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Abstract

Verification of software has received a lot of attentions of the software engineering
community, specially modular verification of component-based software. However, to
realize such an ideal component-based software paradigm, one of the key issues is to
ensure that those separately specified and implemented components do not conflict to
each other when composed - the component consistency issue. A potential solution to
the above issue is modular verification of component-based software via model checking.
The main goal in this thesis is to combine the best advantages of model checking and
component-based development.

Currently there are many approaches have been proposed in modular verification of
component-based software [2, 4, 7, 8, 10, 11, 22]. In [10, 11, 22], modular verification is
rather closed. It is not prepared for future changes. If a component is added to the system,
the whole system of many existing components and the new component must be re-checked
altogether. For this reason, the “state space explosion problem” will occur when it checks
complex software. The approach in [2, 4, 7, 8] focuses on checking a system composed of
two components; M1 and M2 which satisfies the property p without composing M1 with
M2. For this goal, this technique finds an assumption A such that it is strong enough for
M1 to satisfy p and weak enough to be discharged by M2. From these, the composition
system M1‖M2 satisfies p. However, this approach is viewed from a static perspective to re-
generate new assumption. If the component changes after adapting some refinements, the
assumption-generating approach is re-run on the whole component from beginning, i.e.,
the component model has to be re-constructed; and the assumption about the environment
is then regenerated from that model. Therefore, this approach is not efficient to change
the system. This thesis proposes a faster assume-guarantee verification approach for
component-based software verification in the context of component refinement. In this
approach, if a component is refined into a new component, the whole system of many
existing components and the new component is not required to be re-checked altogether.
It only checks the new component satisfying the assumption of the old system. If so,
the new system also satisfies the property. Otherwise, the proposed technique performs
some analysis to determine whether the property is indeed violated in the new system or
whether the assumption of the old system is too strong for the new component to satisfy.
If the assumption is too strong, a new assumption is re-generated. The technique in this
thesis tries to reuse the results of the previous verification in order to have an incremental
manner to re-generate the new assumption. It doesn’t re-generate the new assumption
from beginning. A case study is presented to illustrate the proposed approach. The LTSA
[12] tool also is used to check correctness of the technique by some concrete examples.
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Chapter 1

Introduction

Component-based development, also known that developing software systems through
composition of well-defined independent components, is one of the most important tech-
nical initiatives in software engineering. Component-based development continues to hold
the attention of the software engineering community as it is considered to be an open,
effective and efficient approach to reduce development cost and time, while increasing
software quality. A wide range of concepts and technologies have been proposed for
component-based software development.

However, to realize such an ideal component-based software paradigm, one of the key
issues is to ensure that those separately specified and implemented components do not
conflict to each other when composed - the component consistency issue. Currently well-
known technologies such as CORBA (OMG), COM/DCOM or .NET (Microsoft), Java
and JavaBean (Sun) etc., only support component plugging. However, components of-
ten fail to co-operate, i.e, the plug-and-play mechanism fails. A potential solution to
the above issue is modular verification of component-based software via model checking.
Model checking is an important approach for improving software reliability. It provides
exhaustive state space coverage for the systems being checked and is particularly effective
in detecting difficult coordination errors which frequently result from component com-
position. However, a major problem of model checking is “state space explosion”. The
main goal in this thesis is to combine the best advantages of the two; model checking and
component-based development.

Currently there are many approaches proposed in modular verification of component-
based software [2, 4, 7, 8, 10, 11, 22]. In [10, 11, 22], modular verification is rather closed.
It is not prepared for future changes. If a component is added to the system, the whole
system of many existing components and the new component must be re-checked alto-
gether. For this reason, the “state space explosion problem” will occur when it checks
complex software. The approach in [2, 4, 7, 8] focuses on checking a system composed
of two components; M1 and M2 which satisfies the property p without composing M1

with M2. For this goal, this technique finds an assumption A such that it is strong
enough for M1 to satisfy p and weak enough to be discharged by M2. From these, the
composition system M1‖M2 satisfies p. However, this approach is viewed from a static
perspective to re-generate new assumption. If the component changes after adapting some
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refinements, the assumption-generating approach is re-run on the whole component from
beginning, i.e., the component model has to be re-constructed; and the assumption about
the environment is then regenerated from that model. Therefore, this approach is not ef-
ficient to change the system. This thesis proposes a faster assume-guarantee approach for
component-based software verification in the context of component refinement. Suppose
that there is a fixed based architecture F as a framework and an extension C1. The exten-
sion C1 is plugged with the framework F by some mechanism. Firstly, we know that the
system which contains of F and C1 satisfies a property p (i.e., F‖C1 |=p). After that, the
component C1 is refined into a new component C2 by adding some states and transitions
into C1. The new system which contains of the framework F and the new component
C2 must be re-checked that whether it satisfies the property p (i.e., F‖C2 |=p?). For this
purpose, the proposed technique only checks formula 〈true〉 C2 〈A(p)〉, where A(p) is an
assumption between two components; F and C1, that is strong enough for F to satisfy
p but weak enough to be discharged by C1 (i.e., 〈A(p)〉 F 〈p〉 and 〈true〉 C1 〈A(p)〉 both
hold). The assumption A(p) is generated by using a learning algorithms called L* [1, 24].
In this technique, components (i.e., F , C1, and C2), the property p, and assumptions
are represented by LTSs. In order to check the formula 〈true〉 C2 〈A(p)〉, the technique
computes the composition system C2‖A(p)err, where the error LTS A(p)err is created from
the LTS A(p) by applying the definition 3.4. If the formula holds, the new composition
system F‖C2 satisfies the property p. Otherwise, this step returns a counterexample cex
to witness this fact. The proposed approach then performs some analysis to determine
whether p is indeed violated in the new system F‖C2 or whether A(p) is too strong for
C2 to satisfy. If the assumption A(p) is too strong, a new assumption Anew(p) between
the framework F and the new component C2 is re-generated. It re-generates the new as-
sumption without re-running on these whole components from beginning. The proposed
approach tries to reuse the results of the previous verification (between F and C1) in order
to have an incremental manner to re-generate new assumption. For this reason, it is very
significant to verify the component-based systems in the context of component refinement.

This thesis is organized in six chapters as follows. I first provide an introduction in
Chapter 1. Chapter 2 introduces a survey of some approaches for modular verification of
component-based software. It also presents some limited problems and some open prob-
lems under research from these approaches. Chapters 3, 4, 5 present my contributions in
this thesis. Chapter 3 introduces some background, my problem and proposed approach
to verify component-based software in the context of component refinement in a general
view. Chapter 4 presents the learning algorithms - L*, the assumption generation and
the new assumption re-generation method. Correctness and termination of the new as-
sumption re-generation method also presents in this chapter. Chapter 5 describes a case
study to illustrate my approach presented in Chapters 3,4,5. Finally, Chapter 6 presents
conclusion and future works.
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Chapter 2

Modular Verification of
Component-Based Software: A
Survey

This chapter presents a survey of some approaches for component-based software verifica-
tion, i.e, assume-guarantee verification, open incremental model checking and component-
interaction automata. With each approach, this chapter introduces some base concepts,
the main idea for verification and some limited problems. The ending of this chapter
presents some open problems which are under research from these approaches.

2.1 Assume-Guarantee Verification of Component-Based

Software

Assume-guarantee verification of component-based software approach was proposed by
D. Giannakopoulou [2, 4, 7, 8]. This approach is based on the idea of assumption model
checking. It presents a promising way of dealing with the verification of large systems. It
is based on “divide and conquer” approach, i.e., the property of a system is decomposed
into properties of its components, which are then checked separately.

This technique focuses on checking a system composed of two components; M1 and
M2. The main goal of this approach is that how to check this system whether it satisfies
the property p without composing M1 with M2 (i.e., M1‖M2 |=p?). For this goal, this
technique finds an assumption A such that A as environment of M1, and M1 satisfies p,
and true as environment of M2, and M2 satisfies A, where A is strong enough for M1

to satisfy p and A is weak enough to be discharged by M2. From these, the rule 〈true〉
M1‖M2 〈p〉 also holds. Figure 2.1 illustrates the goal and the solution of assume-guarantee
verification approach in a general view.

The assume-guarantee verification approach uses Labeled Transition Systems (LTSs) to
model the behavior of two components M2 and M2, the assumption A, and the property
p. A LTS M = 〈Q,αM, δ, q0〉 has a communicating alphabet αM . Internal/local actions
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Figure 2.1: The problem and the main idea of assume-guarantee verification approach.

represented by action “τ”. LTSs assembled with parallel composition operator “‖” by
synchronizing shared actions and interleaving remaining actions. Error state π is included
into the automaton of p before the cross-product automata of M1, M2 and p is taken.
The error LTS perr (with the error state π) is constructed from the original p by adding
transitions from all states in p to π on which the actions are the complement of all existing
outgoing transitions at each state.

From the above solution, the major problem in this approach is that how to find the
assumption A. There are two methods in generating the assumption A automatically as
follows:

1. The first method was presented in [7]. Given component M1, property p, and the
interface of M1 with its environment, generate the weakest environment assumption
AW such that: assuming AW , M1 |=p. The weakest assumption AW means that it
restricts the environment no more and no less than it needs to, i.e for all environ-
ments E: E‖M1 |=p iff E |=AW . This technique finds the weakest assumption AW

by taking the complement of paths in the product automata leading to error states.
The weakest assumption AW describes exactly those traces over (αM1 ∪ αp)∩ αM2

which do not lead to the state π in M1‖p. In this case M2 is not known and consid-
ered as the environment of M1.

2. The second method was presented in [2, 4, 8]. This technique uses a learning al-
gorithms called L* to iteratively generating an assumption A such that A is weak
enough to be guaranteed by M2 but is strong enough to make M1 satisfy p. The
assumption A generated in this approach is stronger than the weakest assumption
AW . This learning algorithm often stops before A converges to AW .

2.1.1 Weakest Assumption Generation Method

The traditional method to verifying a property of an open system (i.e., a software compo-
nent that interacts with an environment, represented by other components) is to check it
for all the possible environments. The result of verification is either true, if the property
holds for all the possible environments, or false, if there exists some environment that can
lead the component to falsify the property. The traditional approach is overly pessimistic
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and only appropriate for the analysis of closed systems, where no further interaction with
the environment is expected. When analyzing open systems, an optimistic view, which
assumes a helpful environment, is more appropriate. Usually, software components are re-
quired to satisfy properties in specific environments, so it is natural to accept a component
if there are some environments in which the component does not violate the property.

In this method, the result of component verification is also true, if the property holds
for all environments. However, the result is false only if the property is falsified in all
environments. If there exist some environments in which the component satisfies the
property, the result of verification is not false, as in the traditional method, but rather
true in environments that satisfy a specific assumption. This assumption, i.e., a property
LTS, is automatically generated and characterizes exactly those environments. Intuitively,
this environment assumption encodes all possible winning strategies of the environment in
a game between the system, which attempts to get to the error state, and the environment,
which attempts to prevent this.

For example, Figure 2.2 illustrates LTSs for two components Writer and Mutex. The
state 0 is the initial state. The Writer acquires the Mutex (action W.acquire), enters and
subsequently exists a critical section (W.enterCS, W.exitCS) used to model the fact that
the Writer updates some shared variable, and then releases the Mutex (W.release). The
Mutex component can be acquired and released by the Writer (W.acquire, W.release)
or its environment (E.acquire, E.release), but a single component can hold it at any
one time. A mutual exclusion property for a system consisting of the LTSs of Mutex
and Writer. The property comprises states 0, 1, 2 and the transitions denoted by solid
arrows. It expresses the fact that the component and its environment should never be
in their critical sections at the same time. In other words, the intervals defined by their
mutual enterCS and exitCS actions should never overlap. The dashed arrows illustrate
the transitions to the error state that are added to the property to obtain its error LTS.

Figure 2.2: LTSs for a Mutex, a Writer and mutual exclusion property.

There are three steps to generate the weakest assumption AW illustrated in Figure 2.3
as follows:

Step 1: Composition and Minimization

5



Figure 2.3: The process for generating weakest assumption.

Given an open system and a property LTS that may relate the behaviour of the system
with the behaviour of the environment, the first step is to compute all the violating traces
of the system for unrestricted environments, and turn into τ all actions in these traces over
which the environment has no control, i.e., the internal actions of the system. We perform
this step by building the composition of the system with the error LTS of the property,
and subsequently hiding the internal actions of the system. The resulting LTS can be
minimized with respect to observational equivalence, since such minimization preserves
traces.

