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Heuristics for Generating a Simple Polygonalization

Sachio Teramoto  Mitsuo Motoki  Ryuhei Uehara  Tetsuo Asano

School of Information Science, Japan Advanced Institute of Science and Technology (JAIST),
1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan, {s-teramo,mmotcki,uehara, t-asanoc}l@jaist.ac.jp

Abstract. Given a set § of » points in the plane, randomly generate a simple polygon with z sides using the
points of § as its vertices, or compute a sirple polygonalization of S. Since the counting problem seems to be
quite difficult, heuristic approaches have been adopted during the past decade. We propose a triangulation-base
heuristic algorithm which generates each possible simple polygon with a non-zero probability in O(nlogn+ f)
time, where f is the number of edge-flippings. This time complexity has an advantage over a known O(x* logn)
algorithm.

Key words: Computational geometry, geometric enumeration, simple polygon, polygonalization, triangula-
tion, heuristics.

1 Introduction

Geometric Enumeration deals with problem of listing all geometric objects that satisfy a specified property. Typi-
cal objects to be enumerated are triangulations of a set of planar points. Triangulation is one of the most important
geometric stractures in Computational Geometry [6, 32], so that a number of literature have proposed good enu-
merating algorithms [4, 5, 1].

In addition to theoretical interest, generation of random geometric objects has applications that include testing
and verification of time-complexity of computational geometric algorithms for practical rather than worst-case
behavior. In that sense, generating a simplc polygon seems (o be practical and more important than a triangulation,
since there are many applications which treat a simple polygon as an instance in geometric optimization, such as
Axt Gallery Problems [30, 36], Polygon Partitioning [21], Geometric Shortest Paths [18], and so on [33, 17]. This
paper considers how to generate random simple polygons cfficiently.

Problem statement GivenasetS of n points in general position in the plane, randomly generate a simple polygon
whose polygon vertices are precisely of §, or compute a random simple polygonalization of §.

More precisely, we would like polygonalize a set S of points so that each member of all polygonilizations
of § is generated uniformly at random. However, examining the set of all simple polygonalizations of S is quite
difficult even in the counting problem which asks how many simple polygonalizations are there in §, see {27].
A brief history of the asymptotic bounds on this number are summarized by Demaine [12]. The currently known
approximate upper and lower bounds are 0(86.81") due 1o Sharir and Welzl [34] and Q(4.642™) due to Garcia,
Noy and Tejel [16], respectively. Due to the high upper bound heuristic approaches have been adopted to generate
a simple polygonalization during the past decade.



Related works Simple polygonalizations are also called simple polygonizations, or crossing-free Hamiltonian
eycles, or planar traveling salesman tours. There are a few related optimization problems such as the Traveling
salesman problem. In fact, the problems for computing a simple polygonalization with the minimum total polygon
edge length [39] or with the minimum or maximum area [14] are NP-complete.

As we mentioned, it is an outstanding open problem whether the number of simple polygonalizations of § can
be computed in polynomial time. There are two different approaches in the literature: one is to investigate a sub-
class of simple polygons such as x-monotone polygons [26, 40], and start-shaped polygons [2, 3,37, 38); the other
is to design an efficient heuristics [2, 3, 10, 31, 40]. Auer and Held [2], and Zhu, Sundaram, Snoeyink and Mitchel
[40] independently proposed a practically useful heuristic, so called 2-opt Moves. It can generate every possible
simple polygonalization with a positive probability (this implies there is no possible simple polygons which cannot
be generated by the heuristic). Any other heuristics cannot generate all possible simple polygonalizations, or are
impractical by the experimental results of Auer [3].

2-opt Moves is experimentally good, but, it requires ©&(n?) times “untangling 2-opt™ moves before conver-
gence to a simple polygon in the worst case, as is proved by Van Leeuwen and Schoone [23]. Hence, the time
complexity of 2-opt Moves is om* logn) with sweep-line technique (see e.g., [6]) in the worst case. In particular,
an implementation of 2-opt Moves has been included in CGAL [8]. Unfortunately it takes too much time to im-
plement 2-opt Moves for a larger instance, and any algorithms proposed so far seem to be impractical. We propose
a simple heuristic algorithm which runs fast enough even for a large instance.

