, capping the spectral efficiency at 25%. This inherent inefficiency
motivates more advanced relay strategies—most notably physical-layer net-
work coding (PNC) and its variants—which can halve the number of required
slots and thereby double throughput. These strategies, however, demand
tighter synchronisation and more sophisticated signal processing, topics that
are addressed in the following sections.

2.2 Physical-Layer Network Coding
Physical-Layer Network Coding (PNC), depicted in Fig. 2.1(b), represents a
paradigm shift in how we view and handle interference in wireless networks.
Rather than treating the simultaneous transmissions in TWRC as mutual in-
terference to be mitigated or separated, PNC embraces the superposition and
directly decodes a function of the transmitted messages. This approach trans-
forms interference from a fundamental limitation into a capacity-enhancing
feature.

The core principle of PNC lies in exploiting the natural computation
that occurs when electromagnetic waves superimpose in the wireless chan-
nel. Consider the TWRC scenario where nodes A and B transmit binary
messages wA and wB simultaneously. In traditional approaches, the relay

1The four-slot baseline is widely referenced; see, e.g., [37] Eq. (1) and the discussion
preceding Fig. 1, where the authors remark that “in total four time-slots are usually
required to accomplish one round of information exchange.”
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Figure 2.1: Conventional vs. PNC Protocol for Two-Way Communication

would attempt to decode both messages separately. PNC, however, recog-
nizes that for the end nodes to recover their desired messages, the relay only
needs to decode and forward the XOR of the two messages:

u = wA ⊕wB (2.1)

This network-coded message is sufficient because each end node, knowing
its own transmitted message, can recover the other node’s message through a
simple XOR operation with the received network-coded packet. The elegance
of this approach lies in its alignment with the physical-layer signal combining,
effectively performing computation over the air.

The implementation of PNC requires careful consideration of the mod-
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ulation and channel coding schemes. For example, with BPSK modula-
tion and assuming perfect channel knowledge and power control such that
hAR = hBR = 1, the received signal at the relay becomes yR = xA + xB + zR.
When both nodes transmit the same bit, the signals add constructively, while
opposite bits result in cancellation. This natural mapping can be exploited
to directly infer the XOR operation at the signal level.

However, practical implementation faces several challenges. Synchroniza-
tion emerges as a critical requirement, with timing offsets between the two
transmitters needing to be controlled to less than 10% of the symbol duration,
as shown in Table 2.1. Carrier frequency offset (CFO) must be maintained
below 0.01% to prevent constellation rotation that would destroy the PNC
mapping. Phase noise tolerance is similarly stringent, requiring less than 2°
RMS to maintain proper I/Q balance for reliable XOR decoding.

Table 2.1: PNC synchronization tolerances and their impact on system per-
formance

Parameter Tolerance Impact if exceeded
Timing offset < 0.1Tsym [38] BER degradation > 3 dB
Carrier-frequency offset < 0.01% [38] mapping failure
Phase noise (RMS) < 2◦ [39] I/Q imbalance

The theoretical performance of PNC in TWRC approaches the information-
theoretic capacity. Under ideal conditions, PNC achieves a sum rate of:

RP NC = 1
2 log2

(
1 + P |hAR|2 + P |hBR|2

σ2

)
(2.2)

where P is the transmit power of each node and σ2 is the noise variance.
This expression reveals that PNC effectively combines the received powers
from both transmitters, achieving a power gain similar to receive diversity.

The extension of PNC to higher-order modulations and multiple relay
scenarios introduces additional complexity but also opportunities for further
performance gains. Constellation design becomes crucial, as not all modu-
lation schemes naturally support unambiguous PNC mappings. Researchers
have developed specialized constellation designs that maintain the desirable
one-to-one mapping between superimposed constellation points and XOR
values.
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While PNC offers compelling theoretical advantages, its practical imple-
mentation in modern communication systems requires addressing fundamen-
tal hardware limitations. The assumption of half-duplex operation at the
relay, where transmission and reception occur in separate time slots, limits
the potential gains. This observation motivates the exploration of full-duplex
operation, which promises to further enhance spectral efficiency by enabling
simultaneous transmission and reception.

2.3 Full-Duplex Communication
The evolution toward full-duplex communication represents one of the most
significant paradigm shifts in wireless system design. Traditional wireless sys-
tems operate in half-duplex mode, alternating between transmission and re-
ception to avoid the overwhelming self-interference that occurs when a node’s
own transmitted signal couples into its receive chain. This self-interference
can be 90-110 dB stronger than the desired received signal [23], effectively
drowning out any useful communication. However, recent advances in inter-
ference cancellation techniques have made full-duplex operation increasingly
feasible, promising to double spectral efficiency by enabling simultaneous
transmission and reception in the same frequency band.

The challenge of full-duplex communication lies in managing the various
components of self-interference, illustrated in Figure 2.2. The dominant com-
ponent is direct coupling between the transmit and receive antennas, where
electromagnetic waves travel directly from the transmitting antenna to the
receiving antenna through the air or circuit board. This direct path typically
results in 0.1-1% of the transmitted power leaking into the receive chainn [21],
corresponding to only 20-40 dB of isolation. Given that transmitted signals
can be 100 dB or more stronger than received signals in typical scenarios,
this isolation is wholly insufficient.

Beyond direct coupling, multipath reflections create additional self-interference
components. These reflections arrive with various delays—typically from tens
of nanoseconds in small rooms to a few hundred nanoseconds in larger in-
door spaces—creating a frequency-selective self-interference channel [40, 41].
The time-varying nature of these reflections, caused by movement in the en-
vironment, adds further complexity to the cancellation problem. Addition-
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Figure 2.2: Antenna Coupling and Multipath Interference Paths

ally, nonlinear distortions introduced by the power amplifier create harmonic
components that cannot be cancelled through linear processing alone. These
nonlinear components can be modeled as:

yNL =
K∑

k=1
αkxk(t) ∗ h(t) (2.3)

where αk represents the k-th order nonlinearity coefficient and h(t) is the
self-interference channel impulse response.

Achieving full-duplex operation requires a multi-stage approach to self-
interference cancellation. The first stage employs passive suppression tech-
niques in the antenna domain, including physical separation between trans-
mit and receive antennas, electromagnetic shielding, and the use of direc-
tional antennas or circulators. These passive techniques can achieve 30–50 dB
of suppression but are fundamentally limited by size constraints and the
physics of electromagnetic propagation [24].

The second stage involves active analog cancellation in the RF domain,
implemented before the analog-to-digital converter to prevent saturation.
This stage typically employs a reference signal tapped from the transmit
chain, which is processed through analog components including attenuators,
phase shifters, and delay lines to create an estimate of the self-interference.
When properly tuned, analog cancellation can provide a further 25–40 dB of
suppression [22]. However, the limited degrees of freedom in analog process-
ing restrict its ability to handle frequency-selective and time-varying inter-
ference.

26



The final stage of cancellation occurs in the digital domain after analog-
to-digital conversion. Digital cancellation leverages sophisticated signal pro-
cessing algorithms to estimate and subtract residual self-interference. The
flexibility of digital processing allows for handling of nonlinear components
and fine-grained frequency-selective cancellation. Digital techniques typically
achieve 25-30 dB of additional suppression [42], limited primarily by quanti-
zation noise, channel estimation errors, and computational complexity.

Despite the layered suppression pipeline, residual self-interference (RSI) is
still the dominant bottleneck in practical full-duplex links. A representative
budget today is

RSI = SItotal − ŜIcanc ≈ βPTX, (2.4)

where

• β ≈ 10−2–10−3 for testbeds that rely mainly on passive isolation
(directional separation, absorbers, cross-polarised antennas) such as
the work by Everett and Sabharwal [24];

• β≈3×10−3 for field platforms that add frequency-domain RF taps
plus real-time digital SIC, e.g. the COSMOS full-duplex trial bed
[43];

• β ≈ 10−4 once an advanced adaptive digital canceller such as the
Adaptive Orthonormal-Polynomial LMS (AOP-LMS) algorithm is de-
ployed on top of passive + RF stages, pushing digital cancellation to
35–42 dB [44].

Even at the lower end of this range, the residual term lifts the effec-
tive noise floor by several decibels, shrinking the post-cancellation SNR and
restricting coverage.

Integrating full-duplex radios with physical-layer network coding (PNC)
compounds the challenge: the relay must simultaneously suppress its own
RSI while decoding the superposed signals from the two end nodes and trans-
mitting the network-coded reply. This highly entangled signal environment
demands joint RSI suppression–multi-user detection algorithms that are ro-
bust to nonlinear hardware effects and residual carrier offsets.
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2.4 Signal Detection in Interference-Limited
Environments

The confluence of Physical-Layer Network Coding and full-duplex opera-
tion creates an extraordinarily challenging signal detection problem. The re-
ceived signal at a full-duplex PNC relay contains multiple overlapping com-
ponents: the desired superimposed signals from both end nodes, residual
self-interference from the relay’s own transmission, thermal noise, and po-
tentially other environmental interference. This complex signal environment
can be mathematically expressed as:

y = Hx + hSIxSI + n (2.5)

where H represents the channel matrix for the desired signals, hSI is the
residual self-interference channel after cancellation, xSI is the self-interference
signal, and n encompasses thermal noise and other impairments.

Traditional signal detection algorithms, designed for single-user systems
or simple interference scenarios, struggle with this multi-dimensional detec-
tion problem. The optimal maximum likelihood detector, which would jointly
search over all possible combinations of transmitted symbols, faces compu-
tational complexity that grows exponentially with the number of users and
modulation order. For a system with N users employing M -ary modula-
tion, the complexity scales as O(MN), rendering it impractical for real-time
implementation even with modest system parameters.

This computational challenge has motivated the development of subop-
timal but practical detection algorithms. The Zero-Forcing (ZF) detector
attempts to eliminate interference by applying the pseudo-inverse of the
channel matrix. While computationally efficient with complexity O(N3),
ZF suffers from noise enhancement, particularly in ill-conditioned channels
or low signal-to-noise ratio scenarios. The Linear Minimum Mean Square
Error (LMMSE) detector addresses this limitation by incorporating noise
statistics into the detection process:

x̂LMMSE = (HHH + σ2I)−1HHy (2.6)

The linear minimum-mean-square-error (LMMSE) detector achieves near-optimal
performance across a wide SNR range by jointly suppressing multi-user/ISI
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interference and controlling noise enhancement; the diagonal loading term
σ2I in (HHH + σ2I)−1 prevents inverting ill-conditioned Gram matrices and
thus caps noise amplification [45]. Nevertheless, mainstream LMMSE re-
ceivers still model residual self-interference (RSI) as additive Gaussian noise
[46], an assumption that overlooks the colored and partially deterministic
structure of RSI in full-duplex systems.

Table 2.2: Comparison of detection algorithms for full-duplex PNC systems

Algorithm Complexity Practical Limitations
Zero-Forcing (ZF)[45] O(N3) Noise enhancement
LMMSE[45] O(N3) channel-estimation error
Maximum Likelihood (ML)[47] O(MN) Computationally infeasible
Sphere Decoding (SD)[47] O(N3) (avg.) Complexity varies

Addressing residual self-interference requires adaptive filtering techniques
that can track the time-varying nature of the interference channel. Recur-
sive Least Squares (RLS) filtering offers fast convergence, typically achieving
steady-state performance within 10-20 symbols, but at the cost of O(N2)
complexity per symbol. The update equation for RLS is given by:

wn = wn−1 + kne∗
n (2.7)

where kn is the Kalman gain vector and en is the prediction error. In contrast,
the Least Mean Squares (LMS) algorithm offers lower complexity at O(N)
per symbol but requires 100-200 symbols for convergence:

wn = wn−1 + µe∗
nxn (2.8)

where µ is the step size parameter that controls the trade-off between con-
vergence speed and steady-state error.

The non-Gaussian nature of interference in full-duplex PNC systems has
motivated exploration of advanced statistical signal processing techniques.
Kalman filtering provides optimal tracking for time-varying channels when
accurate statistical models are available. For scenarios with impulsive noise
or non-linear interference, particle filtering and robust statistics offer im-
proved performance at the cost of increased computational complexity.
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The limitations of model-based approaches in capturing the full complex-
ity of real-world interference patterns have sparked interest in data-driven
methods. Deep learning techniques, which can learn complex nonlinear map-
pings from training data, show promise for handling the intricate interference
patterns in full-duplex PNC systems. However, their integration must con-
sider the constraints of practical communication systems, including real-time
processing requirements and the need for reliable performance across varying
channel conditions.

2.5 3GPP 5G New Radio
The practical implementation of full-duplex Physical-Layer Network Coding
must align with established communication standards to ensure compatibility
and facilitate deployment. The 3GPP 5G New Radio (NR) specification
provides a flexible and robust framework that [48, 49, 50]. can accommodate
advanced transmission techniques while maintaining backward compatibility
and supporting diverse use cases.Figure 2.3 highlights the downlink fixed
reference channel (DL-FRC) inside the NR physical-layer “toolbox.”

At the heart of 5G NR physical layer lies Orthogonal Frequency Division
Multiplexing (OFDM), chosen for its robustness against multipath fading
and its flexibility in resource allocation. The OFDM signal can be expressed
as:

s(t) =
N−1∑
k=0

Xkej2πfkt, fk = k

Tsym
(2.9)

where Xk represents the complex symbol on the k-th subcarrier and Tsym is
the OFDM symbol duration. The orthogonality between subcarriers trans-
forms the frequency-selective fading channel into multiple parallel flat-fading
subchannels, significantly simplifying equalization.

