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Quality-focused Active Adversarial Policy for Safe
Grasping in Human-Robot Interaction

Chenghao Li, Graduate Student Member, IEEE, Razvan Beuran, Senior Member, IEEE, and Nak Young Chong,
Senior Member, IEEE

Abstract—Vision-guided robot grasping methods based on
Deep Neural Networks (DNNs) have achieved remarkable
success in handling unknown objects, attributable to their
powerful generalizability. However, these methods with this
generalizability tend to recognize the human hand and its
adjacent objects as graspable targets, compromising safety
during Human-Robot Interaction (HRI). In this work, we
propose the Quality-focused Active Adversarial Policy (QFAAP)
to solve this problem. Specifically, the first part is the Adversarial
Quality Patch (AQP), wherein we design the adversarial quality
patch loss and leverage the grasp dataset to optimize a patch
with high quality scores. Next, we construct the Projected
Quality Gradient Descent (PQGD) and integrate it with the
AQP, which contains only the hand region within each real-time
frame, endowing the AQP with fast adaptability to the human
hand shape. Through AQP and PQGD, the hand can be actively
adversarial with the surrounding objects, lowering their quality
scores. Therefore, further setting the quality score of the hand
to zero will reduce the grasping priority of both the hand and
its adjacent objects, enabling the robot to grasp other objects
away from the hand without emergency stops. We conduct
extensive experiments on the benchmark datasets and a cobot,
showing the effectiveness of QFAAP. Our code and demo videos
are available in the supplementary items.

Note to Practitioners—This work is inspired by adversarial
attacks but from a completely different perspective: exploring
the benign aspects of adversarial attacks to address the safety
problem of DNNs-based grasping in cluttered HRI scenarios.
Specifically, we aim to enable the robot to grasp objects away
from the human hand and its adjacent objects without triggering
emergency stops. This is realized by designing benign, quality
score-based adversarial examples with shape adaptability to
alter the grasping sequence, thereby avoiding collision risks
between the robot and human hand during grasping. Our
approach presents innovative solutions for future research on
benign adversarial attacks in real-world robot grasping and
offers practical insights for the engineering implementation of
safe robot grasping systems based on DNNs.

Index Terms—Robot grasping, human-robot interaction, grasp
quality score, deep learning, adversarial attack.

I. INTRODUCTION

V ISION-guided robot grasping is one of the critical capa-
bilities for HRI [1], aimed at helping humans improve

work efficiency in the service and manufacturing domain.
Traditional visual grasping methods typically construct a grasp
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Institute of Science and Technology, 1-1, Asahidai, Nomi, 923-1292, Ishikawa,
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Fig. 1. An example of a cluttered HRI scenario: the robot mistakenly identifies
the human hand or adjacent objects as graspable targets for autonomous
grasping, causing harm to the human. We highlight the robot, the human hand,
and the target object using yellow, green, and blue borders, respectively.

database based on three-dimensional (3D) object models,
incorporating performance metrics derived from geometric and
physical properties [1], [2] and employing stochastic sampling
to account for grasping uncertainty [3]. However, these meth-
ods are inherently limited by their reliance on known 3D object
models, rendering them ineffective when applied to novel
objects. To address this limitation, recent studies [4], [5] have
introduced an alternative paradigm that leverages DNNs [6]–
[10] to train function approximators. These approximators pre-
dict grasp candidates directly from images, utilizing datasets
comprising empirical grasp successes and failures, thereby
enabling efficient generalization to previously unseen objects
at substantially lower cost. However, these methods with this
generalizability may also recognize the human hand and its
adjacent objects as graspable targets, compromising safety
during HRI. Particularly in multi-object or cluttered scenes,
collisions between the robot and the human can occur in two
situations. The first is when the robot directly recognizes the
human hand and attempts to grasp it, resulting in a collision.
The second is when the robot identifies an object adjacent to
the human hand, and while grasping this object, the gripper
opens to a specific width and consequently collides with the
hand (as shown in Fig. 1). Therefore, given the growing trend
of large-scale deployment of DNNs-based visual grasping
systems in HRI scenarios, it is important to address the safety
concerns in both situations to avoid workplace injuries and
accidents.

Some methods assist robots in avoiding collisions with
human hands and enabling interaction by segmenting human
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hands or estimating their pose or motion, as exemplified
in Robot-to-Human Handover (R2H) [11] and Human-to-
Robot Handover (H2R) [12]–[15]. Although these methods
are effective in helping robots avoid human hands during
handover, most are limited to the handover problem between
humans and robots in simple single-object scenarios. However,
in real-world HRI contexts, cluttered scenes are more general,
and human hands typically appear within the grasping view
of the robot rather than only during handover. For instance,
in collaborative sorting, services, and household assistance,
ensuring that robots can execute grasping operations while
simultaneously avoiding both the human hand and nearby ob-
jects within the grasping view is critical. Specifically, consider
a scenario in which a robot and a human jointly clean a
cluttered table: the robot executes grasping operations, while
the human receives the grasped objects and transfers them to
a storage bin located outside the robot’s workspace. From a
robot-centric viewpoint, when the robot prepares for the next
grasp and detects a human hand appearing in its camera view
to receive an object, failure to avoid the hand or nearby objects
may potentially lead to human injury. Therefore, different from
the problem that the above handover works focused on, this
paper will emphasize the grasping safety problem of how to
enable robots to autonomously avoid the human hand and
objects close to the hand during grasping without emergency
stops in cluttered HRI scenarios, which is a new and more
challenging problem in DNNs-based visual grasping.

How to address this problem? A straightforward engineer-
ing approach is first detecting the human hand mask, then
applying dilation to expand the mask, and setting the grasp
quality scores within the expanded mask to zero, thereby
enabling the robot to avoid both the human hand and adjacent
objects during grasping. However, our experiments reveal
that this method substantially reduces the workspace of the
robot because a large dilation radius is necessary for it to
be effective, which means that the invalid workspace will
include areas that will not result in colliding with the hand.
An alternative approach is to use a decay function after the
dilation process to gradually reduce the grasp quality score
based on the distance between the original mask and the
expanded mask, thereby preserving most of the workspace of
the robot. Nevertheless, our experimental results show that this
method requires manually set heuristic parameters, which are
rigid and less adaptable to variations in hand pose. Therefore,
addressing the problem of avoiding grasping human hands and
nearby objects in cluttered HRI scenarios through the adaptive
optimization policy should be more appropriate.

Inspired by adversarial attacks [16]–[18], which leverage the
interpretability flaws of DNNs to optimize perturbations that
interfere with model predictions, we investigate from a novel
perspective: whether adversarial attacks can be used as benign
adversarial perturbations to interfere with the grasp quality
score, thereby dynamically adjusting the grasping sequence
of the robot to actively avoid the human hand and objects
adjacent to it. Therefore, based on this new perspective, the
method we aim to design differs significantly from common
adversarial attacks. Firstly, most adversarial attack methods
focus on how to attack the model. In contrast, our goal

is not to attack or defend [19] but to address the safety
issue in DNNs-based visual grasping within HRI scenarios
through controllable perturbations. Secondly, our method em-
phasizes actively perturbing the grasp quality score to alter
the grasping priority of human hands and their neighboring
objects, thereby guiding the robot to avoid grasping them. In
contrast, common adversarial attacks primarily aim to degrade
detection accuracy [20], [21], cause misclassification [22],
[23] or mislocalization [21], and evade detection [24]–[26].
Finally, since human hands can appear with arbitrary postures
to perform tasks in various HRI scenarios, the perturbation we
want to design must conform closely to the shape of the hand
at a fast speed, keeping the hand away from the robot gripper.
This is much more difficult than other adversarial attacks [16],
[20], [21] that apply perturbations with fixed shapes or extend
to other specific shapes through complicated processes and
high costs [25]–[27].

Along these lines, this paper proposes the Quality-focused
Active Adversarial Policy (QFAAP), which first optimizes an
Adversarial Quality Patch (AQP) with high quality scores by
the adversarial quality patch loss and the grasp dataset. Next,
integrate AQP that contains only the hand region within each
real-time frame with the Projected Quality Gradient Descent
(PQGD), ensuring AQP has fast adaptability to the human
hand shape. By applying AQP and PQGD, the hand can
actively interfere with nearby objects, reducing their quality
score. Further, setting the quality score of the hand to zero
will simultaneously lower the grasping priority of both the
hand and surrounding objects, enabling the robot to actively
avoid them while grasping without emergency stops.

A summary of the contributions in this work is as follows:

1) We reveal a new and more challenging problem in
DNNs-based visual grasping: how to enable robots to
simultaneously and adaptively avoid human hands and
nearby objects without emergency stops during grasping
in clutter. Addressing this problem is critical for achiev-
ing safe grasping in broad HRI scenarios.

2) We propose the QFAAP, the first comprehensive safe
grasping policy based on benign adversarial perturba-
tions. QFAAP enables fast adaptive and controllable per-
turbations that alter grasping priorities, ensuring that the
human hand and its neighboring objects are deprioritized
while preserving the model’s original grasping ability.
This policy highlights how adversarial attacks can be
transformed into safety-enhancing mechanisms, offering
both theoretical insights and practical guidelines for the
development of safe robot grasping systems.

3) We release our code publicly available to facilitate repro-
ducibility and to foster further research on adversarially
enhanced safe grasping in cluttered HRI scenarios.

This paper is organized into the following sections. Section
II (Related Work) reviews vision-guided robot grasping and
adversarial attacks. Section III (Proposed Method) provides an
overview of QFAAP, detailing its two components (AQP and
PQGD), and discusses how QFAAP is implemented in robot
grasping. Section IV (Experiments) validates the effectiveness
of our method in benchmark datasets and real-world grasping
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scenarios. Finally, Section V (Conclusion) summarizes the
work of this paper and provides prospects for future research.