Our contributions We propose a triangulation-base heuristic algorithm which generates each possible simple
polygon with a positive probability in O(nlogn + f) time, where f is the number of edge-flipping operations
which may have effect on the randomness. This may improve the time complexity O(n*logn) of 2-opt Moves.

Our algorithm consists of three phases: first, it generates a triangulation T of given point set at random; next
computes a random maximal polygon tree on the dual D(T) of T. A polygon tree 7 on the dual D(T) of a
triangulation T is a trec such that Uyer g71(v) is a simple polygon, where g is bijection from a face in T to a
vertex in D(T); and finally constructs a simple polygon by traversing on the maximal polygon tree with depth-first
search.

In section 3, we describe our heuristic algorithm in detail. OQur heuristic algorithm may applicable to the
generalized simple polygonalization problems. We discuss in Section 4. Finally, we show future works in Section
5.

2 Preliminaries

A polygon is a region of the plane bounded by a finite collection of line segments forming a closed curve. A
polygon P is said to be simple if points of the plane belonging to two polygon edges of P are limited to the
polygon vertices of P. Hence, there are no self-intersections or no holes {(see Fig. 1), and then a simple polygon
is topologically homeomorphic image of a disk. Fig. 1 (2) and (b) depict a simple polygon with 64 vertices,
and a nonsimple polygon with 5 self-intersections and 3 holes, respectively. In this paper, polygons mean simple
polygons unless it is stated. We sometimes treat a polygon P with k vertices, or k-gon, as a circular list of k polygon
vertices (V1,V2,..-,Vk,Vis1 = 1) in clockwise-order and denote the number of polygon vertices or polygon edges
by |P|. ¢

Throughout this paper we let § stand for a finite set of # points in the plane. We assume that S is in general
position, i.e., no three points are collinear and no four points are cocircular.

A triangulation of planar points S, denoted by T(S), is a simplicial decomposition of its convex huil CH(S)
whose vertices are precisely the points in S. In other words, a triangulation is a maximal crossing-free geometric
graph on S (in a geometric graph the edges are realized by straight line segments). To distinguish the terminologies
of ‘vertex’ and ‘edge’ between polygon and graph, we explicitly specify the modifier “polygon” for vertex and
edge of polygon.

In a triangulation T(S), an edge e of T(S) is flippable if it is adjacent to two triangles whose union is a convex
guadrilateral C. By flipping ¢ we mean an operation of removing e for 7(S) and replacing it by the other diagonal
of C. In this way we obtain a new triangulation T/(S), and we say that 77(S) has been obtained from 7(S) by
means of a flip. Lawson [22] showed that any two triangulations of a planar point set can be transformed into each
other by flipping edges. Fortune [15] showed that at most (5} flips are sufficient to compute Delaunay triangulation.
This implies there exists a sequence of O(n?) flips which transforms a triangulation to any other. More precisely,
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Fig. 1. Simple and nonsimple polygons

Hurtado, Noy and Urrutia [19] showed that if a set of n points has k convex layers', then one triangulation can be |

transformed into the other triangulation using O(kn) {lips.

We denote a set of vertices, edges and faces of T(S) by V, E and F, respectively. A triangulation T(S) is
always associated with a dual graph. Let IX(T) = (Vp, Ep) be the dual graph of T(S). We can define a bijection
g: F < Vp, and then (v,w) € Eg for any distinct v,w € Vyp, if and only if the triangles, or the reverse images,
g~ '(») and g””l (w) share 2 common edge in E. Fig.2 (a) and (b) depict a triangulation of planar points and its dual
graph, respectively.

Fig. 2. Triangulation T(5} of planar points, its dual graph £(T), and a polygon tree on D(T).

‘We neglect the unbounded face in a triangulation and its dual. So, we will refer each face in a triangulation as
triangle, and the degree of each vertex in the dual is at most 3. Since a triangulation T'(S) is a planar graph, the size
of a triangulation and its dual can be derived from the Euler’s formula?, Hence we have that |V| =n, |[E|=3n-3—k,
\F|=Vp|=2n-2—k, and |Ep| = 3n—3 -2k, where k = |CH(S).