For example, Figure 2.4 depicts the result of composing the components with the mutual
exclusion property depicted in Figure 2.2, after minimization. The internal actions of the
system, i.e., the W labelled transitions, were abstracted to τ .

If the error state is not reachable in this composition, the property is true in any
environment, and this is reported to the user. Otherwise, we identify whether there exist
environments that can help the system avoid the error in all circumstances; this is achieved
through the following steps.

Step 2: Backward Error Propagation

This step first performs backward propagation of the error state over τ transitions,
thus pruning the states where the environment cannot prevent the error state from being
entered via one or more τ steps. Since we are interested only in the error traces, we also
eliminate the states that are not backward reachable from the error state. If, as a result of
this transformation, the initial state becomes an error state, it means that no environment
can prevent the system from possibly reaching the error state, so the property is false (for
all environments) and this is reported to the user.

Consider again the composite system in Figure 2.4 . The thicker line marks the only
transition that remains in the system after minimization. As a result of backward prop-
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Figure 2.4: The composition system of Mutex and Writer with the mutual exclusion
property.

agation, we identify state 1 with the error state; the result is shown in Figure 2.5. The
intuition here is that, if the component is in a state from which it can violate the property
by some number of internal moves, then no environment can prevent the violation from
occurring.

Figure 2.5: The result after backward error propagation.

Step 3: Property Extraction

This step builds the property LTS that is our assumption. It performs this in two stages;
first it builds the error LTS for the assumption, from which it extracts the corresponding
property LTS. Note that the LTS resulting from Step 2 might not be an error LTS,
although it contains an error state. Recall from the background section that the error
LTS is deterministic and complete.
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In order to get an error LTS we make the LTS obtained from step 2 deterministic by
applying to it τ elimination and the subset construction, but by taking special care of the
π state as follows. During subset construction, the states of the deterministic LTS that is
being generated are sets of states in the original non-deterministic LTS. In our context,
if any one of the states in the set is π, the entire set becomes π. Intuitively, a trace that
non-deterministically may or may not lead to an error has to be considered as an error
trace. Such non-determinism reflects the fact that, by performing a particular sequence
of actions, the environment cannot guarantee that the component will avoid error states.

For example, consider again the composite system in Figure 2.4. There are two outgoing
transitions from the initial state 0 that are labelled by the same environment action
E.enterCS: one leads to the error state, while the other one leads to state 1. This means
that if the environment performs action E.enterCS, it can not prevent the system from
getting to the error, so we would like to identify state 1 with π. In Figure 2.4, this was
achieved during Step 2, but this may not be the case in general.

What remains to be performed at this stage is to make the resulting LTS complete.
Completion is performed by adding a new “sink” state to the LTS, and adding a transition
to this state for each missing transition in the “incomplete” LTS. The missing transitions
in the incomplete LTS represent behaviour of the environment that is never exercised
by the open system under analysis. As a result, no assumptions need to be made about
these behaviours. The sink state reflects exactly this fact, since it poses no implementation
restrictions to the environment.

Once we have the error LTS, we obtain the assumption by deleting the error state
and the transitions that lead to it. Figure 2.6 depicts the assumption generated for our
example. Since the result from Step 2 is already deterministic, we get the assumption by
completing it with the sink state, denoted by θ, and deleting the π state. The assumption
expresses the fact that the environment should only access its critical section protected
by the Mutex. Moreover, as imposed by the Mutex, E.acquire and E.release actions of the
environment can only alternate, and therefore any different behaviour is inconsequential.

Figure 2.6: Generated weakest assumption.
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2.1.2 Assumption Generation Method using L*

This method uses a learning algorithms called L* to iteratively generating an assumption
A such that A is weak enough to be guaranteed by M2 but is strong enough to make M1

satisfy p illustrated in Figure 2.1.
To obtain appropriate assumptions, this method applies the compositional rule in an

iterative fashion as illustrated in Figure 2.7. At each iteration i, a assumption Ai is
produced based on some knowledge about the system and on the results of the previous
iteration. The two steps of the compositional rule are then applied. Step 1 checks the
formula 〈Ai〉 M1 〈p〉. If this formula doesn’t hold, it means that this candidate assumption
is too weak. So the assumption Ai needs to be strengthened. Otherwise (step 1 returns
true), it means that Ai is strong enough for the property to be satisfied. The assumption
Ai is forwarded to step 2. The step 2 checks the formula 〈true〉 M2 〈Ai〉. If this formula
holds (step 2 returns true), then the property p holds in the composition system M1‖M2.
L* terminates and returns generated assumption A=Ai. Otherwise, further analysis is
required to identify whether p is indeed violated in M1‖M2 or whether Ai is too strong for
M2 to satisfy. If the assumption Ai is too strong, Ai must be weakened in iteration i+1.
The new assumption Ai+1 may of course be too weak, and therefore the entire process
must be repeated.

Figure 2.7: Framework to generate assumption A.

Although, the assume-guarantee verification approach presented an effective and ef-
ficient approach for verification of component-based systems. There are some limited
problems on this approach as follows:

• The system in this approach only has two components M1 and M2. It therefore is
very simple.

• In this approach, two components M1 and M2 can not change. Therefore, this
approach will not be efficient to change the system in the context of component
refinement.

• When the system has more than two component, i.e., M1, M2, ..., Mn. This approach
will has to generate (n-1) assumptions among these components. It will be very
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difficult because these assumptions are not independent together and in this case,
the learning algorithms will be low scalability.

• This approach didn’t mention the interfaces of these components. It also didn’t
mention the interactions among these components. The interesting problem is that
we need to check M1‖M2‖...‖Mn |=p? The interfaces of each component Mi has to
what information related p?

2.2 Open Incremental Model Checking

Open incremental model checking (OIMC) approach was proposed by Fisler, Thang&Katayama
[6, 17, 20]. This approach is also based on the idea of assumption model checking. The
assumption model checking approach [11] focuses on the system which contains of two se-
quential modules M1 and M2. It is based on the idea that possible to model check within
M1 only if knowing the labels at the interface states between M1 and M2 by representing
the whole M2 with those labels illustrated in Figure 2.8.

The OIMC approach focuses on the interaction between two components Base and
Extension. A property p is guaranteed to hold in the component Base. This approach
derives a set of preservation constraints at the interface states of the component Base.
When a new component (extension) is added, the whole system which contains of two
components; Base and Extension is not required to re-check altogether. It only checks
the new component Extension preserve the constraints. If it is preserved, the property
holds in the new system. Although OIMC focuses on component refinement, but also ap-
plicable to component addition, e.g. Commercial-Off-The-Shelf (COTS). This verification
approach is incrementally modular because it model checks each component separately.
This approach is also incremental openness for future changes even unanticipated future
changes.

Figure 2.8: An illustration of labelling at the interface states between M1 and M2.

Figure 2.9 describes the main idea of OIMC approach. After assumption model checking
in the component E, if the constraints at this exit state are preserved, there is no need to
check further in component B.
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Figure 2.9: The main idea of open incremental model checking.

This approach consists of the following activities:

1. Deriving a set of preservation constraints at the interface states of the Base such
that if those constraints are preserved, the property inherent to the base under
consideration is guaranteed.

2. The Extension component does not violate the property p of the Base if, during its
execution, the above constraints are preserved.

The current component specification often focuses on the syntactic level. It is lim-
ited in dealing with semantic constraints. Even so, only static aspects of components are
specified. This approach gives a formal model to make component specification more com-
prehensive by including component semantic There are two semantic aspects: dynamic
behavior and inter-component consistency. The component semantic is represented via
the powerful temporal logic CTL.

Definition 2.1. A state transition model M is represented by a tuple 〈S, Σ, s0, R, L〉,
where S is a set of states, Σ is the set of input events, s0 ∈ S is the initial state,
R ⊆ S×PL(Σ) → S is the transition function (where PL(Σ) denotes the set of guarded
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events in Σ whose conditions are propositional logic expressions), and L : S → 2AP labels
each state with the set of atomic propositions true in that state.

A base is expressed by a transition model B= 〈SB, ΣB, s0B, RB, LB〉 and an interface
I. The interface is a tuple of two state sets I=〈exit, reentry〉, where emphexit, reentry
⊆ SB. An extension is similarly represented by a model E= 〈SE, ΣE,⊥, RE, LE〉, where
⊥ denotes no-care value. Its interface is J=〈in, out〉.

E can be semantically plugged with B via compatible interface states. Logically, along
the computation flow, when the system is in an exit state ex∈I.exit of B matched with
an in-state i ∈J .in of E, denoted as ex↔i, it can enter E if the conditions to accept ex-
tension events, namely the set of atomic propositions at i, are satisfied. That is,

∧
LB(ex)

⇒ ∧
LE(i), where

∧
is the inter-junction of atomic propositions. Similar arguments are

made for the matching of a reentry state re∈I.reentry of B and an outstate o ∈J .out of
E. The conditions resemble to pre- and post-conditions in design by contract.

Definition 2.2. Within interfaces I and J of B and E, the pairs 〈ex, i〉 and 〈re, o〉 can
be respectively mapped according to the following conditions:

• ex↔i if
∧

LB(ex) ⇒ ∧
LE(i)

• re↔o if
∧

LE(o) ⇒ ∧
LB(re)

Unlike the current component technology using UML (Unified Modeling Language) and
OCL (Object Constraint Language) to express semantic constraints, constraints in this
paper are related to the Computation Tree Logic (CTL). CTL* logic is formally expressed
via two quantifiers A (“for all paths”) and E (“for some path”) together with five tempo-
ral operators X (“next”), F (“eventually”), G (“always”), U (“until”) and R (“release”).
CTL is a restricted subset of CTL* in which each temporal operator must be preceded
by a quantifier. Specifically, the constraints at an interface (i.e., exit and reentry) state s
is VB(s, cl(p)) defined as follows:

Definition 2.3. cl(p) is the closure set of the property p holding in the component Base
is the set of all sub-formulae of p including itself as follows:

• p ∈AP : cl(p) = {p}, where AP is a set of atomic propositions.

• p is one of AX f , EX f , AF f , EF f , AG f , EG f : cl(p) = {p}∪cl(f)

• p is one of A [f U g], E [f U g], A [f R g], E [f R g]: cl(p) = {p}∪ cl(f)∪ cl(g)

• p = ¬f : cl(p) = cl(f)

• p = f∨g or p = f∧g: cl(p)=cl(f)∪ cl(g)

Definition 2.4. The truth values of a state s with respect to a set of CTL properties ps
within a model M = 〈S, Σ, s0, R, L〉, denoted as VM(s, ps), is a function:S×2CTL �→ 2CTL,
where:
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• VM(s, ∅) = ∅
• VM(s, {p} ∪ ps) = VM(s, {p}) ∪ VM(s, ps)

• VM(s, {p})= {p} if M, s |=p. Otherwise, VM(s, {p}) = {¬p}

It known that the property p holds in the component B. When a new component E is
added, it is required to re-check the new system C which contains of two components B
and E satisfy the property p (i.e., C,s0C |=p?), where s0C is the initial state of C. In the
traditional approaches, they re-checked the whole system C. Therefore, it’s very difficult
to verify when the new system is very large and complex. In the OIMC approach, it only
checks the new component E preserve the constraints. The important problem is that
what constraints is and how to derive them. The answers of these questions are based on
following definition:

Definition 2.5. B and E are in conformance at an exit state ex with respect to cl(p) if
VB(ex, cl(p)) = VE(ex, cl(p)).

The main idea of OIMC is based on the theorem as follows:

Theorem 2.1. Given a base B and a property p holding on B, an extension E is attached
to B at some interface states. E does not violate property p if B and E conform with
each other at all exit states. Namely, with all exit state ex, VB(ex, cl(p)) = VE(ex, cl(p)).

Now, it is required to check that E does not violate p. From above theorem, the OIMC
approach only needs to verify the conformance at all exit states between B and E.

