JAIST Repository

https://dspace.jaist.ac.jp/

Title Linear-time counting algofpithms f
sets in chordal graphs

Author(s) Okamoto, Y; Uno, T; Ueharp, R
Lecture Notes in Computer| Science

o subseries Lecture Notes i ph Artifi

Citation . .
I ntelligence and Lecture Notes 1in
3787: 433-4414

Issue Date 2005

Type Jour nal Article

Text version aut hor

URL http:// hdl handle.net/ 101119/ 3276
This is the author-createfd versio
Berlin [/ Hei del ber g, Yosh)j o Okamo
and Ryuhei Uehar a, Lecturp Notes

. Science(Graph-Theoretic Cpncepts

: Science), 3787, 2005, 433fp444. Th
publication is available pt www. s
http://www. springerlink.cpm/conte
750

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

or

Ci
Bi

Linear-Time Counting Algorithms for Independent Sets
in Chordal Graphs

Yoshio Okamoté, Takeaki Und, and Ryuhei Uehara

1 Department of Information and Computer Sciences, Toyohashi University of Technology,
Hibarigaoka 1-1, Tempaku, Toyohashi, Aichi 441-8580, Japan. E-mail:
okamotoy@ics.tut.ac. jp
2 National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan.
E-mail: uno@nii. jp
3 School of Information Science, JAIST, Asahidai 1-1 , Nomi, Ishikawa 923-1292, Japan.
E-mail:uehara@jaist.ac. jp

Abstract. We study some counting and enumeration problems for chordal
graphs, especially concerning independent sets. We first provide the following
efficient algorithms for a chordal graph: (1) a linear-time algorithm for counting
the number of independent sets; (2) a linear-time algorithm for counting the num-
ber of maximum independent sets; (3) a polynomial-time algorithm for counting
the number of independent sets of a fixed size. With similar ideas, we show that
enumeration (namely, listing) of the independent sets, the maximum independent
sets, and the independent sets of a fixed size in a chordal graph can be done in
constant amortized time per output. On the other hand, we prove that the follow-
ing problems for a chordal graph a#®-complete: (1) counting the number of
maximal independent sets; (2) counting the number of minimum maximal inde-
pendent sets. With similar ideas, we also show that finding a minimum weighted
maximal independent set in a chordal grapNishard, and even hard to approx-
imate.

Keywords: chordal graph, counting, enumeration, independent BS&;
completenesstP-completeness, polynomial time algorithm.

1 Introduction

How can we cope with computationally hard graph problems? There are several pos-
sible answers, and one of them is to utilize the special graph structures arising from a
particular context. This has been motivating the study of special graph classes in algo-
rithmic graph theory [3, 13]. This paper deals with counting and enumeration problems
from this perspective. Recently, counting and enumeration of some specified sets in a
graph have been widely investigated, e.g., in the data mining area. In general, however,
from the graph-theoretic point of view, those problems are hard even if input graphs
are quite restricted. For example, counting the number of independent sets in a planar
bipartite graph of maximum degree 4#B-complete [21]. Therefore, we wonder what
kind of graph structures makes counting and enumeration problems tractable.

In this paper, we consider chordal graphsh®rdal graphis a graph in which every
cycle of length at least four has a chord. From the practical point of view, chordal graphs

Table 1. Summary of the results. We denote the number of vertices and edgesnoyn respec-
tively. The running times for enumeration algorithms refer to amortized time per output.

Chordal graphs | Counting [ref] |Enumeration [ref]
independent sets O(n+ m) [this paper 0o(1) [this paper]
maximum independent sets O(n+m) [this paper 0o(1) [this paper]
independent sets of sike O(k?(n + m)) [this paper Oo(1) [this paper]
maximal independent sets #P-complete [this papef] O(n + m) [7,16]

minimum maximal independent set®-complete [this paper]

have numerous applications in, for example, sparse matrix computation (e.g., see Blair
& Peyton [2]), relational databases [1], and computational biology [4]. Chordal graphs
have been widely investigated, and they are sometimes called triangulated graphs, or
rigid circuit graphs (see, e.g., Golumbic’s book [13, Epilogue 2004]). A chordal graph
has various characterizations; for example, a chordal graph is an intersection graph of
subtrees of atree, and a graph is chordal if and only if it admits a special vertex ordering,
called perfect elimination ordering [3]. Also, the class of chordal graphs forms a wide
subclass of perfect graphs [13].

