Title	Origi n of I sospeci ficity of Act ive Sites on Vari ous Donor－Fr ee Het er ogeneous Zi egl er－Nat ta Cat al yst s for Propyl ene Pol yner i zat i on
Author（s）	A．T．M，KAMRUL HASAN
Citation	
Issue Date	2006－03
These	none
Text version	ht t p：／／hdl ．handl e．net／10119／2185
URL	
Rights	Super vi sor ：M NORU TERANO，材料科学研究科，博士
Description	

JAPAN
ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

Origin of Isospecificity of Active Sites on Various Donor-Free Heterogeneous Ziegler-Natta Catalysts for Propylene Polymerization

Terano Laboratory
340027
A.T.M. Kamrul Hasan

Background

In 1953, Karl Ziegler in Germany discovered the transition metal based catalyst ($\left.\mathrm{TiCl}_{4}+\mathrm{Et}_{3} \mathrm{Al}\right)$ for the production of polyethylene and in the next year, Giulio Natta in Italy modified this catalyst as $\mathrm{TiCl}_{3}+\mathrm{Et}_{2} \mathrm{AlCl}$ for the production of polypropylene. The work on the olefin polymerization had a striking impact on the academic and scientific role of macromolecular chemistry as discipline and marked the great development of polymer chemistry. In 1963, Ziegler and Natta were awarded together the Nobel prize for their innovative discoveries of a new type of catalysis in olefin polymerization chemistry. But in the early stage, these catalyst systems showed very poor technological performance. Hence from the beginning of discovery, a great number of tremendous research efforts from both academic and industrial circles have been provided to the Ziegler-Natta catalysis in order to improve the activity and stereospecificity by the introduction of support material and electron donors. Thus over the years, these catalyst systems have subsequently progressed through several generations from the simple TiCl_{3} based materials into the currently used modern systems based on MgCl_{2} supported TiCl_{4} catalyst with electron donors for the commercially production of isotactic polypropylene.
Aim
The successive development makes the catalyst systems more and more complicated due to the interaction between each other of the catalytic components. As a result, many aspects concerning the real origin of isospecificity of active sites and specific stereochemical role of various catalytic components are still yet to be clearly understood even though tremendous research efforts have been conducted for more than 50 years. However, donor-free TiCl_{3} based catalyst due to having the simplest components is thought to be an ideal model for the investigation of these unsolved problems. Therefore, the objective of the present study is to elucidate the isospecific nature of active sites on donor-free TiCl_{3} based catalyst by the correlation between surface characterization of catalyst and microstructure analysis of polymer.

Experimentals

As a part of our approaches in using donor-free Ziegler-Natta catalysts, in this work, $\mathrm{TiCl}_{3} / \mathrm{Al}$-alkyl and $\mathrm{MgCl}_{2} / \mathrm{TiCl}_{3} / \mathrm{Al}$-alkyl catalysts were investigated in terms of the stereospecific effects from various catalyst preparation and types of cocatalysts through systematic characterizations of both the polymer and the catalyst with modern analytical techniques. Characterizations of catalyst include the investigation of coordination states of surface titanium and aluminum species by XPS and ${ }^{27}$ Al MAS NMR whereas microstructure analysis of polymer with TREF, ${ }^{13} \mathrm{C}$ NMR and GPC methods. A correlation of the results between the microstructures of polymers and the surface structures of the catalysts has been performed to get much deeper understanding on the real origin of isospecificity of active sites on the TiCl_{3}-based catalysts.

Results

Figure 1 and Figure 2 describe the XPS spectra of titanium 2p region curves fitted by computer simulation. It can be seen that both $\mathrm{AA}-\mathrm{TiCl}_{3}$ and $\mathrm{AA}-\mathrm{TiCl}_{3} / \mathrm{MgCl}_{2}$ catalysts contain two types of Ti^{3+} species depending on the coordination states of surface titanium species. The peaks situated at higher binding energy are assigned to the lower coordinated surface titanium species $\left(\mathrm{Ti}^{3+}(\mathrm{a})\right)$ whereas lower binding energy peaks correspond to the higher coordinated surface titanium species $\left(\mathrm{Ti}^{3+}(\mathrm{b})\right.$), which are displayed in the Scheme 1. DEAC as a cocatalyst preferentially shows more intense peak of $\mathrm{Ti}^{3+}(\mathrm{b})$ species of unsupported TiCl_{3} catalyst than TEA (Figure 1) whereas for supported catalyst, this effect implies the opposite tendency (Figure 2).

I

Scheme 1. Surface titanium species with different coordination states. I: low coordinated titanium species $\left(\mathrm{Ti}^{3+}(\mathrm{a})\right)$; II: high coordinated titanium species $\left(\mathrm{Ti}^{3+}(\mathrm{b})\right)$.

