Title	NbN磁性バリア接合の製作
Author(s)	山崎,俊昭
Citation	
Issue Date	2000-03
Туре	Thesis or Dissertation
Text version	none
URL	http://hdl.handle.net/10119/2678
Rights	
Description	Supervisor:今井 捷三,材料科学研究科,修士

NbN磁性バリア接合の製作

山崎 俊昭 (今井研究室)

SIS(Superconductor-Insulator-Superconductor) 接合は電波天文の分野でサブミリ波領域の高周波ミキサーに応用されている。SIS ミキサーの動作周波数は超伝導エネルギーギャップによって制限されており、より高周波での検出には、Nb よりも大きなエネルギーギャップを持つ NbN を超伝導層に用いた接合の開発が望まれる。SIS ミキサーはジョセフソン電流が存在するために雑音が生じる。ジョセフソン電流は外部磁場印加するか、バリア層に磁性体を用いることにより抑圧することができるが、Nb に比べて下部臨界磁場 H_{c1} が小さい NbN では超伝導体内部に磁束が入り込む恐れがあり、外部磁場による抑圧は難しい。そこで本研究では、ジョセフソン電流を微視的に消去することを目的とし、 NiO_x を磁性バリアに用いた NbN 積層型接合の製作を試みた。

接合は $\mathrm{MgO}(001)$ 基板上に作成した。 NbN 薄膜は Ar と N_2 の混合雰囲気中で Nb ターゲットを用いた DC マグネトロンスパッタ法により堆積した。 NiO_x 薄膜は同一真空中において NiO ターゲットを用いて Ar 雰囲気中においてスパッタ成膜する方法と、 Ni を Ar 雰囲気中でスパッタ成膜した後、 RF 電源に切り替えてプラズマ酸化する方法の、2 通りの方法で形成した。接合形成は光露光プロセスによるレジストパターニングの後、 $\mathrm{RIE}(\mathrm{Reactive}\ \mathrm{Ion}\ \mathrm{Etching})$ により CF_4 と O_2 の混合雰囲気中で加工した。1 チップ上に 100、50、20、10、5、 $3\mu\mathrm{m}$ の接合を 2 個ずつ形成し、 Ti/Au 配線層を真空蒸着装置で成膜後、 $\mathrm{DC}\ \mathit{I}-\mathit{V}$ 測定を $4.2\mathrm{K}$ で行った。

配線層と下部電極層の導通を防ぐためには、上部電極層のエッジ部分が傾斜している必要がある。そこで予備実験として、RIE による上部 NbN 電極のエッジ部分の斜面形成の様子を SEM で確認し、酸素分圧と斜面角度の関係を調べた (図 1)。 CF $_4$ のみでも斜面は形成されるが、 O_2 を入れることでより傾斜がなだらかになることが分かる。斜面の角度が約 45 となるように酸素流量を設定することとした。また、NbN の臨界温度 T_c の膜厚依存性を調べた (図 2)。厚さ 500 程度で T_c =14.56K となり接合製作に利用可能であることが分かった。以上の結果から、酸素分圧を約 12%、NbN(500)/NiO $_x$ ($10\sim30$)/NbN(1000) として接合作製後、DC I-V 測定を行った。その結果として、常伝導抵抗と接合面積の積 R_nA が $\sim 10^5\Omega \cdot \mu \text{m}^2$ 程度と非常に大きく、ギャップ構造を持つ素子のI-V 特性は得られなかった。 R_nA が大きくなる原因として、NiO $_x$ の膜厚が厚かったためと考えられる。

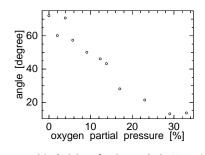


図1 接合斜面角度の酸素分圧依存性

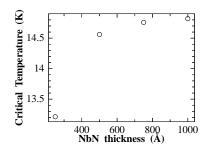


図 2 NbN の T_c の膜厚依存性

keywords

SIS ミキサー、NbN 薄膜、NiOx 薄膜、磁性バリア、ジョセフソン接合