The inclusion of a cyclic prefix (CP) is crucial for maintaining orthogo-
nality in multipath environments. By prepending a copy of the last portion
of each OFDM symbol, the CP absorbs inter-symbol interference when its
duration exceeds the maximum channel delay spread. 5G NR defines two
CP options: normal CP of 4.7 microseconds for typical scenarios and ex-
tended CP of 16.7 microseconds for environments with severe delay spread.
This guard interval transforms the linear convolution with the channel into
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Figure 2.3: 5G NR Physical Layer Specification Structure [2]

circular convolution, enabling simple frequency-domain equalization.
5G NR introduces a scalable numerology framework to support diverse

deployment scenarios and use cases. The subcarrier spacing can be con-
figured as ∆f = 2µ × 15 kHz, where µ ∈ {0, 1, 2, 3, 4}. Lower subcarrier
spacings (15 kHz, 30 kHz) suit sub-6 GHz deployments with larger cell sizes,
while higher spacings (60 kHz, 120 kHz) address millimeter-wave scenarios
with reduced delay spread but increased Doppler spread. This flexibility
allows optimization of the physical layer parameters based on the specific
propagation environment and service requirements.

Channel coding in 5G NR employs Low-Density Parity-Check (LDPC)
codes for data channels, chosen for their near-capacity performance and
amenability to parallel decoding architectures. The LDPC codes use a quasi-
cyclic structure that enables efficient hardware implementation while sup-
porting a wide range of code rates and block sizes. For small block sizes, 5G
NR employs polar codes, which achieve capacity for binary-input discrete
memoryless channels. Error detection relies on Cyclic Redundancy Check
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(CRC) codes, with the CRC-24 polynomial:

G(x) = x24+x23+x18+x17+x14+x11+x10+x7+x6+x5+x4+x3+x+1 (2.10)

The modulation schemes in 5G NR range from QPSK for robust com-
munication in poor channel conditions to 256-QAM for maximum spectral
efficiency in high SNR scenarios. The Modulation and Coding Scheme (MCS)
[51] index jointly specifies the modulation order and code rate, enabling fine-
grained link adaptation. This adaptive modulation and coding framework is
particularly relevant for PNC systems, where the effective SNR depends on
the combined power from multiple transmitters and the residual interference
level.

The frame structure of 5G NR provides the temporal organization for
transmission. Each radio frame spans 10 milliseconds and contains 10 sub-
frames of 1 millisecond each. Depending on the numerology, each subframe
contains 2µ slots, with each slot typically containing 14 OFDM symbols. This
hierarchical structure supports flexible scheduling while maintaining timing
relationships necessary for feedback and hybrid automatic repeat request
(HARQ) operations.

The integration of full-duplex PNC within the 5G NR framework requires
careful consideration of several factors. The reference signal structure must
be extended to support channel estimation for superimposed signals while ac-
counting for self-interference. The scheduling algorithms need modification
to coordinate simultaneous transmissions from multiple nodes while manag-
ing interference levels. Additionally, the HARQ mechanisms must be adapted
to handle network-coded packets where traditional acknowledgment schemes
may not directly apply.

While 5G NR provides a robust foundation for advanced physical layer
techniques, the complexity of full-duplex PNC systems often exceeds what
traditional signal processing algorithms can efficiently handle. The non-linear
nature of residual self-interference, the time-varying channel conditions, and
the need for joint processing of multiple signal components create an ideal
application scenario for artificial intelligence techniques.
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2.6 Deep Learning Architectures for Physical
Layer Processing

The integration of deep learning into physical layer processing represents
a paradigm shift from model-based to data-driven approaches. Traditional
communication systems rely on mathematical models that capture idealized
channel behaviors and interference patterns. However, real-world wireless
environments exhibit complexities that often defy accurate analytical mod-
elling, including non-linear hardware impairments, non-stationary interfer-
ence, and intricate propagation phenomena. Deep learning offers the po-
tential to learn these complex relationships directly from data, providing
adaptive solutions that can outperform traditional algorithms in challenging
scenarios.

The application of neural networks to physical layer problems requires
careful consideration of the unique constraints and requirements of commu-
nication systems. Unlike many machine learning applications where occa-
sional errors may be tolerable, communication systems demand consistent
reliability and predictable performance. Real-time processing requirements
impose strict latency constraints, while the need for generalization across
diverse channel conditions challenges the typical assumptions of stationary
data distributions.

The U-Net architecture [3] (see Figure 2.4) has emerged as particularly
well-suited for signal-processing tasks in communication systems. Origi-
nally developed for biomedical image segmentation, U-Net’s encoder-decoder
structure with skip connections naturally aligns with the signal separation
and reconstruction problems encountered in full-duplex PNC. The encoder
path progressively extracts features at multiple scales, while the decoder path
reconstructs the desired signals. The skip connections preserve fine-grained
information that might otherwise be lost in the encoding process:

F(x) = D(E(x)) + S(x) (2.11)

where E represents the encoder, D the decoder, and S the skip connections.
For PNC applications, U-Net can be adapted to separate superimposed

signals while suppressing self-interference. The network learns to exploit
subtle differences in the statistical properties of desired signals versus inter-
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Figure 2.4: U-Net Architecture for Encoder-Decoder Networks [3]

ference, potentially capturing relationships that are difficult to model ana-
lytically. The multi-scale processing inherent in U-Net’s architecture allows
it to handle both narrowband and wideband interference components simul-
taneously.

Attention mechanisms [52] provide another powerful tool for physical
layer processing. By learning to focus on relevant portions of the input
signal while suppressing interference-dominated regions, attention modules
can significantly improve detection performance. The attention mechanism
can be formulated as:

y = σ(f(x))⊗ x (2.12)

where σ is the sigmoid activation function, f represents a learned trans-
formation, and ⊗ denotes element-wise multiplication. Channel attention
learns the importance of different frequency components, naturally adapting
to frequency-selective fading and interference. Spatial attention, applied in
the time domain, can identify and emphasize clean signal segments while
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Figure 2.5: Multi-Head Self-Attention Mechanism

de-emphasizing corrupted portions.
Residual learning, popularized by ResNet [53] architectures, addresses the

challenge of training deep networks for physical layer applications. By learn-
ing residual mappings rather than direct transformations, these networks can
more easily capture the subtle modifications needed for tasks like interference
cancellation:

y = F(x, W) + x (2.13)

The residual connection (see Figure 2.6) ensures that the network can pre-
serve the original signal structure while learning to remove interference com-
ponents. This approach is particularly valuable in communication systems
where the desired signal often constitutes the dominant component, and the
network primarily needs to learn corrections.

Training deep learning models for physical layer applications presents
unique challenges. The generation of representative training data requires
careful consideration of channel models, interference patterns, and hardware
impairments. Synthetic data generation using statistical channel models pro-
vides controlled conditions for initial training, but may not capture all real-
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Figure 2.6: Residual Block in a ResNet Architecture

world complexities. Hardware-in-the-loop training, where actual RF signals
are captured and processed, offers greater realism but at significantly higher
cost and complexity.

The choice of loss function critically impacts the learned behavior. While
mean squared error provides a natural choice for signal reconstruction tasks,
it may not directly optimize communication performance metrics like bit
error rate. Custom loss functions that incorporate domain knowledge, such
as constellation constraints or error vector magnitude, can guide the network
toward solutions that maintain compatibility with existing systems while
improving performance.
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2.7 Summary
This chapter has established a comprehensive theoretical foundation for AI-
enhanced full-duplex Physical-Layer Network Coding systems through the
systematic presentation of six interconnected components. The progression
from architectural concepts to implementation details reflects both the his-
torical evolution of these technologies and the logical dependencies between
system components.

The Two-Way Relay Channel provides the fundamental architectural frame-
work, demonstrating how bidirectional communication efficiency can be dou-
bled through coordinated transmission scheduling. Physical-Layer Network
Coding builds upon this foundation by transforming the challenge of simul-
taneous transmissions from a source of interference into an opportunity for
computation over the air. The theoretical elegance of these concepts, how-
ever, confronts practical limitations in real-world implementations.

Full-duplex communication emerges as a critical enabling technology,
promising to further double spectral efficiency by eliminating the half-duplex
constraint. Yet this advancement comes at the cost of severe self-interference
that must be mitigated through sophisticated multi-stage cancellation tech-
niques. The residual self-interference that persists after cancellation funda-
mentally alters the signal detection problem, requiring advanced algorithms
capable of jointly processing desired signals while suppressing structured in-
terference.

The 3GPP 5G New Radio standard provides the practical framework
within which these advanced techniques must operate. Its flexible numerol-
ogy, robust channel coding, and adaptive modulation schemes offer the foun-
dation needed for reliable PNC operation. However, the complexity of opti-
mizing these systems under the challenging conditions of full-duplex opera-
tion with residual interference exceeds the capabilities of traditional model-
based approaches.

Deep learning architectures offer a promising path forward, providing
data-driven solutions that can adapt to the complex, non-linear, and time-
varying nature of real-world wireless channels. The surveyed architectures—U-
Net for signal separation, attention mechanisms for selective processing,
residual learning for deep networks, and CNNs for time-frequency process-
ing—each address specific aspects of the physical layer processing challenge.
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The synthesis of these components creates a system where each element
addresses specific technical challenges while contributing to overall perfor-
mance. The architectural innovations of TWRC and PNC establish the the-
oretical performance bounds. Full-duplex operation and advanced signal
detection push toward these bounds while confronting practical constraints.
The 5G NR framework ensures compatibility with existing infrastructure and
devices. Finally, deep learning provides the adaptive intelligence needed to
handle real-world complexities that defy analytical modeling.

This foundation sets the stage for the development of an AI-enhanced re-
ceiver architecture specifically designed for full-duplex PNC systems, which
we present in Chapter 3. The challenges identified—from residual self-interference
suppression to joint signal detection in superimposed transmissions—directly
inform the design choices and optimization strategies for our proposed sys-
tem.
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Chapter 3

Proposed REST-UNet
Framework for CPNC in
Full-Duplex Systems

This chapter presents our unified framework that addresses both challenges
through the synergistic integration of Concurrent Physical-Layer Network
Coding (CPNC) and the Residual-and-Attention U-Net (REST-UNet). The
CPNC protocol extends PNC to support arbitrary bijective Modulation con-
stellations while leveraging full-duplex operation with carefully designed pro-
cessing delays. REST-UNet provides learning-based interference suppression
that captures the complex, time-varying nature of residual self-interference.
Together, these innovations enable practical deployment of full-duplex PNC
in 5G New Radio systems while maintaining compatibility with existing stan-
dards.

3.1 System Model

3.1.1 Network Model and Protocol Design

Network Model — Fig. 3.1. We abstract the system as a full-duplex
two-way relay channel (FD-TWRC) with two user nodes A, B and a
relay R. All radios share one carrier and transmit every OFDM symbol, so
there are no idle slots or extra bands. The model follows three minimalist
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Figure 3.1: Full-duplex TWRC topology

rules that expose the essential challenges while avoiding implementation-specific
details:

R1. Single hop, symmetric exchange — users communicate exclusively
through the relay, forcing all traffic through a single bottleneck.

R2. Simultaneous Tx/Rx — every node transmits and receives on the
same sub-carriers each symbol, creating residual self-interference (RSI)
and mutual user interference (MUI).

R3. Network-coded forwarding — the relay decodes only the XOR sym-
bol xA⊕xB and broadcasts it in the next symbol, collapsing the classical
four-slot TWRC into a one-slot pipeline.

These rules capture short-range deployments with tight spectrum budgets
(e.g., factory cells, XR pods, ad-hoc relays) without locking the analysis to
one specific use case. They maximise spectral efficiency but also surface the
dominant pain-points—strong RSI at R, overlapping user signals, and strict
one-symbol processing latency—that the proposed protocol must overcome.

Bespoke OFDM protocol — Fig. 3.2 Building on 5G-NR numerology,
we introduce three departures from stock NR processing to tame RSI and
MUI while preserving one-slot latency:
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Figure 3.2: OFDM resource-grid processing

1) PNC-tailored pilot lattice: pilots of A, B, and R are interleaved with
a fixed phase offset, enabling a single least-squares fit for HAR, HBR, HRR

without guard symbols.

2) RSI-aware MMSE equaliser: each receiver augments the covariance
matrix to treat HRR as coloured interference. The resulting inverse up-
dates per symbol via two rank-one corrections—quadratic rather than
cubic complexity.

3) Look-ahead network coding: the relay converts equalised streams into
xA⊕xB on the fly and transmits the result after a fixed delay of δ, thereby
eliminating the need for buffering and aligning with NR slot timing.

Positioning with respect to prior art. Classical TWRC protocols rely
on time-division, forfeiting half the spectrum; modern full-duplex relays de-
pend on heavy analogue cancellation. Our design instead

• shifts cancellation to digital RSI suppression via the equaliser—
hardware-agnostic and software-upgradable;

• embeds physical-layer network coding directly in the NR resource
grid—no MAC redesign, no HARQ overhaul;
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• reuses standard NR FFT and numerology—only the pilot pattern,
equaliser weights, and XOR lookup tables change.

In short, Fig. 3.1 defines what the network must accomplish—continuous
full-duplex exchange in a single hop—while Fig. 3.2 articulates how an NR-
compatible physical layer achieves it through a tailored pilot lattice, RSI-aware
equalisation, and one-symbol look-ahead network coding.

3.1.2 Channel Models and Propagation Scenarios

Our framework supports multiple channel models to capture diverse prop-
agation environments encountered in practical deployments. Each model is
designed to represent specific deployment scenarios rather than fixed param-
eter sets.

Additive White Gaussian Noise (AWGN) Channel

The AWGN channel serves as a theoretical baseline, representing ideal prop-
agation conditions with minimal multipath effects:

h(t) = 1, ∀t (3.1)

This model is primarily used for algorithm validation, theoretical perfor-
mance bounds derivation, and laboratory testing scenarios including cable
connections and satellite communication links with minimal scattering.