It is known that many graph optimization problems can be solved in polynomial
time for chordal graphs; to list a few of them, the maximum weighted clique problem,
the maximum weighted independent set problem, the minimum coloring problem [12],
the minimum maximal independent set problem [8]. There are also parallel algorithms
to solve some of these problemii@ently [14]. However, relatively fewer problems
have been studied for enumeration and counting in chordal graphs; the only algorithms
we are aware of are the enumeration algorithms for all maximal cliques [11], all max-
imal independent sets [7, 16], all minimum separators and minimal separators [5], and
all perfect elimination orderings [6].

In this paper, we investigate the problems concerning the number of independent
sets in a chordal graph. Table 1 lists the results of the paper. We first give the following
efficient algorithms for a chordal graph; (1) a linear-time algorithm to count the number
of independent sets, (2) a linear-time algorithm to count the number of maximum inde-
pendent sets, and (3) a polynomial-time algorithm to count the number of independent
sets of a given size. The running time of the third algorithm is linear when the size is
constant. Note that in general counting the number of independent sets and the number
of maximum independent sets in a grapiiscomplete [17], and counting the num-
ber of independent sets of sikén a graph istW[1]-complete [9] (hamely, intractable
in a parameterized sense). Let us also note that the time complexity here refers to the
arithmetic operations, not to the bit operations.

The basic idea of thesdfient algorithms is to invoke a clique tree associated with
a chordal graph and perform a bottom-up computation via dynamic programming on
the clique tree. A clique tree is based on the characterization of a chordal graph as an
intersection graph of subtrees of a tree. Since a clique tree can be constructed in linear
time and the structure of clique tree is simple, this approach leads to simpléiaiehé
algorithms for the problems above. However, a careful analysis is necessary to obtain
the linear-time complexity.

Along the same idea, we can also enumerate all independent sets, all maximum
independent sets, and all independent sets of constant size in a chordal g&fih in
amortized time per output.

On the other hand, we show that the following counting problemgRyeomplete:
(1) counting the number of maximal independent sets in a chordal graph, and (2) count-
ing the number of minimum maximal independent sets in a chordal graph. Using a
modified reduction, we furthermore show that the problem to find a minimum weighted
maximal independent set P-hard. We also show that the problem is even hard to
approximate. More precisely speaking, there is no randomized polynomial-time ap-
proximation algorithm to find such a set within a factorodf |V|, for some constant
c, unlessNP C ZTIME(n®(°9'°9m) This is in contrast with a linear-time algorithm
by Farber that finds a minimum weighted maximal independent set in a chordal graph
when the weights are 0 or 1 [8].

Due to space limitation, some proofs are omitted.

2 Preliminaries

In this article, we assume that the reader has a moderate familiarity with graph theory.
This section aims at fixing the notation and introducing a chordal graph and concepts
around that. LeG = (V, E) be a graph, which we always assume to be simple and finite,
and also we assume that graphs are connected without loss of generalitgighieor-
hoodof a vertexv in a graphG = (V,E) is the setNg(v) = {ue V | {u,v} € E}. Fora
vertex subset) of V, we denote bNg(U) the sefv € V | v e N(u) for someu € U}. If
no confusion can arise we will omit the subsc@tWe denote the closed neighborhood
N(v) U{v} by N[v]. A vertex setl is anindependent setf G if any pari of vertices ifl is
not an edge oB, and a vertex set is acliqueif every pair of vertices irC is an edge of
G. An independent set imaximunif it has the largest size among all independent sets.
An independent set imaximalif none of its proper supersets is an independent set. An
independent set iminimum maximaif it is maximal and has the smallest size among
all maximal independent sets. A maximum clique, a maximal clique and a minimum
maximal clique are defined analogously. An edge which joins two vertices of a cycle
but is not itself an edge of the cycle ichord of the cycle. A graph ighordalif each
cycle of length at least 4 has a chord.