At the end of a task verifying p in B, at each state s, the truth values VB(s, cl(p)) are
also recorded. Corresponding to each exit state ex, within E, the algorithms to verify
preservation constraints VB(ex, cl(p)) as follows:

1. Seeding VB(re, cl(p)) at any reentry state re

2. Executing a CTL assumption model checking procedure in E from re backward to
ex. The formulae to check is (state=ex) → VE(ex, ∅) ∀∅ ∈cl(p)

3. Checking if VB(ex, cl(p)) = VE(ex, cl(p)).

The open incremental model checking approach focuses on the refinement aspect of
components in which components are relatively coupled. However, the results of this
approach can be equally applied to COTS. This approach advocates the inclusion of
dynamic behavior and component consistency written in CTL to the component interface
to better deal with component matching. However, there are some limited problems in
this approach. The constraints are too strict so it is very difficult to apply this approach
in practice. Moreover, the refinement case does not often arise.
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2.3 Component-Interaction Automata

Component-interaction automata approach was proposed by L. Brim [3]. This approach
presents a new approach to component interaction specification and verification process
which combines the advantages of both architecture description languages (ADLs) at
the beginning of the process, and a general formal verification-oriented model connected
to verification tools at the end. After examining current general formal models with
respect to their suitability for description of component-based systems, we propose a new
verification-oriented model, Component-Interaction automata, and discuss its features.
The model is designed to preserve all the interaction properties to provide a rich base
for further verification, and allows the system behaviour to be configurable according to
the architecture description (bindings among components) and other specifics (type of
communication used in the synchronization of components).

The main ideas of this approach is base on combining the Architecture Description
languages (ADLs) and a general formal model verification. The ADLs are very suitable
for specification of hierarchical component architecture with defined interaction among
components and behavior constraints put on component communication and interaction.
But their specification power is limited by underlying model which is often not general
enough to preserve all the interaction properties. The general formal model verification
base on the automata theory. It is highly formal and general and usually supported by
automated verification tools. It is designed for modeling of component interaction only. It
is unable to describe the interconnection structure of hierarchical component architecture.
The goal in this approach is that combining two approaches to gain the best benefits of
both. It develops a general automata-base formalism which allows for the specification of
component interaction according to the interconnection structure description in the ADL.

The idea is to support the specification and verification process automatically or semi-
automatically so that it is accessible also for users with no special theoretical knowledge
of the underlying model. The specification and verification process will constitute of the
following phases:

1. The user selects an appropriate ADL and specifies the system architecture and
component behaviour using an ADL tool.

2. Component behaviour description is transformed into the general formal model au-
tomatically using the model framework.

3. The hierarchical component composition is build within the framework with respect
to the architecture description and synchronization type.

4. The result is verified directly within the model framework or transformed to a format
accepted by verification tools.

Definition 2.6: Let I ⊆ N be a finite set with cardinality k, and let for each i ∈ I, Si

be a set. Then
∏

i∈I Si denotes the set {(xi1 , xi2 , ..., xik) | (∀j ∈ {1, 2, ..., k} : xij ∈Sij) ∧
{i1, i2, ..., ik} = I ∧ (∀j1, j2 ∈ {1, 2, ..., k} : j1 < j2 ⇒ ij1 < ij2)}. If I = φ then
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∏
i∈I Si = φ. For j ∈ I, projj denotes the function projj:

∏
i∈I Si �→ Sj for which

projj((qi)i∈I) = qj.

Definition 2.7: A component-interaction automata C is a 5-tuple 〈Q,Act, δ, I, S〉 where:

• Q is a set of states,

• Act is a finite set of actions, Σ = ((X ∪ {−}×Act×X ∪ {−})) \ ({−}×Act × {−}),
where X = {n | n ∈ N, n occurs in S}, is a set of symbols called an alphabet,

• δ is a finite set of labelled transitions,

• I ⊆Q is nonempty set of initial states, and

• S is a tuple corresponding to a hierarchy of component name (from N) whose com-
position C represents.

Symbols (-,a,B), (A,a,-), (A, a,B) ∈ Σ are called input, output, and internal symbols
of the alphabet Σ, respectively. Accordingly, transitions are called input, output and
internal.

• The input symbol (-,a,B) represents that the component B receives an action a as
an input.

• The output symbol (A, a,-) represents that the component A sends an action a as
an output.

• The internal symbol (A, a,B) represents that the component A sends an action a as
an output, and synchronously the component B receives the action a as an input.

Definition 2.8: Let S = {(Qi, Acti, δi, Ii, Si)}i∈I , where I ⊆ N is finite, be a sys-
tem of component-interaction automata such that sets of components represented by
the automata are pairwise disjoint. Then C = (

∏
i∈I Qi,

⋃
i∈I Acti, δ,

∏
i∈I Ii, (Si)i∈I is a

component-interaction automata over S iff δ = �OldInternal ∪ δNewInternal ∪ δInput ∪ δOutput

where:

• �OldInternal = {(q, (A, a,B)), q′ | ∃i ∈ I : (proji(q), (A, a,B), proji(q
′)) ∈ δi,∀j ∈

I, j �=i : projj(q) = projj(q
′)}

• �NewInternal = {(q, (A, a,B)), q′ | ∃i1, i2 ∈ I, i1 �=i2 : (proji1(q), (A, a,−), proji1(q
′)) ∈

δi1 ∧ (proji2(q), (−, a, B), proji2(q
′)) ∈ δi2 ∧ ∀j ∈ I, i1 �=j �=i2 projj(q) = projj(q

′)}
• δNewInternal ⊆ �NewInternal

• �Input = {(q, (−, a, B)), q′ | ∃i1 ∈ I : (proji1(q), (−, a, B), proji1(q
′)) ∈ δi1 ∧ ∀j ∈ I :

j �=i1 : (projj(q) = projj(q
′))}

• δInput ⊆ �Input
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• �Output = {(q, (A, a,−)), q′ | ∃i2 ∈ I : (proji2(q), (A, a,−), proji2(q
′)) ∈ δi2 ∧ ∀j ∈ I :

j �=i2 : (projj(q) = projj(q
′))}

• δOutput ⊆ �Output

Definition 2.9: An execution fragment of a component-interaction automata C =
〈Q,Act, δ, I, S〉 is an infinite alternating sequence q0, x0, q1, x1, ... of states and symbols of
the alphabet Σ such that (qi, xi, qi+1) ∈ δ for all 0 ≤i. An execution of C is an execution
fragment q0, x0, q1, x1, ... such that q0 ∈ I. An execution fragment is closed if all its sym-
bols are internal. A trace of C is a sequence x0, x1, ... of symbols for which there is an
execution q0, x0, q1, x1, ....

Verification: In real component-based systems one needs to verify various properties of
system behaviour. If the system is modelled as a component-interaction automaton the
behaviour capturing the interaction among components and architectural levels are the
traces. Both linear and branching time temporal logics have proved to be useful for spec-
ifying properties of traces. There are several formal methods for checking that a model
of the design satisfies a given specification. Among them those based on automata [6] are
especially convenient for our model of Component-Interaction automata.

Although this approach evolves a new verification-oriented automata-based formal
model. However, in this approach, the verification method is more general. It should
be developed in more details.

2.4 Some Open Problems

From above approaches, there are some problems under research which may to continue
researching as follows:

• We can use the ideas on the component-interaction automata approach and the
OIMC approach to improve the limited problems of the assume-guarantee verifica-
tion approach. If the system has more than two component, i.e., M1, M2, ..., Mn,
we can use the idea of the component-interaction automata approach to combine
two components as a bigger component and return to verify this system with two
bigger components by applying the idea of assume-guarantee verification approach.

• We can improve the verification technique in the component-interaction automata
approach by presenting its in more details.

• The interesting problem is that how to check the effects of two extension components
C1 and M2 on the verification of F + (C1∩M2). If it will be solved, when a new
component is added, we checks the new system by only checking the new component
cover the intersection (C1∩M2). This is the main goal in this thesis.

• Implementation the OIMC approach to develop a tool for verification in practice.
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• It will be significant if we propose a framework for unanticipated software changes
for component-based systems. This problem was proposed by Thang&Katayama in
[14] but it was more general.
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Chapter 3

A Framework Towards Verification
of Component-Based Software via
Model Checking

This chapter proposes a faster assume-guarantee approach for component-based software
verification in the context of component refinement in a general view. It contains of
the problem, a framework to solve the problem, specially new assumption re-generation
technique. Some basic concepts also are introduced (Section 3.1) in this chapter.

3.1 Background

3.1.1 Labeled Transition Systems

The proposed approach in this thesis uses Labeled Transition Systems (LTSs) to model
the behavior of communicating components. A LTS is a directed graph with labeled
edges. In addition to states and transitions, a set of labels called alphabet is associated
with the system. All labels on transitions must be from that alphabet. Let Act be the
universal set of observable actions and let τ denote a local/internal action unobservable
to a component’s environment. We use π to denote a special error state, which models
the fact that a safety violation has occurred in the associated system. We require that
the error state has no outgoing transition. A LTS is defined as follows:

Definition 3.1 (Labeled Transition Systems) [9]. A LTS M is a quadruple 〈Q,αM, δ, q0〉
where:

• Q is a non-empty set of states,

• αM ⊆ Act is a finite set of observable actions called the alphabet of M ,

• δ ⊆ Q × αM ∪ {τ} × Q is a transition relation, and

• q0 ∈ Q is the initial state.
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We use
∏

to denote the LTS 〈{π}, Act, φ, π〉. An LTS M = 〈Q,αM, δ, q0〉 is non-
deterministic if it contains τ -transition or if ∃(q, a, q′), (q, a, q′′) ∈ δ such that q′ �= q′′.
Otherwise, M is deterministic.

Let M = 〈Q,αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q′0〉. We say that M transits into M ′

with action a, denoted M −→a M ′ if and only if (q0, a, q′0)∈δ and αM = αM ′ and δ = δ′.

Definition 3.2 (Traces)[2, 4]. A trace t of an LTS M is a sequence of observable actions
that M can perform starting at its initial state. For Σ⊆Act, we use t↑Σ to denote the
trace obtained by removing from t all occurrences of actions a �∈Σ. The set of all traces of
M is called the language of M , denoted L(M).

Let t=〈a1, a2, ..., an〉 be a finite trace of a LTS M . We use [t] to denote the LTS
Mt=〈Q,αM, δ, q0〉 with Q=〈q1, q2, ..., qn〉, and δ = {(qi−1, ai, qi)}, where 1 ≤ i ≤ n.

Figure 3.1: An illustration of LTSs.

Figure 3.1 shows graphical representations of two LTSs; Input and Output. The initial
state of Input LTS in this example is state 0. The initial state of Output LTS is state
a. The Input LTS receives an input when the action in occurs, and then sends it to the
Output LTS with action send. After some data is sent to Output LTS, it produces output
using the action out and acknowledges that it has finished, by using the action ack. At
this point, both LTSs return to their initial states so the process can be repeated. In this
illustration, 〈in〉, 〈in,send〉, 〈in,send,ack〉 etc. are traces of Input LTS.

Definition 3.3 (Parallel Composition) [9]. The parallel composition operator ‖ is
a commutative and associative operator that combines the behavior of two components
by synchronizing the actions common to their alphabets and interleaving the remaining
actions. Consider two LTSs; M1 = 〈Q1, αM1, δ1, q

1
0〉 and M2 = 〈Q2, αM2, δ2, q

2
0〉. The

parallel composition between M1 and M2, denoted M1‖M2, is defined as follows. If M1 =∏
or M2 =

∏
, then M1‖M2 =

∏
. Otherwise, M1‖M2 is a labeled transition system

M=〈Q,αM, δ, q0〉 where Q = Q1×Q2, αM = αM1∪αM2, q0 = q1
0 ×q2

0, and the transition
relation δ is given by the rules:

(i)
α ∈ αM1 ∩ αM2, (p, α, p′) ∈ δ1, (q, α, q′) ∈ δ2

((p, q), α, (p′, q′)) ∈ δ
(3.1)

(ii)
α ∈ αM1\αM2, (p, α, p′) ∈ δ1

((p, q), α, (p′, q)) ∈ δ
(3.2)

(iii)
α ∈ αM2\αM1, (q, α, q′) ∈ δ2

((p, q), α, (p, q′)) ∈ δ
(3.3)
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Figure 3.2: An illustration of parallel composition.

For example, Figure 3.2 describes the parallel composition Input‖Output. By removing
all states which unreachable from the initial state (0,a) and their ingoing transitions,
we obtain the parallel composition LTS Input‖Output as Figure 3.3. In this illustration,
actions send and ack will each be synchronized and the others is interleaved.

Figure 3.3: The parallel composition Input‖Output.