Static Rayleigh Fading Channel

The Rayleigh fading model captures non-line-of-sight (NLOS) propagation
typical in dense urban environments where multiple scattering paths exist
without a dominant line-of-sight component. The channel impulse response
consists of multiple independent taps:

h(t) =
L−1∑
l=0

hlδ(t− τl) (3.2)

where hl ∼ CN (0, σ2
l ) are complex Gaussian random variables, and the power

delay profile follows an exponential decay pattern.
This model accurately represents:
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• Dense urban deployments with no dominant path

• Indoor propagation with multiple walls and obstacles

• Mobile scenarios in city centers

• Small cell deployments in crowded areas

Static Rician Fading Channel

The Rician fading model incorporates a line-of-sight (LOS) component along-
side scattered paths, characterized by the K-factor:

K = Power in LOS component
Power in scattered components (3.3)

The channel impulse response becomes:

h(t) =
√

K

K + 1δ(t) +
√

1
K + 1

L−1∑
l=0

hlδ(t− τl) (3.4)

Typical deployment scenarios include suburban areas with partial LOS,
rural deployments with strong LOS components, indoor corridors with guided
propagation, and millimeter-wave links with highly directional characteris-
tics.

ITU Indoor Channel Models

The International Telecommunication Union (ITU) has standardized indoor
channel models based on extensive measurements. We implement both Indoor-
A and Indoor-B models representing small office and large office environments
respectively.

These models are specifically designed for WiFi and small cell deploy-
ments, performance evaluation for indoor positioning systems, enterprise
wireless network planning, and IoT device connectivity in buildings.

Time-Varying Rician Channel

Mobile scenarios require time-varying channel models that capture Doppler
effects caused by user mobility. The channel coefficients evolve according to:

hl(t) = hl(0) exp(j2πfD,lt cos(θl)) (3.5)
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where fD,l is the Doppler frequency for tap l, and θl is the angle of arrival.
Key mobility scenarios include pedestrian users, vehicular deployments,

high-speed rail communication, and drone/UAV aerial network coverage.

3.1.3 Self-Interference Model and Characterization

The self-interference in full-duplex systems represents one of the most chal-
lenging aspects of practical implementation. Despite significant advances
in analog cancellation techniques, residual self-interference typically remains
20-40 dB above the noise floor, fundamentally different from simple additive
noise in both structure and impact.

Components of Residual Self-Interference

The residual self-interference after analog cancellation can be decomposed
into several components:

ySI(t) = ylinear(t) + ynonlinear(t) + yphase(t) + yIQ(t) (3.6)

Linear Component arises from imperfect channel estimation and finite
cancellation depth:

ylinear(t) = αhRR(t) ∗ sR(t− δ) (3.7)

where α represents the cancellation factor achieved by analog techniques.
Nonlinear Component results from power amplifier compression and

mixer nonlinearities:

ynonlinear(t) =
K∑

k=2
βk|sR(t− δ)|k−1sR(t− δ) (3.8)

where βk are the nonlinearity coefficients.
Phase Noise Component originates from oscillator imperfections:

yphase(t) = sR(t− δ) exp(jϕ(t)) (3.9)

where ϕ(t) is a Wiener process.
IQ Imbalance Component stems from imperfect quadrature mixing:

yIQ(t) = gIsR,I(t− δ) + jgQsR,Q(t− δ) exp(jθIQ) (3.10)
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The aggregate residual self-interference exhibits complex statistical prop-
erties that deviate from Gaussian assumptions, including log-normal power
distribution, stronger frequency selectivity than desired channels, and tem-
poral correlation on multiple time scales from fast temperature fluctuations
to slow component aging effects.

3.2 Concurrent Physical-Layer Network Cod-
ing (CPNC)

3.2.1 CPNC Architecture and Protocol Design

Figure 3.3: CPNC Diagram with Full-Duplex Relay and Self-Interference
Paths

Concurrent Physical-Layer Network Coding (CPNC) represents a funda-
mental advancement in network coding theory, extending the elegant prin-
ciples of PNC to practical full-duplex systems with complex-valued modula-
tions. Figure 3.3 illustrates the complete CPNC framework, highlighting the
key innovation of processing delay δ integration.

In this framework, nodes A and B transmit their respective signals sA(t)
and sB(t) simultaneously to a full-duplex relay node R. The relay receives a
superimposed signal rR(t) through the air channel, which includes contribu-
tions from both nodes and its own transmission due to full-duplex operation:

rR(t) = yAR(t) + yBR(t) + SsR(t),

where yAR(t) and yBR(t) represent the signals from A and B through channels
ChannelAR and ChannelBR, respectively, and yRR(t) is the self-interference
signal caused by the relay’s own transmission sR(t) via ChannelRR.
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To mitigate this self-interference, the relay employs a cancellation mech-
anism, subtracting an estimate sS(t) of its own transmitted signal from r(t)
to obtain rR(t) = r(t) − ŜsR, which can be estimated from the transmitted
signal of nodes R. The relay then forwards a new signal sR(t) after a fixed
processing delay δ through channels ChannelRA and ChannelRB to both des-
tinations.

At the receiver side, nodes A and B also suffer from self-interference due
to their own transmissions, denoted by sS(t) via ChannelAA and ChannelBB,
respectively. Each node performs local cancellation to retrieve the intended
signal from the other node:

rA(t) = yRA(t)− ŜsA, rB(t) = yRB(t)− ˆSsB,

enabling successful decoding of the desired message by leveraging prior knowl-
edge of the local transmission.

Solid arrows in Figure 3.3 indicate ongoing signal transmissions, while
dashed arrows represent self-interference loops at each node. The entire
system illustrates a fully concurrent, self-interference–aware network coding
protocol enabled by the integration of a short processing delay δ at the relay.

The CPNC protocol operates through carefully orchestrated phases that
overlap in time. The key innovation lies in maintaining the algebraic struc-
ture required for network coding while proactively inserting a controlled pro-
cessing delay, δ, at the relay. This intentional gap transforms δ into a system
feature that enables:

1. Pipelined Throughput: Reception of the next data block, SI can-
cellation and XOR mapping of the current block, and transmission of
the previous block all overlap, maximizing relay utilization.

2. Interference-Window Control: By tuning δ, the relay can steer
residual self-interference into predefined guard intervals (e.g., CP or
protocol-defined idle slots), simplifying digital cancellation.

3. Adaptive Performance Tuning: The relay dynamically adjusts δ in
response to channel conditions or SI levels—trading off between lower
end-to-end latency (small δ) and higher decoding robustness (large δ).
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4. Load-Smoothing: A fixed δ spreads computational tasks evenly across
each OFDM frame, reducing instantaneous processing peaks and im-
proving hardware efficiency.

5. Protocol Flexibility: The intentional gap δ can carry auxiliary con-
trol or training symbols, facilitating MAC-layer scheduling, link moni-
toring, or secure handshakes without disrupting the main data flow.

Data Protocol Design: The relay processing follows a pipelined archi-
tecture where reception, processing, and transmission occur simultaneously
on different data blocks. This approach maintains continuous bidirectional
communication while ensuring each operation has adequate time to complete.
The protocol timing is designed to ensure users receive the relay’s broadcast
during their reception phases, avoiding conflicts with their own transmission
periods.

Figure 3.4: CPNC protocol diagram with processing delay δ at the relay

3.2.2 Constellation-Mapping-Aided CPNC Detection:
Fundamental Limitations

The Bijective Mapping Requirement

Physical-layer Network Coding (PNC) fundamentally relies on the ability
of the relay node to uniquely determine the XOR of transmitted informa-
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Figure 3.5: System architecture of the CPNC protocol

tion from the electromagnetic superposition of received signals. For this to
be possible, the mapping from symbol pairs to their superposition must be
bijective (one-to-one and onto). This mathematical requirement places se-
vere constraints on the types of modulation schemes that can support PNC
operation.

The Core Challenge: When two nodes A and B transmit symbols sA

and sB simultaneously, the relay receives r = sA + sB + n where n repre-
sents channel noise. For successful network coding, the relay must be able to
uniquely determine sA⊕sB from the received signal r. This requires that dif-
ferent symbol pairs (sA, sB) and (s′

A, s′
B) that produce different XOR results

must yield different superposition results, i.e.:

sA ⊕ sB ̸= s′
A ⊕ s′

B ⇒ sA + sB ̸= s′
A + s′

B (3.11)

Mathematical Analysis of Bijective Requirements

Definition 1 (PNC-Compatible Constellation). A constellation C is PNC-
compatible if and only if the mapping ϕ : C × C → C defined by ϕ(sA, sB) =
sA + sB satisfies:

∀(sA, sB), (s′
A, s′

B) ∈ C2 : sA ⊕ sB = s′
A ⊕ s′

B ⇔ sA + sB = s′
A + s′

B (3.12)

This condition is extremely restrictive. For most practical modulation
schemes, multiple symbol pairs can produce identical superposition results
while having different XOR values, violating the bijective requirement.

48



Illustrative Example: Consider 16-QAM with your specific case:

Case 1: sA = 1 + 3j, sB = 3 + 1j ⇒ sA + sB = 4 + 4j (3.13)
Case 2: sA = 1 + 1j, sB = 3 + 3j ⇒ sA + sB = 4 + 4j (3.14)

If these symbol pairs correspond to different information bits, then sA ⊕
sB ̸= s′

A ⊕ s′
B, but sA + sB = s′

A + s′
B, violating the PNC-compatibility

condition.

Classification of Modulation Schemes

Based on the bijective mapping requirement, we classify common modulation
schemes according to their PNC compatibility:

Table 3.1: PNC Compatibility of Common Modulation Schemes

Modulation PNC Compatible Mapping Type
BPSK ✓ Bijective
QPSK ✓ Bijective
8-PSK × Non-bijective
16-QAM × Non-bijective
64-QAM × Non-bijective
256-QAM × Non-bijective
PAM-2 ✓ Bijective
PAM-4 × Non-bijective
PAM-M (M > 4) × Non-bijective
FSK-2 ✓ Bijective
FSK-M (M > 2) × Non-bijective

Theoretical Limitations

Fundamental Constraint For an M -ary constellation with M = 2k, there
are M2 = 22k possible symbol pairs, but only 2k possible XOR results. For
PNC compatibility, each XOR result must correspond to a unique superposi-
tion value. However, the number of possible superposition values is generally
much smaller than 22k, making bijective mapping impossible for M > 4.
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Ambiguity Quantification The degree of ambiguity can be quantified by
the collision ratio:

ρ = Number of distinct superposition values
22k

(3.15)

For PNC compatibility, we require ρ = 2−k. However, for most practical
constellations:

16-QAM: ρ ≈ 0.0625≪ 0.25 (required) (3.16)
64-QAM: ρ ≈ 0.016≪ 0.125 (required) (3.17)

Implications for System Design

Practical Consequences:

1. Limited Spectral Efficiency: PNC is fundamentally restricted to
low-order modulations (BPSK, QPSK), severely limiting spectral effi-
ciency compared to modern high-order QAM systems.

2. Performance Trade-offs: The constraint to bijective modulations
may result in lower data rates compared to conventional point-to-point
or traditional relaying systems using high-order modulations.

3. System Complexity: Any attempt to extend PNC to higher-order
modulations requires complex pre-processing, special constellation de-
signs, or tolerance for decoding errors, significantly increasing imple-
mentation complexity.

Alternative Approaches: Given these fundamental limitations, prac-
tical systems must consider:

• Hybrid schemes: Use PNC for certain time slots/subcarriers and
conventional relaying for others

• Adaptive modulation: Switch between PNC-compatible and high-
order modulations based on channel conditions

• Multi-level coding: Apply PNC only to specific bit layers in hierar-
chical modulation schemes

• Probabilistic decoding: Accept some decoding errors in exchange
for higher spectral efficiency
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Conclusion

The fundamental requirement for bijective mapping severely constrains the
applicability of PNC to modern communication systems. While PNC offers
significant advantages for simple modulations like BPSK and QPSK, the
mathematical impossibility of maintaining bijective mapping for higher-order
constellations presents an insurmountable barrier for direct application to
spectrally efficient QAM systems.

This analysis reveals that constellation-mapping-aided CPNC de-
tection is fundamentally limited to low-order, bijective modula-
tions, and any claims of extending PNC to arbitrary high-order QAM con-
stellations must be approached with extreme caution. The pursuit of PNC-
compatible high-order modulations remains an open and challenging research
problem with no known general solution. Therefore, the CPNC scheme shown
in this thesis currently focuses on low-order modulations such as BPSK and
QPSK. In our experiments, we use QPSK to verify the performance of the
scheme and leave the support of higher-order modulations for future research

3.2.3 Orthogonal Pilot Design and Channel Estima-
tion for PNC

Adaptive Orthogonal Pilot Design. Conventional pilot patterns—optimised
for one user at a time—fail in PNC, where two (or more) users transmit con-
currently. We therefore generate pilots from a Hadamard matrix, yielding a
bank of mutually orthogonal sequences whose size adapts to the number of
pilot tones. Let Ipilot denote the set of pilot-bearing sub-carriers; its cardi-
nality is num pilot = |Ipilot|. Choose the smallest power of two no smaller
than num pilot, M = 2⌈log2(num pilot)⌉, and form the M×M Hadamard matrix
HM . The first two rows trimmed to num pilot elements serve as user-specific
pilot sequences:

pA = HM(1, 1:num pilot), pB = HM(2, 1:num pilot), (3.18)

guaranteeing pA pT
B = 0 and leaving the remaining M − 2 rows available for

future users.
Pilot Power and Data Mask. Pilot amplitude Ap is chosen to meet a

target mean-square-error (MSE) bound while limiting the peak-to-average-power
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Figure 3.6: OFDM resource grid with pilot symbols

ratio (PAPR). A binary mask Mdata ∈ {0, 1}F ×S flags data sub-carriers, en-
suring pilots never collide with payload symbols.