To a chordal grapls = (V, E), we associate a treg, called aclique treeof G,
satisfying the following two properties. (A) The nodeslore the maximal cliques of
G. (B) For every vertex of G, the subgrapf, of T induced by the maximal cliques
containingv is a tree. (In the literature, the condition (A) is sometimes weakened as
each node is a vertex subset® It is well known that a graph is chordal if and only
if it has a clique tree, and in such a case a clique tree can be constructed in linear time.
Some details are explained in books [3, 19].

3 Linear-Time Algorithm to Count the Independent Sets

In this section, we describe an algorithm for counting the number of independent sets
in a chordal graph. The basic idea of our algorithm is to divide the input graph into

subgraphs induced by subtrees of the clique tree. Any two of these subtrees share a
vertex of a clique if they are disjoint in the clique tree. This property is very powerful
for counting the number of independent sets since any independent set can include at
most one vertex of a clique. We compute the number of independent sets including each
vertex of the clique, or no vertex of the clique by using the recursions.

First, we introduce some notations and state some lemmas. Given a chordal graph
G = (V,E), we construct a clique trek of G. We now pick up any node in the clique
tree T, regard the node as the root ©f and denote it byK;. This is what we call a
rooted clique treeFor a maximal cliqueK in a chordal grapls and a rooted clique
treeT of G, a maximal cliqueK’ in G is adescendanof K (with respect taor) if K’
is a descendant df in T. For convenience, we considKritself a descendant df
as well, and when no confusion arises we omit saying “with respett’tbet prr(K)
be the parent oK in T. For convenience, we defimer(K;) by 0. We denote byl (K)
the subtree ofl rooted at the node corresponding to the maximal cliuéet G(K)
denote the subgraph &induced by the vertices included in at least one nodg().
Observe thaG(K) is a chordal graph of whicli(K) is a clique tree.

For a graplG, let 7S(G) be the family of independent sets@ For a vertex, let
IS8(G, V) be the family of independent sets@includingyv, i.e.,7S(G,v) :={S| S €
I8(G),v € S}. For a vertex set, let 7S(G, U) be the family of independent sets@
including no vertex ofJ, i.e.,7S(G,U) := {S| S € IS(G),SNU = 0}.

Lemma 1. Let G be a chordal graph and T be a rooted clique tree of G. Choose a
maximal clique K of G, and let K. .., K, be the children of K in T. (If K is a leaf

of the clique tree, we sét ;= 0.) Furthermore let ve K and S ¢ V(G(K)). Then,

S € I8(G(K),v) if and only if S is represented by the union{of and S, ...,S,
such that $ € 7S(G(K;), V) if v belongs to K and § € 7S(G(K;), K N K;) otherwise.
Furthermore, such a representation is unique.

By a close inspection of the proof, we can observe that for evgrg {1,..., ¢},
i #], itholds thatv(G(K)) \ K is disjoint fromV(G(K;)) \ K. This property gives a nice
decomposition of the problem into several independent parts, and enables us to perform
the dynamic programming on a clique tree.

By similar discussion, we obtain the following lemma.

Lemma 2. Let G be a chordal graph and T be a rooted clique tree of G. Choose a
maximal clique K of G, and letK..., K, be the children of K in T. (If K is a leaf of
the clique tree, we sét:= 0.)

1. We have Se 7S(G(K),K) if and only if S is the union of 5...,S; such that

Si € I8(G(Ki), K n Kj). Furthermore, such a representation is unique.

2. Foreachie {1,...,t}, we have $ € 7S(G(K)), K n K;) if and only if § belongs
either toZ S(G(K;), v) for some e K\ K or to 7S(G(K), K;). Furthermore, $Sbelongs

to exactly one of them.

From these lemmas, we have the following recursive equationsSor

Equations 1 Let G be a chordal graph and T be a rooted clique tree of G. For a maxi-
mal clique K of G which is not a leaf of the clique tree, lat K., K, be the children of

Algorithm 1: #IndSets

Input : A chordal graplG = (V, E);

Output: The number of independent setsGn
1 construct a rooted clique trdeof G with rootK;;
2 call #indSetslter(K;);

3 return [TS(G, Ko)| + Suek, IZS(G(K), V).