II. RELATED WORK

A. Vision-guided Robot Grasping

While many grasping frameworks exist, this work fo-
cuses explicitly on vision-guided 4-Degree-of-Freedom (4-
DOF) grasping using a parallel-jaw gripper, which can be
broadly categorized into traditional methods and DNNs-based
methods. Traditional grasping methods are founded on mathe-
matical and physical models that characterize object geometry,
kinematics, and dynamics [1]–[3]. These methods typically
assume the availability of a detailed 3D model of the object,
which is leveraged to compute stable grasp configurations. For
instance, Gallegos et al. [28] optimized grasping strategies
by utilizing predefined contact points on known 3D object
models. Similarly, Pokorny et al. [29] introduced the concept
of grasping spaces, enabling the mapping of objects to these
spaces for grasp synthesis. While these approaches exhibit
robustness in structured environments, their applicability is
inherently constrained by the prerequisite of complete 3D
object models, and they are often unavailable in unstructured
environments containing novel objects. This limitation under-
scores the need for more flexible grasping strategies to handle
object uncertainty in unstructured environments.

DNNs-based visual grasping methods demonstrate strong
generalization capabilities to novel objects by employing func-
tion approximators trained on extensive datasets to predict the
grasp success probability from images. Consequently, datasets
play a pivotal role in these methods. A notable human-labeled
dataset is the Cornell Grasping Dataset [30], which comprises
approximately 1,000 RGB-D images and has been widely
utilized for training grasping models in single-object scenar-
ios [31]–[37]. The Dex-Net series [4], [38]–[41] introduced a
large-scale synthetic dataset that integrates various cluttered
environments to acquire cluttered grasping capabilities, sig-
nificantly advancing the field of visual grasping. Similarly,
GraspNet [5], [42], [43] constructed a real-world dataset
encompassing one billion grasp labels and nearly 100,000
images across 190 densely cluttered scenes and support both
4-DOF and 6-Degree-of-Freedom (6-DOF) grasping, which
further improves the grasping ability for unknown objects in
cluttered scenarios.

Although the aforementioned DNNs-based methods demon-
strate strong generalization capabilities for unknown objects in
unstructured environments, they emphasize grasp generaliza-
tion while neglecting grasp safety. Specifically, these methods
with this generalizability will also recognize human hands
and adjacent objects as graspable targets, compromising safety
during HRI.

B. Adversarial Attacks

Since Szegedy et al. [44] first identified adversarial ex-
amples, extensive research has been conducted to expose
the vulnerability of DNNs. These efforts generally fall into

two categories: single-image adversarial attacks and image-
agnostic attacks (adversarial patch attacks). Single-image ad-
versarial attacks achieve their attacks by maximizing the dis-
criminative loss of the model to generate global perturbations
that cover the entire image. Goodfellow et al. [16] designed
a Fast Gradient Sign Method (FGSM) to produce strong
perturbations based on investigating the model’s linear nature.
Wang et al. [45] and Madry et al. [22] further broke the
one-step generation of perturbation in FGSM into iterative
generation and proposed I-FGSM and Projected Gradient
Descent (PGD) attack. Although the single-image adversarial
attacks can rapidly attack image classification models, causing
them to produce misclassification results, they were limited to
one specific image and entire image regions, which means
each new image requires re-optimization. Thus, this limita-
tion highlights the need for more flexible methods to attack
arbitrary images and any local regions within an image.

Adversarial patch attacks, characterized by their locality and
image-agnostic nature, effectively compromise object detec-
tion models with localization properties. For instance, Liu
et al. [46] designed DPatch to attack widely used object
detectors, degrading their detection accuracy and thereby caus-
ing mislocalization or misclassification. Later, Lee et al. [47]
investigated failure cases of DPatch and subsequently intro-
duced the Robust DPatch. Beyond causing mislocalization or
misclassification, some studies focused on evading detection,
preventing detectors from recognizing objects occluded by
adversarial patches, as explored in [21], [24]. Later works,
such as [25]–[27], extended adversarial patches by replicating
them into adversarial clothing, enabling more flexible evasion
across different viewing angles. However, this replication-
based extension is costly and typically limited to the fold
variations of clothes.

Overall, the aforementioned single-image adversarial and
adversarial patch attacks have demonstrated effectiveness, but
how to transform these attacks into controllable benign ad-
versarial to address safety concerns in DNNs-based grasping
remains unexplored. Moreover, another important yet underex-
plored direction is how to actively manipulate the grasp quality
score in DNNs-based grasping to alter the grasping priority
of the robot. Finally, rapidly achieving shape adaptability
for adversarial perturbations at minimal cost is critical and
practical in robot grasping, which often needs to deal with
objects with different shapes. So, in this work, we leverage
the advantages of single-image adversarial and adversarial
patch attacks, and propose a novel active adversarial method
with rapid human hand shape adaptability by manipulating the
grasp quality score, which aims to address the safety problem
of DNNs-based grasping in the HRI process.

III. PROPOSED METHOD

In this section, we will first make an overview of QFAAP.
Then, a comprehensive description of two important modules
(AQP and PQGD) will be provided. Finally, we will explain
how to deploy QFAAP to improve visual grasping safety in
cluttered HRI scenarios.
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Fig. 2. Pipeline of QFAAP: Firstly, the original RGB frame x is captured by the depth camera, and a hand segmentation algorithm (HS) is applied to obtain
the hand mask Mh, as shown in the subfigure on the far left (first column) and the top row of the second column. Next, the optimized AQP is incorporated
into x while preserving only the hand region, generating x′, as shown in the bottom row of the second column. In the third stage, PQGD is applied to x′

with Mh to rapidly endorse the shape adaptability of AQP, producing x′′
t , as shown in the top row of the third column. In the fourth stage, x′′

t is fed into the
grasping model (GM) to obtain the quality map Qt, followed by getting the quality map Q̃h

t outside the hand region by Mh, as shown in the bottom rows
of the third and fourth column. Finally, selecting the optimal grasp (SOG) g∗t (emphasized by the green circle and orange dot) with the maximum quality
score (emphasized by the orange dot, translucent white circle, and translucent white dotted arrow) within Q̃h

t , as shown in the top row of the fourth column.
The above process can effectively shift the initial hazardous grasp (the robot is emphasized as a blurred version) located near the hand (emphasized by the
green border) toward a safer grasp (the object being grasped and the robot are emphasized with the blue and yellow borders), as shown in the first column.

A. Overview of QFAAP

We propose the Quality-focused Active Adversarial Policy
(QFAAP) to enhance the safety of DNNs-based visual grasp-
ing in cluttered HRI scenarios. QFAAP consists of two key
modules: the Adversarial Quality Patch (AQP) and Projected
Quality Gradient Descent (PQGD). The AQP is optimized by
the adversarial quality patch loss and grasp dataset, ensuring
adversarial effectiveness against the quality score of any
image. The PQGD can be integrated with AQP, which contains
only the hand region within each real-time frame, endowing
AQP with fast human hand shape adaptability. By applying
AQP and PQGD, the hand can actively perturb nearby objects
to reduce their quality score in the model prediction process.
Further, setting the quality score of the hand to zero will
simultaneously lower the grasping priority of both the hand
and surrounding objects, enabling the robot to actively avoid
them while grasping without emergency stops in cluttered HRI
scenarios. The pipeline of the QFAAP framework is illustrated
in Fig. 2.

NOMENCLATURE

α Empirical parameter for Lp
q .

β First empirical parameter for Laqp.
δaqp Learning rate for AQP.
δmodel Learning rate for grasping model.
δpqgd Learning rate for PQGD.
ϵ Projection restriction parameter of PQGD.
γ Second empirical parameter for Laqp.
q̂i(n) Quality score at n of a label related xi.
pt AQP.
Qt Quality map of x′′

t .
Qh

t Quality map inside the hand area of x′′
t .

wt Weights of grasping model.
x RGB image of the real-time frame.

x′ RGB image of the real-time frame after adding
AQP within the hand area.

x′′
t RGB image of the real-time frame after adding

AQP and PQGD within the hand area.
Q̃p

i Quality map outside the AQP area of xi.
Lθ Loss of angle for grasping model.
Ld Loss of difference for AQP.
Lq Loss of quality for grasping model.
Lq(n) Loss of quality at n for grasping model.
Lp
q Loss of quality for AQP.
Lw Loss of width for grasping model.
Laqp Loss of total for AQP.
Lmodel Loss of total for grasping model.
Lpqgd Loss of total for PQGD.
Ltv Loss of total variation for AQP.
Mh Mask of hand.
Qi Quality map of xi.
Qp

i Quality map inside the AQP area of xi.
Rq Quality rate evaluation for AQP.
Q̃h

t Quality map outside the hand area of x′′
t .

it, jt Quality score location of Q̃h
t , it ̸= jt.

jp, kp Pixel location of AQP, jp ̸= kp.
jpi , k

p
i Pixel location of scaled AQP in xi, j

p
i ̸= kpi .

qi(n) Quality score at n of xi.
xi Sample RGB image within a batch.
pi Scaled AQP related to xi.