Definition 3.4 (Safety LTSs, Safety Property, and error LTS). We call a deter-
ministic LTS that contains no π states a safety LTS. A safety property is specified as a
safety LTS p, whose language L(p) defines the set of acceptable behaviors over αp. An
LTS M satisfies p, denoted as M |=p, if and only if ∀σ∈L(M): (σ↑αp)∈L(p). When
checking the LTS M which satisfies the property p, an error LTS, denoted perr, is created
which traps possible violations with the π state. Formally, the error LTS of a property
p=〈Q,αp, δ, q0〉 is perr=〈Q ∪ {π}, αperr, δ

′, q0〉, where αperr = αp and δ′ = δ ∪ {(q, a, π) |
a ∈ αp and �q′ ∈ Q : (q, a, q′) ∈ δ}.

The error LTS is complete, meaning each state other than the error state has outgoing
transitions for every action in the alphabet. For example, Figure 3.4 describes the LTS of
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property p and the error LTS perr. The property p means that the int action has to occur
before out action. It captures a desired behavior of the communication channel shown in
Figure 3.1. The error LTS perr is created from the safety LTS p by applying the above
definition. The dashed arrows illustrate the transitions to the error state that are added
to the property to obtain LTS perr.

Figure 3.4: Order property.

To verify a component M satisfying a property p, both M and perr are represented by
safety LTSs, the parallel composition M‖perr is then computed. If state π is reachable in
the composition then M violates p. Otherwise, it satisfies.

Figure 3.5: Computing the composition Input‖Output‖perr.

For example, in order to verify the composition system Input‖Output (illustrated in
Figure 3.2) which satisfies the property p (illustrated in Figure 3.4), the parallel com-
position Input‖Output‖perr is computed in Figure 3.5. It’s easy to check that the error
state π is not reachable in this composition, so we conclude that the composition system
Input‖Output satisfies the property p.
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3.1.2 Deterministic Finite State Automata

The approach in this thesis uses a learning algorithms called L* [1, 24] to generate an
assumption from two components. A framework to generate assumption will be described
in Section 3.2. In this framework (see Figure 3.10), at each iteration i, the Learning
module produces a Deterministic Finite State Automata (DFA) Mi such that it is unique
and minimal automata and L(Mi) = L(AW ), where AW is the weakest assumption under
which F satisfies the property p [7]. The DFA Mi then is transformed into a candidate
assumption Ai, where Ai is represented by a safety LTS. A Deterministic Finite State
Automata is defined as follows:

Definition 3.5 (Deterministic Finite State Automata). A DFA M is a five tuple
〈Q,αM, δ, q0, F 〉 where:

• Q, αM , δ, q0 are defined as for deterministic LTSs, and

• F ⊆ Q is a set of accepting states.

For a DFA M and a string σ, we use δ(q, σ) to denote the state that M will be in
after reading σ starting at state q. A string σ is said to be accepted by a DFA M
= 〈Q,αM, δ, q0, F 〉 if δ(q0, σ)∈F . The language of a DFA M is defined as L(M) =
{σ | δ(q0, σ) ∈ F}.

Figure 3.6 describes an illustration of DFA M , where:

• q0 is initial state,

• Q = {q0, q1},
• αM = {a, b},
• δ = {(q0, a, q1), (q0, b, q1), (q1, a, q1), (q1, b, q0)}, and

• F = {q1}.

It’s easy to check that the string aaaa ∈ L(M) but the string aaaab �∈ L(M).

Figure 3.6: An illustration of DFA.

A DFA M is prefix-closed if L(M) is prefix-closed, i.e., for every σ∈L(M), every prefix
of σ is also in L(M). The DFAs returned by the learning algorithm in the proposed
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approach are complete, minimal, and prefix-closed. These DFAs therefore contains a
single non-accepting state nas.

To get a safety LTS A from a DFA M , we remove the non-accepting state nas and all
its ingoing transitions. Formally, we can define the way to transform a DFA M to a safety
LTS A as follows:

Let a DFA M = 〈Q ∪ {nas}, αM, δ, q0, Q〉, the safety LTS A = 〈Q,αM, δ ∩ (Q ×
αM×Q), q0〉. For example, Figure 3.7 describes an example to transform a DFA into a
safety LTS.

Figure 3.7: An illustration of getting a safety LTS from a DFA.

3.1.3 Component Refinement

Refinement is an important concept in software engineering. It’s a general notion and
there are many meanings of this concept, depending on the context in which it is used. For
example, in analysis and design software, refinement expresses the relationship between a
specification and it’s implementation. In this case, refinement means that more detailed
information is added. The relation “AI refines AS” is intuitively meant to say that
“component AS has more behavioral options than component AI ,” or equivalently, “every
behavioral option realized by implementation AI is allowed by specification AS”. In
the object-oriented programming, refinement means adding some methods or attributes
or constraints into a class. In the open incremental model checking (OIMC) approach
[6, 17, 20], refinement means adding (or plugging) an new component (extension) into the
Base component via compatible interface states.

In the proposed approach in this thesis, concept of refinement means adding some be-
havior into the component. Intuitively, component C2 refines component C1 meant to
say that the component C2 is created by adding some states and transitions into the
component C1, where C1 and C2 are represented by LTSs. Formally, we can define the
refinement relation between C1 and C2 as follows:

Let C1 = 〈Q1, αC1, δ1, q
1
0〉 and C2 = 〈Q2, αC2, δ2, q

2
0〉 are two components. C2 is a re-

finement of C1 if and only if Q1 ⊆ Q2, δ1 ⊆ δ2, and q1
0 = q2

0. For these conditions,
L(C1) ⊆L(C2).

For example, the component C2 is a refinement of component C1 illustrated in Figure
3.8. After some data is sent to C1, it produces output using the action out and acknowl-
edges that it has finished, by using the action ack. The refinement component C2 is
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created by adding the transition (b,send,b) into component C1. It means that C2 allows
multiple send actions to occur before producing output.

Figure 3.8: An illustration of component refinement.

3.1.4 Assume-Guarantee Reasoning

The assume-guarantee paradigm is based on a powerful “divide-and-conquer” mechanism
for decomposing a verification task about a system into subtasks about the individual
components of the system. The key to assume-guarantee reasoning is to consider each
component not in isolation, but in conjunction with assumptions about the context of
the component. Assume-guarantee principles are known for purely concurrent contexts,
which constrain the input data of a component, as well as for purely sequential contexts,
which constrain the entry configurations of a component.

In the assume-guarantee paradigm a formula is a triple 〈A〉 M 〈p〉, where M is a
component, p is a property and A is an assumption about M ’s environment. The formula
is true if whenever M is part of a system satisfying A, then the system guarantees p. In
the proposed approach, A, M , p are represented by LTSs.

Consider for simplicity a system that is made up of components M1 and M2. The
main goal of assume-guarantee reasoning is to verify this system satisfy property p (i.e.,
M1 ‖M2 |=p?) without composing M1 with M2. For this purpose, the simplest proof rule
consists of showing that the following two premises hold: 〈A〉 M1 〈p〉 and 〈true〉 M2 〈A〉.
From these, the rule infers that 〈true〉 M1 ‖M2 〈A〉 also holds. Formally, given LTSs M1

, M2 and p, assume-guarantee reasoning finds a LTS A such that L(A‖M1)↑αp ⊆ L(p)
and L(M2)↑αA ⊆ L(A).

Note that for this rule to be useful, the assumption A must be more abstract than M2,
but still reflect M2’s behavior. Additionally, an appropriate assumption for the rule needs
to be strong enough for M1 to satisfy p. Unfortunately, it is often difficult to find such
an assumption.

3.1.5 LTSA Tool

The Labelled Transition Systems Analyzer (LTSA) [12] is an automated tool that sup-
ports Compositional Reachability Analysis (CRA) of a concurrent software based on its
architecture. In general, the software architecture of a concurrent software has a hierar-
chical structure. CRA incrementally computes and abstracts the behaviour of composite
components based on the behaviour of their immediate children in the hierarchy. Abstrac-
tion consists of hiding the actions that do not belong to the interface of a component, and
minimizing with respect to observational equivalence.
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The input language “Finite State Processes (FSP)” of this tool is a process-algebra style
notation with Labelled Transition Systems (LTS) semantics. A property is also expressed
as an LTS, but with extended semantics, and is treated as an ordinary component during
composition. Properties are combined with the components to which they refer. They do
not interfere with system behaviour, unless they are violated. In the presence of violations,
the properties introduced may reduce the state space of the (sub)systems analyzed.

The LTSA tool also features graphical display of LTSs, interactive simulation and graph-
ical animation of behaviour models, all helpful aids in both design and verification of
system models.

This thesis uses LTSA tool to check correctness of the proposed approach by some illus-
trations. At each iteration i in framework for assumption generation and new assumption
re-generation, this tool is used to check whether assumption Ai produced by L* Learner
which satisfies the compositional rule.

3.2 Motivation

Despite significant advances in the development of model checking, it remains a difficult
task in the hands of experts to make it scale to the size of industrial systems. A key
step in achieving scalability is to “divide-and-conquer”, i.e., breaking up the verification
of a system into smaller tasks that involve the verification of its components. Assume-
guarantee reasoning [21, 23] is a widespread “divide-and-conquer” approach that uses
assumptions when checking individual components of a system. There are many successful
researches [2, 4, 7, 8, 17, 19, 20] using this key step. However, there are many limited
problems from these approaches (see Section 2.1, 2.2, 2.3) and many open problems which
are under research (see Section 2.4).

Figure 3.9: A framework for component refinement.

The main goal in this thesis is to find a faster approach for component-based soft-
ware verification in the context of component refinement. The problem in this thesis is
illustrated in Figure 3.9. Suppose that there is a fixed framework F and an extension
C1. The extension C1 is plugged with the framework F via parallel composition operator
(synchronizing the common actions and interleaving the remaining actions). Firstly, we
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know that the system contains of F and C1 satisfy the property p (i.e., F‖C1 |=p). After
that, C1 is refined into C2 by adding some states and transitions into C1. The major goal
of the proposed method is to verify whether the new composition system F‖C2 satisfies
p without re-checking it from the beginning. This technique tries to reuse the results of
the previous verification (between F and C1) in order to have an incremental verification
manner to verify the new system.

Figure 3.10: A framework to generate assumption [4, 8].

For above goal, this thesis proposes an approach to solve the problem. In a general view
of the proposed approach, when we verify the old system F ‖C1 satisfying the property p,
we generate an assumption A(p) that is strong enough for F to satisfy p but weak enough
to be discharged by C1 (i.e., 〈A(p)〉 F 〈p〉 and 〈true〉 C1 〈A(p)〉 both hold). This approach
uses the learning algorithms L* [4] to generate A(p).

After that, when the component C1 is refined into C2, the proposed approach doesn’t
re-check the whole new system containing the framework F and the new component C2. It
only checks the assume-guarantee formula 〈true〉 C2 〈A(p)〉. We hope that if the difference
between C1 and C2 is small, the formula still holds and the new system still satisfies the
property p. There are two cases which may be occurred when checking the formula as
follows:

• The first case: the formula 〈true〉 C2 〈A(p)〉 still holds. It means that the new
system F ‖C2 satisfies the property p. In this case, we can seem the assumption
A(p) as the results of previous verification to check the new system with future
changes in an incremental manner. In practice, if the difference between C1 and C2

is small then probability for C2 to still satisfies p is great. We hope that the system
will hold the property p with the assumption A(p) for future changes.

• The second case: the formula 〈true〉 C2 〈A(p)〉 doesn’t hold. In this case, the
proposed approach then performs some analysis to determine whether p is indeed
violated in the new system F‖C2 or whether A(p) is too strong for C2 to satisfy. If
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the assumption A(p) is too strong, the the approach re-generates a new assumption
Anew(p) between F and C2 without re-generating its from the beginning. In the
framework to generate assumption using the L* learning algorithms illustrated in
Figure 3.10, at the initial step, L* sets the observation table (S,E,T ) as the empty
table (i.e., L* sets S and E to {λ}). Therefore, the initial assumption A0 as the
strongest assumption (i.e., A0 = λ, where λ presents the empty string). In the
proposed approach, after generating the assumption A(p) between F and C1, it
saves the observation table (S,E,T ) as the results of previous verification for new
assumption re-generation in an incremental manner. In order to re-generate new
assumption Anew(p) between F and C2, this approach uses the initial observation
table as (S,E,T ) (not empty table). It means that the initial assumption in the
proposed approach to re-generate new assumption is A(p) (not λ). Because A(p)
is weaker than λ so much, therefore, we can compute Anew(p) in the faster method
illustrated in Figure 3.11.