Procedure #IndSetslter(K)

Input : A maximal cliqueK of the chordal grapks;
4 if Kis aleaf ofT then

5 ‘ set‘fS(G(K), K)' := 0 and|ZS(K, V)| := 1 for eachv € K;
6 else
7 foreach child K’ of K do call #IndSetslter(K’);

g | foreachchild K’ of K do compute‘fS(G(K’), KNK)
[TSGIK), K| + Sk ISG), W)

o | computdZS(G(K), K)| by MM ecin [TSGK), K N K)|;

10 foreachv € K do compute 7 S(G(K), v)| by

B [Tk-ecupvek: L S(G(K), VI X [Tkrecup()ve’ 'E(G(K/): KnK’)

by

Fig. 1. Algorithm to count the number of independent sets in a chordal graph.

K in T. Furthermore, let \& K. Then, the following identities hold. (We remind that

means “disjoint union.”)

IS(G(K)) = TS(G(K). K) U 78(G(K). v,

veK

¢ IS(G(K), ifv ek,
IS@E). =(Suv 1S =| Js.5 € {TSEGEK; \I/<)m K) Iot\rlleerwise}} :
i=1 1/ I

t
TSG(K).K) = (SIS =|_Si.Si € TSG(K). K N K)y:
i=1

TS(G(K). K N K) = TSG(K). K) U |] ZSG(K).0) for eachie (L..... 0.
ueKi\K

These equations lead us to the algorithm in Fig. 1 to count the number of independent
sets in a chordal graph. For a maximal clidGef a chordal grapls, we denote the set

of children ofK in a rooted clique tree db by cup(K).

Theorem 1. The algorithm#IndSets outputs the number of independent sets in a

chordal graph G= (V, E) in O(|V| + |E]) time.

4 Linear-Time Algorithm to Count the Maximum Independent
Sets

In this section, we modify Algorithn#indSets to count the number of maximum in-
dependent sets in a chordal graph. For a set faiilwe denote by max) the car-
dinality of a largest set irS, and argmax$) denotes the family of largest sets in
S. For a graphG, let MZS(G) be the family of maximum independent setsGn
For a vertexv, let MZIS(G,v) be the family of maximum independent setsGnin-
cluding v, i.e., MIS(G,v) = {S € MIS(G) | v € S}. For a vertex sel, let
MIS(G,U) be the family of maximum independent setsG@rincluding no vertex of
U,i.e , MISG,U) :={Se MISG)|SNnU =0}.

From lemmas stated in the previous section and Equations 1, we immediately have
the following equations.

Equations 2 With the same set-up as Equations 1, the following identities hold.

MIS(G(K)) = argmaxP7S(G(K), K)U U MIS(G(K),V));

veK

‘ MISG(Ki), V) ifv e K;

MIS(G(K),v) =argmax{(S|S=| |S;,Sje€ {— . }});
Q MIS(G(Ki), KN Kj) otherwise

t
MIS(G(K),K) =argmax{(S|S = U Si, Si € MIS(G(Kj), K N K)};
i=1
MIS(G(Ki), K N K;) = argmax(M7ZS(G(K;), Ki) U U MIS(G(Kj), u)).
ueki\K

Since the sets of each family on the left hand side have the same size in each equation,
the cardinality of the set can be computed in the same order as AlgotitiiSets.
For example M7 S(G(K)) can be computed as follows.

1. SetN := 0 andM := max(MZS(G(K), K) U Uyex MIS(G(K), V));

2. if the size of a member ofMZS(G(K),K) is equal toM, then N := N +
MIS(G(K). K)|

3. for eachv € K, if the size of a member oM7ZS(G(K),V)) is equal toM, then
N := N+ IMIS(G(K),v));

4. outputN.

In this way we have the following theorem.

Theorem 2. The number of maximum independent sets in a chordal gragh(G E)
can be computed in @/| + |E|) time.

