Title	アイソタクチックポリプロピレン 型の構造特性
Author(s)	久保田,啓仁
Citation	
Issue Date	2004-03
Туре	Thesis or Dissertation
Text version	none
URL	http://hdl.handle.net/10119/3105
Rights	
Description	Supervisor:佐々木 伸太郎,材料科学研究科,修士

アイソタクチックポリプロピレン 型の構造特性

久保田 啓仁(佐々木研究室)

【はじめに】

アイソタクチックポリプロピレン(iPP)の α 型結晶(単斜晶系)では、右巻き(R)および左巻き(L)の 3 回らせん分子鎖が図 1 のように配置されている。分子鎖にはメチル基の出方に上向き(up)と下向き(dw)の区別があり、規則的に配置された領域(α_2)と統計的に乱れた領域(α_1)が混在している。本研究では、XRD 測定により α 型試料の熱処理および温度変化の際の構造特性を調べた。

【実験】

イメージングプレート(IP)を装備した時分割高速 X 線散乱測定装置および対称反射光学系の粉末 X 線回折計を用いて XRD 測定を行った。IP の画像データから散乱プロフィルを得るため、カメラ距離、および、斜め入射に対する補正方法を検証した。

試料として市販のiPPシートを用いた。温度変化の測定は、 β 晶に由来する回折が認められなかった試料を、あらかじめ 150 で 5 時間熱処理したものを用い、室温~160 の範囲で 行った。

【結果および考察】

投影構造における格子パラメーターは平均として $<a_p>=<a$ $\sin\beta>=0.66$ nm、=2.1 nm、および、軸角 $<\gamma>=90$ °(室温)であるが、格子の場所および時間により、これらは $a_p=<a_p>+\delta a_p$ 、 $b=+\delta b$ 、 $\gamma=<\gamma>+\delta \gamma$ のように乱れている。040、060 反射の回折幅から、b 軸方向の結晶サイズ L_b 、および、ゆらぎ δb の平均二乗振幅の平方根 b を求めた。また、110、130 反射の回折幅から解析的に仮想反射 100 の回折幅を求め、この逆数を a_p 軸方向の結晶サイズ L_a とした。回折幅のデータから、 α -iPP の格子乱れは、 a_p+a_p 、および、b+bの伸び型の乱れに加えて、軸角にも γ のずり型乱れが加わっていることが示唆された。(図 1)

これらの構造パラメーターの温度依存性を調べた。図 2 に L_a 、 L_b 、 b、および、 γ の温度変化を示す。結晶サイズは、温度上昇とともに大きくなるが、融点に近づくとともに小さくなることが認められた。格子乱れ b および γ は、温度上昇とともに増加する傾向がある。ラメラの成長方向は、a 軸であるが、結晶サイズは L_b の方が L_a より大きい。

また、155 以上の高温では回折幅の減少が観測されたが、 この理由については検討中である。

Keywords アイソタクチックポリプロピレン, XRD

Copyright: © 2004 by Akihito Kubota

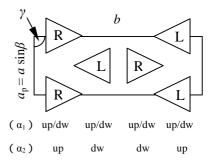


Fig. 1. Structure of α -iPP in the c-axis projection.

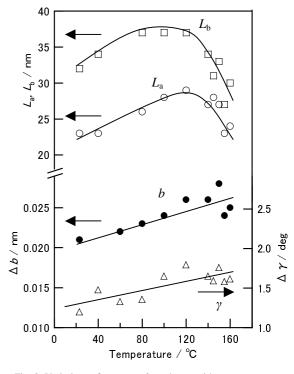


Fig. 2. Variations of $L_{\rm a}, L_{\rm b}, b$, and γ with temperature.