We also consider a polygon triangulation of a simple polygon P, denoted by T(P}, that is, a simplicial decom-
position of P whose vertices are precisely the polygon vertices of P, or the subdivision of P into non-overlapping
triangles using diagonals only. The following theorems are important to design our heuristic algorithm.

Theorem 1 (Triangulation Theorem, see e.g., [301). Every simple polygon admits a polygon triangulation. A
simple polygon of n vertices may be partitioned into n—2 triangles by additional n—3 internal diagonals. O

! convex layers in a set of planar points are obtained from removing the convex hull (the first layer) and repeating the operation

with the remaining point set until no point is left
2 For any planar graph G = (V, E), we always have |V|—[E|+|F| = 1.



Theorem 2 (see e.g., [30]). The dual graph of a triangulation of a simple polygon forms a tree. 0

Theorem 3 (Meisters’ Two Ears Theorem [25]). Every simple polygon with r = 4 vertices has at least two non-
overlapping ears. An ear of simple polygon P is a triangle such that one of its edges is a diagonal of P and the
remaining two edges are edges of P. 0

We define a polygon tree on the dual of a triangulation T(S) of planar points. A polygon tree 7 = (Vo E7)
on the dual D(T) = (Vp, Ep) of a triangulation T is a tree such that Uyer g~1(v) is a simple polygon, where g is
bijection from a face in T to a vertex in D(T'). Hence, we say a polygon tree 7~ maximal if and only if appending
any edge e € Ep \ Er into Eq makes Uyer £~1(») nonsimple polygon. Fig.2 (c) depicts 2 maximal polygon tree
and the dual polygon.

3 Heuristic Algorithm

In this section, we describe a triangulation-base heuristic algorithm for computing a simple polygonalization of
S. We assume that a triangulation 7'(S) is stored in a canGnical data structure for maintaining Planar Straight
Line Graphs such as Halfedge data structure [9] or doubly connected edge Yist [6]. Haifedge supports efficient
local modifications with constant time such as edge-flipping operation. Note that we do not explicitly maintain
D(T), since Halfedge provides efficient functions for the bijection between T(S) with D(T). Algorithm 1 shows
an outline of our heuristic algorithm for computing a simple polygonalization.

Algorithm 1: Heuristic for computing a simple polygonalization
Input : A setS of points in general position in the plane
Output: A random simple polygonalization
1 Let initialize 7'(5) with a randomly gencrated triangulation of 5
2 Construct the dual graph D(T) of T(S);
3 Compute a random maximal polygon tree 7~ on I{T);
4 Construct a simple polygon by traversing the tree 7 with depth-first search;

3.1 On generating a random triangulation

In the first of Algorithm 1, we generate a random triangulation 7(S ). Recently, considering a random triangulation
has been received various attentions. For instance, Sharir and Welzl [35] show several results on the numbers of
planar triangulations by using some properties of random triangulations. However, it does not seem that many
have been known about generating a random triangulation, although Epstein and Sack [13] propose efficient o)
and O(n*) time algorithms for counting triangulations and generating a random one of a given simple polygon
with n vertices, respectively. Aichholzer [1, Section 4.3] suggests an idea for generating a random triangulation:
first, enumerate all possible triangulations, and number them in generating order; next, generate a random number
re {i}:.fl), where #(8) is the number of triangulations of S; finally, report the r-th triangulation. It seems to be
expensive to compute all triangulations for larger instances. .

Our idea of generating a random triangulation is to perform random edge-flipping operations. However, it is
a folklore open problem to determine the mixing rate of the Markov process that starts at some triangulation and
keeps flipping a random flippable edge; see [24,28] where this is treated for points in convex position. In fact, the
mixing rate of triangulation of planar » points in copvex position is bounded by O@n*logn).

This leads that our O@ilogn + f) heuristic algorithm has the same time complexity as that of 2-opt Moves even
in the special case for which ail planar points are in a convex position. However, we can generate any friangulation
of § with a positive probability by performing random O(n?) edge-flipping operations in the worst case. Since the
expected number of convex layers for 1 uniformly and independently distributed points is ('3, due to Dalal
{111, random Q> %) edge-flipping operations may be required in the average case. Therefore, when we stand for
the sense that we want to generate a polygon as an instance, or do not require fairness of generated polygons, we
can consider our heuristic algorithm has advantage to 2-opt Moves.