5 Efficient Algorithm to Count the Independent Sets of Sizek

In this section, we modify Algorithr#indSets to count the number of independent sets
of sizek. For a graphG and a numbek, let 7S(G; k) be the family of independent sets

in G of sizek. For a vertex, let 78(G, v; k) be the family of independent sets@of
sizek includingyv, i.e., 78(G,v; k) := {S € 7S(G;K) | v € S}. For a vertex set, let
IS8(G, U; k) be the family of independent sets@of sizek including no vertex otJ,
i.e.,78(G,U;K) = {S e IS(G;K) | SN U = 0}.

From lemmas stated in Section 3 and Equations 1, we immediately obtain the fol-
lowing equations.

Equations 3

TS(G(K); K) = TS(G(K), K: k) U U TS(G(K), V: k):

veK

t
IS(G(K),v;K) = {S|S = Usi,|3| =k S €

i=1

IS(G(Ki), V) ifveK | .
{TS(G(Ki), K NK;) otherwise} ’

¢
IS(G(K).Kik) = (]S = [SiISI =k Si € TSG(K). K N K));
i=1
TS(G(<), K 1 K K) = TSG(K), K U | TSGK, UK.
ueKi\K

In contrast to Equations 1, the second and third equations of Equations 3 do not give
a straightforward way to comput&S(G(K), v; k)| and 'TS(G(K), K; k)', respectively,
since we have to count the number of combination$of .., S, which generate an
independent set of siZe To compute them, we use a more detailed algorithm.

Here we only explain a method to compiifeS(G(K), v; K)| since|ﬁ(G(K), K; k)|
can be computed in a similar way. Fix an arbitrary vestexK. Then, according te,
we give indices to the children &f such thaKy, ..., Ky includev andKp,, ..., K, do
not. Fork’ < kand¢’ < p, let Num(¢’;K) == {S|S = U"; Si,Si € I8(K;, V), S| = K'}.
Fork’ < kandf’ > p+1, letNuom(¢;K) := (S| S = U, Si, Si € 78(Ki, Ki \ K),|S| =
K'}. Then, it holds thal7 S(G(K), v; K)| = Z&_o(INum(p; h)[x [Num(p + 1;k — h))).

For each?” andk’, [Num(¢’; k)| can be computed iD(k x p) time based on the
following recursive equation:

[Num(¢’; K)

2K INuM(¢ = 1;h)| X [TS(G(Kp), v;K = h)| if ¢ > 1,
T IZS(G(Ky), v; k)| otherwise.

Similarly, [Num(¢’; k')| can be computed i@(k’) time. The computation dNum(¢’; K')|

and |N_UM(€’; k")| for all combinations of” andk’ can be done ifD(k?/cup(K)|) time,

thus we can count the number of independent sets ofksimea chordal graph in
O(K3V|?) time. In the following, we reduce the computation time by the same tech-
nique used in the previous sections.

Observe tha{fs(G(K), K K)| = 2K o [Nom(p; h)| x [Num(p + 1;K — h)|, which
x [Now(p;0)| = [TS@G(K),K;K)| - ZH., [Nom(p;)| x
[Num(p + 1;k' = h)|. This implies that we can computéNum(k’; p+ 1) from

gives [Num(p + 1;K)

|I_S(G(K), K; h)‘ and |W(p; h)| in the increasing order df. The computation time
for this task isO(k x p).
In summary, we can comput€S(G(K),v; k)| for all v e K andk’ € {0,...,k}
in O(k? Yyex I{K” € cup(K) | v € K’}|) time. Therefore, the total computation time over
all iterations can be bounded in the same way as the above section, and we obtain the
following theorem.

Theorem 3. 1. The number of independent sets of size k in a chordal graph G
(V. E) can be computed in ®(|V| + |E])) time.
2. The numbers of independent sets of all sizes fddm|V| in a chordal graph G=
(V, E) can be simultaneously computed ig\@?(|V| + |E|)) time.

6 Enumeration

Equations 1 in Section 3 directly give the following algorithm for enumerating the in-
dependent sets of a given chordal graph, in which each procedure corresponds to an
equation of Equations 1.

Algorithm 3: EnumIS(G)
Input :achordal grapis = (V, E);
Output: all independent sets iB;
1 construct a clique tre€ of G with rootK;
2 foreachu € K do enumerate all independent setdi(G, u) by EnumIS2(K, u);

3 enumerate all independent set/i(G, K) by EnumIS3(K).