After computing the new assumption Anew(p), we can consider it as the intersection
between C1 and C2 and use it as the results of previous verification for future
changes.

Figure 3.11 illustrates the process for assumptions re-generation using the L* learning
algorithms. In this figure, λ as strongest assumption. It is initial assumption in L* to
generate old assumption A(p) between F and C1. In the case C2 doesn’t satisfy p (i.e.,
C2 �|=p), the assumption A(p) as initial assumption to re-generate new assumption Anew(p)
between F and C2. Intuitively, we can find Anew(p) in faster manner with the initial
assumption A(p). It is difference between the proposed approach and these approaches
in [2, 4, 7, 8].

3.3 Related works

Assume-guarantee reasoning leverages the observation that verification techniques can
analyze the individual components of large software in isolation to improve performance.
For verification of component-based software, there are many approaches proposed and
some tools developed; see for example [2, 4, 7, 8].

Even though the proposed approach in this thesis is based on component-based modu-
lar model checking, there is a fundamental difference between the conventional modular
verification works [10, 11, 22] and the approach including this thesis and in [2, 4, 7, 8].
Modular verification in the former works is rather closed. It is not prepared for future
changes. If a component is added to the system, the whole system of many existing com-
ponents and the new component are re-checked altogether. On the contrary, the proposed
approach in this thesis and in [2, 4, 7, 8] verify global system properties by checking in-
dividual components in isolation. In its simplest form, it checks whether a component
M guarantees a property p when its external environment satisfies an assumption A, and
checks that the remaining components in the system (M ’s environment) indeed satisfy A.
The proposed technique therefore is incremental modular verification.
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Figure 3.11: The new assumption re-generation process using L*.

The proposed approach introduced in this thesis is similar to [2, 4, 7, 8]. However, my
work differs these approaches presented in [2, 4, 7, 8] in some key points. Firstly, my
work presents a faster assume-guarantee approach to verify component-based systems in
context of component refinement. There is a strong relationship between two components
C1 and C2, where C2 is refinement of C1. Therefore, the proposed approach opens for
future changes. On the contrary, component refinement was not mentioned in [2, 4, 7,
8]. Secondly, in the proposed approach, if the component C1 is refined by component
C2 and if the formula 〈true〉 C2 〈A(p)〉 doesn’t hold, an new assumption Anew(p) is re-
generated without regenerating its from the beginning. On the contrary, the approach
in [2, 4, 7, 8] is viewed from a static perspective, i.e., the component and the external
environment do not evolve. If the component changes after adapting some refinements, the
assumption-generating approach is re-run on the whole component from beginning, i.e.,
the component model has to be re-constructed; and the assumption about the environment
is then regenerated from that model.

Finally, my work in this thesis is close to the open incremental model checking in
[6, 17, 20]. However, the proposed approach differs the approach in [6, 17, 20] in the
concept of refinement. The concept of refinement in my approach means adding some
states and transitions into the component C1 whereas the concept of refinement in [6, 17,
20] means adding (or plugging) an new component (extension) into the Base component
via compatible interface states. Moreover, in the technique in this thesis components,
assumptions and the property are specified by LTSs. In [6, 17, 20] dynamic behavior,
component consistency and property were written in the powerful logic CTL [5].
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Chapter 4

Assumption Generation using
Learning Algorithms - L*

Chapter 3 presented a general view of the proposed approach for component-based soft-
ware verification in the context of component refinement. An important problem in this
technique is that how to generate the assumption, specially, how to re-generate new as-
sumption of the new systems in the case we have to re-generate it. This chapter introduces
how to generate assumption between two components F and C1. The important section
in this chapter is the method to re-generate new assumption between F and C2 in the case
the formula 〈true〉 C2 〈A(p)〉 doesn’t hold. The detailed information of the L* learning
algorithms is also presented in this chapter.

4.1 The L* Learning Algorithms

The proposed approach uses the learning algorithms developed by Angluin [1] and later
improved by Rivest and Schapire [24]. In this thesis, I refer to the improved version by
the name of the original algorithm called L*. L* learns an unknown regular language and
produces a DFA that accepts it. The main idea of the L* learning algorithms is based on
the “Myhill-Nerode Theorem” [13] in the theory of formal languages. It said that for every
regular set U⊆ Σ∗, there exists a unique minimal deterministic automata whose states are
isomorphic to the set of equivalence classes of the following relation: w ≈w′ iff ∀u ∈ Σ∗:
wu ∈ U ⇐⇒ w′u ∈ U. Therefore, the main idea of L* is to learn the equivalence classes,
i.e., two prefix aren’t in the same class if and only if there is a distinguishing suffix u.

Let U be an unknown regular language over some alphabet Σ. L* will produce a DFA
M such that M is a minimal deterministic automata corresponding to U and L(M) = U.
In order to learn U, L* needs to interact with a Minimally Adequate Teacher, from now
on called Teacher. The Teacher must be able to correctly answer two types of questions
from L*. The first type is a membership query, consisting of a string σ ∈ Σ∗; the answer
is true if σ ∈ U, and false otherwise. The second type of these questions is a conjecture,
i.e., a candidate DFA M whose language the algorithms believes to be identical to U. The
answer is true if L(M) = U. Otherwise the Teacher returns a counterexample, which is a
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string σ in the symmetric difference of L(M) and U. The interaction between L* Learning
and the Teacher in a general view is illustrated in Figure 4.1.

Figure 4.1: The interaction between L* Learner and the Teacher.

At a higher level, L* maintains a table T that records whether string s in Σ∗ belong
to U. It does this by making membership queries to the Teacher to update the table. At
various stages L* decides to make a conjecture. It uses the table T to build a candidate
DFA Mi and asks the Teacher whether the conjecture is correct. If the Teacher replies
true, the algorithm terminates. Otherwise, L* uses the counterexample returned by the
Teacher to maintain the table with string s that witness differences between L(Mi) and U.

For more details, L* builds an observation table (S,E,T ), where:

• S∈ Σ∗ is a set of prefixes. It presents equivalence classes or states.

• E∈ Σ∗ is a set of suffixes. It presents the distinguishing.

• T : (S ∪ S.Σ).E �→ {true, false} where, the operator “.” means that given two
sets of event sequences P and Q, P.Q={pq | p ∈ P, q ∈ Q}, where pq presents the
concatenation of the event sequences p and q. With a string s in Σ∗, T(s)=true
means s ∈U, otherwise s �∈U.

An observation table (S,E,T ) is closed if ∀s∈S, ∀a∈Σ, ∃s′∈S, ∀e∈E: T(sae) = T(s′e).
In this case, s′ presents the next state from s after seeing a, sa is undistinguishable form
s′ by any of suffixes. Intuitively, the observation table (S,E,T ) is closed means that every
row sa of S.Σ has a matching row s′ in S.

The detailed information of the L* algorithms step by step is presented in Figure 4.2,
line numbers refer to L*’s illustration. Initially, L* sets S and E to {λ} (line 1), where
λ presents the empty string. Subsequently, it updates the function T by making mem-
bership queries so that it has a mapping for every string in (S ∪ S.Σ).E (line 2). It then
checks whether the observation table (S,E,T ) is closed. If the observation table (S,E,T ) is
not closed, then sa is added to S, where s ∈ S and a ∈ Σ are the elements for which there
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is no s′ ∈ S (line 3). Because sa has been added to S, T must be re-updated by making
membership queries (line 4). Line 3 and line 4 are repeated until the table (S,E,T ) is
closed.

When the observation table (S,E,T ) is closed, a candidate DFA M =〈Q,αM, δ, q0, F 〉
is constructed (line 5) from the table (S,E,T ), where:

• Q =S.

• Alphabet αM = Σ, where Σ is the alphabet of the unknown language U.

• The transition δ is defined as δ(s, a) = s′ where ∀e ∈ E : T(sae) = T(s′e)

• initial state q0 = λ.

• F = {s ∈ S | T(s) = true}.

The candidate DFA M is presented as a conjecture to the Teacher (line 6). If the
Teacher replies true (i.e., L(M) = U), L* returns M as correct (line 7), otherwise it
receives an counterexample c ∈ Σ∗ from the Teacher.

The counterexample c is analyzed by L* to find a suffix e of c that witnesses a difference
between L(M) and U. After that, e must be added to E (line 8). It will cause the next
conjectured automaton to reflect this difference. When e has been added to E, L* iterates
the entire process by looping around to line 2.

Figure 4.2: The L* Algorithms.

For example, Figure 4.3 presents a closed observation table and its candidate DFA
constructed from this table. It’s very easy to check this table is closed. Intuitively, every
row sa of S.Σ has a matching row s′ in S. In order to avoid misunderstanding in this figure,
we modify state’s name of the DFA, i.e, λ changes into q0, a changes into q1. From this
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closed table, L* constructs the candidate DFA M , where αM = Σ = {a, b}, Q = {q0, q1},
the initial state is q0, δ = {(q0, a, q1), (q0, b, q1), (q1, a, q1), (q1, b, q0)}, and F = {q1}. From
the DFA M , we can get a safety LTS simply by removing non-accepting state q0 and all
its ingoing transitions.

Figure 4.3: An illustration of a closed observation table (S,E,T ) and its candidate DFA.

Each candidate DFA Mi produced by L* is smallest. It means that any DFA consistent
with the observation table (S,E,T ) has at least as many states as Mi. Let M1,M2, . . . ,Mn

are candidate DFAs produced by L* step by step, it is very easy to check that |M1| ≤
|M2| ≤ . . . ≤ |Mn|, where |Mi| denotes number of states of the DFA Mi. L* is guaranteed
to terminate with a minimal automaton M for the unknown language U. Moreover, for
each closed observation table (S,E,T ), the candidate DFA M that L* constructs is smallest
[13], in the sense that any other DFA consistent with the function T has at least as many
states as M . The conjectures made by L* strictly increase in size; each conjecture is
smaller than the next one, and all incorrect conjectures are smaller than M . Therefore, if
M has n states, L* makes at most n-1 incorrect conjectures. The number of membership
queries made by L* is O(kn2+nlogm), where k is the size of alphabet of U, n is the number
of states in the minimal DFA for U, and m is the length of the longest counterexample
returned when a conjecture is made.

4.2 Assumption Generation using The L* Learning

Algorithms

Supposing that there are two components; a framework F and an extension C1. The
extension C1 is plugged with the framework F via parallel composition operator (syn-
chronizing the common actions and interleaving the remaining actions). Figure 4.4 shows
a general view of assume-guarantee verification. The main goal of assume-guarantee veri-
fication is to verify this system satisfy the property p (i.e., F‖C1|=p?) without composing
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F with C1. For this purpose, the the approach generates an assumption A(p) that is
strong enough for F to satisfy p but weak enough to be discharged by C1 (i.e., 〈A(p)〉 F
〈p〉 and 〈true〉 C1 〈A(p)〉 both hold). Unfortunately, it is often difficult to find such an
assumption. Formally, given LTSs F , C1 and p, the main goal in this problem is to find
a LTS A(p) such that L(A(p)‖F )↑αp ⊆ L(p) and L(C1)↑αA(p) ⊆ L(A(p)).

Figure 4.4: A general view of assume-guarantee verification.

Recently, there are two solutions in generating assumption A(p) automatically. The
first one is an algorithmic, non-incremental, generation of assumptions. It finds the weak-
est assumption AW by taking the complement of paths in the product automata leading
to error states. The AW describes exactly those traces over Σ = (αF ∪αp)∩αC1 which do
not lead to the error state π in F‖perr. For all component C ′

1, F‖C ′
1 |=p iff C ′

1|=AW . The
drawback in this solution is that if the computation runs out of memory, i.e., if component
state space is too large, no assumption will be obtained as a result. The advantage is that
it does not require knowledge of the environment. We want to find an assumption A(p)
that is stronger than AW because AW is the weakest assumption. This is major goal of the
second solution - assumption generation using the learning algorithms called L* [1, 24].
It is an incremental approach, based on counterexamples and learning. Instead of finding
AW , it uses the L* learning algorithms to learn AW . The advantage of this solution is an
any-time method, which means that it produces a finite sequence of approximations to
an assumption that can be used to obtain conclusive results in assume-guarantee reason-
ing. If it runs out of memory, intermediate assumptions can still be useful. However, it
requires knowledge of the environment and is quite difficult to understand.