B. Adversarial Quality Patch (AQP)

The DNNs-based visual grasping model typically first de-
fines the grasp configuration [48], which is composed of
parameters (jg, kg, wg, hg, θg) forming a rotated box in the
image coordinate system, and this box is denoted by the grasp
candidate gi. Here, (jg, kg) represents the center position of
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the box, wg and hg denote the width and height of the box,
and θg represents the angle of the box relative to the horizontal
direction. Accordingly, in the robot coordinate system, the
grasp and its corresponding parameters are defined as Gi and
(Ig, Jg, Zg,W g,Θg) (the coordinate transformation from gi
to Gi is explained in Section. III-D). Then, based on the grasp
configuration in the image coordinate system, corresponding
objective loss functions are designed, such as the quality loss
Lq associated with (jg, kg), the width loss Lw associated with
wg , and the angle loss Lθ associated with θg . Assuming that
for an image sample xi within one batch (batch size is B),
the predicted and labeled quality scores at position n of xi are
denoted as qi(n) and q̂i(n). The quality loss at n of xi for the
model can be defined as Eq. 1.

Lq(n) =

{
0.5[qi(n)− q̂i(n)]

2, if |qi(n)− q̂i(n)| < 1

|qi(n)− q̂i(n)| − 0.5, otherwise
(1)

By computing the average Lq(n) across all positions N , the
complete quality loss for the model can be given by Eq. 2.

Lq =
1

N

N∑
n=1

Lq(n) (2)

The losses Lw and Lθ follow the same computation as Lq ,
consistent with the formulations in Eq. 1 and Eq. 2. By
summing these losses, the total loss for the model can be
shown as Eq. 3.

Lmodel = Lq + Lθ + Lw (3)

Finally, Lmodel can be used for model training, where the
model weights are optimized via gradient descent. The weight
update process is expressed as Eq. 4. Here, wt and wt−1 rep-
resent the model weights at time steps t and t−1, respectively,
while the derivative of Lmodel with respect to wt−1 denotes
the gradient and δmodel is the learning rate of the model.
Notably, during training, the quality score within the central
one-third region of the grasp label is set to 1 (Maximum),
while all other positions are set to 0 (Minimum). This design
encourages the model to focus more on learning features in
these key regions, thereby increasing the predicted quality
score when encountering similar features during inference.
Therefore, the quality score is of utmost importance, as it not
only determines the grasping position parameters and other
parameters corresponding to it, but also dictates the grasping
priority, with a higher quality score indicating a higher priority
in the grasping sequence.

wt = wt−1 − δmodel
∂Lmodel

∂wt−1
(4)

The AQP is also optimized from the perspective of the
quality score. However, unlike optimizing the grasping model,
we aim for AQP to optimize in the direction of increasing the
quality score rather than minimizing the difference between the
predicted quality score and the labeled quality score. There-
fore, we first initialize AQP following a uniform distribution,
with the same shape as the input image of the model. In

optimization, the AQP will be randomly scaled to be applied
to the image sample.

Next, we define the quality loss of AQP (Lp
q). Let the quality

map predicted by the frozen grasping model within the AQP
area of xi be represented as Qp

i . The quality loss Lp
q is then

defined as in Eq. 5, where E(Qp
i ) and Var(Qp

i ) denote the
mean and variance of Qp

i , respectively. The α is an empirical
parameter that controls the influence of variance on Lp

q . This
loss can be minimized using a gradient descent algorithm by
continuously decreasing the negative value (increasing in the
negative direction) of E(Qp

i ), thereby enhancing the quality
score of AQP. So, this can be regarded as the reverse operation
of a gradient descent algorithm, achieving gradient ascent to
optimize AQP. Additionally, reducing Var(Qp

i ) ensures a more
stable increase in the quality score.

Lp
q =

1

B

B∑
i=1

[−E(Qp
i ) + αVar(Qp

i )] (5)

In this step, we employ the same total variation loss Ltv

from [24] to mitigate noise introduced during AQP optimiza-
tion, ensuring a smoother optimization, as shown in Eq. 6.
Here, pt(j

p, kp) represents the pixel value of AQP (pt) at
location (jp, kp), W and H are the width and height of pt.
This loss is computed as the mean of the Euclidean distance
between all adjacent pixel values within AQP.

Ltv =
1

H ×W

H∑
jp=1

W∑
kp=1

∥pt(j
p, kp)∥2 (6)

To further reinforce the optimization of the quality score
for AQP, we introduce the difference loss Ld. Let the quality
map predicted by the frozen grasping model outside the AQP
area of xi be denoted as Q̃p

i . The Ld is defined as in Eq.
7. This loss can strengthen AQP by letting minQp

i approach
max Q̃p

i . Consequently, AQP will be optimized so that the
model predicts a higher quality score for AQP than for other
objects in the scene. Thereby, the AQP can effectively interfere
with the quality scores of other objects.

Ld =
1

B

B∑
i=1

∣∣∣minQp
i −max Q̃p

i

∣∣∣ (7)

Finally, we combine the three aforementioned losses with
two additional empirically determined parameters, β and γ,
controlling Ltv and Ld, respectively, to obtain the total loss of
AQP (Laqp), as defined in Eq. 8. Similarly, we optimize AQP
by minimizing this loss using the gradient descent algorithm
with Adam optimizer [49], as shown in Eq. 9. Here, pt and
pt−1 represent AQP at time steps t and t − 1, respectively,
while the derivative of Laqp with respect to pt−1 denotes
the gradient, and δaqp is the learning rate of AQP. Since the
optimization process is based on the entire grasp dataset, the
optimized AQP can be effective on any image.

Laqp = Lp
q + βLtv + γLd (8)

pt = pt−1 − δaqp
∂Laqp

∂pt−1
(9)
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Following the optimized AQP (pt), we define an evaluation
method to assess the quality score level of AQP in one testing
batch. Let jpi , k

p
i denote the pixel position of the scaled AQP

in xi, and let W p
i and Hp

i as the width and height of the
scaled AQP. We compute the ratio Rq as the proportion of
pixels within all AQP regions across a batch where the quality
score Qp

i (j
p
i , k

p
i ) exceeds 0.5, relative to the total number

of pixels (Np) in all sample image, as shown in Eq. 10.
Here, 1 means the indicator function. After defining Rq ,
we compute the average Rq for each batch to evaluate the
quality score level of AQP across the entire test set, which is
denoted by Quality Accuracy (Q-ACC) and will be used in
the Experiments section.

Rq =
1

Np

B∑
i=1


Hp

i∑
jpi =1

Wp
i∑

kp
i =1

1[Qp
i (j

p
i , k

p
i ) > 0.5]

 (10)

C. Projected Quality Gradient Descent (PQGD)

The PGD [22] is typically used to attack classification
models by inducing misclassification, with the attack target-
ing the entire region of a single image. In contrast, PQGD
primarily focuses on specific local regions within a single
image and emphasizes quality score optimization like AQP.
Since PQGD, like PGD, exhibits fast optimization properties,
it can be employed to further enhance the quality score of
local regions in AQP, thereby rapidly endowing AQP with
shape adaptability.

Let x denote a real-time RGB frame from a depth camera,
and let Mh represent the mask of the hand associated with
x, obtained using the upper limb segmentation algorithm [50].
We first define x′ as the RGB frame after adding AQP (the
same size as x) within the hand area, as shown in Eq. 11.

x′ = x(1−Mh) + ptMh (11)

Then, let the RGB frame after adding both AQP and PQGD
within the hand area be denoted as x′′

t . We define the loss of
PQGD as Lpqgd, as shown in Eq. 12, where Qh

t represents the
quality map inside the hand area of x′′

t .

Lpqgd = −E(Qh
t−1) (12)

Finally, we leverage Lpqgd and the hand mask Mh to
rapidly optimize the AQP within the hand region of x′′

t , as
shown in Eq. 13. Here, sgn represents the sign function,
which is used to compute the direction of the derivative of
Lpqgd with respect to x′′

t−1, thereby accelerating optimization.
The parameter δpqgd represents the learning rate of PQGD.
The parameter ϵ, similar to ϵ in PGD [22], denotes the
projection restriction parameter of PQGD, which constrains x′′

t

from deviating excessively from x′ during optimization. This
ensures that the additional PQGD perturbation only slightly
alters the pixel values of AQP (such that the modification
remains nearly imperceptible to the human eye), thereby
preserving the effectiveness of the original AQP. It is important
to emphasize that the optimization process is guided by Mh

to operate solely within the hand region, endowing AQP with

the adaptability to the human hand shape, which constitutes
the most critical aspect of PQGD optimization.

x′′
t =

∏
x′,ϵ

[x′′
t−1 − sgn(δpqgd

∂Lpqgd

∂x′′
t−1

)]

Mh + x′(1−Mh)

(13)

D. Active Adversarial for Robot Grasping
This part explains how QFAAP is applied to robot grasping

to manipulate the quality score, enabling the robot to avoid
grasping human hands and nearby objects. In this work [51],
Li et al. observed an intriguing property and empirically
confirmed it through extensive real experiments that moving
a specific object in a cluttered scenario can dynamically alter
the quality score of this scenario. Specifically, if this object
has a higher quality score, it can perturb objects with lower
quality scores when the distance between them is very close
(approximately 0.5–1 cm), leading to a further reduction in
their quality scores. Moreover, as this object with the high
quality score approaches, the quality scores of the affected
objects will gradually decrease, and when they come into
contact, the quality scores of these objects may drop sharply to
zero. Notably, this phenomenon only occurs between adjacent
objects; if the objects are far apart, no interference will happen,
and their quality scores will remain unchanged. Thus, we are
motivated to explore whether this property can be leveraged
to enhance grasping safety in cluttered HRI scenarios.

QFAAP follows the property observed by [51], processing
the features within the human hand to increase its quality score
using AQP and PQGD. Consequently, the human hand can
be directly regarded as a benign adversarial perturbation that
is actively against adjacent objects in any posture, thereby
suppressing their quality scores. After the interference, the
quality score within the human hand will be set to zero,
reducing the grasping priority of both the hand and its adjacent
objects. In other words, the manipulation of the quality score
by QFAAP is entirely controllable and does not affect the
original performance of the grasping model.