Procedure EnumIS2 (K, u)
Input : A maximal cliqueK of G, a vertexu € K;

4 if K has no childthen

5 \ output {u}; //output an independent set if the bottom level is reached

6 else

7 foreach child K; of K such thatu € K; do enumerate all independent sets in
ITS(G(Kj), u) by EnumIS2(K;, u);

8 foreach child K; of K such thatu ¢ K; do enumerate all independent sets in
TS(G(Ki), K N K;) by EnumIS4(K;);

9 output all independent sets iRS(G(K), u) by combining the independent sets in
I8(G(Ki), u) and inZS(G(K;), K n K;) for all i, j;

Procedure EnumlIS3(K)
Input : A maximal cliqueK of G;

10 if K has no childthen

11 \ output 0; //output an independent set if the bottom level is reached

12 else

13 foreach child K; of K do enumerate all independent seti6(G(K;), K n K;) by
EnumiS4(K;); o

14 output all independent sets iIRS(G(K), K) by combining the independent sets in
TS(G(K), K N K);

Procedure EnumliS4(K)
Input : A maximal cliqueK of G;
15 call EnumIS3(K);
16 foreachu e K \ prr(K) do enumerate all independent setdi8(G(K), u) by

EnumIS2(G(K), u); L
17 output all independent sets INS(G(K), K N prr(K)) by combining the independent sets

in 78(G(K), u);

From the lemmas and theorems in the previous sectiemsnIS(G) surely enu-
merates all independent setsGn However, we cannot bound its time complexity by
constant for each output. In the following, we present a slight modification to obtain a
constant-time enumeration algorithm.

Let us consider the computation tree of this algorithmcdmputation treds a
rooted-tree representation of a recursive structure, in which the vertices are recursive
calls, and the edges connect two vertices if and only if one vertex recursively calls the
other. We define aiteration of the algorithm by the operations done in a vertex of the
computation tree. In other words, an iteration is the computation in some prodedure
recursively called by another procedure, in which the computation in the recursive calls
generated by is excluded.

We first reduce the number of iterations by the following two modifications. (1)

If an iteration| generated by an iteratidp recursively calls just one iteratidg, we
modify the algorithm so thal, recursively calld directly. (2) If an iterationl outputs
just one independent set, mergand the iteration which recursively callsnto one.

For a given chordal grapB = (V, E) and a rooted clique tree &, the number of
possible inputs for each procedure is at M@§E(), as in our counting algorithms. Thus,
we can enumerate all of these case®(|k|) time, and keep the results of modifications
(1) and (2) in the memory. It can be done as a preprocessing Vo) time.

By these modifications, we can see that any iteration which is a leaf of the com-
putation tree outputs at least two independent sets, thus the number of iterations is not
greater than the number of independent setS.illWe can also see that if an iteration
outputs just one independent set, then, the input clique must be a leaf of the clique tree.
Hence, the size of the output independent set is at most one.

We next consider how to compute all combinations of independent sets in, for exam-
ple, Step 9 of the algorithm. In the procedures, the independent s&tsiergenerated
by combining the independent recursive calls for several maximal cliques;sayd
K. This step can be implemented as follows. First, we compute an indenendént set
for K4, and for thisl;, we compute all independent sétgor K,, and output; Ul,. Next
we compute another independent gefor Ky, and compute all independent setgor
K, and outputi Ul,, then compute yet another independent seKfgrand so on. Then
the computation time in one iteration is proportional to (the number of recursive calls
generated) times (the maximum number of vertices added to the current independent
set). Because of modification (2), any iteration adds at most one vertex to the current
independent set. Therefore, the total time complexity of the algorithm is linear in the
number of independent sets.

Theorem 4. All independent sets in a chordal graph can be enumerated in constant
time for each on average with additiona(|@| + |E|) time for preprocessing.