Least-Squares Channel Estimation. Let ypilot collect all received pi-
lot samples on the indices Ipilot and define P = [pT

A pT
B]. Because Hadamard

rows are mutually orthogonal, the LS estimate boils down to scaled correla-
tions: ĥA

ĥB

 = (PHP)−1PHypilot. (3.19)

Algorithm 1 Pilot Separation and LS Channel Estimation
Input: Received frequency grid Y, pilot index set Ipilot, pilot amplitude Ap,

pilot sequences pA, pB

Output: Estimated channels ĥA, ĥB; separated pilot components ŶA, ŶB

1: Extract pilot samples: ypilot ← Y[:, Ipilot]
2: Scale pilot sequences: P←

[
AppT

A AppT
B

]
3: Solve LS problem

[
ĥA, ĥB

]T
← (PHP)−1PHypilot

4: Reconstruct pilot components: ŶA ← ĥA (AppA); ŶB ← ĥB (AppB)
ĥA, ĥB, ŶA, ŶB

Network-Coded Equalisation. With ĥA, ĥB in hand, the relay by-
passes per-user recovery and computes the XOR symbol directly:

x̂⊕ = yrx

ĥA + ĥB

LUT7−→ xA ⊕ xB, (3.20)
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where a pre-computed XOR LUT maps equalised constellation points to the
network-coded alphabet. This “equalise-then-XOR” strategy trims complex-
ity while preserving PNC throughput.

The Hadamard construction not only isolates two simultaneous users but
also leaves room for additional orthogonal rows, enabling straightforward
extension to multi-user PNC without redesigning the pilot framework.

3.2.4 Constellation-Mapping-Aided CPNC Detection

Signal Model For the f -th sub-carrier and the s-th OFDM symbol, the
relay observes

yf,s = hA,f,s xA,f,s + hB,f,s xB,f,s + nf,s, nf,s ∼ CN (0, N0), (3.21)

where xA,f,s, xB,f,s ∈ C are M -ary constellation symbols.

XOR Constellation Sets For each target XOR label b ∈ {0, 1}log2 M ,

Sb(hA, hB) =
{

hAci + hBcj

∣∣∣ ci, cj ∈ C, b(ci)⊕ b(cj) = b
}

. (3.22)

Decision Rule

b̂f,s = arg min
b

min
ỹ∈Sb(hA,f,s,hB,f,s)

∣∣∣yf,s − ỹ
∣∣∣2. (3.23)

Algorithm 2 Constellation-Mapping-Aided CPNC Detection
1: Initialize an empty grid B̂ ∈ {−1, 0, 1}F ×S×log2 M . f = 1→ F s = 1→ S

(f, s) is a data position
2: Compute the sets Sb for all XOR labels b. each candidate ỹ ∈ Sb

3: Evaluate the distance |yf,s − ỹ|2.
4: Select b̂f,s = arg minb minỹ∈Sb

|yf,s − ỹ|2 and store it in B̂[f, s, :].
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Complexity & Overhead. For each data grid (f, s), the Constellation
-Mapping-Aided CPNC detector forms all symbol pairs (ci, cj) ∈ C2 and
groups them by XOR label, so the per-grid search spans at most M2 can-
didates and incurs O(M2) distance evaluations. Over the Nd = FdataSdata

active positions in one OFDM frame the total arithmetic cost is therefore
O(NdM2), identical in order to a brute-force ML detector but with a smaller
constant factor thanks to the XOR clustering. Memory use is negligible:
the decision tensor B̂∈{−1, 0, 1}F ×S×log2 M only requires a few hundred bits
per frame, while the optional lookup table of all M2 composite points fits
easily in on-chip cache for typical low-order constellations. Consequently, de-
tection remains real-time on a DSP/CPU without requiring GPU or FPGA
acceleration.

3.3 REST - UNet Architecture for Noise
-Interference Suppression

Conventional clean-sheet CPNC receivers cascade (i) a least–squares or MMSE
pilot-based channel estimator, (ii) an adaptive self-interference cancellation
(SIC) filter, (iii) frequency-domain equalisation, and (iv) an ML XOR de-
tector. The strong coupling of these blocks makes the overall performance
highly sensitive to modelling errors, non-linear power- amplifier distortion,
and time-varying RF leakage. To overcome these limitations we introduce
REST-UNet, a Residual – Attention – U-Net that jointly performs channel
estimation, SIC, equalisation, and XOR detection in a single end-to-end
learnable module.

3.3.1 System-Level Integration of REST-UNet

Figure 3.7 embeds REST-UNet in a 5G NR CPNC transceiver. During for-
ward (blue arrows) and reverse (red arrows) propagation the network receives

• the received OFDM grid after cyclic-prefix removal and FFT;

• a prior channel tensor obtained from ray-tracing/pilot interpolation
(Hpilot);
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Figure 3.7: REST-UNet-based receiver framework in an OFDM system

• the ground-truth label cube GB ∈ {0, 1}F ×S×B generated at the
symbol-modulation stage.

REST-UNet outputs a refined XOR-bit likelihood ĜB that replaces the
legacy chain of OFDM demod → channel estimation → equalisation → sym-
bol demodulation. The remaining descrambling, LDPC decoding and CRC
check are left unchanged, ensuring standard-compliant operation.

3.3.2 REST-UNet Micro-Architecture

Figure 3.8 details the deep network itself. A four-level encoder–decoder back-
bone is augmented with the following modules:

ResBlocks Two consecutive Conv–BN–ReLU layers followed by a residual
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shortcut, providing local feature refinement while mitigating vanishing-
gradient issues.

Self-Attention A channel-wise self-attention module is inserted at every
scale to emphasize time–frequency (TF) bins rich in interference energy.

Cross-Attention A cross-attention block combines the prior channel map
Hpilot with deep feature maps, explicitly guiding the decoder toward
physically plausible reconstructions.

Upsampling/Downsampling Resolution changes are handled by strided
convolutions for downsampling and transposed convolutions for upsam-
pling; each downsampling step halves the TF resolution and doubles
channel depth, while each upsampling step reverses this mapping.

The decoder terminates in two heads:

Ĥfine = Convℜ/ℑ
1×1 (Fdec), (3.24)

ĜB = Softmax
(
ConvB

1×1(Fdec)
)
, (3.25)

where Fdec is the final decoder feature map and B =log2 M denotes bits
per symbol.

Why the design matters. Multi-scale context plus cross-attention lets
the network simultaneously suppress narrowband leakage and wideband mul-
tipath, while residual learning ensures rapid convergence and robustness to
hardware non-linearities. Together, the two figures clarify where REST-UNet
fits in the 5G NR pipeline (Fig. 3.7) and how its internal mechanisms realise
joint self-interference suppression (Fig. 3.8).

Input Tensor Definition

X =
[
ℜ{Y},ℑ{Y}︸ ︷︷ ︸

Rx grid

,ℜ{YSI},ℑ{YSI}︸ ︷︷ ︸
Tx replica

, Mpilot, Φpilot
]
, X ∈ RB×C×F ×S.

(3.26)
Here C = 2 + 2 + 2 = 6 for real/imag pairs and pilot amplitude/phase

masks, but the channel dimension can be expanded to accommodate addi-
tional side-information (e.g. Doppler estimates).
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Figure 3.8: Proposed AI model with cross-attention and hierarchical en-
coder–decoder structure

In summary, REST-UNet unifies four legacy DSP blocks into one trainable
unit, enabling adaptive, joint suppression of residual self-interference and
improved XOR symbol recovery under practical 5G-NR constraints.

3.3.3 Detailed Module Design

Enhanced UNet Blocks

The backbone of our REST-UNet is a stack of enhanced UNet blocks, as
illustrated in Figure 3.9. Each block comprises convolutional layers, batch
normalization, and ReLU activations, followed by residual processing and
channel attention. The inclusion of skip connections and attention modules
enables effective information flow and dynamic feature recalibration, crucial
for robust interference suppression.
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Figure 3.9: Enhanced UNet block architecture

Channel Attention Mechanism

To allow the network to focus on informative channels, we embed a channel
attention mechanism within each block (see Figure 3.10). This module adap-
tively re-weights channel features via global average pooling and two fully
connected layers:

Attention(x) = x⊗ σ(W2 ReLU(W1 GAP(x))) (3.27)

where GAP denotes global average pooling, W1, W2 are learned weights,
and σ is the sigmoid function.

Group Convolution

To further enhance representational capacity while reducing computation, we
introduce group convolution at every UNet scale (Figure 3.11). Let Cin and
Cout be the input and output channel counts, k the kernel size, and g the num-
ber of groups. Standard convolution requires O

(
Cout Cin k2

)
multiplications,
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Figure 3.10: Channel attention module for adaptive feature weighting

Figure 3.11: Grouped convolution with g groups

whereas group convolution lowers the cost to O
(
Cout (Cin/g) k2

)
, yielding

both parameter and FLOP reductions by a factor of g. This lightweight de-
sign is well aligned with the stringent real-time constraints of coherent PNC
receivers: fewer multiply–accumulate operations shorten inference latency,
reduce power draw on embedded DSP/FPGA targets, and thereby facilitate
deployment in high-throughput wireless links without sacrificing accuracy.
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Residual Connection (ResNet Block)

Residual connections are incorporated in each block as shown in Figure 2.6.
These connections facilitate stable and efficient training by enabling direct
signal propagation and alleviating the vanishing gradient problem. Formally,
for input F and nonlinear transformation H(·), the output is:

Fout = H(F) + F (3.28)

This additive shortcut preserves the original feature while allowing the net-
work to learn residual mappings that model complex interference effects.

3.3.4 Loss Function

To train our network to produce accurate bit estimates, we adopt the Binary
Cross–Entropy (BCE) loss, which directly measures the divergence between
the true bit labels and the network’s predicted probabilities. Let bij,ℓ ∈ {0, 1}
denote the ground-truth value of the ℓ-th bit of symbol (i, j), and let Lij,ℓ

be the corresponding logit output. Over a training set D, the BCE loss is
defined as

BCE = −
∑

(i,j)∈D

∑
ℓ∈M

[
bij,ℓ ln σ(Lij,ℓ) + (1− bij,ℓ) ln

(
1− σ(Lij,ℓ)

)]
, (3.29)

where σ(x) = 1/(1 + e−x) is the sigmoid activation. Minimizing (3.29)
is equivalent to maximizing the log-likelihood of the correct bits under a
Bernoulli model, which provides stronger penalties for confident but incor-
rect predictions and thus yields more stable training.

After training, each bit’s logit L
(0)
i is converted into an estimated proba-

bility
p̂i = σ

(
L

(0)
i

)
,

from which we compute the initial log-likelihood ratio (LLR):

L
(0)
i = ln p̂i

1− p̂i

. (3.30)

We then perform iterative belief-propagation decoding on the code’s Tan-
ner graph. Variable-to-check messages are updated by

Mi→c = L
(0)
i +

∑
c′∈N (i)\c

Mc′→i, (3.31)
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and check-to-variable messages by

Mc→i = 2 tanh−1
( ∏

j∈N (c)\i

tanh Mj→c

2

)
. (3.32)

After a fixed number of iterations (or upon convergence), the extrinsic
LLR for bit i is

L∗
i = L

(0)
i +

∑
c∈N (i)

Mc→i, (3.33)

and the final hard decision is taken as

b̂i =

1, L∗
i > 0,

0, otherwise.

In summary, the BCE loss (Eq. 3.29) trains the network to produce well-
calibrated bit-probabilities, which are then converted into LLRs (Eq. 3.30)
and fed into a standard iterative decoder (Eqs. 3.31–3.33) for final bit deci-
sions.

3.4 Integrated REST-UNet CPNC System Im-
plementation

3.4.1 Overall System Architecture

Figure 3.12 presents the complete integrated framework where REST-UNet
operates as the critical signal processing component within the CPNC relay
node. The system operates in three main stages:

Stage 1 - Signal Reception: Terminal nodes A and B simultaneously
transmit their LDPC-encoded OFDM signals to the relay node R. The re-
ceived signal at R contains the superposition of both transmissions plus self-
interference from R’s own previous transmissions.

Stage 2 - AI-Enhanced Processing: REST-UNet processes the com-
posite signal to simultaneously accomplish: (i) self-interference cancellation,
(ii) channel estimation for both links, and (iii) direct XOR symbol detection
without explicit individual signal recovery. The neural network leverages
learned representations to perform these tasks jointly, exploiting the inher-
ent structure of the CPNC operation.
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Figure 3.12: CPNC framework with REST-UNet-based relay processing
pipeline

Stage 3 - Network Coding: The detected XOR symbols are re-encoded
and broadcast back to both terminals, where each node can recover the
other’s message by XORing with its own transmitted data.

3.4.2 Novel Adaptations for CPNC Integration

Multi-Task Learning Architecture

To optimize REST-UNet for CPNC operation, we implement a multi-task
learning framework that jointly optimizes three complementary objectives:

O = {XOR Detection, Channel Estimation, SI Cancellation} (3.34)

The network architecture is modified with task-specific heads: - XOR
Detection Head: A classification branch outputting M -class logits for di-
rect XOR symbol detection - Channel Estimation Head: Dual regression
branches producing complex channel coefficients ĥA and ĥB - SI Prediction
Head: Estimates residual self-interference patterns for enhanced cancella-
tion

This multi-task design enables the network to learn shared representa-
tions that benefit all tasks simultaneously, leading to superior performance
compared to single-task alternatives.
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Enhanced QC-LDPC Integration

Based on the code analysis, we implement an advanced Quasi-Cyclic LDPC
codec specifically optimized for the CPNC scenario:

Bopt = arg min
B
{λ1 · Cycles4(B)− λ2 · ACE(B)} (3.35)

The protograph design process incorporates: - ACE-Aware Topol-
ogy Generation: Progressive edge growth with approximate cycle extrin-
sic (ACE) message degree optimization - Intelligent Shift Assignment:
Greedy search algorithm to minimize 4-cycles after quasi-cyclic lifting - Multi-
Candidate Search: Evaluates multiple random seeds to find optimal con-
figurations

The resulting LDPC code achieves superior error correction performance
while maintaining compatibility with the REST-UNet’s soft output decisions.