Figure 5. TREF diagrams of PP obtained from $\mathrm{AA}-\mathrm{TiCl}_{3}$ based catalyst with $\mathrm{Al} / \mathrm{Ti}$ molar ratio $=3$ at $40^{\circ} \mathrm{C}$ for 30 min polymerization. (a) WG/TEA, (b) DG/TEA, (c) WG/DEAC, (d) DG/DEAC.

Table 1. Dependence of activity, isotacticity, molecular weight and molecular weight distribution of PP produced with unsupported and MgCl_{2} supported TiCl_{3} catalyst using TEA of DEAC as a cocatalyst. (Polymerization conditions: $\mathrm{Ti}=2 \mathrm{mmol}, \mathrm{Al} / \mathrm{Ti}=3$, temp. $=40^{\circ} \mathrm{C}$, time $=30 \mathrm{~min}$.)

Catalyst system	Activity (g-PP/g-Ti•h)	Isotacticitya) $(\mathrm{mmmm} \%)$	$\mathrm{Mn}^{(\mathrm{b})}$ $\times 10^{3}$	$\mathrm{Mw} / \mathrm{Mn}^{(\mathrm{b})}$
$\mathrm{AA}-\mathrm{TiCl}_{3} / \mathrm{MgCl}_{2} / \mathrm{DEAC}$	44.6	43.4	16.7	10.8
$\mathrm{AA-TiCl}_{3} / \mathrm{MgCl}_{2} / \mathrm{TEA}$	118.0	53.9	9.1	13.4
$\mathrm{AA}-\mathrm{TiCl}_{3}$-DEAC	14.4	93.6	51.0	13.5
${\mathrm{AA}-\mathrm{TiCl}_{3} \text {-TEA }}^{2}$	86.4	72.1	18.3	14.0

a) measured by ${ }^{13} \mathrm{C}$ NMR
b) measured by GPC

Figure 3 shows the isotacticity distribution of polypropylene produced with TiCl_{3} catalyst. DEAC represents much intense peak of the highest isotactic fractions with very few fraction of atactic PP. On the other hand, TEA shows very strong peak of completely atactic PP with weaker peak of the highy isotactic PP. Table 1 shows the catalytic activity, isotacticity, molecular weight and molecular weight distribution of polypropylene, which were significantly affected by the types of cocatalyst and MgCl_{2} support. TEA shows much more higher activity with both supported and unsupported catalyst than DEAC. DAEC shows higher isotacticity with unsupported TiCl_{3} catalyst than MgCl_{2} supported TiCl_{3} catalyst. TEA shows lower molecular weight with both MgCl_{2} supported and unsupported TiCl_{3} catalysts.

Depending on the coordination states of surface titanium species (Scheme 1) and three sites models proposed by Busico et al. ${ }^{[1]}$, the nature of isospecific active sites on TiCl_{3} based catalysts, formation and transformation into highly isospecific sites are shown in Schemes 2 and Scheme 3.

Scheme 2. Active sites models originated from the low coordinated surface titanium species.

Scheme 3. Active sites models originated from the high coordinated surface titanium species.
After interaction with TEA cocatalyst, low coordinated surface titanium species (1,2) produce monometallic aspecific active sites $(\mathbf{7 , 8})$, which after further interaction with cocatalyst makes less isospecific bimetallic active sites $(\mathbf{1 2 , 1 3 , 1 4 , 1 5})$. On the other hand, highly coordinated surface titanium species ($\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}$) form monometallic less isospecific active sites $(\mathbf{9}, \mathbf{1 0 , 1 1})$, which also transform into highly isospecific bimetallic active sites $(\mathbf{1 6 , 1 7 , 1 8})$ through complexation with cocatalyst ${ }^{[2]}$. Low coordinated aluminum of bimetallic active sites $(\mathbf{1 2 , 1 3}, \mathbf{1 4})$ due to having pronounced Lewis acidic property ${ }^{[3]}$ may coordinate with another aluminum compound or with surface titanium through chlorine/ethyl bridges to increase its coordination states, which also affects the isospecificity of active sites.

References

[1] P. Corradini, V. Busico, L. Cavallo, G. Guerra, M. Vacatello, V. Venditto, J. Mol. Catal. 1992, 74, 433.
[2] B. Liu, T. Nitta, H. Nakatani, M. Terano et al., Macromol. Chem. Phys. 2002, 203, 2412.
[3] A.G. Potapov, G.D. Bukatov, V.A. Zakharov, J. Mol. Catal. A: Chemical 2005, 246, 248.