Similar algorithms can be developed to enumerate the maximum independent sets
and the independent sets of sizeHowever, some iterations may add to the current
independent set several vertices not bounded by a constant. Since there are at most
|E| kinds of inputs for each procedure, we can enumerate all such sets of vertices that
will be added in an iteration, and put an identical name to each set of vertices in short
time. By adding the name instead of adding vertices in a vertex set, we can execute the
addition in constant time. Thus, the maximum independent sets and the independent
sets of sizek can be enumerated in constant time for each on average with additional
O((IVI + |[E])IV|?) time for preprocessing.

7 Hardness of Counting the Maximal Independent Sets

In this section, we show the hardness results for counting the number of maximal in-
dependent sets in a chordal graph. Although finding a maximal independent set is easy
even in a general graph, we show that the counting version of the problem is actually
hard.

Theorem 5. Counting the number of maximal independent sets in a chordal graph is
#P-complete.

The proof is based on a reduction from the counting problem of the number of set
covers. LetX be a finite set, and < 2X be a family of subsets oX. A set coverof
Xis a subfamilyF < S such that J# = X. Counting the number of set covers is
#P-complete [17].
Proof of Theorem 5 (Sketch). The membership i#P is immediate. To show th#P-
hardness, we use a polynomial-time reduction of the problem for counting the number
of set covers to our problem.

Let X be a finite set an® c 2X be a family of subsets of, and consider them as
an instance of the set cover problem. Let usut {Si,...,St}. FromX andS, we
construct a chordal grapgh = (V, E) in the following way.

We setV .= XUSUS’, whereS’ = {S],...,S{}. Namely,S’ is a copy ofS. Now,
we draw edges. There are three kinds of edges. (1) We connect every pair of vei¥ces in
by an edge. (2) For evefy € S, we conneck € X andS by an edgeifandonly ik € S.
(3) For evenys € S, we connect andS’ (a copy ofS) by an edge. Formally speaking,
we defineE ;= {{X,y} | X,y € XJU{{X,S} | xe X,S € S,xe SJU{{S,S’} | S € S}. This
completes our construction, which can be done in polynomial time. The constructed
graphG is indeed chordal.

Now, we look at the relation between the set coverx ahd the maximal indepen-
dent sets 06. LetU be a maximal independent set®f We distinguish two cases.
Case 1.Consider the case in whidb contains a vertex € X. LetGx := G \ Ng[X].
By the construction, we have thd{Gx) = {S € S| x ¢ S} U S’ andE(Gy) = {{S,S'} |
S € §,x ¢ S}. Then the number of maximal independent sets contairiisgexactly
2liSeSIxeS}|
Case 2.Consider the case in whidd contains no vertex oK. Then, the number of
maximal independent sets containing no verteX &f equal to the number of set covers
of X.

To summarize, we obtained that the number of maximal independent s8tssof
equal to the number of set coversXplus 3,y 25¢SXSH Since the last sum can be
computed in polynomial time, this concludes the reduction. O

As a variation, let us consider the problem for counting the minimum maximal
independent sets in a chordal graph. Note that a minimum maximal independent set in
a chordal graph can be found in polynomial time [8]. In contrast to that, the counting
version is hard.

Theorem 6. Counting the minimum maximal independent sets in a chordal graph is
#P-complete.

8 Hardness of Finding a Minimum Weighted Maximal
Independent Set

In this section, we consider an optimization problem to find a minimum weighted max-

imal independent set in a chordal graph. Namely, given a chordal @apid a weight

for each vertex, we are asked to find a maximal independent s&twith minimum

weight. Here, the weight of a vertex subset is the sum of the weights of its vertices.
Notice that there is a linear-time algorithm for this problem when the weight of

each vertex is zero or one [8]. On the contrary, we show that the problem is actually

hard when the weight is arbitrary.

Theorem 7. Finding a minimum weighted maximal independent set in a chordal graph
is NP-hard.

The proof is similar to what we saw in the previous section. We use the optimization
version of the set cover problem, namely the minimum set cover problem. It is known
that the minimum set cover problemN¥-hard.

Proof of Theorem 7. For a given instance of the minimum set cover problem, we use
the same construction of a gra@has in the proof of Theorem 5. We define a weight
functionw as follows:w(x) := 2|S| + 1 for everyx € X; w(S) := 2 for everyS € S;
w(S’) := 1 for everyS’ € §’. This completes the construction.