In order to obtain appropriate assumptions, the method applies the compositional rule
in an iterative fashion illustrated in Figure 4.6. At each iteration i, a candidate assump-
tion Ai is produced based on some knowledge about the system and on the results of the
previous iteration. The two steps of the compositional rule are then applied. Step 1 is ap-
plied first, to check whether F satisfies p in environments that guarantee Ai by computing
formula 〈Ai〉 F 〈p〉. If the result is false, it means that this candidate assumption is too
weak, i.e., Ai does not restrict the environment enough for p to be satisfied. Therefore, the
candidate assumption Ai must be strengthened, which corresponds to removing behaviors
from it, with the help of the counterexample cex produced by step 1. In the context of
the next candidate assumption Ai+1, component F should at least not exhibit the vio-
lating behavior reflected by this counterexample. If step 1 returns true, it means that
Ai is strong enough for F to satisfy the property p. The step 2 is then applied to check
component C1 satisfying Ai by computing formula 〈true〉 C1 〈Ai〉. If step 2 returns true,
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the property p holds in the composition system F‖C1. In this case, the system F‖C1 |=p
is verified. Otherwise, further analysis is required to identify whether p is indeed violated
in F‖C1 or whether Ai is too strong for C1 to satisfy. Such analysis is based on the
counterexample cex returned by step 2. It must checks that whether the counterexample
cex belong to the unknown language U= L(AW ) (i.e., cex∈L(AW )?). For this purpose,
this analysis checks whether p violated by F in the context of the counterexample cex
by computing the composition system that contains of Acex and F violate the property p
(i.e., Acex‖F �|=p?), where Acex is a LTS defined as follows:

Let LTS Acex=〈Q,αAcex, δ, q
0〉 and the counterexample cex=〈a1, a2, . . . , ak〉. The LTS

Acex is created from the the counterexample cex as follows:

• Q = {q0, q1, . . . , qk},
• αAcex = {a1, a2, . . . , ak},
• δ = {(qi, ai+1, qi+1) | 1 ≤ i < k}, and

• q0 = q0.

Figure 4.5 illustrates the LTS Acex is created from the the counterexample cex.

Figure 4.5: The LTS Acex is created from the counterexample cex.

If the property p doesn’t hold in the composition system Acex‖F (i.e., Acex‖F �|=p), it
means that the property p doesn’t hold in the composition system F‖C1 (i.e., F‖C1 �|=p).
Otherwise, Ai is too strong for C1 to satisfy. The candidate assumption Ai therefore
must be weakened (i.e., behaviors must be added) in iteration i+1. The result of such
weakening will be that at least the behavior that the counterexample cex represents will
be allowed by candidate assumption Ai+1. New candidate assumption may of course be
too weak, and therefore the entire process must be repeated.

An important question in this section is that how the module L* Learning works. The
same question is that how to generate a candidate assumption Ai at each iteration i in
the framework illustrated in Figure 4.6. In the assume-guarantee approach, L* learns
the weakest assumption AW . It means that L* learns the unknown language U=L(AW )
over the alphabet Σ = αAW = (αF ∪ αp) ∩ αC1. It uses candidates produced by L*
learning as candidate assumptions Ai for the assume-guarantee rule (compositional rule).
In order to produce each candidate assumptions Ai, L* first produces a candidate DFA
Mi based on the closed observation table (S,E,T ), it then translates the candidate DFA
Mi into a safety LTS as candidate assumptions Ai by applying the definition 3.4. For L*
to learn AW , we need to provide a Teacher that is able to answer the two different kinds
of questions that L* asks. The first type is a membership query, consisting of a string
σ ∈ Σ∗; the answer is true if σ ∈ U, and false otherwise. The second type of question is a
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Figure 4.6: A framework to generate assumption using the L* learning algorithms [4, 8].

conjecture, i.e., a candidate DFA Mi whose language the algorithm believes to be identical
to U. The answer is true if L(Mi) = U. Otherwise the Teacher returns a counterexample,
which is a string σ in the symmetric difference of L(Mi) and U. This approach uses model
checking to implement such a Teacher.

For the first type of questions, in order to answer a membership query for string
σ=〈a1, a2, . . . , an〉 whether in Σ∗ = L(AW ), the Teacher simulates the query on the com-
position F‖perr. For the string σ, the Teacher first builds safety LTS Aσ=〈Q,αAσ, δ, q

0〉,
where Q = {q0, q1, . . . , qn}, αAσ = Σ, δ = {(qi, ai+1, qi+1) | 1 ≤ i < n}, and q0 = q0.
The Teacher then checks the formula 〈Aσ〉 F 〈p〉 by computing the composition system
Aσ‖F‖perr. If the state error π is unreachable in this composition system (the formula
returns true), it means that σ∈L(AW ). Because F does not violate the property p in the
context of σ, so the Teacher returns true. Otherwise, the answer to the membership query
is false.

For the second type of questions, with each DFA Mi produced by L* from the obser-
vation table (S,E,T ) at each iteration i, the Teacher must checks that whether the DFA
Mi is a candidate DFA for the iteration i (i.e., L(Mi) = L(AW )?) For this purpose, the
Teacher first translates the DFA Mi into a safety LTS Ai. It then uses the safety LTS Ai

as candidate assumption for the compositional rule. The Teacher applies two steps of the
compositional rule and counterexample analysis to answer conjectures as follows:

• Step 1 illustrated in Figure 4.6 first is applied, the Teacher checks the formula 〈Ai〉
F 〈p〉 by computing the composition system Ai‖F‖perr. If the state error π is
reachable in this composition system, it means that this formula doesn’t hold. The
Teacher then returns false and a counterexample cex. The Teacher informs L* that
its conjecture Ai is not correct and provides cex↑Σ to witness this fact. Otherwise,
this formula holds, the Teacher forwards Ai to Step 2.
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• Step 2 is applied by checking the formula 〈true〉 C1 〈Ai〉 illustrated in Figure 4.6.
If this formula holds, the Teacher returns true. Our framework then terminates the
verification because, according to the compositional rule, the property p has been
proved on the composition system F‖C1. Otherwise, this step returns a counterex-
ample cex. The Teacher then performs some analysis to determine whether p is
indeed violated in F‖C1 or whether Ai is too strong for C1 to satisfy.

• Counterexample analysis is performed by the Teacher in a way similar to that used
for answering membership queries. Let cex be the counterexample returned by
Step 2. The Teacher first creates a safety LTS Acex↑Σ from the counterexample
cex illustrated in Figure 4.5. The Teacher then checks the formula 〈Acex↑Σ〉 F
〈p〉 by computing the composition system Acex↑Σ‖F‖perr. If the state error π is
unreachable, then the property p doesn’t hold in the composition system F‖C1

(i.e., F‖C1 �|=p). Otherwise, Ai is too strong for C1 to satisfy in the context of cex.
The cex↑Σ is returned as a counterexample for conjecture Ai.

4.3 New Assumption Re-generation

When the component C1 is refined into new component C2 by adding some states and
transitions into C1, the proposed approach must re-check the new system which contains
of the framework F and the new component C2 whether it satisfies the property p. For
this purpose, the approach in this thesis only checks the formula 〈true〉 C2 〈A(p)〉. If it
holds, the new system F‖C2 satisfies the property p. Otherwise, the Teacher returns a
counterexample cex↑Σ to witness this fact. The proposed approach then performs some
analysis to determine whether p is indeed violated in the new system F‖C2 or whether
A(p) is too strong for C2 to satisfy. If A(p) is too strong, a new assumption Anew(p) be-
tween the framework F and the new component C2 is re-generated that is strong enough
for F to satisfy p but weak enough to be discharged by C2 (i.e., 〈Anew(p)〉 F 〈p〉 and
〈true〉 C2 〈Anew(p)〉 both hold). How to re-generate new assumption in faster method is
the major goal in this thesis.

The approach in [2, 4, 8] is viewed from a static perspective to re-generate new as-
sumption. If the component changes after adapting some refinements, the assumption-
generating approach is re-run on the whole component from beginning, i.e., the component
model has to be re-constructed; and the assumption about the environment is then re-
generated from that model. This approach therefore is not effective for re-checking the
new system in the case it must re-generate a new assumption.

This thesis proposes a faster assume-guarantee approach for component-based software
verification in the context of component refinement. The proposed approach re-generates
a new assumption Anew(p) between F and C2 without re-running on these whole compo-
nents from beginning. It tries to reuse the results of the previous verification (between F
and C1) in order to have an incremental manner to re-generate the new assumption.
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In the algorithms L* illustrated in Figure 4.6, at the initial step, L* sets the observation
table (S,E,T ) as empty table (i.e., L* sets S and E to {λ}, where λ presents the empty
string). Therefore, the initial assumption A0 is the strongest assumption λ (i.e., A0 = λ).
In the proposed approach, after generating the assumption A(p) between F and C1, it
saves the observation table (S,E,T ) as the results of previous verification of the old system
F‖C1. To re-generate new assumption Anew(p) between F and C2, the approach in also
uses the learning algorithms L* but with the initial observation table (S,E,T ) (not empty
table as in [2, 4, 8]), from now on called the old observation table (Sold,Eold,Told). It
means that the initial assumption in the proposed approach to re-generate new assump-
tion is A(p) (not λ). Because A(p) is weaker than λ so much, our technique therefore
can compute Anew(p) in the faster method illustrated in Figure 3.11). In the proposed
technique, the results of the previous verification (between F and C1) is set to be the
initial assumption A(p) to re-generate new assumption Anew(p) in incremental manner.

After re-generating the new assumption Anew(p), we can consider Anew(p) as the in-
tersection between C1 and C2. In the future, if the component C2 will be changed after
adapting some refinements, we hope that the new system will hold the property p with
the new assumption Anew(p) (i.e., 〈true〉 C2 〈Anew(p)〉 still holds). If it will not hold, we
will re-generate new assumption in the faster manner with initial assumption as Anew(p).

The detailed information of the L* learning algorithms for new assumption re-generation
step by step is presented in Figure 4.7, line numbers refer to L*’s illustration. Initially,
L* sets the initial observation table (S,E,T ) to the old observation table (Sold,Eold,Told)
(i.e., L* sets S to Sold, E to Eold, T to Told) (line 1). The counterexample cex↑Σ returned
by the Teacher when it check the formula 〈true〉 C2 〈A(p)〉 is analyzed by L* to find a
suffix e of cex↑Σ that witnesses this fact. After that, e must be added to E (line 2).
Subsequently, L* updates the function T by making membership queries so that it has a
mapping for every string in (S ∪ S.Σ).E (line 3). It then checks whether the observation
table (S,E,T ) is closed. If the observation table (S,E,T ) is not closed, then sa is added to
S, where s ∈ S and a ∈ Σ are the elements for which there is no s′ ∈ S (line 4). Because
sa has been added to S, T must be re-updated by making membership queries (line 5).
Line 4 and line 5 are repeated until the table (S,E,T ) is closed.

When the observation table (S,E,T ) is closed, a candidate DFA M =〈Q,αM, δ, q0, F 〉
is constructed (line 6) from the table (S,E,T ) by the same way in the section 5.2.

The candidate DFA M is presented as a conjecture to the Teacher (line 7). If the
Teacher replies true (i.e., L(M) = U), L* returns M as correct (line 8), otherwise it
receives an counterexample cex∈ Σ∗ from the Teacher.

The counterexample cex is analyzed by L* to find a suffix e of c that witnesses a
difference between L(M) and U. After that, e must be added to E (line 9). It will cause
the next conjectured automaton to reflect this difference. When e has been added to E,
L* iterates the entire process by looping around to line 3.
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Figure 4.7: The L* learning algorithms for new assumption regeneration.

Correctness and termination of the approach for new assumption re-generation is proved
by following theorem.

Theorem 1. Given a framework F , a new component C2 which is a refinement of the ex-
tension C1, property p, and an assumption A(p) which is strong enough for F to satisfy p
but weak enough to be discharged by C1, the algorithms for new assumption re-generation
in our approach terminates and it returns true and a new assumption Anew(p) if the new
composition system F‖C2 satisfy p and false otherwise.