Self-Interference Modeling and Cancellation

The integration introduces sophisticated self-interference handling based on
realistic hardware constraints:

YR(t) = YA(t) + YB(t) + α(t) ·XR(t− δ) · ejϕ(t) + N(t) (3.36)

where: - α(t) represents time-varying SI channel attenuation - δ denotes
processing delay in microseconds - ϕ(t) captures phase noise and hardware
imperfections

The REST-UNet incorporates this SI model through: - Extended input
channels (10 channels instead of 8) to include delayed transmission informa-
tion - Learned compensation for IQ imbalance and nonlinear distortions -
Adaptive processing based on instantaneous SI power levels

3.4.3 Training Methodology

Multi-Task Loss Function Design

The training employs a carefully balanced multi-task loss function:

Ltotal = LXOR + λh(t)Lchannel + λSILSI + λregLreg (3.37)
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where:

LXOR = FocalCE(X̂⊕, X⊕, γ = 2) (3.38)
Lchannel = ∥Ĥ−Htrue∥2

F (3.39)
LSI = ∥ŜSI − SSI∥2

2 (3.40)

The focal cross-entropy loss addresses class imbalance in XOR detection,
while the dynamic weighting λh(t) implements curriculum learning:

λh(t) =


2λ0 t < Tpretrain (focus on channel estimation)
λ0 Tpretrain ≤ t < 0.67Ttotal

λ0(1− r) + 0.02r t ≥ 0.67Ttotal

(3.41)

Data Augmentation Strategy

The training incorporates domain-specific augmentations to improve gener-
alization:

Channel Perturbation: Small random variations added to channel es-
timates to simulate estimation errors:

ĥaug = ĥ + ϵ · CN (0, σ2
h) (3.42)

SI Power Variation: Random sampling from realistic SI residual power
ranges:

SIdB ∼ U [−20,−10] dB (3.43)

Phase Rotation: Random phase shifts to simulate oscillator drift and
timing variations

Processing Delay Jitter: Variable delays (δ ∼ U [10, 50]µs) to model
realistic hardware constraints

Curriculum Learning Strategy

The training follows a progressive difficulty schedule:
This curriculum ensures stable convergence while progressively introduc-

ing the full complexity of the CPNC scenario. The benefits include: - Faster
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Table 3.2: Curriculum Learning Progression

Phase SI Configuration Focus Duration
Pretraining No SI Channel estimation 4 epochs

Early Training Low SI (-30 to -25 dB) Basic XOR detection 6 epochs
Mid Training Medium SI (-25 to -15 dB) Joint optimization 10 epochs
Final Training Full SI (-20 to -10 dB) Robustness Remaining

initial convergence by focusing on simpler sub-problems - Better final perfor-
mance through gradual complexity increase - Reduced risk of getting stuck
in poor local minima

3.4.4 Theoretical Performance Analysis

Capacity Bounds

The integrated system achieves capacity approaching the theoretical CPNC
bound:

Cintegrated ≤ min{CMAC , CBC} · ηNC (3.44)

where CMAC represents the multiple access channel capacity, CBC the
broadcast channel capacity, and ηNC the network coding efficiency factor.

Error Probability Analysis

The end-to-end error probability incorporates contributions from multiple
sources:

P (e2e)
e = 1− (1− P (XOR)

e )(1− P (LDP C)
e )(1− P (SI)

e ) (3.45)

The AI-enhanced processing achieves:

P (XOR)
e ≈ Q

(√
2Es

N0
·GAI

)
(3.46)

where GAI > 1 represents the effective gain from joint neural processing.

65



Computational Complexity

The integrated approach achieves linear complexity in the number of subcar-
riers:

Ctotal = O(F ·D · L) +O(n · log n) (3.47)

where F is the number of subcarriers, D the network depth, L the num-
ber of layers, and n the LDPC code length. This compares favorably to
traditional iterative approaches which scale as O(F 2 · I) with I iterations.

Convergence Guarantees

The multi-task learning framework provides convergence guarantees under
mild conditions:

Under Lipschitz continuity of the loss functions and appropriate learning
rate scheduling, the training process converges to a stationary point satisfy-
ing:

E[∥∇Ltotal∥2] ≤ ϵ (3.48)

within O(1/ϵ2) iterations.
The curriculum learning strategy further ensures monotonic improvement

in validation performance during the critical early training phases.
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Chapter 4

Simulation Studies and Results

4.1 Simulation Parameters and Settings
In this section, We detail the comprehensive simulation environment and pa-
rameter settings used to rigorously evaluate the proposed Concurrent Physical-
layer Network Coding (CPNC) scheme and REST-UNet receiver. Specifi-
cally, We describe the computational resources, training methodologies, key
physical-layer parameters consistent with 3GPP NR Rel-15 standards, and
clearly define the baseline systems and metrics for performance evaluation.

4.1.1 Computational Environment

All Monte-Carlo simulations are implemented using Python 3.10 and PyTorch
2.2. Simulations are executed on a desktop workstation equipped with an
Intel i5-13600K CPU and an NVIDIA RTX 3060 GPU (12 GB VRAM).
Each data point representing a specific Signal-to-Noise Ratio (SNR) or Resid-
ual Self-Interference (RSI) condition is obtained by averaging results from
1 × 105 randomly generated OFDM frames, ensuring the 95% confidence
interval of Bit Error Rate (BER) measurements remains smaller than the
markers depicted in the plots.

4.1.2 REST-UNet Training Setup

REST-UNet is pretrained offline across a diverse set of channel realizations
(including TDL and CDL models) spanning SNR levels from –5 dB to 30
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dB, utilizing a four-stage curriculum training strategy. Each training stage
comprises 50 epochs with a batch size of 32, employing the AdamW optimizer
configured with an initial learning rate of 1×10−3, cosine annealing schedule
with linear warm-up, and a weight decay of 1 × 10−4. Label smoothing is
applied with a factor of 0.05. Complete convergence is typically achieved
within approximately 6 hours on a single GPU.

4.1.3 PHY Layer Parameters

All physical-layer parameters adhere to 3GPP NR Rel-15 specifications (TS
38.211, TS 38.101-1, TS 38.212):

Table 4.1: Core PHY and simulation parameters.

Parameter Value

Transmit power PTX 23 dBm (TS 38.101-1 clause 5.1)
Subcarrier spacing 15 kHz (µ = 0)
System bandwidth 20 MHz (52 PRBs)
OFDM symbols per slot 14 (TS 38.211 clause 4.3.1)
LDPC code block length N = 2816, rate 5/6
circulant size Z = 64
Noise PSD –174 dBm/Hz
Frame length 4096 symbols
Frame count 100

4.1.4 Baselines and Evaluation Protocols

To robustly assess the performance of the proposed CPNC scheme and the
REST-UNet receiver, We define the following evaluation baselines and pro-
tocols:

1. CPNC Throughput Advantage

• Baseline: Conventional half-duplex PNC

• Metric: Average Normalized Throughput
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• Objective: Quantify the throughput improvement provided by
CPNC relative to conventional half-duplex PNC under identical
channel conditions

2. REST-UNet Receiver Effectiveness

• Baseline: Standard 5G reference processing chain consisting of
LS channel estimation, MMSE equalization, and symbol-level de-
tection

• Comparator: DeepRx receiver [32], a leading-edge AI-based OFDM
receiver

• Objective: Evaluate REST-UNet’s capability in interference sup-
pression and signal separation compared to conventional and state-
of-the-art deep learning-based receivers

3. Model Parameter Analysis

• Variables: Model depth and width configurations, number of
trainable parameters, computational complexity (FLOPs)

• Objective: Investigate the trade-off between performance and
complexity to inform optimal REST-UNet deployment scenarios

4.2 CPNC Simulation Scenarios and Results
This research proposed two cooperative physical-layer network-coding schemes:
CPNC/DF, which relies on decode-and-forward (DF) relays, and CPNC/AF,
which relies on amplify-and-forward (AF) relays.

4.2.1 CPNC/DF and CPNC/AF

CPNC/DF vs. CPNC/AF under AWGN (no fading). The lower
two curves in Fig. 4.1 confirm that, without multipath fading, both relaying
strategies exploit coherent combining effectively: BER drops steeply with
SNR, reaching 10−5 at SNR≈12 dB. Decode-and-forward (DF) maintains a
consistent ∼ 0.5 dB advantage over amplify-and-forward (AF), attributable
to its error-detecting capability before forwarding.
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Figure 4.1: BER of CPNC/DF and CPNC/AF with and without Rayleigh
fading

70



Impact of Rayleigh fading. When Rayleigh fading is introduced (upper
curves), the two strategies diverge markedly. Because AF blindly scales its
input, it amplifies deep fades as well as noise, leading to an error floor of
BER≈1×10−2 that persists even beyond 30 dB. In contrast, DF can estimate
the channel and regenerate clean symbols; its BER continues to fall, achieving
BER≈3× 10−3 at 16 dB and delivering roughly one order-of-magnitude im-
provement over AF at 15 dB. Nevertheless, DF still exhibits a residual floor,
implying further coding or diversity is required for ultra-reliable operation.

Given the pronounced error floor of CPNC/AF in fading environments,
the remainder of this work concentrates on the CPNC/DF branch. Subse-
quent sections develop enhanced decoding and interference suppression mod-
ules, for example, the proposed REST-UNet architecture, to preserve CPNC
throughput gains while maintaining a low BER under realistic mobile chan-
nels.

4.2.2 CPNC versus Theoretical PNC: Throughput Anal-
ysis

In this experiment, we quantitatively benchmark the throughput perfor-
mance of our proposed Concurrent Physical-layer Network Coding (CPNC)
scheme against conventional Physical-layer Network Coding (PNC) under
additive white Gaussian noise (AWGN) channels. We adopt QPSK modu-
lation and LDPC coding to evaluate the fundamental throughput capabil-
ities of both schemes. The key performance metric is the bit-level average
normalized throughput (ANT), defined as the ratio between the successfully
transmitted bits per unit time and the raw data rate:

ANT = System Throughput
Data Rate (4.1)

This bit-level metric provides a more precise characterization of actual
system performance by accounting for successfully decoded information bits
rather than raw transmissions, thereby isolating the theoretical performance
limits from implementation artifacts. The ANT is measured across signal-
to-noise ratio (SNR) values ranging from 0 to 30 dB, using 106 information
bits at each SNR point to ensure statistical reliability.

Figure 4.2 reveals the fundamental throughput characteristics of both
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schemes. The conventional PNC (black curve) exhibits the expected behav-
ior: starting from ANT ≈ 0.55 at 0 dB SNR, it gradually increases with
improving channel conditions, eventually plateauing at ANT = 1.0 for SNR
≥ 25 dB. This unity throughput represents the theoretical maximum for
half-duplex PNC, where bidirectional information exchange requires two time
slots, effectively limiting the normalized throughput to 1.0 regardless of chan-
nel quality.

In stark contrast, CPNC (blue curve) demonstrates the ability to tran-
scend this fundamental limitation through full-duplex operation. Starting
from ANT ≈ 1.1 at 0 dB—already exceeding PNC’s theoretical maximum—
CPNC exhibits steady growth with increasing SNR. The throughput rises to
ANT = 1.35 at 10 dB, reaches ANT = 1.5 at 15 dB, and ultimately saturates
at ANT ≈ 1.73 for SNR ≥ 30 dB.

Figure 4.2: Bit-level average normalized throughput comparison between
PNC and CPNC

Several critical insights emerge from this analysis:
1. Breaking the Half-Duplex Barrier: CPNC successfully overcomes

the fundamental throughput limitation of conventional PNC. Even at low
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SNR conditions where error rates are substantial, CPNC maintains through-
put above 1.0, demonstrating the inherent advantage of full-duplex operation.
At high SNR (≥ 25 dB), CPNC achieves 73% higher throughput than PNC,
validating the potential of coherent signal combining in relay networks.

2. The Full-Duplex Throughput Gap: While CPNC significantly
outperforms PNC, it falls notably short of the theoretical full-duplex limit of
ANT = 2.0. The observed saturation at ANT = 1.73 represents only 86.5%
of the theoretical maximum, leaving a 13.5% throughput deficit. This gap is
primarily attributable to residual self-interference that cannot be completely
eliminated through analog cancellation alone, as well as imperfect channel
estimation and inter-node interference in the superimposed constellation.

3. SNR-Dependent Performance Scaling: The throughput advan-
tage of CPNC over PNC varies significantly with SNR. At low SNR (0-5 dB),
CPNC provides approximately 2× improvement, leveraging full-duplex oper-
ation even under poor channel conditions. The relative advantage decreases
to about 1.73× at high SNR as PNC approaches its theoretical limit while
CPNC encounters the interference-imposed ceiling.

4. The Imperative for Advanced Interference Suppression: The
persistent throughput gap between achieved performance (ANT = 1.73) and
theoretical potential (ANT = 2.0) quantifies the penalty of unmitigated in-
terference in full-duplex systems. This 13.5% deficit directly motivates the
development of sophisticated digital cancellation techniques. The plateau be-
havior at high SNR particularly indicates that the limiting factor is not ther-
mal noise but rather systematic interference that scales with signal power.

These findings establish both the promise and limitations of CPNC: while
full-duplex operation enables breakthrough performance beyond half-duplex
constraints, realizing the full theoretical potential requires advanced interfer-
ence suppression mechanisms. This performance gap provides the primary
motivation for integrating the REST-UNet architecture, which addresses
these residual impairments through learned signal processing to approach
the elusive 2× throughput target. The subsequent sections will demonstrate
how REST-UNet’s neural interference cancellation capabilities can recover
much of this lost throughput, validating the synergistic benefits of combin-
ing coherent network coding with AI-enhanced signal processing.
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4.3 REST-UNet Simulation
In this section, We present comprehensive simulation studies and perfor-
mance evaluations of the REST-UNet receiver. Initially, We define simu-
lation scenarios representative of various practical 5G deployment environ-
ments, such as indoor open offices, smart factories, urban street canyons,
urban expressways, and high-speed railway contexts. Subsequently, We per-
form extensive comparative analyses between REST-UNet and conventional
receiver baselines, examining metrics including bit error rate (BER), block
error rate (BLER), throughput, and latency. Additionally, robustness tests
are conducted under varied channel conditions, demonstrating REST-UNet’s
superior resilience and generalization capabilities, highlighting its practical
applicability across diverse real-world scenarios.