Now, observe thas is a maximal independent set of the constructed gapéind
the weight ofS is 2S|. Therefore, no element &f takes part in any minimum weighted
maximal independent set &. Then, from the discussion in the proof of Theorem 5,
if M is a maximal independent set Gf satisfyingM Nn X = 0, thenM N S is a set
cover of X. The weight ofM is |M N S| + |S|. Therefore, ifM is a minimum weighted
independent set @&, thenM minimizes|M N S|, which is the size of a set cover. Hence,
M N S is a minimum set cover. This concludes the reduction. O

We can further show the hardness to get an approximation algorithm running in
polynomial time. The precise statement is as follo@BIME(t) is the class of languages
which have a randomized algorithm running in expected timih zero error).

Theorem 8. There is no randomized polynomial-time algorithm for the minimum
weight maximal independent set problem in a chordal graph with approximation ra-
tio cIn|V|, for some fixed constant ¢, unlé$B C ZTIME(n°(°9'09n),

Acknowledgementhe authors are grateful to L. Shankar Ram for pointing out a paper

[5].

References

1

2.

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desirability of Acyclic Database

SchemesJ. of the ACM 30:479-513, 1983.

J.R.S. Blair and B. Peyton. An Introduction to Chordal Graphs and Clique Tre€raph

Theory and Sparse Matrix Computatjoolume 56 ofMA, pages 1-29. (Ed. A. George and

J.R. Gilbert and J.W.H. Liu), Springer, 1993.

. A. Brandstdt, V.B. Le, and J.P. Spinraraph Classes: A SurvelAM, 1999.

. P. Buneman. A Characterization of Rigid Circuit GrapBssc. Math, 9:205-212, 1974.

. L.S. Chandran. A Linear Time Algorithm for Enumerating All the Minimum and Minimal
Separators of a Chordal GrapfCOCOON pages 308-317. LNCS Vol. 2108, Springer-
Verlag, 2001.

. L.S. Chandran, L. Ibarra, F. Ruskey, and J. Sawada. Generating and Characterizing the
Perfect Elimination Orderings of a Chordal Grafiheoretical Computer Scienc&07:303—

317, 2003.

. D. Eppstein. All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs.
SODA pages 451-459, ACM, 2005.

. M. Farber. Independent Domination in Chordal GraphSperations Research Letters
1(4):134-138, 1982.

. J. Flum and M. Grohe. The Parameterized Complexity of Counting ProbleshsM J.

Comput, 33(4):892-922, 2004.

P. Frankl and R.M. Wilson. Intersection theorems with geometric consequedogsina-

torica, 1:357-368, 1981.

D.R. Fulkerson and O.A. Gross. Incidence Matrices and Interval Grapdmsfic J. Math,

15:835-855, 1965.

F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by

Cliques, and Maximum Independent Set of a Chordal Gr&glAM J. Comput.1(2):180—

187, 1972.

M.C. Golumbic. Algorithmic Graph Theory and Perfect Graph&nnals of Discrete Math-

ematics 57. Elsevier, 2nd edition, 2004.

P.N. Klein. Hficient Parallel Algorithms for Chordal GraphSIAM J. Comput.25(4):797—

827, 1996.

V.S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of Set Cover with Intersection 1.

ICALP, pages 624-635. LNCS \ol. 1853, Springer-Verlag, 2000.

J.Y.-T. Leung. Fast Algorithms for Generating All Maximal Independent Sets of Interval,

Circular-Arc and Chordal Graph3. of Algorithms5:22—35, 1984.

J.S. Provan and M.O. Ball. The Complexity of Counting Cuts and of Computing the Proba-

bility that a Graph is Connecte&IAM J. Comput.12:777-788, 1983.

D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex Elimination on

Graphs.SIAM J. Comput.5(2):266—283, 1976.

J.P. SpinradEfficient Graph Representationdmerican Mathematical Society, 2003.

R.E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test Chordality of

Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergrapiusl

J. Comput. 13(3):566-579, 1984.

S.P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar GBigid.J.

Comput, 31(2):398-427, 2001.