Proof. The proposed approach uses two steps of the compositional rule to answer the
question of whether the assumption Ai produced by L* Learner is an candidate assump-
tion. It only returns true and new assumption Anew(p)=Ai when both steps return true,
and therefore correctness is guaranteed by the compositional rule in [4]. Our technique
returns a real error when it detects a trace σ of C2 which violates the property p when
simulated on F . In this case, it implies that F‖C2 violates p. The remaining problem
is to prove that we always achieve the new assumption Anew(p) from the old assumption
A(p) if F‖C2 satisfy p. In the case the new assumption is re-generated, we know that
C2 �|=A(p) because A(p) is too strong for C2 to satisfy. We also know that C2 |=Anew(p)
because Anew(p) satisfies the compositional rule. From these, it means that Anew(p) is
weaker than A(p). In the proposed approach, the assumption Ai produced by L* Learner
at iteration i is always stronger than the assumption Ai+1 at iteration (i+1), so we always
achieve the new assumption Anew(p) from A(p). About termination, at any iteration, the
algorithm returns true or false (i.e., F‖C2 �|=p) and terminates or continues by providing a
counterexample to L* Learner. By correctness of L* [1, 24], we are guaranteed that if L*
Learner keep receiving counterexamples, in the worst case, our algorithms will eventually
produce the weakest assumption AW and terminates by definition of AW .
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Figure 4.8 describes the process for new assumptions re-generation by using the al-
gorithms L* in the proposed approach in a general view. In this figure, λ is strongest
assumption. It is initial assumption in L* to generate assumption A(p) between F and
C1. In the case C2 doesn’t satisfy p (i.e., C2 �|=p), we use the assumption A(p) as initial
assumption to re-generate new assumption Anew(p) between F and C2. Because the old
assumption A(p) is too strong for C2 to satisfy, so new assumption Anew(p) is weaker than
A(p). It is very clear that new assumption re-generation by starting at the old assumption
A(p) is faster than by starting at the strongest assumption λ. Intuitively, we can find
Anew(p) in faster manner by initial assumption A(p). It is difference between the proposed
approach and approaches in [2, 4, 7, 8].

Figure 4.8: The process for new assumption regeneration using L*.
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Chapter 5

A Case Study

Chapter 3,4 presented a faster assume-guarantee approach for component-based software
verification in the context of component refinement. The contribution in this thesis is to
propose an incremental method for new assumption re-generation. This chapter intro-
duces a case study to illustrate the proposed technique, specially, assumption generation
method and new assumption re-generation method will be presented step by step by con-
crete examples. The LTSA tool is used to check assumptions produced by L* Leaner that
whether them satisfy the compositional rule.

5.1 System Specification

An illustration system which contains of the framework F and the component C1 pre-
sented in Figure 5.1. In this illustration system, the LTS of the framework F as Input
LTS, and the LTS of component C1 as Output LTS. The initial state of Input LTS in
this example is state 0. The initial state of Output LTS is state a. The extension C1 is
plugged with the framework F via parallel composition operator (synchronizing the com-
mon actions and interleaving the remaining actions). This system means that the Input
LTS receives an input when the action in occurs, and then sends it to the Output LTS
with action send. After some data is sent to it, Output LTS produces output using the
action out and acknowledges that it has finished, by using the action ack. At this point,
both LTSs return to their initial states so the process can be repeated. The property P
means that the in action has to occur before out action. The LTS perr is created from
LTS p by applying the definition 3.4. The dashed arrows illustrate the transitions to the
error state that are added to the property p to obtain LTS perr.

Formally, these components and order property are defined as follows:

Let F = 〈QF , αF, δF , qF
0 〉, where:

• QF = {0, 1, 2},
• αF = {in, send, ack},
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Figure 5.1: Components and order property of the illustration system.

• δF = {(0, in, 1), (1, send, 2), (2, ack, 0)}, and

• qF
0 = 0.

Let C1 =< QC1 , αC1, δC1 , q
C1
0 >, where:

• QC1 = {a, b, c},
• αC1 = {send, out, ack},
• δC1 = {(a, send, b), (b, out, c), (c, ack, a)}, and

• qC1
0 = a.

Let p = 〈Qp, αp, δp, q
p
0〉, where:

• Qp = {i, ii},
• αp = {in, out},
• δp = {(i, in, ii), (ii, out, i)}, and

• qp
0 = i.

The LTS perr is created from LTS p by applying the definition 3.4. Let perr = 〈Qperr , αperr, δperr , q
perr

0 〉,
where:

• Qperr = {i, ii},
• αperr = {in, out, π},
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• δperr = {(i, in, ii), (ii, out, i), (i, out, π), (ii, in, π)}, and

• qperr

0 = i.

In the proposed approach, we know that the illustration system described in Figure 5.1
satisfies the order property p (i.e., F‖C1|=p). It will generate an assumption A(P ) that
is strong enough for F to satisfy p but weak enough to be discharged by C1 (i.e., 〈A(p)〉
F 〈p〉 and 〈true〉 C1 〈A(p)〉 both hold) in section 5.2.

After that, when the component C1 (Output) is refined into a new component C2

(Output’ ), the proposed approach will check the formula 〈true〉C2 〈A(p)〉. It will not
hold, it will re-generate a new assumption Anew(p) between the framework F and the new
component C2 in section 5.3.

The component C2 is a refinement of component C1 illustrated in Figure 5.2. After
some data is sent to C1, it produces output using the action out and acknowledges that
it has finished, by using the action ack. The refinement component C2 is created by
adding the transition (b,send,b) into component C1. It means that C2 allows multiple
send actions to occur before producing output.

Figure 5.2: The component Output is refined into new component Output’.

5.2 Assumption Generation

The main goal in this section is to find an assumption A(p) between the framework F
and the component C1 that is strong enough for F to satisfy p but weak enough to be
discharged by C1 (i.e., 〈A(p)〉 F 〈p〉 and 〈true〉 C1 〈A(p)〉 both hold). The assumption
A(p) will be used as initial assumption to re-generate new assumption Anew(p) in section
5.3.

In order to generate assumption A(p), L* learns the weakest assumption AW . It means
that L* learns the unknown language U=L(AW ) over the alphabet Σ = αAW = (αF ∪
αp) ∩ αC1 = {send, out, ack}.

Initially, L* sets the observation table (S,E,T ) with S and E to {λ} illustrated in Figure
5.3, where λ presents the empty string. The observation table (S,E,T ) is updated by mak-
ing membership queries to the Teacher, i.e., λ∈L(AW )?, 〈ack〉∈L(AW )?, 〈out〉∈L(AW )?,
and 〈send〉∈L(AW )?.

For example, by making the membership query λ∈L(AW )? to the Teacher. The Teacher
simulates the empty string λ on the composition system Input‖perr illustrated in Figure
5.4. In this case, the error state π is unreachable. It means that λ∈L(AW ), the Teacher
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Figure 5.3: The empty observation table at initial step.

therefore replies Yes to L* Learner. The similarity with the others queries, the results are
that 〈ack〉∈L(AW ), 〈out〉�∈L(AW ), and 〈send〉∈L(AW ). The observation table (S,E,T )
after updating illustrated in Figure 5.5.

Figure 5.4: Simulation the empty string λ on the composition system Input‖Perr.

Because the row out in S.Σ has no matching row in S, so the observation table (S,E,T )
in Figure 5.5 is not closed. Adding out into S to make its closed. The observation table
(S,E,T ) after adding out into S illustrated in Figure 5.6. The observation table (S,E,T )
is re-updated by making membership queries to the Teacher, i.e., 〈out,ack〉∈L(AW )?,
〈out,out〉∈L(AW )?, and 〈out,send〉∈L(AW )?.

For example, by making membership query 〈out,ack〉∈L(AW )? to the Teacher. The
Teacher simulates the string 〈out,ack〉 on the composition system Input‖Perr illustrated
in Figure 5.4. In this case, the error state π is reachable. It means that 〈out,ack〉�∈L(AW ),
so the Teacher replies No to L* Learner. The similarity with the others queries, the results
are that 〈out,out〉�∈L(AW ), and 〈out,send〉�∈L(AW ). The observation table (S,E,T ) after
re-updating illustrated in Figure 5.7. Because every row sa in S.Σ (s ∈ S and a ∈ Σ)
has a matching row s′ in S, so the observation table (S,E,T ) in Figure 5.7 is closed. A
candidate DFA M1 is constructed from this closed observation table. We get a safety LTS
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Figure 5.5: The observation table after updating by making membership queries.

Figure 5.6: The observation table after adding out into S.

A1 from the candidate DFA M1 by removing the non-accepting state and all its ingoing
transitions.

Figure 5.7: The observation table after re-updating by making membership queries.

Now, the Teacher uses the safety LTS A1 as candidate assumption for the compositional
rule. The Teacher applies two steps of the compositional rule and counterexample analysis
to answer conjectures from L* Learner.

Step 1 first is applied, the Teacher checks the formula 〈A1〉 Input 〈p〉 by computing
the composition system A1‖Input‖perr illustrated in Figure 5.8. It is easy to check that
the error state π is reachable in this composition system, so the the Teacher then returns
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false and a counterexample cex=〈in,send,ack,in〉. The Teacher informs L* Learner that
its conjecture A1 is not correct and provides cex↑Σ=〈send,ack〉 to witness this fact.

Figure 5.8: Computing the composition system A1‖Input‖Perr.

The counterexample cex↑Σ=〈send,ack〉 is analyzed by L* to find a suffix e of cex
that witnesses a difference between L(M1) and U. In this case, L* analyzes and sets
e to ack. Adding ack into E and re-updating the observation table (S,E,T ) by mak-
ing membership queries. The observation table (S,E,T ) after adding ack into E illus-
trated in Figure 5.9. The observation table (S,E,T ) is re-updated by making member-
ship queries to the Teacher, i.e., 〈ack〉∈L(AW )?, 〈out,ack〉∈L(AW )?, 〈ack,ack〉∈L(AW )?,
〈out,ack〉∈L(AW )?, 〈send,ack〉∈L(AW )?, 〈out,ack,ack〉∈L(AW )?, 〈out, out,ack〉∈L(AW )?,
and 〈out,send,ack〉∈L(AW )?. The Teacher simulates these strings on the composition sys-
tem Input‖perr illustrated in Figure 5.4. The results which the Teacher reply to L* are that
〈ack〉∈L(AW ), 〈out,ack〉�∈L(AW ), 〈ack,ack〉 ∈L(AW ), 〈out,ack〉�∈L(AW ), 〈send,ack〉�∈L(AW ),
〈out,ack,ack〉�∈L(AW ), 〈out,out,ack〉�∈L(AW ), and 〈out,send,ack〉�∈L(AW ). The observa-
tion table (S,E,T ) after re-updating illustrated in Figure 5.10.

Because the row send in S.Σ has no matching row in S, so the observation table (S,E,T )
in Figure 5.10 is not closed. Adding send into S to make S closed. The observation table
(S,E,T ) after adding send into S and re-updating by making membership queries to the
Teacher illustrated in Figure 5.11. For every row sa in S.Σ (s∈S and a∈Σ) has a matching
row s′ in S, so the observation table (S,E,T ) in Figure 5.11 is closed. A candidate DFA
M2 is constructed from this closed observation table. We get a safety LTS A2 from the
candidate DFA M2 by removing the non-accepting state and all its ingoing transitions.

The Teacher then uses the safety LTS A2 as candidate assumption for the compositional
rule. The Teacher applies two steps of the compositional rule and counterexample analysis
to answer conjectures from L* Learner.
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Figure 5.9: The observation table after adding ack into S.

Figure 5.10: The observation table after re-updating by making membership queries.

Step 1 first is applied, the Teacher checks the formula 〈A2〉 Input 〈p〉 by computing the
composition system A2‖Input‖perr illustrated in Figure 5.12. It is easy to check that the
error state π is unreachable in this composition system, so the the Teacher then returns
true. It means that the formula 〈A2〉 Input 〈p〉 holds. The Teacher forwards A2 to Step
2.

Step 2 is applied by checking the formula 〈true〉 Output 〈A2〉. In order to check this
formula, the Teacher computing the composition Output‖A2err . It is easy to check that
the error state π is unreachable in this composition system, so the the Teacher then
returns true. It means that the Order property p holds in the system Input‖Output (i.e.,
Input‖Output |=p). The learning algorithms L* terminates and returns the assumption
A(p) = A2.