First, we useMh to process Qt from Section III-C, setting
the quality score within the hand region to zero. This results
in a quality map outside the hand area of x′′

t , denoted as
Q̃h

t . The robot then uses the perturbed Q̃h
t as a reference and

selects the object (away from the human hand and its adjacent
objects) corresponding to the highest quality score in Q̃h

t as
the optimal grasping target. This process is defined in Eq. 14.
Here, (i∗t , j

∗
t ) corresponds to the previously defined grasp

candidate position parameters (jg, kg), with the distinction
that (i∗t , j

∗
t ) represents the optimal grasping position after

QFAAP perturbation (where t is to emphasize the influence of
QFAAP). Furthermore, based on (i∗t , j

∗
t ), other optimal grasp-

ing parameters w∗
t , h∗

t , and θ∗t can be determined, forming the
optimal grasp g∗t .

(i∗t , j
∗
t ) = argmax Q̃h

t (it, jt)
(it,jt)∈(H,W )

(14)

Next, g∗t needs to undergo the following transformations
to complete the grasping. Since h∗

t is used only for visual



7

representation and not in the conversion process, we denote the
transferred optimal grasp in the robot end effector coordinate
systems as G∗t (I∗t , J∗

t , Z
∗
t ,W

∗
t ,Θ

∗
t ), which corresponds to

the previously defined Gi(Ig, Jg, Zg,W g,Θg), t and ∗ are
intended to emphasize the impact of QFAAP and optimal
grasp. Here, (I∗t , J

∗
t , Z

∗
t ) represents the grasp position in the

robot end effector coordinate system, W ∗
t is the opening stroke

of the parallel jaw gripper, and Θ∗
t is the rotation angle of

the gripper relative to the Z axis. The conversion process
is divided into three parts. The first part involves converting
(i∗t , j

∗
t ): using depth information (d) and the camera’s intrinsic

parameters (fx, fy for focal lengths and cx, cy for the image
center coordinates), we convert (i∗t , j

∗
t ) from the image coor-

dinate system to the camera coordinate system (i∗ct, j
∗
ct, z

∗
ct),

as shown in Eq. 15.i∗ctj∗ct
z∗ct

 =

f−1
x 0 −cxf−1

x

0 f−1
y −cyf−1

y

0 0 1

i∗tj∗t
1

 d (15)

The first part is followed by converting (i∗ct, j
∗
ct, z

∗
ct) (de-

noted by p∗ct) to the robot end effector coordinate system
(I∗t , J

∗
t , Z

∗
t ) (denoted by P∗

t ) conducting off-line hand-eye
calibration, as shown in Eq. 16, where the rotation and
translation parts are denoted by R and T, and 01×3 represents
a 1× 3 zero matrix.[

P∗
t

1

]
=

[
R T

01×3 1

] [
p∗ct
1

]
(16)

The final part involves the conversion between the gripper
stroke W ∗

t and rotation Θ∗
t relative to the grasp box’s width

w∗
t , and rotation θ∗t , which can be manually adjusted because

of their linear relationship.
After a series of conversions, the final grasp pose

(I∗t , J
∗
t , Z

∗
t ,Θ

∗
t ,Θ

∗
xt,Θ

∗
yt) in the robot end effector coordinate

system can be obtained, where Θ∗
xt and Θ∗

yt represent the
constant rotations relative to the X-axis and the Y -axis.
Therefore, the gripper can be moved to the target pose using
inverse kinematics and its stroke is kept to the width W ∗

t , thus
achieving the avoidance of human hands and adjacent objects
without emergency stops. The pseudocode of QFAAP is shown
in Algorithm 1.

IV. EXPERIMENTS

In this section, we validate the effectiveness of our proposed
method through extensive experiments. In the benchmark
datasets experiment, we first test the performance of AQP
optimized by different grasping models. Then, we validate the
generalization ability of AQP trained by one dataset across
other datasets. Finally, we add PQGD to AQP to analyze the
effectiveness of PQGD, as well as explore the impact of the
iteration number on PQGD. In the real-world experiment, we
first make the distance-based quantitative analysis related to
the property of grasp quality score suppression by QFAAP
in single-object scenarios. This is followed by comparing the
detection performance of QFAAP with the original methods
and the engineering-based methods in single-object scenarios.
Later, we further compare QFAAP with these methods and

the version of QFAAP without PQGD on a cobot in different
HRI scenarios, including single-object HRI scenarios, mid-
clutter HRI scenarios, and high-clutter HRI scenarios with
multi-hand interference. Finally, we arranged the HRI user
study to evaluate QFAAP from the user perspective.

A. Experimental Settings

1) Setting for QFAAP: We employ the Cornell Grasp
Dataset [30], Jacquard Grasp dataset [52], and OCID Grasp
Dataset [53]. The Cornell Grasp Dataset and the Jacquard
Grasp datasets are single-object RGB-D datasets, while the
OCID is a cluttered RGB-D dataset. Cornell comprises 885
RGB-D images with a resolution of 640×480, 240 different
real objects, and 5k annotations. Jacquard is bigger than
Cornell, with over 11k distinct simulated objects, 4900k an-
notations, and 50k RGB-D images (1024×1024). OCID [54],
designed to evaluate semantic segmentation methods in com-
plex scenarios, provides diverse settings, including objects,
backgrounds, lighting conditions, and so on. Therefore, we
utilized an improved version from [53] for the grasping model,
consisting of over 1.7k RGB-D images (640×480) and 75k
annotations.

Algorithm 1 Quality-focused Active Adversarial Policy
1: Input: Training sample xi, realtime RGB frame x ac-

quired sequentially from the video stream
2: Output: Optimal grasp in the robot end effector coordi-

nate system G∗t
// Adversarial Quality Patch: Using sample xi from grasp
dataset D, and solve Eq. 9 to optimize AQP.

3: for xi ∈ D do
4: pt ← Laqp, δaqp, xi

5: end for
// Projected Quality Gradient Descent : First, pt is added
to the hand region by Mh, generating x′. Then, shape-
adaptive optimization of AQP is performed by solving
Eq. 13, yielding x′′. Finally, x′′

t is fed into the grasping
model to obtain Qt, along with the quality map Q̃h

t

outside the hand region after guided by Mh.
6: x′ ← x,pt,Mh

7: x′′ ← x′
t−1,x

′,Lpqgd, δpqgd,Mh, ε
8: Qt ← x′′

t

9: Q̃h
t ← Qt,Mh

// Active Adversarial for Robot Grasping: First, based
on Q̃h

t , the grasp position (i∗t , j
∗
t ) corresponding to the

maximum quality score is computed. Then, the remaining
grasp parameters are obtained using (i∗t , j

∗
t ) to form the

optimal grasp g∗t . Finally, g∗t is transformed into the
optimal grasp G∗t in the robot end effector coordinate
system by solve Eq. 15, Eq. 16.

10: for (it, jt) ∈ (H,W ) do
11: (i∗t , j

∗
t )← argmax Q̃h

t (it, jt)
12: end for
13: g∗t ← (i∗t , j

∗
t ), w

∗
t , h

∗
t , θ

∗
t

14: G∗t ← g∗t
15: return G∗t
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We train these DNNs-based grasping models in advance,
thus leveraging them for the optimization of AQP: GG-
CNN [31], GG-CNN2 [32], GR-ConvNet [34], FCG-Net [35],
SE-ResUNet [33], and TF-Grasp [55]. GR-ConvNet, FCG-
Net, SE-ResUNet, and TF-Grasp support RGB images as in-
put, while GG-CNN and GG-CNN2 accept Depth information.
In our experiments, we extend GG-CNN and GG-CNN2 to
handle RGB inputs by adjusting the number of input channels.
These models were trained on a single NVIDIA RTX 4090
GPU with 24 GB of memory. The computer system is Ubuntu
22.04, and the deep learning framework is PyTorch 2.3.1
with CUDA 12.1. We follow the same image-wise setting
in GR-ConvNet [34], randomly shuffling the entire dataset,
selecting 90% for training and 10% for testing before training.
During training stage, the data will be uniformly cropped
to 224×224 (GG-CNN and GG-CNN2 are 300×300), the
total number of epochs for training is set to 50, the learning
rate δmodel is fixed to 0.001, batch size B is set to 8, and
data augmentation (random zoom and random rotation) is
applied (except Jacquard Grasp dataset). Finally, we employ
the same rectangle (box) metric from [48] to assess the
model performance, denoted as Original Accuracy (O-Acc).
According to this metric, a predicted grasp by the grasping
model is considered valid when it satisfies two conditions: the
Intersection over Union score between the ground truth and
predicted grasp rectangles is over 25%, and the offset between
the orientation of the ground truth rectangle and that of the
predicted grasp rectangle is less than 30◦.

For the optimization of AQP, we use the same device,
system, and training parameters as the grasping model. Dif-
ferently, we first initialize an AQP with a uniform distribution
of size 224×224 (300×300 for GG-CNN and GG-CNN2).
Next, during each iteration, we apply a random scale (ranging
from 0.1 to 1 of the original size) to the AQP and paste it
onto a random position of the training sample. We set α,
β, and γ in Lp

q and Laqp to 0.1, 0.1, and 0.5, respectively.
The initial learning rate δaqp is set to 0.03 (decreasing by a
factor of ten at the 30th and 40th epochs). It is important to
note that since AQP does not need to be printed in the real
world, as required by adversarial patch attacks, no additional
data augmentation operations for AQP are used. Finally, we
evaluate the performance of the AQP on the test set using the
previously defined Q-ACC.