3.2 Computing a random polygon tree

We describe a procedure for computing a random polygon tree 7 on the dual D(T) = (Vp, Ep) of triangulation
T of §. Algorithm 2 is a psendo-code for computing a random polygon tree 7. Throughout the Algorithm 2, we
maintain two sets X and ¥: X is a set of vertices in Vi visited so far; ¥ is a set of current candidate edges in Eq
which connect between vertices v* € X and w* € Vp \ X. In the line 6 — 14, the procedure augments the current
polygon tree by adding an appropriate edge one at a time. An edge (v*,w*) € Ep is admitted as of polygon tree
7", where v* € X and w* ¢ X, if a triangle g~ (w*) has a vertex marked unvisited. Otherwise, the union of triangles
Uprexuw) & v*) induces a nonsimple polygon.

Algorithm 2: Computing a random polygon tree 7~

Input : A triangulation T(S) = (V, E) and its dual graph IX7") = (Vp, Ep).
Qutput; A random polygon tree 7.
forall v € V do mark v as the label unvisited ;
forall ¢” € Ep do mark e* as the label dual_edge ;
Randomly choose @ vertex v* € Vi and mark to ail vertices of triangle g”‘(v*) as visited ;
X'y
Y—{(v,weEp|v'eX, w eVp\X})
while Y £ @ do
Randomly choose an edge &* = (v*,w*) from ¥, and ¥ « V\ {e*);
(*Assumption: Assumption: v'eX, w'¢gX  *)
it g1 (w*) has a vertex v marked unvisited then

9 Mark visited to v;
10 Mark polygon.edge to &*;
1i ¥ « Y Ufedges in Ep incident to w* but not &*};
12 end
13 X« Xu{w');
14 end
15 if |X| # [Vp| then retom false;
16 else
17 Eq « {e" € Epy | " is marked polygon.edge};
18 Vg« {v* € Vp | v* is a vertex of ¢* € Eg};
19 return 7 = (Vi Ex);
20 end

S en th R W

We can show a few properties of polygon (ree generated by Algorithm 2.
Lemma 1. A subgraph T of D(T) which is generated by Algorithm 2 is a maximal polygon tree.

Proof. 1tis obviously that 7 is connected, since the procedure grows the current polygon tree by adding an edge
incident to a vertex in X with the other in Vi \ X one by one,

It can be completed by showing there is no cycle in 7. When we assume that 7~ contains a cycle, intermediately
we have a contradiction. To construct a cycle, we have to violate at least two times for the condition of line 8 in
Algorithm 2.

When the while-loop, i.e. at the line 14, ends, the maximality can be satisfied since the procedure has tried
each adjacent triangles to check whether or not it is admitted, o

Unfortunately, there exist undesirable situations for which this procedure goes into a deadlock: the simple
polygonalization induced by the reported maximal polygon tree of Algorithm 2 cannot cover all given points.
Fig.3 shows the undesirable situation. Therefore, Algorithm 1 is a Monte-Carlo algorithm [29] which does not
guarantee always to compute a feasible simple polygonalization of .

However, our heuristics can generate each possible simple polygonalization when it does not return false.

Lemma 2. Algorithm I generates each possible simple polygonalization of given set S of planar points.
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Fig, 3. An example in which Algorithm 2 goes into a deadlock; there exist points in § which cannot be covered by resulting
simple polygonalization. White points are the vertices of the resulting simple polygon, Black points are unvisited by Algorithm
2.

Proof. Let P be an arbitrary simple polygonalization of §. We consider a triangulation T(S) which contains a
triangulation T(P) of Pas 2 subgraph.