5.3 New Assumption Regeneration

When the component Output is refined into the new component Output’ illustrated in
Figure 5.2. The main goal of the proposed approach is to verify the new system which
contains of component Input and new component Output’. In order to verify the new
system, the approach only checks the formula 〈true〉 Output’ 〈A(p)〉 by computing the
composition system Output’‖A2err , where the error LTS A2err is created from the safety
LTS A2 by applying the definition 3.4.
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Figure 5.11: The observation table after adding send into S.

Figure 5.12: Computing the composition system A2‖Input‖perr.

Figure 5.13 illustrates the computing the composition system Output’‖A2err . In this
composition, the error state π is reachable with trace 〈send,send,out〉. It means that the
formula 〈true〉 Output’ 〈A(p)〉 doesn’t hold. In this case, the Teacher returns a coun-
terexample cex=〈send,send,out〉. The Teacher then performs some analysis to determine
whether p is indeed violated in F‖C2 (Input‖Output’ ) or whether A2 is too strong for
Output’ to satisfy by simulating the counterexample cex↑Σ=〈send,send,out〉 on the com-
position system Input‖perr.

Figure 5.14 illustrates simulating the counterexample cex↑Σ on the composition system
Input‖Perr. In this composition, the error state π is unreachable. It means that the
assumption A2 is too strong for Output to satisfy in the context of cex↑Σ=〈send,send,out〉.
The cex↑Σ is returned as a counterexample for conjecture A2.

The approach in this thesis must re-generate a new assumption Anew(p) between F and
C2. In order to re-generate new assumption, it also uses the learning algorithms L* but
beginning from the old assumption A2 (not from λ).

The counterexample cex↑Σ=〈send,send,out〉 is analyzed by L* to find a suffix e of cex
that witnesses a difference between L(M2) and U. In this case, L* analyzes and sets e
to out. Adding out into E and re-updating the observation table (S,E,T ) by making
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Figure 5.13: Computing the composition system Output’‖A2err .

Figure 5.14: Simulating the cex↑Σ on the composition system Input‖perr.

membership queries to the Teacher. After re-updating, the observation table (S,E,T ) is
closed. A candidate DFA M3 is constructed from this closed observation table. We get a
safety LTS A3 from the candidate DFA M3 by removing the non-accepting state and all
its ingoing transitions. The safety LTS A3 illustrated in Figure 5.15.

The Teacher uses the safety LTS A3 as candidate assumption for the compositional rule.
The Teacher applies two steps of the compositional rule and counterexample analysis to
answer conjectures from L* Learner.

Step 1 first is applied, the Teacher checks the formula 〈A3〉 Input 〈p〉 by computing
the composition system A3‖Input‖perr illustrated in Figure 5.16. It is easy to check that
the error state π is reachable in this composition system, so the the Teacher then returns
false and a counterexample cex=〈in,send,out,ack,out〉. The Teacher informs L* Learner
that its conjecture A3 is not correct and provides cex↑Σ=〈send,out,ack,out〉 to witness
this fact.
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Figure 5.15: The safety LTS A3 is created from the closed table (S,E,T ).

Figure 5.16: Computing the composition system A3‖Input‖perr.

The counterexample cex↑Σ=〈send,out,ack,out〉 is analyzed by L* to find a suffix e of
cex that witnesses a difference between L(M3) and U. In this case, L* analyzes and sets
e to out. Adding out into E and re-updating the observation table (S,E,T ) by making
membership queries to the Teacher. After re-updating, the observation table (S,E,T ) is
closed. A candidate DFA M4 is constructed from this closed observation table. We get a
safety LTS A4 from the candidate DFA M4 by removing the non-accepting state and all
its ingoing transitions. The safety LTS A4 illustrated in Figure 5.17.

Figure 5.17: The safety LTS A4 is created from the closed table (S,E,T ).

The Teacher then uses the safety LTS A4 as candidate assumption for the compositional
rule. The Teacher applies two steps of the compositional rule and counterexample analysis
to answer conjectures from L* Learner.

At Step 1, the Teacher checks the formula 〈A4〉 Input 〈p〉 by computing the composition
system A4‖Input‖perr illustrated in Figure 5.18. It is easy to check that the error state π
is unreachable in this composition system, so the the Teacher then returns true. It means
that the formula 〈A4〉 Input 〈p〉 holds. The Teacher forwards A4 to Step 2.

Step 2 is applied by checking the formula 〈true〉 Output’ 〈A4〉. In order to check this
formula, the Teacher computing the composition Output’‖A4err illustrated in Figure 5.19.
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Figure 5.18: Computing the composition system A4‖Input‖perr.

Figure 5.19: Computing the composition system Output’‖A4err .

It is easy to check that the error state π is unreachable in this composition system, so the
the Teacher then returns true. It means that the order property p holds in the composition
system Input‖Output’ (i.e., Input‖Output’ |=p). The learning algorithms L* terminates
and returns the new assumption Anew(p) = A4. The new system is verified that it satisfies
the property p.

By using the old assumption A2 as the initial assumption to re-generate new assumption
Anew(p), the proposed approach doesn’t generate candidate assumptions A1, A2 passing
many steps. Therefore, this approach can re-generate new assumption in the faster manner
and reduce the computing time to generate these candidate assumptions. In practice, the
effect of this approach will be more efficient by verifying the complex systems. It is very
significant to verify the component-based systems in the context of component refinement.

5.4 Experiments

This thesis uses the LTSA tool [12] to check correctness of the proposed approach by
concrete examples illustrated in section 5.2 & 5.3. Because currently well-known model
checker do not support assumption model checking and assumption generation, at each
iteration i in frameworks for assumption generation and new assumption re-generation,
we use assumption Ai produced by L* Learner and check that whether it satisfies the
compositional rule (i.e., 〈Ai〉 F 〈p〉 and 〈true〉 Ci 〈Ai〉 both hold) by checking composi-
tion systems Ai‖F‖perr and Ci‖Aierr in the LTSA tool, where i=1,2.
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Figure 5.20: FSPs and LTSs of illustration system in LTSA tool.

Firstly, LTSs of all components and property of the illustration system (illustrated in
Figure 5.1) are translated into the input language “Finite State Processes (FSPs)” of this
tool showed in Figure 5.20. In this figure, sub-figure a) presents FSPs of components and
the order property p and the others present correlative LTSs of them. In the LTSA tool,
state -1 is the error state.

For generating the old assumption A(p) between the framework Input and the compo-
nent Output, at iteration 1, L* Learner produced the candidate assumption A1 illustrated
in Figure 5.7. We use LTSA tool to check that A1 satisfies the compositional rule.

At Step 1, the formula 〈A1〉 Input 〈p〉 is checked by computing the composition system
A1‖Input‖perr. FSPs of these LTSs and checking result is presented in Figure 5.21. In
this figure, sub-figure a) presents FSPs of component Input, assumption A1, the order
property p, and the composition system. The checking result is presented in sub-figure
b). It means that the composition system is violated.

At iteration 2, L* Learner produced the candidate assumption A2 illustrated in Figure
5.11. We use LTSA tool to check that whether A2 satisfies the compositional rule.
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Figure 5.21: The checking result of composition system A1‖Input‖perr.

Figure 5.22: The checking result of composition system A2‖Input‖perr.

Step 1 is applied first to check the formula 〈A2〉 Input 〈p〉 by computing the composition
system A2‖Input‖perr. FSPs of these LTSs and checking result is presented in Figure 5.22.
In this figure, sub-figure a) presents FSPs of the component Input, assumption A2, the
order property p, and the composition system. The checking result is presented in sub-
figure b). It means that the formula holds.

Step 2 is applied by checking formula 〈true〉 Output 〈A2〉. The LTSA tool computes
the composition system Output‖A2err illustrated in Figure 5.23. Sub-figure a) presents
FSPs of the component Output, assumption A2, and the composition system, where A2

is order property. The checking result is presented in sub-figure b). It means that the
formula also holds. From these, A2 satisfies the compositional rule. L* terminates and
returns assumption between Input and Output as A(p)=A2.

When the component Output is refined into the new component Output’ illustrated
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Figure 5.23: The checking result of composition system Output‖A2err .

Figure 5.24: The checking result of composition system Output’‖A2err .

in Figure 5.2, the LTSA tool checks the formula 〈true〉 Output’ 〈A2〉 by computing the
composition system Output’‖A2err presented in Figure 5.24. Sub-figure a) showed FSPs of
the new component Output’, assumption A2, and the composition system. The checking
result is presented in sub-figure b). The result means that the formula does not hold. A
new assumption between Input and Output’ is re-generated.

At iteration 1 of the algorithm for new assumption regeneration, L* Learner produced
the candidate assumption A3 illustrated in Figure 5.15. The LTSA tool is used to check
that whether A3 satisfies the compositional rule.

Step 1 is applied first to check the formula 〈A3〉 Input 〈p〉 by computing the composition
system A3‖Input‖perr showed in Figure 5.25. In this figure, sub-figure a) presents FSPs of
the component Input, assumption A3, the order property p, and the composition system.
The checking result is presented in sub-figure b). It means that the formula does not
hold.
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Figure 5.25: The checking result of composition system A3‖Input‖perr.

At iteration 2 of the algorithm for new assumption regeneration, L* Learner produced
the candidate assumption A4 illustrated in Figure 5.17. We use LTSA tool to check that
whether A4 satisfies the compositional rule.

At Step 1, the formula 〈A4〉 Input 〈p〉 is checked by computing the composition system
A4‖Input‖perr. FSPs of these LTSs and checking result is presented in Figure 5.26. In
this figure, sub-figure a) presents FSPs of the component Input, assumption A4, the order
property p, and the composition system. The checking result is presented in sub-figure
b). It means that the formula holds.

Step 2 is applied by checking formula 〈true〉 Output’ 〈A4〉. The LTSA tool computes
the composition system Output’‖A4err illustrated in Figure 5.27. Sub-figure a) presents
FSPs of the component Output’, assumption A4, and the composition system, where A4

is order property. The checking result is presented in sub-figure b). It means that the
formula also holds. From these, A4 satisfies the compositional rule. The algorithm for
new assumption regeneration terminates and returns new assumption between Input and
Output’ as Anew(p)=A4.
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Figure 5.26: The checking result of composition system A4‖Input‖perr.

Figure 5.27: The checking result of composition system Output’‖A4err .
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Chapter 6

Conclusion and Future Works

Verification of software has received a lot of attentions of the software engineering com-
munity, specially modular verification of component-based software. Currently there are
many approaches was proposed [10, 11, 22, 2, 4, 7, 8] and some successful applications
were developed [2, 4, 7, 8]. However, there are many limited problems and many open
problems which are under research from these approaches.

This thesis proposed a faster assume-guarantee verification approach to verify component-
based software in the context of component refinement. In this technique, if a component
is refined into a new component, the whole system of many existing components and the
new component is not required to re-check altogether. It only checks the new component
satisfying the assumption of the old system. If yes then the new system is verified. Oth-
erwise, the proposed approach performs some analysis to determine whether the property
is indeed violated in the new system or whether the assumption of the old system is too
strong for the new component to satisfy. If the assumption is too strong, the new assump-
tion is re-generated. The approach in this thesis tries to reuse the results of the previous
verification in order to have an incremental manner to re-generate new assumption. It
does not re-generate new assumption from beginning. After re-generating the new as-
sumption, we can consider it as the results of previous verification for future changes. A
case study is presented to illustrate my approach step by step. The LTSA [12] tool also
is used to check correctness of the technique by some concrete examples.

However, this thesis does not evaluate the effectiveness of the proposed approach in
formal way. My future works will complete this limitation. Moreover, in future works will
focus on studying following problems:

• The refinement concept in this thesis means adding some states and transitions
into the old component. In practice, it not only adding some behaviors but also
removing some behaviors. Finding an approach for new assumption generation in
faster manner with the new concept of refinement is an interesting problem in my
future works.

• Applying my approach for some bigger illustration systems.

56



• Because currently model checkers do not support assume-guarantee verification, in
my future works, i will implement a tool supporting about that.

• The problem in this thesis will be more complex if the component C1 contains of
many sub-components. What are the interaction between these sub-components for
the component C1 to satisfy the assumption? The algorithms to generate assump-
tion will also be more complex.

• In the proposed approach, the property P is a LTS global safety property. The
problem will be more difficult if the property P is represented by the powerful
temporal logic CTL.

• The problem in this thesis has a strong relationship between C1 and C2 (i.e., C2 is
a refinement of C1). If C1 and C2 are independent together, the problems will be
difficult to find a faster approach to verify the new system.
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