For the operation of PQGD, since it only processes real-time
RGB frames, we only need to set the following parameters:
the iteration number N i is set to 1, the learning rate δpqgd is
fixed at 0.008, and ϵ is set to 8/255. In addition, we use the
pre-trained model from [50] for real-time hand segmentation
to guide the PQGD optimization. Finally, since PQGD is based
on AQP, we use the same Q-ACC to evaluate the performance
of PQGD.

2) Setting for Robot Grasping: Our robot grasping system
and part of the experimental objects are illustrated in Fig. 3.
For the grasping system, we adopt an eye-in-hand grasping
architecture, where the camera is fixed on the robot, and the
field of view faces downward. For the experimental objects, we
collected 40 novel objects that are not included in the training
dataset. We define the following evaluation criteria to assess

Fig. 3. Experimental setup of robot grasping: primarily consisting of an
Intel RealSense D435 depth camera, a UFactory 850 robot, a UFactory xArm
gripper, and part of the experimental objects (emphasized by blue borders).

TABLE I
RESULTS OF AQP ON THE CORNELL GRASP DATASET

Methods O-ACC (%) Q-ACC (%) Runtime (s)

GG-CNN 87.6 99.4 0.003
GG-CNN2 92.1 71.4 0.003

GR-Convnet 96.6 94.2 0.005
FCG-Net 96.6 97.4 0.009

SE-ResUNet 95.5 90.4 0.013
TF-Grasp 96.8 27.0 0.008

TABLE II
RESULTS OF AQP ON THE OCID GRASP DATASET

Methods O-ACC (%) Q-ACC (%) Runtime (s)

GG-CNN 18.6 96.9 0.003
GG-CNN2 44.6 90.0 0.003

GR-Convnet 53.7 93.9 0.006
FCG-Net 52.5 91.1 0.008

SE-ResUNet 46.3 98.5 0.014
TF-Grasp 26.0 94.1 0.007

TABLE III
RESULTS OF AQP ON THE JACQUARD GRASP DATASET

Methods O-ACC (%) Q-ACC (%) Runtime (s)

GG-CNN 83.7 74.8 0.004
GG-CNN2 86.0 71.5 0.004

GR-Convnet 91.8 70.9 0.007
FCG-Net 86.3 79.3 0.011

SE-ResUNet 85.5 82.3 0.017
TF-Grasp 93.6 51.3 0.013

TABLE IV
RESULTS OF AQP GENERALIZABILITY ACROSS DIFFERENT DATASETS

Methods C → O
Q-ACC (%)

C → J
Q-ACC (%)

O → C
Q-ACC (%)

O → J
Q-ACC (%)

J → C
Q-ACC (%)

J → O
Q-ACC (%)

GG-CNN 78.1 (↓ 21.3) 76.6 (↓ 22.8) 92.8 (↓ 4.1) 86.4 (↓ 10.5) 67.4 (↓ 7.4) 65.2 (↓ 9.6)
GG-CNN2 22.4 (↓ 49.0) 40.9 (↓ 30.5) 82.9 (↓ 7.1) 78.0 (↓ 12.0) 65.5 (↓ 6.0) 51.5 (↓ 20.0)

GR-Convnet 89.3 (↓ 4.9) 89.8 (↓ 4.4) 71.2 (↓ 22.7) 82.3 (↓ 11.6) 55.3 (↓ 15.6) 51.1 (↓ 19.8)
FCG-Net 77.2 (↓ 20.2) 88.3 (↓ 9.1) 84.6 (↓ 6.5) 86.0 (↓ 5.1) 66.0 (↓ 13.3) 59.2 (↓ 20.1)

SE-ResUNet 86.2 (↓ 4.2) 87.5 (↓ 2.9) 98.3 (↓ 0.2) 98.6 (↑ 0.1) 80.0 (↓ 2.3) 71.6 (↓ 10.7)
TF-Grasp 19.3 (↓ 7.7) 23.3 (↓ 3.7) 88.4 (↓ 5.7) 87.8 (↓ 6.3) 46.0 (↓ 5.3) 29.8 (↓ 21.5)

the effectiveness of our method in the real world, including the
success rate of detecting optimal grasps that do not occur on
the hand or its adjacent objects (ND-ACC) and the collision
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TABLE V
RESULTS OF AQP&PQGD ON THE CORNELL GRASP DATASET

Methods O-ACC (%) Q-ACC (%) Runtime (s)

GG-CNN 87.6 99.5 0.011
GG-CNN2 92.1 72.3 0.016

GR-Convnet 96.6 94.9 0.031
FCG-Net 96.6 97.6 0.042

SE-ResUNet 95.5 91.4 0.056
TF-Grasp 96.8 31.3 0.038

TABLE VI
RESULTS OF AQP&PQGD ON THE OCID GRASP DATASET

Methods O-ACC (%) Q-ACC (%) Runtime (s)

GG-CNN 18.6 97.6 0.012
GG-CNN2 44.6 93.0 0.017

GR-Convnet 53.7 94.9 0.031
FCG-Net 52.5 92.4 0.044

SE-ResUNet 46.3 98.7 0.058
TF-Grasp 26.0 94.7 0.033

TABLE VII
RESULTS OF AQP&PQGD ON THE JACQUARD GRASP DATASET

Methods O-ACC (%) Q-ACC (%) Runtime (s)

GG-CNN 83.7 76.0 0.017
GG-CNN2 86.0 74.6 0.023

GR-Convnet 91.8 73.4 0.037
FCG-Net 86.3 82.2 0.052

SE-ResUNet 85.5 84.2 0.069
TF-Grasp 93.6 57.1 0.069

rate of the robot to the hand during the grasping process (CH-
Rate). For the safety evaluation setting, the hand will enter
the camera view and remain static before conducting grasping
in HRI scenarios (the dynamic evaluation part is shown in
APPENDIX-B).

Specifically, the hand will approach an object with the
highest grasp quality score (we know the location of the
highest grasp quality score in advance) in the camera view, and
the distance between the hand and this object remains within
0.5 cm, without making physical contact. We define the object
with this distance to the human hand as the adjacent object.
This setting allows us to evaluate the effectiveness of our
method under extremely challenging conditions. If the human
hand is capable of reducing the highest grasp quality score
in the scene, then it may also reduce all other grasp quality
scores in the same manner, which ensures that the presence
of the human hand at any location within the scene remains
safe. Finally, it is important to emphasize that we will compare
methods that may cause injury to the human in the grasping.
Therefore, we fix the robot at a safe height (other predicted
position parameters by the grasping model remain unchanged)
and then slowly move the robot to the actual height during
each grasping.

B. Effectiveness of AQP

We employ the same experimental setting of AQP and
grasping model discussed in Section IV-A1, with the corre-

Fig. 4. Line graphs showing the effectiveness of PQGD across all epochs,
including its impact on the AQP optimized by GR-ConvNet and three different
datasets, as well as the AQP optimized by SE-ResUNet and three different
datasets. Here, the AQP and AQP&PQGD are represented by blue and purple
lines, and we also use blue and purple dots to emphasize their corresponding
maximum quality score across all epochs.

sponding results presented in Table I (optimized using the
Cornell Grasp dataset), Table II (optimized using the OCID
Grasp dataset), and Table III (optimized using the Jacquard
Grasp dataset). To ensure consistency and avoid confusion,
we refer to some results reported in the original papers,
such as the O-Acc of GR-ConvNet [34] and TF-Grasp [55]
trained on the Cornell and Jacquard Grasp datasets. In Table
I, AQP optimized by most models achieve a Q-AAC exceeding
90%, except for those optimized by GG-CNN2, which attains
71.4%, and TF-Grasp, which records 27.0%. In Table II, AQP
optimized by all models exhibits a Q-AAC above 90%. In
Table III, despite being optimized using a large-scale dataset
(with extensive test images for testing), AQP optimized by
most models still surpass 70%, except for those optimized by
TF-Grasp, which gets 51.3%.

The above analyses indicate that AQP optimized across
different datasets and models is effective. Furthermore, AQP
optimized using cluttered datasets demonstrates superior per-
formance compared to single-object datasets, providing a
solid foundation for the subsequent application of QFAAP in
cluttered grasping scenarios. Finally, we visualize the quality
performance of AQP across these datasets in the first two rows
of Fig. 5, Fig. 6, and Fig. 7. As illustrated in this figure,
although the highest quality scores are not located on AQP in
columns 3 and 5-8 of Fig. 6, as well as columns 1, 2, and 5 of
Fig. 7, most highest scores are concentrated on AQP, further
demonstrating the effectiveness of AQP in manipulating the
quality score.

C. Generalizability of AQP

In this part, we also adopt the same experimental setting for
the AQP and grasping model as discussed in Section IV-A1.
The results are presented in Table IV, where (C→ O) denotes
that the AQP is trained on the Cornell Grasp dataset and tested
on the OCID Grasp dataset; other notations follow a similar
convention. From this table, although the Q-ACC of the AQP
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Fig. 5. Quality score visualization of AQP (first two rows) before and after adding PQGD (last two rows). Here, the GGCNN2 and the Cornell Grasp dataset
are used to optimize the AQP. And AQP is scaled to 0.3 of the original size (the same size as the image).

Fig. 6. The meaning of each row is consistent with Fig. 5. Here, the SE-ResUNet and the Jacquard Grasp dataset are used to optimize the AQP. And AQP
is scaled to 0.3 of the original size (the same size as the image).