From Theorem 3, T(P) has at least two ears for n> 3. Let v;, vy, and viso be one of the ears in T(P). Cutting
the ear from T'(P), we obtain a (n— 1)-gon (¥1,V2s. - Vis Vit2s - - .,vn). We repeat this procedure until P converges 10
a triangle (vq, Ve, ve) While maintaining the order performing ear-cutting operations. We can obtain a simple polyg-
onalization P, when Algorithm 2 is executed as follows: starting at the vertex corresponding to triangle (Va, Vb Ve)s
and growing the current polygon tree in the reverse order of ear-cuttings. Note that Algorithm 2 computes a poly-
gon tree 7~ without going into a deadlock. Hence this completes the proof. o

Now, we estimate the time and space complexities of Algorithm 1. We can see that the space complexity is
O(n) for given set of n planar points from observations in Section 2. For the time complexity, the most expensive
part is to compute a triangulation of §, or to perform random flipping-edges, in Algorithm 1, We assume that the
number f of edge-flipping operations are given in advance. Since there are a number of algorithms for constructing
a triangulation T(S) in the optimal time @{(nlogn) in the worst case (see e.g., [32,6)), the time complexity is
O(nlogn+ f).

Theorem 4. Algorithm I can compule 4 simple polygonalization of given set of n planar points in O(nlogn+ H
time when it doés not returns false.

4 Simple Polygonalizations Problem

We consider the following extension, we call Simple Polygonalizations Problem. Given a set S of n points in the
plane, generate a set of disjoint simple polygons {P{,P3,..., Py} such that the union of all vertices of each P; is
exactly S. The random simple polygonalizations may be an instance of Robot Motion Planning Problems (see
e.g., [6, Chapter 13, 150

Algorithm 3 shows our idea for this generalized problem. First, we compute a random triangulation T(S)of
S. This step is the same as in Algorithm 2. Second, we consider the dual D(T) = (Vp,Ep) and the map graph
M(T) = (Vp, Em) of T(S). Map graph is a generalized dual of planar graph G in which two regions of G are
adjacent when they share any vertex of their boundaries (not an edge, as standard planarity requires), see Chen,
Grigni, and Papadimitriou [7]. Third, we compute an independent set Inr) = {¥},...,v;} on the map graph M(T).
Note that g~ (v)U g~ (v}) = @ for any two different vertices v}, v} € Im)- Finally, we compute a random maximal
polygon forest F which is defined as a set of maximal polygon trees. The maximal polygon forest can be computed
by Algorithm 2 with X = Ly and ¥ = {(v*,w)€Ep |V €X,w" € Vp\ X}

In the simple polygonalizations problem, Algorithm 3 can always generate a number of simple polygons, since
there is no deadlocks if we restart growing a new polygon tree from v* ¢ X and g~} (v*) has an unvisited vertex.




Algorithm 3: Heuristic for computing simple polygonalizations

Input : A set $ of points in general position in the plane
Output: A random simple polygonalization
1 Let initialize T(S) with a randomly generated triangulation of §';
2 Construct the dual graph (T} and the map graph M(T") of T'(S);
3 Compute a random independent set Ip(7) = {v’{, e ,vZ} on M(T);
4 Compute a ranrdom maximal polygon forest ¥ on M(T');
5 Construct simple polygons by traversing each tree in % with depth-first searches;

This heuristic algorithm solves a relaxed problem proposed as a future work by Auer and Held [2]: Given a set
S of n points and a natural number k < §, generate k random polygons on S . If we apply our idea 1o this problem,
we must solve a difficult problem for generating an independent set on a map graph whose cardinarity is just k.

5 Concluding remarks and Future works

We have presented a triangulation-base heuristic algorithm for computing a simple polygonalization of given
planar point set in O(zlogn + f) time, where f is the number of edge-flipping operations. Our heuristic algorithm
is Monte-Carlo Algorithm, that is, it has undesirable situations. Hence we have to estimate how often our heuristics
goes into a deadlock with computer experiments. Furthermore, we have to evaluate our algorithm from various
points of view including its running time, the fairess of generating simple polygonalization, and behavior for
larger instances by experiments.

One of the most important future works is to guarantee that Algorithm 2 always can compute a simple polygo-
nalization of S. In other words, it may be necessary to backtrack and restore while computing a maximal polygon
tree if it is trapped by a deadlock. We have designed a recursive procedure to restart growing polygon tree, but
there still exist undesireble situations.

In the simple polygonalizations problem, we are also interested in designing an efficient algorithm for enumer-
ating maximal independent sets in the map graph, although there exists an algorithm for generating all maximal
independent sets in a polynomial delay [20}.
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