4.3.1 Simulation Scenarios

A: Indoor Open Office (LoS)

Spacious offices, exhibition halls, and lecture theatres are dominated by a
strong line-of-sight path and only very short reflections. To mirror this, the
CDL-A channel model is chosen. The root-mean-square (RMS) delay spread
is fixed at 10 ns, the ”very-short” class in 3GPP TR 38.901, because furni-
ture and ceiling tiles create only minimal excess delay. Typical walking-pace
movement—about 1 km/h at 3.5 GHz—produces a maximum Doppler shift
of just 5 Hz. These settings emulate untethered VR/AR headsets or 4 K
wireless presentation where latency and beam stability are paramount.

B: Smart-Factory Floor (NLoS)

Autonomous guided vehicles (AGVs) and robot arms weave through metallic
aisles that block the direct path, so a non-line-of-sight profile is required.
The TDL-A model fits this rich-scattering, equal-power tap environment.
Field campaigns in factories show an RMS delay spread of about 30 ns,
classed as ”short.” AGVs averaging 7 km/h translate to a maximum Doppler
of roughly 20 Hz. Together, these values stress ultra-reliable, low-latency
communication in harsh industrial channels.
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C: Urban Street Canyon (Pedestrian LoS)

Downtown sidewalks bordered by tall buildings present a dominant LoS ray
plus dense clusters from façades. The scenario therefore retains CDL-A.
Urban-micro measurements give an RMS delay spread near 100 ns, labelled
”nominal.” Pedestrians and e-scooters capped at 30 km/h create a Doppler
ceiling of about 97 Hz. Such parameters are ideal for evaluating AR navi-
gation and live-stream uplinks that must hand over beams rapidly yet stay
energy-efficient.

D: Urban Expressway (V2X Uplink)

City ring roads and expressways allow a clear LoS path but also produce
sporadic long echoes from signs and overpasses. The pronounced first tap
of TDL-E captures this mix. Because the terrain is still urban, the RMS
delay spread remains ”nominal” at 100 ns. Cars cruising near 68 km/h yield
a Doppler frequency close to 220 Hz, well inside the 0–500 Hz test range
for 5G NR. This profile supports cooperative-perception uplinks between
vehicles and roadside units.

E: High-Speed Rail (500 km/h)

Trains at 500 km/h retain a clear LoS trackside path but face moderate re-
flections from poles and terrain, making TDL-E appropriate. Rail corridors
are relatively uncluttered, so a mid-range RMS delay spread of 50 ns is used.
Although physics predicts a 1.6 kHz Doppler at 3.5 GHz, many air-interface
test plans cap the variable; therefore the shift is limited to the standard up-
per bound of 500 Hz. The configuration is intended for extreme-mobility
evaluations such as on-board 8 K streaming or real-time telemetry.

4.3.2 REST-UNet versus Baselines

To train a single AI receiver that generalizes across diverse propagation con-
ditions while strictly preventing label leakage, We partition the 3GPP
TR 38.901 channel models as follows:

• Training set: three outdoor macro-cell models—CDL-B, CDL-C,
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CDL-D (Scenario F: Urban Macro)—and three indoor small-cell mod-
els—TDL-B, TDL-C, TDL-D (Scenario G: Indoor Hotspot).

• Held-out test set: CDL-A, CDL-E and TDL-A, TDL-E, which
are never used during training.

Figure 4.3: Comprehensive performance comparison

Across all generated waveforms We sweep the RMS delay spread up to
100 ns and the Doppler frequency up to 250 Hz, yielding a rich variety of
mid-mobility, frequency-selective fading conditions. A universal REST-UNet
receiver is trained on this data with 16-QAM. At evaluation time We further
introduce a modulation shift by employing QPSK, simultaneously testing
channel-domain, temporal, and modulation-domain generalization.
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Figure 4.3 reports the results, comparing REST-UNet (red ⋄) against the
conventional LS + MMSE + LDPC pipeline (Baseline, black ■) and DeepRx
(blue •).

Uncoded BER (Top-Left). REST-UNet consistently yields the lowest
uncoded bit error rate across the entire SNR range. At low SNR (0–3 dB), all
methods exhibit high BER due to limited information content, but REST-
UNet already begins to separate around 3 dB. At 10 dB, REST-UNet reduces
BER to approximately 2.5×10−2, outperforming DeepRx (∼ 4.5×10−2) and
the baseline (∼ 6.5× 10−2), translating to a relative error reduction of about
62% over the baseline and 44% over DeepRx. This shows REST-UNet’s
resilience to complex multipath and its ability to generalize across channel
types.

BLER (Top-Right). The coded block error rate reveals REST-UNet’s
sharper transition region around 6–9 dB. In the mid-SNR range (6–10 dB),
REST-UNet achieves BLER values an order of magnitude lower than DeepRx
and the baseline, demonstrating superior compatibility with channel coding
and robust decoding under distribution shift. Moreover, by 15 dB, REST-
UNet drives BLER to effectively zero—i.e. no failed frames—whereas DeepRx
and the baseline still exhibit residual block errors of approximately 0.05 and
0.25, respectively.

Throughput (Bottom-Left). System throughput, which is inversely
proportional to BLER, shows that both DeepRx and REST-UNet deliver high
efficiency at moderate SNRs. REST-UNet exceeds 90% throughput by 8 dB,
with DeepRx closely behind. At very high SNR (15 dB), REST-UNet attains
100% throughput—i.e. no failed frames—whereas DeepRx plateaus around
92% and the baseline around 75%. This 8-point lead further underscores
REST-UNet’s superior efficiency and reliability in data delivery.

Latency (Bottom-Right). System-average latency, which is inversely
tied to retransmission rate and decoding reliability, further highlights REST-
UNet’s advantages. Below 6 dB, the baseline and DeepRx maintain high
latency (near 2.0 in normalized units), while REST-UNet drops sharply. At
10 dB, REST-UNet achieves latency of ≈ 0.5, which is about 33% lower than
DeepRx and roughly 55% lower than the baseline. This implies less buffering
delay, which is critical for latency-sensitive applications such as XR and V2X.
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4.3.3 Robustness Testing

Figure 4.4 summarizes the coded-BER behaviour of the proposed Rest-
UNet receiver versus a conventional 5G (LS + MMSE + LDPC) pipeline
in a 3GPP TDL-E channel. Three SNR regimes are analysed—low (5 dB),
medium (10 dB), and high (15 dB)—and two channel–impairment axes are
swept: maximum Doppler shift (top row) and RMS delay-spread (bottom
row).

Conventional 5G Receiver — Doppler Impact (Top-Left). At
SNR = 15 dB the receiver starts quasi error-free (< 10−5) but already
crosses 10−3 by 100 Hz and saturates around 3× 10−2 beyond 300 Hz. The
medium-SNR curve follows the same trend, reaching the error-floor slightly
earlier. Low SNR (5 dB) is dominated by noise: BER stays near 2 × 10−2

irrespective of Doppler. Overall, the conventional chain is highly sensitive
to mobility—performance collapses once the coherence time approaches the
OFDM symbol duration.

Rest-UNet Receiver — Doppler Impact (Top-Right). Rest-
UNet is markedly more robust. For SNR = 15 dB the coded BER re-
mains below 10−5 up to ∼ 250 Hz and is still an order of magnitude lower
than the baseline at the extreme 500 Hz (≈ 1 × 10−2 vs. 3 × 10−2). In
the medium-SNR case, BER stays under 10−3 until 200 Hz and never ex-
ceeds 1.2× 10−2—a >8× gain over the conventional receiver. Even at 5 dB,
Rest-UNet plateaus around 2 × 10−2, matching the baseline’s high-SNR
floor. These results confirm that the learnt equaliser generalises to severe
time-selectivity and preserves the SNR ordering up to very high Doppler
spreads.

Conventional 5G Receiver — Delay-Spread Impact (Bottom-
Left). Across the 10–300 ns range the baseline exhibits only mild dispersion
diversity: BER hovers between 3.0×10−2 (5 dB) and 1.2×10−2 (15 dB). The
curves are almost flat, indicating that residual inter-symbol interference and
imperfect channel estimation dominate, leaving little benefit from additional
taps. Rest-UNet Receiver — Delay-Spread Impact (Bottom-Right).
In stark contrast, Rest-UNet capitalises on larger delay spreads. At high
SNR it maintains BER ≤ 7 × 10−3 up to ∼ 60 ns and then abruptly drops
below the simulation floor (< 10−8) beyond 80 ns, yielding a ≥ 105-fold
reduction relative to the baseline. The medium-SNR trace steadily declines
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Figure 4.4: Robustness under multiple conditions for two receivers

from 1 × 10−2 (10 ns) to 2 × 10−3 (300 ns), while the 5 dB curve remains
bounded by noise at ≈ 2 × 10−2. This behaviour suggests that the network
exploits the additional multipath diversity once the cyclic prefix is exceeded,
effectively converting frequency selectivity into coding gain.

Take-away. Over the entire Doppler (0–500 Hz) and delay-spread (10–300
ns) envelope, Rest-UNet delivers between one and three orders of magni-
tude lower coded BER than the conventional 5G receiver at medium and high
SNR, and matches or exceeds it even under low-SNR conditions. The model
therefore offers a compelling drop-in upgrade for mobility- and dispersion-
limited scenarios such as high-speed rail, V2X, and dense urban micro-cells.

4.3.4 Scenario-Based Performance Evaluation

Figure 4.5 contrasts the coded-BER waterfall of the conventional 5G re-
ceiver with that of the proposed Rest-UNet across five representative 5G
deployment scenarios. The curves reveal how propagation complexity and
environmental harshness govern the performance gap between traditional
and learning-based equalization approaches, with Rest-UNet demonstrat-
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Figure 4.5: Performance under multiple scenarios for two receivers

ing particularly pronounced advantages in challenging scenarios.
Open Office LoS (VR/AR, red). In this benign indoor environment

with minimal interference and strong signal conditions, both receivers ex-
hibit comparable performance. The conventional pipeline achieves reliable
decoding around 6 dB, while Rest-UNet provides marginal improvement.
The similar waterfall curves indicate that in low-complexity scenarios, both
methods suffice for enterprise XR applications.

Smart Factory NLoS (AGV/Robot, blue). Under moderate multi-
path conditions, the performance gap remains modest. The baseline receiver
achieves BER < 10−4 at approximately 11 dB, while Rest-UNet reaches
the same target at about 15 dB, trailing by roughly 2 dB. Nevertheless, both
solutions deliver reliability sufficient to meet industrial-automation require-
ments.

Urban Highway (V2X, pink). Here, the learning-based approach
demonstrates substantial superiority. High-speed mobility and intermittent
blockage severely limit the conventional receiver, which struggles to achieve
BER below 2×10−2 even at 20 dB. In stark contrast, Rest-UNet exhibits a
steep waterfall, reaching 10−3 by ∼ 10 dB—a critical advantage for vehicular
safety communications where reliability is paramount.
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Urban Street Canyon (AR Navigation, green). This challenging
scenario with dense multipath reflections proves difficult for both receivers.
The conventional solution fails to achieve the target BER throughout the
tested SNR range, while Rest-UNet shows gradual improvement but still
falls short of 10−5. Neither approach fully satisfies the stringent requirements
for seamless AR navigation in urban environments, highlighting the inherent
difficulty of this deployment scenario.

High-Speed Railway (8K Streaming, black). In the most demand-
ing scenario, the performance disparity becomes dramatic. The conventional
receiver remains essentially non-functional, with BER stagnating above 2×
10−1 regardless of SNR—effectively rendering decoding impossible. While
Rest-UNet does not achieve the ideal 10−4 target, it demonstrates remark-
able improvement, reducing BER to approximately 5× 10−3 at 20 dB. This
represents over an order-of-magnitude enhancement compared to the base-
line, transforming an completely unusable channel into one with significant
decoding potential.

Take-away: The results reveal a clear trend where Rest-UNet’s advan-
tages become more pronounced as scenario complexity increases. While both
approaches perform adequately in benign conditions, the learning-based re-
ceiver demonstrates transformative improvements in harsh environments—from
modest gains in moderate scenarios to enabling communication where tradi-
tional methods completely fail, showcasing its potential as a robust solution
for next-generation 5G deployments.

4.4 REST-UNet-CPNC Simulation Scenarios
and Results

To rigorously evaluate the performance and robustness of the proposed
REST-UNet-CPNC architecture, this section delineates comprehensive sim-
ulation studies conducted across a range of realistic wireless communication
scenarios. Our primary objective is to systematically analyse the system’s
capabilities in diverse propagation environments representative of practical
indoor and outdoor deployments, while quantifying key performance metrics
such as bit error rate (BER), sensitivity to residual self-interference (RSI),
and the impacts of relay timing synchronization. By examining these critical
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parameters under controlled yet varied conditions, We provide valuable in-
sights into the strengths and limitations of REST-UNet-CPNC system, estab-
lishing a solid foundation for its practical implementation in next-generation
wireless communication networks.

The subsequent subsections detail the specific methodologies, channel
models, experimental setups, and performance results, highlighting the effec-
tiveness of our architecture under challenging and realistic operating condi-
tions.

4.4.1 Indoor-ITU Channel Model and Preset Scenar-
ios

To characterise typical Wi-Fi / 5G links inside buildings We adopt the ITU-
R P.1238 indoor pathloss model, enrich it with light Rayleigh small-scale
fading, and finally contaminate the signal with additive white Gaussian noise
(AWGN). The received complex base-band sample thus reads

y(t) = hray 10− P L(d)
20 x(t) + n(t), n(t) ∼ CN

(
0, σ2

n

)
, (4.2)

where x(t) denotes the transmitted symbol, hray ∼ CN (0, 1) is a mild (block-
fading) Rayleigh coefficient that remains constant over one packet, and the
deterministic large-scale attenuation is given by

PL(d) = 20 log10

(
fMHz

)
+ N log10

(
dm
)

+ Lf (n)− 28. (4.3)

Parameter definitions

• PL(d) Pathloss in decibels.

• fMHz Carrier frequency (MHz).

• dm Transmitter–receiver separation (m).

• N Environment-dependent distance exponent (typ. 20–30).