Fig. 7. The meaning of each row is consistent with Figs. 5 and 6. Here, the GR-ConvNet and the OCID Grasp dataset are used to optimize the AQP. And
AQP is scaled to 0.3 of the original size (the same size as the image).

trained on a specific dataset generally decreases when tested
on different datasets, most of them still maintain a Q-ACC
above 60%. In particular, most of the AQP trained on the
OCID Grasp dataset, which contains cluttered scenes, even
still achieves high Q-ACC (above 80%) when tested on other

datasets. For example, the AQP trained using SE-ResUNet and
the OCID dataset even achieves an increased Q-ACC of 98.6%
on the Jacquard Grasp dataset. These results demonstrate that
the AQP exhibits a certain generalizability across different
datasets, with training on cluttered-scene datasets leading to
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Fig. 8. Heatmap showing the impact of the iteration number N i on PQGD across all epochs. Here, the AQP is optimized by GR-ConvNet on the Cornell
Grasp dataset (upper sub-figure) and the OCID Grasp dataset (lower sub-figure). In addition, the maximum quality score for each row is printed in white
numbers for emphasis.

more robust performance.

D. Effectiveness of PQGD

We validate PQGD by applying it to the AQP optimized
in Section IV-B and employing the experimental settings of
PQGD discussed in Section IV-A1. In addition, the iteration
number N i is set to 1 in this part. The experimental results
are presented in Table V (for the Cornell Grasp dataset),
Table VI (for the OCID Grasp dataset), and Table VII (for
the Jacquard Grasp dataset). By comparing these tables with
their corresponding Table I, Table II, and Table III, it can be
observed that PQGD consistently improves the quality score
of the AQP optimized by all models and datasets, with a more
pronounced effect on the Jacquard Grasp dataset, resulting in
an overall quality score improvement of approximately 2%.
Although the prediction speed (all running on one NVIDIA
RTX 4090 GPU) decreases with adding PQGD, it remains
real-time performance. This reduction has no impact on the
efficiency of robot grasping, as the movement time of the
robot is significantly longer than the prediction time of the
grasping model in practice. Therefore, we enable AQP to
rapidly acquire the human hand shape adaptability at a low
cost. Additionally, we show the effectiveness of PQGD across
all epochs in Fig. 4, including its impact on the AQP optimized
by GR-ConvNet and three different datasets, as well as the
AQP optimized by SE-ResUNet and three different datasets.
As illustrated in this figure, it is evident that PQGD remains ef-
fective throughout all epochs. Since we applied only a random
scale to AQP without additional augmentations, the quality
score exhibits fluctuations on the smaller Cornell Grasp and
OCID Grasp datasets due to overfitting. However, this issue
is eliminated for the larger Jacquard Grasp dataset. Overall,

this fluctuation does not impact the subsequent deployment
of our QFAAP, as our objective is not to attack the model
but to ensure the achievement of a high quality score. We
also visualize the quality performance of AQP after adding
PQGD across these datasets in the last two rows of Fig. 5,
6, and 7. As shown in these figures, all of the mean quality
scores within the AQP can be further improved after adding
PQGD. In addition, all cases where the highest quality scores
were originally outside the AQP (e.g., columns 3–8 in Fig.
6 and columns 1, 2, and 5 in Fig. 7) are corrected after
adding PQGD, with the highest quality scores shifting into
the AQP; this demonstrates that PQGD can further enhance the
highest quality scores within the AQP to some extent. Overall,
the PQGD proves effective across different datasets, laying a
foundation for subsequent grasping experiments to improve
HRI safety by suppressing low-quality scores through high-
quality scores with adaptability.

E. Impact of Iteration Number on PQGD

This part primarily investigates the impact of the iteration
number N i on PQGD. We conduct experiments using the
AQP optimized by GR-ConvNet on the Cornell Grasp dataset
and the OCID Grasp dataset, with the iteration number N i

ranging from 1 to 10. Other experimental settings remain the
same as in Section IV-A1. The results are presented in Table
VIII, which shows that the optimal number of iterations for
PQGD is around 7 for the Cornell Grasp dataset and around
9 for the OCID Grasp dataset. Overall, different numbers
of iterations consistently lead to an improvement in Q-ACC.
Additionally, we visualize the effect of the number of iterations
N i on PQGD across all epochs in Fig. 8. In the upper part
of the figure (Cornell Grasp dataset), it can be observed
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Fig. 9. Visualization of optimal grasp and quality map for Original (first two rows of the first to sixth columns), Original-SZ (first two rows of the seventh
to twelfth columns), QFAAP (last two rows of the first to sixth columns), and QFAAP-NSZ (last two rows of the seventh to twelfth columns).

TABLE VIII
THE IMPACT OF DIFFERENT ITERATION NUMBERS OF PQGD ON Q-ACC

Iteration Number N i 1 2 3 4 5 6 7 8 9 10

Cornell Q-ACC (%) 94.9 96.2 97.5 94.6 96.1 97.0 99.4 96.4 95.9 97.1
OCID Q-ACC (%) 94.9 92.8 93.4 95.4 94.8 96.4 96.5 93.4 98.0 97.5

TABLE IX
DETECTION RESULTS BETWEEN QFAAP AND ORIGINAL METHODS

Object Pairs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall (%) Runtime (s)

Original ND-ACC 1/10 0/10 2/10 0/10 1/10 1/10 1/10 1/10 3/10 3/10 13 0.0069
Original-SZ ND-ACC 1/10 0/10 3/10 0/10 1/10 2/10 1/10 1/10 3/10 3/10 15 0.0087

QFAAP ND-ACC 7/10 9/10 9/10 10/10 8/10 9/10 10/10 8/10 8/10 10/10 88 0.0759

TABLE X
DETECTION RESULTS BETWEEN QFAAP AND ENGINEERING METHODS

Object Pairs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall (%)

Original-DSZ ND-ACC 3/10 4/10 5/10 4/10 4/10 5/10 3/10 4/10 4/10 4/10 40
Original-Decay ND-ACC 5/10 6/10 8/10 6/10 4/10 6/10 6/10 6/10 4/10 7/10 58

QFAAP ND-ACC 9/10 10/10 10/10 9/10 8/10 8/10 9/10 9/10 8/10 9/10 89

that when the iteration number is 7, the high quality scores
(darker purple blocks) are more densely distributed across all
epochs compared to other iteration numbers, indicating greater
stability. Similarly, in the lower part of the figure (OCID Grasp
dataset), the high-quality scores are most densely concentrated
when the iteration number is 9. Therefore, the observation
from this figure aligns well with the statements discussed in
Table VIII.

F. Effectiveness of QFAAP in Real World

1) Detection Comparison with Original and Engineering
Methods: Here, we compare the detection performance of
QFAAP with original and engineering methods in single-
object scenarios. First, we select 20 objects from the experi-
mental objects and group them into ten pairs. To assess these
methods, the hand approaches an object with the highest qual-
ity score within each object pair ten times, where the object

positions and human hand postures are randomly adjusted
in each trial. The comparison methods are divided into two
groups.

The first group is original methods, including Original (the
original grasping model) and Original-SZ (a variant of the
grasping model where the quality score of the hand region
is set to zero). The second group is engineering methods,
including Original-DSZ (enhanced version of Original-SZ
with the zeroed area dilation) and Original-Decay (enhanced
version of Original-DSZ with the distance-based linear decay).
For Original-DSZ, the dilation size is set to 10 pixels since
a larger size will reduce the workspace of the robot. For
Original-Decay, the dilation size is set to 15 pixels, and a
distance-based linear decay factor ranging from 0 to 0.8 is
applied to the quality score of the region between the boundary
of the original area and the boundary of the dilated area, that
is the closer to the boundary of the original area, the lower the
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Fig. 10. Visualization of optimal grasp and quality map for Original-DSZ (first two rows of the first to sixth columns), Original-Decay (first two rows of the
seventh to twelfth columns), QFAAP (last two rows of the first to sixth columns), and QFAAP-NSZ (last two rows of the seventh to twelfth columns).

TABLE XI
DISTANCE-BASED DETECTION RESUTLS FOR QFAAP

Objects B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20

QFAAP (2.0 cm) ND-ACC 0/5 2/5 1/5 1/5 2/5 0/5 1/5 2/5 1/5 0/5 3/5 1/5 0/5 0/5 1/5 0/5 0/5 0/5 0/5 0/5
QFAAP (1.0 cm) ND-ACC 1/5 3/5 2/5 3/5 4/5 0/5 2/5 4/5 3/5 0/5 3/5 0/5 0/5 1/5 3/5 2/5 0/5 4/5 0/5 2/5
QFAAP (0.5 cm) ND-ACC 3/5 3/5 3/5 5/5 4/5 2/5 4/5 5/5 4/5 3/5 4/5 5/5 3/5 1/5 5/5 5/5 3/5 4/5 3/5 5/5
QFAAP (0.0 cm) ND-ACC 5/5 5/5 4/5 5/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5 3/5 4/5 5/5 5/5

Objects B21 B22 P23 P24 P25 P26 P27 P28 P29 P30 B31 B32 B33 B34 B35 B36 B37 B38 B39 Overall (%)

QFAAP (2.0 cm) ND-ACC 0/5 4/5 0/5 2/5 0/5 2/5 0/5 0/5 3/5 2/5 0/5 0/5 3/5 2/5 0/5 0/5 1/5 1/5 0/5 17.4
QFAAP (1.0 cm) ND-ACC 3/5 4/5 3/5 3/5 3/5 5/5 2/5 4/5 5/5 3/5 3/5 3/5 5/5 3/5 1/5 3/5 1/5 2/5 0/5 47.6
QFAAP (0.5 cm) ND-ACC 5/5 5/5 4/5 5/5 5/5 5/5 3/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5 2/5 5/5 3/5 4/5 4/5 81.0
QFAAP (0.0 cm) ND-ACC 5/5 5/5 5/5 5/5 5/5 5/5 3/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5 4/5 5/5 3/5 5/5 4/5 93.3

TABLE XII
THE IMPACT OF PQGD ON QFAAP IN REAL GRASPING

Object Pairs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall (%)

QFAAP-without PQGD CH-Rate 2/10 3/10 2/10 1/10 2/10 3/10 1/10 2/10 1/10 3/10 20
QFAAP CH-Rate 1/10 2/10 2/10 0/10 1/10 1/10 0/10 2/10 1/10 2/10 12

quality score will be. For our method QFAAP, we use the AQP
optimized by GR-ConvNet and OCID Grasp dataset and set
the iteration number N i to 5 for PQGD. All other experimental
settings about QFAAP are consistent with Section IV-A2.