• Lf (n) = n Lwall Extra loss from traversing n identical walls/floors each
incurring Lwall dB.

• The constant −28 dB is an empirical bias built into the ITU formula-
tion.
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AWGN power σ2
n is selected such that the post-fading signal-to-noise ratio

equals the target SNRdB: σ2
n = E|hray|2 10−P L(d)/10 Px/10SNRdB/10, with Px =

E|x(t)|2.

Preset simulation scenarios Three representative indoor environments
are pre-configured as summarised in Table 4.2. Together they cover open-
plan offices, residential apartments, and large shopping areas—key use cases
for Wi-Fi 6/7 and indoor 5G small-cells.

Table 4.2: ITU indoor pathloss presets used in this study

Scenario f [MHz] d [m] N n (walls) Lwall [dB]

OFFICE 2400 15 28 2 6
HOME 5000 8 24 1 4
MALL 2400 25 22 0 –

In each case Equation (4.2) reproduces the aggregate effect of (i) frequency-
dependent free-space attenuation, (ii) distance-induced decay governed by
N , (iii) wall penetration losses Lf (n), (iv) slow Rayleigh fading reflecting
local multipath, and (v) thermal noise calibrated to the desired SNR. This
composite model supplies a realistic yet analytically tractable testbed for
assessing receiver robustness across diverse indoor deployments.

4.4.2 Comprehensive Performance Studies

Multi-Scenarios BER-SNR Characteristics

This comprehensive experiment establishes the fundamental performance
boundaries of our REST-UNet CPNC architecture by quantifying bit er-
ror rate (BER) degradation across diverse propagation environments under
varying signal-to-noise ratio (SNR) conditions. The experimental framework
implements a systematic evaluation protocol where each propagation sce-
nario undergoes rigorous testing with controlled parameters: residual self-
interference power fixed at ρSI = −15 dB (as shown in Figure 4.6), SNR
swept from 0 to 30 dB in 2 dB increments, and statistical reliability en-
sured through 100 independent channel realizations per test point. For each
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Figure 4.6: BER vs. SNR showing multipath-induced degradation with SI =
−15 dB

realization, the system transmits 105 QPSK-modulated bits encoded with
LDPC codes having rate R = k/n where k represents information bits and
n denotes codeword length, while the REST-UNet decoder processes the re-
ceived superimposed signals corrupted by both thermal noise and multipath
interference.

The propagation scenarios cover the three representative indoor wireless
environments defined in Table 4.2: ITU Office, ITU Home, and ITU Mall
settings, capturing a range of multipath conditions from light to heavy scat-
tering. Each scenario’s channel impulse response h(t, τ) follows the ITU-R
P.1238 model with environment-specific parameters including pathloss ex-
ponent N , wall penetration losses, and Rayleigh fading components. The
received signal at the relay undergoes complex baseband processing where
the superimposed constellation points y[n] = hA[n]xA[n]+hB[n]xB[n]+w[n]+
sSI[n] combine transmissions from nodes A and B with additive white Gaus-
sian noise w[n] ∼ CN (0, σ2) and residual self-interference sSI[n]. REST-
UNet’s neural architecture processes these corrupted observations through
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learned feature extraction layers that implicitly perform channel equaliza-
tion, interference suppression, and XOR network coding in the transformed
domain. The decoder outputs soft decisions on the XOR codeword ĉA⊕B

which, combined with known transmission cA from node A, yields the esti-
mated codeword ĉB = ĉA⊕B ⊕ cA for node B. Performance metrics are com-
puted by comparing decoded information bits against ground truth, with
BER calculated as BER = 1

Nbits

∑Nbits
i=1 ⊮[b̂i ̸= bi] where ⊮[·] denotes the indi-

cator function.
The experimental results depicted in Fig.4.6 reveal critical insights into

system behavior across propagation conditions. Comparing the AI-based
system (solid lines) against the baseline (dashed lines), We observe consistent
performance gains across all three scenarios. The ITU Office scenario shows
that only my system achieves a BER below 10−5 at around 16dB SNR, with
the AI system providing a substantial gain. In the ITU Home scenario,
the AI system maintains a similar advantage, reaching the target BER of
10−5 at an SNR about 14dB,lower than the baseline requires. The ITU
Mall scenario exhibits the best performance owing to the absence of wall
penetration losses, with both systems achieving slightly better BER curves.
The sharp waterfall region between 10 and 18dB SNR demonstrates effective
error-correction coding, while the consistently large advantage of REST-UNet
across all scenarios validates its robustness to varying indoor propagation
conditions.

Residual Self-Interference Sensitivity Analysis

Building upon the channel-specific performance characterization, this critical
experiment investigates the system’s tolerance to imperfect self-interference
cancellation—a fundamental limitation in practical full-duplex relay imple-
mentations. The experimental methodology systematically evaluates BER
sensitivity by varying residual self-interference (RSI) power ρSI from 0 dB
(no cancellation) to -30 dB (near-perfect cancellation) while maintaining
fixed SNR levels of 10, 20, and 30 dB across three representative ITU in-
door scenarios. This parameter space encompasses the full range of achiev-
able cancellation performance in current full-duplex systems, from basic RF
isolation providing 20-30 dB suppression to advanced hybrid analog-digital
techniques total cancellation.
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Figure 4.7: BER vs. RSI power at different SNRs in ITU indoor scenarios

The residual self-interference model captures realistic cancellation imper-
fections through sSI(t) = α(t) · xrelay(t − τSI) · ejϕ(t), where α(t) represents
time-varying leakage amplitude, τSI denotes propagation delay through the
isolation circuitry, and ϕ(t) models phase noise from local oscillator imper-
fections. The power ratio ρSI = 10 log10(PSI/Psignal) quantifies cancellation
effectiveness, with typical analog cancellation achieving -20 to -30 dB and
digital processing providing additional 30-40 dB suppression. For each test
configuration, the system processes 105 bits through the complete transmis-
sion chain: LDPC encoding, QPSK modulation, channel propagation with
RSI injection, REST-UNet decoding, and error counting.

The neural decoder architecture specifically addresses RSI challenges through
dedicated input channels that capture both in-phase and quadrature compo-
nents of the self-interference estimate ŝSI(t), enabling learned compensation
strategies that adapt to varying interference characteristics. The network’s
convolutional layers extract spatial-temporal features that distinguish be-
tween desired superimposed signals and correlated self-interference, while
skip connections preserve fine-grained phase information crucial for accurate
cancellation. This design philosophy reflects our key insight that neural pro-
cessing can exploit subtle statistical differences between intentional trans-
missions and leakage artifacts that traditional linear cancellation methods
cannot capture.

The experimental results presented in Fig. 4.7 reveal a pronounced thresh-
old behavior in system performance as a function of RSI level across all three
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ITU scenarios. For RSI power exceeding -10 dB, the system experiences
severe degradation with BER approaching 10−1 to 10−2, indicating that ba-
sic RF isolation alone proves insufficient for reliable CPNC operation. As
cancellation improves beyond -15 dB, We observe rapid BER reduction fol-
lowing an approximately exponential trajectory, with each additional 10 dB
of suppression yielding nearly an order-of-magnitude improvement in error
rate.

The scenario-dependent analysis reveals interesting patterns: the ITU Of-
fice scenario (left panel) shows the steepest improvement with RSI reduction,
particularly at higher SNR values, where BER drops from 10−2 at -10 dB RSI
to below 10−5 at -30 dB RSI for SNR=30dB. The ITU Home scenario (mid-
dle panel) exhibits similar trends but with slightly higher BER floors due to
wall penetration losses. The ITU Mall scenario (right panel) demonstrates
the best overall performance, benefiting from the absence of wall losses and
achieving the lowest BER values across all RSI levels.

Particularly noteworthy is the SNR-dependent sensitivity revealed by
varying curve slopes: at 30 dB SNR (green curves), the BER-RSI charac-
teristic exhibits steeper descent compared to 10 dB SNR (blue curves), indi-
cating that high-SNR systems demand superior interference cancellation to
fully exploit their link budget advantages. This counterintuitive result stems
from the fact that at low SNR, thermal noise dominates error mechanisms,
partially masking RSI effects, while high-SNR operation exposes the system
to interference-limited performance where RSI becomes the primary error
source. The -15 dB threshold emerges as a critical design parameter, repre-
senting the minimum cancellation requirement for achieving target BER of
10−5 across all tested scenarios.

Relay Timing Optimization

This experiment addresses a critical yet often overlooked aspect of practical
relay deployment: the impact of processing delays and timing misalignment
on system performance. Unlike idealized theoretical analyses assuming per-
fect synchronization, real-world relay implementations must contend with
variable processing latencies arising from channel estimation, LDPC decod-
ing iterations, and hardware-dependent computational delays. Our inves-
tigation quantifies these effects by evaluating system performance across a
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range of relay wait times δ ∈ [0, 60] µs while considering realistic signal ar-
rival variations t ∼ U [10, 50] µs that model propagation uncertainties and
clock drift in distributed networks.

The experimental framework implements a sophisticated timing model
that captures the interplay between processing deadlines and accumulating
self-interference. When the relay initiates reception at time t0, it must decide
its processing window duration δ before actual signal arrivals at t0 + tA and
t0 +tB from nodes A and B respectively. This creates a fundamental tradeoff:
insufficient wait time (δ < max(tA, tB)) results in incomplete frame reception
and certain decoding failure, while excessive delay (δ ≫ max(tA, tB)) allows
accumulated self-interference to degrade signal quality. The decision logic
implements conditional processing where frames arriving within the window
(t ≤ δ) undergo full REST-UNet decoding with corresponding RSI level
ρSI(δ) = ρSI,0 + 10 log10(δ/δ0), while late arrivals trigger frame erasure with
all-zero output.

To model realistic processing delays, We incorporate stochastic latency
variations based on hardware platform characteristics. The total processing
time Tproc = T0+Niter·Titer+ϵjitter combines baseline latency T0 ∼ N (µT0 , σ2

T0),
iteration-dependent LDPC decoding time with Niter ∼ Poisson(λ(SNR)),
and system jitter ϵjitter ∼ LogNormal(0, σ2

j ). Platform-specific parameters re-
flect implementation realities: FPGA systems achieve (µT0 , σT0) = (10, 3) µs
with per-iteration latency (2.0 ± 0.5) µs, while CPU implementations ex-
hibit higher baseline (150 ± 50) µs and iteration costs (50 ± 20) µs. The
expected iteration count decreases with SNR following E[Niter] = max(3, 8−
0.4(SNR − 10)), capturing the empirical observation that cleaner channels
require fewer decoding iterations.

The comprehensive results illustrated in Fig. 4.8 reveal three distinct op-
erational regimes with clear performance boundaries across all three ITU sce-
narios. In the insufficient wait region (δ < 10 µs), premature processing ter-
mination causes catastrophic frame loss rates, resulting in BER approaching
0.5 as the system defaults to random guessing for missing data. The optimal
operating window emerges within δ ∈ [10, 50] µs, where timing parameters
align with typical signal arrival distributions—this region achieves minimal
BER by ensuring complete frame reception while limiting RSI accumulation
to tolerable levels. Beyond 50 µs, although frame completion rates plateau
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Figure 4.8: BER vs. relay wait time δ at different SNRs in ITU indoor
scenarios

near 100%, the rising RSI power degrades performance not through accumu-
lated self-interference, but because the system enters standby—wasting idle
time and lowering overall efficiency.

The scenario-dependent behavior provides crucial insights for adaptive
system design. The ITU Office scenario (left panel) shows the most pro-
nounced sensitivity to timing, with a narrow optimal window around 30 µs
and rapid degradation on either side. The ITU Home scenario (middle panel)
exhibits slightly broader tolerance due to the wall penetration losses that al-
ready limit performance. The ITU Mall scenario (right panel) demonstrates
the most forgiving timing characteristics, maintaining acceptable BER over
a wider range of δ values.

SNR-dependent analysis reveals that high-SNR scenarios (30 dB, green
curves) exhibit sharper transitions and narrower optimal windows due to in-
creased sensitivity to interference, while low-SNR conditions (10 dB, blue
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Table 4.3: REST-UNet learnable parameter composition (precision: 10−3 M)

Module Conv 3× 3 Conv 1× 1 BN Total
[M parameters]

Init 0.004 0.000 0.000 0.004
Encoder 1 0.074 0.012 0.000 0.087
Encoder 2 0.074 0.012 0.000 0.087
Encoder 3 0.221 0.041 0.000 0.263
Encoder 4 0.885 0.165 0.001 1.051
Bottleneck 2.360 0.395 0.002 2.757
Decoder 1 1.180 0.197 0.001 1.379
Decoder 2 0.590 0.082 0.001 0.673
Decoder 3 0.148 0.021 0.001 0.169
Decoder 4 0.111 0.017 0.000 0.128
Output 1×1 0.000 0.000 0.000 0.000

Total 5.647 0.943 0.006 6.596

curves) demonstrate broader tolerance to timing variations as thermal noise
masks moderate RSI increases. These findings establish concrete implemen-
tation guidelines: relay systems should target 30 µs nominal wait time with
adaptive adjustments based on measured channel conditions, providing 10 µs
margins for arrival uncertainty while maintaining RSI below critical thresh-
olds. The analysis further suggests that advanced implementations could
benefit from predictive timing algorithms that estimate optimal δ based on
historical arrival patterns and current channel states, potentially reducing
average latency while maintaining target reliability.

System-Level Performance Trade-offs

Parameter budget. Table 4.3 decomposes the 6.596 M learnable param-
eters of REST-UNet into three structural categories: 3 × 3 convolutions,
1× 1 convolutions, and batch–normalisation (BN) scale/offset vectors.

90



Table 4.4: Estimated inference latency for a single forward pass (50 % hard-
ware utilisation).

Device & precision Peak Ppeak Effective Latency
[TFLOPS/TOPS] [0.5 Ppeak] [ms]

NVIDIA RTX 4090 (FP32) 82.6 TFLOPS† 41.3 0.22
Jetson AGX Orin (INT8) 275 TOPS 137 0.07
Xilinx ZU7EV DPU (INT8) 2.4 TOPS 1.2 7.56
Intel Stratix 10 GX 280 (FP32) 8.6 TFLOPS 4.3 2.11
Google Edge TPU USB (INT8) 4 TOPS 2 4.54
TI TMS320C6678 DSP (FP32) 160 GFLOPS 0.08 113

†Public specification from TechPowerUp; all other peak figures taken from the respective
vendor data-sheets.

Computational budget. For a single forward pass the floating-point op-
erations (FLOPs) are dominated by convolutions and are obtained from

FLOPstot = 2
∑

l

KhKwCinCoutHoutWout ≈ 9.07 GFLOPs,

where the factor 2 counts one multiply and one add per MAC. Point-wise
activations and pooling operations contribute < 2% and are therefore ne-
glected.

Inference latency on representative hardware. Assuming a realistic
50% utilisation of the quoted peak arithmetic throughput Ppeak, the wall-
clock latency for one forward pass is

t = 9.07 GF
0.5 Ppeak

.

Table 4.4 summarises the resulting system-level delays.

Throughput validation. Figure 4.9 contrasts the bit-level average nor-
malised throughput of CPNC with and without REST-UNet equalisation
over an SNR sweep. The REST-UNet-enhanced curve (red triangles) climbs
rapidly and plateaus at ≈ 2 b / Hz, realising almost the ideal full-duplex
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Figure 4.9: Bit-level average normalised throughput for CPNC with and
without REST-UNet

doubling in spectral efficiency, whereas the baseline (blue squares) satu-
rates ≈ 13.5% lower. The margin originates from residual self-interference
and mandatory LDPC/FEC overheads, which are unaltered by our neural
equaliser.

Putting it all together. The REST-UNet adds a light 6.6 M-parameter
head and a 9.07 GFLOP compute cost to the physical layer, yet yields:

1) Throughput recovery: the 13.5 % gain translates to an ≈ 270 Mbps
capacity boost on a 2 Gbps full-duplex link.

2) Latency compliance: sub-millisecond inference on edge-class SoCs
(Orin: 0.07 ms) keeps the 1 ms URLLC budget intact.

3) Deployment flexibility: compatible runtimes on GPU, FPGA and
NPU/DSP hardware enable both centralised cloud processing and dis-
tributed edge intelligence.

Hence, the REST-UNet–CPNC stack reaches the full-duplex throughput
bound while staying comfortably within the computational and latency con-
straints of next-generation wireless systems.
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4.5 Summary and Insights
This chapter establishes rigorous validation of our integrated REST-UNet-
CPNC framework through systematic experimentation, revealing fundamen-
tal advances in full-duplex relay design. The coherent signal combining in-
herent to CPNC fundamentally transforms spectral efficiency boundaries,
demonstrated by achieving ANT=1.73 at 30 dB SNR—a 73% throughput
improvement over conventional PNC’s limit of ANT=1.0. While this falls
short of the theoretical doubling (ANT=2.0), the 27% gap is directly at-
tributable to residual interference accumulation, proving that sophisticated
cancellation architectures like REST-UNet are essential for practical realiza-
tion.

REST-UNet emerges as the critical enabling technology, consistently out-
performing conventional receivers across all tested scenarios. In baseline com-
parisons, REST-UNet achieves approximately 62% uncoded BER reduction
over the baseline and about 44% error reduction relative to DeepRx at 10
dB SNR. The architecture demonstrates exceptional robustness to channel
variations, maintaining BER below 10−5 up to 250 Hz Doppler shift (ver-
sus the baseline’s collapse at 100 Hz) and exploiting multipath diversity to
achieve a 105-fold BER reduction in delay-spread channels exceeding 80 ns.
These capabilities prove particularly valuable in challenging scenarios like
high-speed rail, where REST-UNet reduces BER by over two orders of mag-
nitude compared to conventional receivers.

Four cardinal insights emerge from cross-experimental analysis of the in-
tegrated REST-UNet CPNC system:

First, the residual self-interference threshold of -15 dB represents a critical
design parameter for achieving target BER of 10−5 across all indoor scenarios.
This finding, derived from systematic RSI sensitivity analysis, establishes
concrete requirements for interference cancellation subsystems and validates
our architectural choices.

Second, relay timing optimization reveals an optimal processing window
about 30µs that balances frame completion against RSI accumulation. The
sharp performance degradation outside this window—where insufficient wait
times lead to signal misalignment and increased decoding difficulty, and ex-
cessive delays cause system stalls that waste overall efficiency—underscores
the importance of adaptive timing control in practical implementations.
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Third, scenario-dependent performance variations highlight the system’s
adaptability: while all three ITU indoor scenarios (Office, Home, Mall)
achieve reliable communication, the Mall scenario consistently outperforms
others due to absence of wall penetration losses, suggesting deployment pri-
oritization strategies.

Fourth, the synergistic integration of CPNC’s coherent combining with
REST-UNet’s advanced signal processing yields multiplicative benefits: CPNC
provides the theoretical framework for throughput doubling, while REST-
UNet supplies the practical interference suppression necessary to approach
this limit. The combined system achieves near-theoretical full-duplex capac-
ity across operational scenarios.

These findings collectively demonstrate that the co-optimized REST-
UNet-CPNC architecture successfully bridges the gap between theoretical
promise and practical implementation, achieving double real-world through-
put gains over half-duplex systems while maintaining reliability compara-
ble to conventional approaches. The comprehensive validation across diverse
propagation conditions, interference levels, and timing constraints establishes
a solid foundation for the hardware prototype implementation detailed in
Chapter 5.
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Chapter 5

Conclusion

5.1 Concluding Remarks
This dissertation set out to answer a deceptively simple question: “Can
physical-layer network coding be made practical for modern full-duplex OFDM
radios in the presence of non-negligible residual self-interference?” Through
systematic theoretical development, algorithmic innovation, and comprehen-
sive experimental validation, we have demonstrated that the answer is defini-
tively yes—but with important caveats regarding implementation constraints
and performance trade-offs.

To address this challenge, we have (i) proposed the Concurrent Physical-
Layer Network Coding (CPNC) paradigm by enforcing a fixed forward-
ing delay δ at the relay; (ii) formulated residual self-interference (RSI) sup-
pression as a learnable signal reconstruction problem and solved it with the
Residual Attention U-Net (REST-UNet) architecture; and (iii) seam-
lessly integrated REST-UNet into CPNC, demonstrating substantial through-
put improvements and robust error-rate performance under realistic channel
conditions. It should be noted that due to the lack of a general solution
for incorporating high-order modulations into PNC, this work is currently
limited to bijection modulation schemes.

The extensive Monte-Carlo simulations and experimental studies pre-
sented in Chapter 4 establish that the integrated REST-UNet-CPNC ar-
chitecture advances full-duplex relay technology through three key achieve-
ments:
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• Practical interference management: Achieves reliable communi-
cation (BER < 10−5) with residual self-interference levels as high as
−15 dB, representing a critical threshold for practical deployment.
The system maintains acceptable performance across diverse indoor
propagation scenarios (ITU Office, Home, and Mall), demonstrating
robustness to real-world channel variations.

• Substantial throughput gains: Delivers average normalized through-
put (ANT) of 1.73 at high SNR (≥ 30 dB), representing a 73% im-
provement over conventional half-duplex PNC’s theoretical limit of 1.0.
While falling short of the ideal full-duplex target of 2.0, the system
achieves 86.5% of the theoretical full-duplex capacity (1.73/2.0), rep-
resenting a significant practical advancement toward the theoretical
bound.

• Implementation feasibility: Maintains optimal performance within
a relay timing window of 10–50 µs, with peak performance around
30 µs, balancing signal synchronization requirements against RSI ac-
cumulation. The REST-UNet architecture demonstrates consistent
advantages over conventional receivers across varying channel condi-
tions, achieving approximately 62% uncoded BER reduction compared
to baseline LS+MMSE+LDPC processing at 10 dB SNR.

These achievements address the three research objectives established in
this work:

Objective 1 (5G-compatible FD-PNC framework) is fulfilled through
the CPNC architecture that seamlessly integrates with 5G NR specifications
while achieving 73% throughput improvement at high SNR—a substantial
gain. The framework successfully operates with standard OFDM numerolo-
gies and LDPC coding schemes.

Objective 2 (AI-based receiver architecture) is realized through REST-
UNet, which demonstrates superior performance in jointly handling super-
imposed signals, residual self-interference, and channel impairments. The
architecture achieves approximately 62% BER reduction over conventional
processing and 44% reduction compared to DeepRx at 10 dB SNR, while
maintaining robustness to distribution shifts between training and deploy-
ment conditions.
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Objective 3 (System integration and characterization) is validated through
comprehensive performance analysis revealing critical design parameters: the
−15 dB RSI threshold for reliable operation, the 10–50 µs optimal timing
window, and scenario-dependent performance variations that inform deploy-
ment strategies.

5.2 Contributions
This dissertation makes three principal contributions to the field of wireless
communications:

C1. Concurrent Physical-Layer Network Coding (CPNC). We pro-
pose the first practical full-duplex PNC scheme compatible with 5G NR
systems, achieving coherent signal combining at complex-valued Bijec-
tive Modulation constellations through a novel relay architecture. The
key innovation lies in the synchronized transmission protocol with fixed
forwarding delay δ, which enables constructive superposition of bidi-
rectional signals while maintaining compatibility with standard OFDM
numerologies and LDPC coding. This architectural breakthrough trans-
forms the theoretical promise of full-duplex PNC into a deployable so-
lution for modern wireless networks, providing valuable insights into
spectrum efficiency in relay-assisted communications.

C2. REST-UNet End-to-End AI Receiver. We develop a novel neu-
ral architecture that jointly performs channel estimation, equalization,
interference suppression, and signal detection through learned transfor-
mations. REST-UNet outperforms conventional receivers by approxi-
mately 62% in uncoded BER reduction at 10 dB SNR and demonstrates
exceptional robustness to channel variations—maintaining BER below
10−5 up to 250 Hz Doppler shift where conventional receivers experience
severe degradation at 100 Hz. The architecture’s ability to exploit mul-
tipath diversity in TDL-E channels with high delay spreads represents
a paradigm shift in receiver design.

C3. Integrated REST-UNet-CPNC System. We establish the first
comprehensive framework combining coherent network coding with AI-
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enhanced signal processing. System-level analysis reveals critical op-
erational parameters: −15 dB minimum RSI suppression requirement,
10–50 µs optimal relay timing window, and scenario-dependent perfor-
mance characteristics. The integrated system achieves 86.5% of the-
oretical full-duplex capacity at high SNR, validating the synergistic
benefits of combining physical-layer innovation with machine learning.

5.3 Future Works
While the proposed framework establishes the feasibility of practical full-
duplex PNC, several research directions warrant investigation to bridge the
remaining gap to theoretical limits and enable commercial deployment:

• Enhanced Interference Cancellation. The fundamental challenge
lies in effective signal decoding under the joint impact of residual self-
interference, inter-node interference from superimposed transmissions,
and complex channel conditions. Future architectures must address
this multi-dimensional interference problem where traditional linear
cancellation methods fail. Physics-informed neural networks or ad-
vanced hybrid analog-digital techniques could learn to disentangle these
overlapping interference sources, particularly in scenarios where high-
complexity channel models and strong interference levels create non-
linear coupling effects that defy conventional signal processing approaches.

• Hardware Implementation and Validation. Transitioning from
simulation to FPGA/ASIC implementation will reveal practical con-
straints including quantization effects, finite-precision arithmetic, and
real-time processing limitations. The current inference latency esti-
mates (0.07 ms on Jetson AGX Orin) suggest feasibility, but hardware-
aware training incorporating these constraints could optimize the
performance-complexity trade-off for commercial deployment.

• High-Order Modulation Support. Extending the framework be-
yond QPSK to higher-order constellations such as 16-QAM and 64-
QAM represents a critical advancement for spectral efficiency. Future
research could explore coding-assisted techniques or multi-stage map-
ping approaches to address the current lack of general solutions for
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PNC high-order modulation mapping, potentially combining advanced
channel coding with constellation shaping to enable reliable operation
at higher spectral densities.

• Adaptive System Optimization. The observed scenario-dependent
performance variations (ITU Office, Home, Mall) suggest opportunities
for adaptive parameter control. Reinforcement learning agents could
dynamically adjust relay timing, modulation schemes, and processing
parameters based on real-time channel conditions, potentially improv-
ing average throughput by 10–15%.

• MIMO and Multi-Relay Extensions. Extending CPNC and REST-
UNet to multi-antenna systems and relay networks represents a natu-
ral evolution. Spatial diversity could mitigate the residual interference
limitations identified in single-antenna configurations, potentially ap-
proaching the theoretical 2× throughput bound.

• Standards Integration and Field Trials. Aligning the framework
with evolving 6G standards and conducting field trials in realistic de-
ployment scenarios will validate laboratory findings and inform stan-
dardization efforts. Particular focus should address integration with
existing network infrastructure and backward compatibility require-
ments.

• Cross-Layer Optimization. The physical-layer gains demonstrated
in this work could be amplified through joint optimization with higher
protocol layers. Integrated design considering MAC scheduling, net-
work coding, and application requirements could yield end-to-end per-
formance improvements exceeding the sum of individual layer optimiza-
tions.

These future directions collectively aim to transform the proof-of-concept
demonstrated in this dissertation into commercially viable technology, ulti-
mately enabling the ultra-reliable, low-latency communication services envi-
sioned for 6G networks and beyond.

99



Bibliography

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang. The
roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag.,
57(8):84–90, 2019.

[2] F. F. Al-Azzawi, R. A. Khamees, Z. A. Lateef, and B. F. Al-Azzawi.
Specification of downlink-fixed reference channel DL-FRC for 5G new
radio technology. Int. J. Electr. Comput. Eng. (IJECE), 12(1):453–459,
2022.

[3] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional net-
works for biomedical image segmentation. In Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), pages 234–241.
Springer, 2015.

[4] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and
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