The results between our methods and original methods are
presented in Table IX. Our method significantly outperforms
both Original and Original-SZ, over 70% ND-ACC, which
means that it can noticeably enhance the safety performance of
the grasping model in single-object scenarios. For the runtime
(all running on one NVIDIA RTX 3090 Ti GPU), although
QFAPP is lower than other methods due to the incorporation
of the hand segmentation algorithm, it still gets 0.0759 s per
frame, which satisfies the real-time requirement in real-world
grasping. Then, we show the results between our methods and
engineering methods in Table X. Our method still surpass them
by a large margin, over 30% ND-ACC. This demonstrates
the superiority of the shape adaptability of QFAAP compared
with Original-Decay, and the better performance of QFAAP
in enhancing safety without influencing the workspace of the
robot compared with Original-DSZ. We also visualize some
of our results in Fig. 9 and Fig. 10, including the optimal

grasp and quality map for Original, Original-SZ, Original-
DSZ, Original-Decay, QFAAP, and QFAAP-NSZ (a variant
of the QFAAP where the quality score of the hand region
is not set to zero). As shown in these figures, compared with
other methods, our method can always shift the highest quality
score to the object away from the human hand by decreasing
the quality score of the object near the human hand, no matter
the different scenarios and hand poses. It should be noted that
QFAAP-NSZ is only to emphasize the strength of the quality
score for QFAAP and is not included in the experimental
tables. Finally, the few failure cases of QFAAP primarily
result from situations where the object approached by the
human hand still maintains a higher quality score than the
other object. In future work, we will enhance our optimization
methods to strengthen QFAAP.

2) The Impact of Distance on the Effectiveness of QFAAP:
We conduct extensive distance-based quantitative experiments
to explore the quality suppression behavior of QFAPP, us-
ing an experimental setup similar to that in Section IV-F1.
Specifically, one object among the 40 experimental objects
is selected as the non-target object, while the remaining 39
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Fig. 11. Visualization of optimal grasp and quality map for QFAPP with distance 2 cm (first two rows), distance 1 cm (third and fourth rows), distance 0.5
cm (fifth and sixth rows), and distance 0 cm (last two rows).

objects are treated as target objects to be approached by
the human hand, forming 39 object pairs in total. For each
of the 39 pairs, we perform five trials of hand-approaching
experiments. In each trial, the position of the object pair and
the posture of the hand are first randomly changed. Then, the
hand gradually approaches the target object with the same
posture until contact is made. During this approaching process,
we record the changes in the highest grasp quality score at
distances of 2 cm, 1 cm, 0.5 cm, and upon contact. The
results are shown in Table XI, where noticeable suppression
begins to occur at a distance of 1 cm, when the ND-ACC
reaches 47.6%. Subsequently, the ND-ACC increases to 81.0%
at 0.5 cm and further to 93.3% upon contact with the target
object. These results strongly demonstrate that our distance-
based quantitative analysis aligns well with the property in
[51], namely, that the quality score suppression of QFAPP
becomes effective when the hand is within 0.5–1 cm of the
target object and reaches its maximum effect at contact.

We further visualize the changes in quality scores and
optimal grasps for different distances in Fig. 11. When the
distance is 2 cm (first two rows: optimal grasps in the first
row, corresponding quality scores in the second row), almost
no suppression effect is observed. At a distance of 1 cm (third
and fourth rows), some suppression occurs, though failures are

still observed in columns 2, 4, 6, 8, 10, 11, and 12. When
the distance is reduced to 0.5 cm (fifth and sixth rows), or
contact is made (last two rows), the highest quality score is
consistently shifted away from the object near the human hand.
Notably, in the first and ninth columns of the last two rows
(contact case), the quality scores of adjacent target objects are
nearly suppressed to zero.

3) Grasping Comparison with the Version of QFAAP with-
out PQGD: In this part, we evaluate the influence of PQGD
on QFAPP in a real robot grasping system. We follow the
same experimental setting in Section IV-F1 and Section IV-A2.
Specifically, we perform 10 grasps for each object pair where
the object positions and human hand postures are randomly
adjusted in each grasp. The experimental results are presented
in Table XII. The CH-Rate of QFAAP without PQGD reaches
20%. After integrating PQGD, the CH-Rate decreases to 12%,
demonstrating that PQGD can also effectively enhance the fast
adaptability to the human hand shape in real-world grasping
scenarios. Finally, we showcase the grasping performance with
and without PQGD in our demo videos.

4) Grasping Comparison with Original and Engineering
Methods: We use a similar experimental setting as in Section
IV-F1 and Section IV-A2 for this part. Specifically, we first
select 10 objects from the experimental objects to create 10
mid-clutter grasping scenes and perform 10 grasps (the hand
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Fig. 12. Grasping in mid-clutter scenarios. We use yellow, green, and blue borders to highlight the robot, the human hand, and the objects being grasped in
each subfigure. In addition, we added the optimal grasp and quality map for QFAAP (left) and the original grasping model (right) to each subfigure.

TABLE XIII
GRASPING RESULTS BETWEEN QFAAP AND ORIGINAL METHODS

Scenarios S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Overall (%)

Original CH-Rate 8/10 6/10 6/10 7/10 8/10 4/10 5/10 6/10 7/10 5/10 62
Original-SZ CH-Rate 6/10 6/10 6/10 6/10 7/10 4/10 5/10 6/10 7/10 5/10 58

QFAAP CH-Rate 2/10 1/10 2/10 3/10 2/10 0/10 2/10 1/10 2/10 1/10 16

pose will be changed in each grasping) for each scene to
compare QFAAP with the original method. Then, similarly,
we select 30 objects from the experimental objects to create 5
high-clutter grasping scenes and perform 30 grasps with multi-
hand interference for each scene to compare QFAAP with the
engineering method.

The experimental results between QFAAP and original
methods are shown in Table XIII, where our method consis-
tently outperforms both the Original and Original-SZ methods,
achieving a notably low CH-Rate of 16%. This result demon-
strates the effectiveness of QFAAP in enhancing the safety of
the HRI in mid-clutter grasping scenarios. We also visualize
some grasping results of QFAAP in Fig. 12. Compared with
the original grasping model, our method can effectively shift
the robot to grasp the object away from the human hand.

The experimental results between QFAAP and engineering
methods are shown in Table XIV, where our method also out-

TABLE XIV
GRASPING RESULTS BETWEEN QFAAP AND ENGINEERING METHODS

Scenarios S1 S2 S3 S4 S5 Overall (%)

Original-DSZ CH-Rate 18/30 15/30 13/30 16/30 14/30 50.7
Original-Decay CH-Rate 12/30 11/30 10/30 11/30 11/30 36.7

QFAAP CH-Rate 4/30 7/30 3/30 3/30 3/30 13.3

performs both the Original-DSZ and Original-Decay methods,
achieving a promising CH-Rate of 13.3%, which is more than
20% lower than them. This result demonstrates the superiority
of QFAAP in enhancing the safety of the HRI in high-
clutter grasping scenarios with multi-hand interference. We
also visualize some grasping results of QFAAP in Fig. 13. The
first row shows normal grasping without hand interference.
The second row shows the result without our method under
multiple hand interferences, where the robot easily collides



16

Fig. 13. Grasping in high-clutter scenarios with bimanual interference. The first row shows normal grasping without hand interference. The second and third
rows show the grasping without and with our method under bimanual interference. We use yellow, green, and blue borders to highlight the robot, the human
hands, and the objects being grasped in each subfigure. In addition, we added the optimal grasp and quality map to each subfigure.

TABLE XV
RESULTS OF HRI USER STUDY

Participants ADCS ADHP UPS RRF UOS

Original QFAAP Original QFAAP Original QFAAP Original QFAAP Original QFAAP

Participant 1 2 4 (↑ 2) 1 5 (↑ 4) 2 5 (↑ 3) 4 4 (−) 2 4 (↑ 2)
Participant 1 1 4 (↑ 3) 1 4 (↑ 3) 2 5 (↑ 3) 5 4 (↓ 1) 2 4 (↑ 2)
Participant 3 2 4 (↑ 2) 1 5 (↑ 4) 3 5 (↑ 2) 4 4 (−) 2 5 (↑ 3)
Participant 4 1 4 (↑ 3) 1 5 (↑ 4) 0 4 (↑ 4) 4 4 (−) 1 4 (↑ 3)
Participant 5 3 4 (↑ 1) 1 5 (↑ 4) 1 5 (↑ 4) 4 3 (↓ 1) 2 5 (↑ 3)

Average 1.8 4 (↑ 2.2) 1 4.8 (↑ 3.8) 1.6 4.8 (↑ 3.2) 4.2 3.8 (↓ 0.4) 1.8 4.4 (↑ 2.6)

with the human hands. The third row presents the result using
our method under the same multi-hand interference scenario,
where the robot successfully avoids all hands and nearby
objects during grasping. Finally, the reasons for the failure
cases of QFAAP in these scenarios remain consistent with
those in Section IV-F1.

5) HRI User Study: In this part, we conduct the HRI user
study to evaluate the safety of our proposed method from
the users’ perspective. To minimize safety risks during the
experiments while ensuring the depth of this study, we strictly
limit the number of participants to five, all of whom are
researchers with professional knowledge in robotics. And we
have obtained their approvals. We define the following user-

centered evaluation metrics: ADCS (the adaptability of the
method to different clutter scenarios), ADHP (the adaptability
of the method to different hand poses), UPS (the user per-
ceived safety), RRF (the robot response fluency), and UOS
(the user overall satisfaction). Each metric is rated on a five-
point integer scale (1 to 5).

During the experiment, users compare the performance of
QFAAP with the Original method under a similar setting as
described in Section IV-F4. Specifically, each user performs
five interactions with each method in a high-clutter scene
containing 30 objects, testing whether the robot can grasp
objects while avoiding human hands and their neighboring
objects. In addition, users are allowed to choose single-hand
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or multi-hand configurations freely for each interaction, and
the hand poses and object positions are varied across all trials.

The user feedback results are summarized in Table XV.
As shown in the table, users consistently rated QFAAP sig-
nificantly higher than the Original method across nearly all
evaluation metrics. For example, (4 vs. 1.8) in the average
of ADCS, (4.8 vs. 1) in the average of ADHP, (4.8 vs. 1.6)
in the average of UPS, and (4.4 vs. 1.8) in the average
of UOS. Although users reported a slightly lower RRF for
QFAAP compared to the Original method (a difference of
0.4), they perceived the difference as minor and confirmed that
QFAAP is capable of conducting HRI in real-time. Finally,
after completing the experiments, all participants expressed
that QFAAP demonstrated strong safety and adaptability, and
were willing to deploy this method. We further illustrate
several examples of the HRI process in Fig. 14, where it can
be seen that regardless of the number of hands, hand poses, or
scene variations, the robot consistently performs grasps while
avoiding human hands and their nearby objects. More HRI
processes are recorded in the demo videos.

V. CONCLUSION

In this paper, we proposed the Quality-focused Active
Adversarial Policy (QFAAP), which first optimized an Adver-
sarial Quality Patch (AQP) with high quality scores using the
adversarial quality patch loss and a grasp dataset. Then, the
Projected Quality Gradient Descent (PQGD) was introduced
to optimize AQP further, endowing it with the adaptability
to the human hand shape. By leveraging AQP and PQGD,
the hand itself can be an active perturbation source against
nearby objects, reducing their quality scores. Further setting
the quality score of the hand to zero will reduce the grasping
priority of both the hand and its adjacent objects, enabling the
robot to avoid them without emergency stops for autonomous
grasping. We conducted extensive experiments on the bench-
mark datasets and a cobot, showing that QFAAP can improve
the safety of robot grasping both in single-object and cluttered
HRI scenarios.

Future work can be divided into two major parts. The first
part can focus on addressing the issues highlighted in Section
IV-F to enhance the method proposed in this paper. The second
part involves exploring how to extend QFAAP to incorporate
multimodal properties, which can then be utilized to address
the backdoor attack problem proposed in [51].

APPENDIX

In this appendix, we first conduct additional grasping ex-
periments to assess whether our method affects the original
grasping performance of the model. Moreover, we validate
the effectiveness of our method in scenarios involving hand
dynamic interference.

A. Grasping with and without Hand Interference

Since QFAAP employs the same grasping model as the
original method, it only modifies the output grasp quality
scores when hand interference is present, thereby altering
the grasping sequence. In the absence of such interference,

Fig. 14. Examples of HRI user study. We use yellow, green, and blue borders
to highlight the robot, the human hand, and the objects being grasped.

Fig. 15. Cases of the DRD process under hand dynamic interference. Each
row corresponds to one case, and the images in each row respectively illustrate
the initial approach of the robot to the target object, the first deviation of the
robot after interference, the re-approach (return) of the robot to the target
object after the hand departs, and the second deviation of the robot after the
second interference. Yellow, green, and blue borders are also used to highlight
the robot, the human hand, and the target objects, respectively.

TABLE XVI
GRASPING RESULTS WITH AND WITHOUT HAND INTERFERENCE

Scenarios S1 S2 S3 S4 S5 GS-Rate (%)

without hand 24/30 24/30 24/30 25/30 25/30 81.3
with hand 23/30 24/30 24/30 24/30 25/30 80.0

TABLE XVII
GRASPING RESULTS WITH HAND DYNAMIC INTERFERENCE

Scenarios S1 S2 S3 S4 S5 DRD-Rate (%)

QFAAP-without PQGD 22/30 22/30 23/30 23/30 22/30 74.7
QFAAP 24/30 24/30 25/30 27/30 26/30 84.0

it remains consistent with the original method. Therefore, in
this section, we directly compare grasping performance with
and without human-hand interference to verify whether our
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method affects the original performance of the grasping model.
Specifically, we use a similar experimental setting as in Section
IV-F4, selecting 30 objects from the experimental objects to
create 5 high-clutter grasping scenes and perform 30 grasps
with or without multi-hand interference for each scene. In
addition, we use the same Grasping Success Rate (GS-Rate) as
an evaluation metric from [56], which is calculated by dividing
the total number of successful grasps by the total number of
grasp attempts across five scenes.

The grasping results with and without hand interference are
presented in Table XVI. The GS-Rate is 81.3% without hand
interference and 80.0% with hand interference, and the total
number of successful grasps with hand interference is only
two shy of that without interference. These results indicate
that the grasping performance remains nearly identical in both
cases, suggesting that our method has almost no impact on the
original performance of the grasping model while ensuring
grasping safety.

B. Grasping with Hand Dynamic Interference

To more comprehensively validate the effectiveness of
QFAAP, particularly its real-time reactive capability, we con-
duct additional grasping experiments under hand dynamic
interference in this section. We adopt a similar experimen-
tal setting as in Section IV-F4, also selecting 30 objects
from the experimental set to create 5 high-clutter grasping
scenes and performing 30 grasp attempts for each scene,
while randomly introducing unimanual or bimanual dynamic
interference during each grasping. We reproduce the closed-
loop control method from [32] and integrate it with QFAAP,
endowing QFAAP with the reactive capability to counteract
hand dynamic interference. Specifically, during each grasping,
when the robot tends to move toward the target object, we
quickly introduce hand interference by approaching the target
object. After the interference, the robot will move away from
the human hand and its adjacent objects (First Deviation).
Once the extent of deviation becomes large, we quickly
remove the hand, and the robot will resume moving toward
the target object (Return). Similarly, after the extent of the
move toward the target object becomes large, we again rapidly
introduce hand interference and keep the hand in place until
the robot deviates away from the hand and its neighboring
objects (Second Deviation) and completes the safe grasping.
We employ the Deviation–Return–Deviation Rate (DRD-Rate)
as the evaluation metric, and a trial is considered successful
if the robot completes the entire Deviation–Return–Deviation
process.

The experimental results are shown in Table XVII, the
DRD-Rate of QFAAP without PQGD reaches 74.7%. After
integrating PQGD, the DRD-Rate dramatically increases to
84.0%, demonstrating the effectiveness of our method in hand
dynamic interference scenarios, and also validates that PQGD
can more obviously enhance the fast adaptability to the human
hand shape in hand dynamic interference scenarios compared
with hand static interference in Section IV-F3. Finally, we
show two cases of the DRD process in Fig. 15, where it can
be seen that the robot consistently avoids the human hand and

its nearby objects with hand dynamic interference. More DRD
processes are recorded in the demo videos.
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[52] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large scale dataset
for robotic grasp detection,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2018, pp. 3511–3516.

[53] S. Ainetter and F. Fraundorfer, “End-to-end trainable deep neural net-
work for robotic grasp detection and semantic segmentation from RGB,”
in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 13452–13458.

[54] M. Suchi, T. Patten, and M. Vincze, “EasyLabel: A semi-automatic
pixel-wise object annotation tool for creating robotic RGB-D datasets,”
in Proc. IEEE Conf. Robot. Automat., 2019, pp. 6678–6684.

[55] S. Wang, Z. Zhou, and Z. Kan, “When transformer meets robotic
grasping: Exploits context for efficient grasp detection,” IEEE Robot.
Automat. Lett., vol. 7, no. 3, pp. 8170–8177, 2022.

[56] C. Li, N. Y. Chong, “Monozone-Centric Instance Grasping Policy in
Large-Scale Dense Clutter,” IEEE/ASME Trans. Mech., Early Access,
2025.


	INTRODUCTION
	Related Work
	Vision-guided Robot Grasping
	Adversarial Attacks

	Proposed Method
	Overview of QFAAP
	Adversarial Quality Patch (AQP)
	Projected Quality Gradient Descent (PQGD)
	Active Adversarial for Robot Grasping

	Experiments
	Experimental Settings
	Setting for QFAAP
	Setting for Robot Grasping

	Effectiveness of AQP
	Generalizability of AQP
	Effectiveness of PQGD
	Impact of Iteration Number on PQGD
	Effectiveness of QFAAP in Real World
	Detection Comparison with Original and Engineering Methods
	The Impact of Distance on the Effectiveness of QFAAP
	Grasping Comparison with the Version of QFAAP without PQGD
	Grasping Comparison with Original and Engineering Methods
	HRI User Study


	Conclusion
	Grasping with and without Hand Interference
	Grasping with Hand Dynamic Interference

	References
	References

