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Abstract

The OTS/CafeOBJ method can be used to model, specify and verify distributed
systems. Specifications are written in equations, which are regarded as rewrite rules
and used to verify specifications. The usefulness of the method is demonstrated by
applying the method to nontrivial problems such as electronic commerce protocols
and railroad signaling systems. In this paper we describe a toolkit called Buffet,
which assists verification in the method. Given predicates used to split cases and
lemmas, Buffet automatically generates proofs (called proof scores) and checks the
proof scores using the CafeOBJ system. Buffet also has facilities to display proof
scores generated and verification results on a web browser.

1 Introduction

Abstract machines as well as abstract data types can be specified in
CafeOBJ[4], an algebraic specification language. Algebraic specifications of
abstract machines are called behavioral specifications. Behavioral specifica-
tions are written in equations, which are regarded as rewrite rules and used to
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verify behavioral specifications. Rewriting is an efficient way of implementing
equational reasoning, which is the most fundamental way of reasoning and
can moderate the difficulties of proofs that might otherwise become too hard
to understand.

We use observational transition systems (OTSs; which are transition sys-
tems that can be straightforwardly written in equations) as abstract machines
and have been developing a method of verifying behavioral specifications.
The method is called the OTS/CafeOBJ method[15]. In the OTS/CafeOBlJ
method, a system is modeled as an OTS, the OTS is written in CafeOBJ
and it is verified that the OTS has properties by writing proofs (called proof
scores) in CafeOBJ and checking the proof scores by means of rewriting. We
have been demonstrating its usefulness by doing case studies, among which
are [13,14,17]. In the case studies, however, basically proof scores were entirely
written by hand using usual text editors such as Emacs, which is subject to
human errors such that some cases to consider may be overlooked.

We have then designed and implemented a toolkit called Buffet, which
assists verification in the OTS/CafeOBJ method. Given predicates used to
split cases and lemmas, Buffet automatically generates proof scores and checks
the proof scores using the CafeOBJ system. Although the success of a proof
depends on given predicates for case analysis and lemmas, it is guaranteed
that generated proof scores cover all cases, excluding human errors. Buffet
also has facilities to display proof scores generated and verification results on
a web browser. Since Buffet only displays by default parts of a proof score
hierarchically for which further case analysis should be done and/or lemmas
should be used, the facilities can help users find how to split cases and what
lemmas to use. The facilities can also help users read and understand proof
scores. In this paper we describe Buffet and report on a case study that Buffet
has been applied to a simple mutual exclusion protocol.

2 Preliminaries

We assume that there exists a universal state space denoted by Y and data
types used, including the equivalence relation denoted by = for each data
type, have been defined. An OTS[15] S consists of (O,Z,T) such that 1) O:
a set of observers; each o € O is a function o : T — D, where D is a data
type and may differ from observer to observer; given two states vy, vy € T, the
equivalence (v; =g v2) between them wrt S is defined as Vo € O.o(v;) = o(vy),
2) Z: the set of initial states such that Z C Y, and 3) 7 : a set of conditional
transitions; each 7 € T is a function 7 : T — T such that 7(vy) =g 7(v2)
for each [v] € T/=g and each vi,vy € [v]; T(v) is called the successor state
of v € T wrt 7; the condition ¢, of 7 is called the effective condition. An
execution of S is an infinite sequence vy, v, . . . of states satisfying Initiation
(vo € T) and Consecution (Vi € {0,1,...}. 37 € T.(viy1 =s 7(v5))). A state v
is called reachable wrt S iff there exists an execution of § in which v appears.
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Properties discussed in this paper are invariants only. A predicate p is called
invariant wrt S iff p(v) holds for every reachable state v wrt S. Observers and
transitions may be parameterized, which are generally expressed as o;, ..., :
YT — D; and 75, ;, : T — T, provided that m,n > 0 and there exists a data
type Dy, such that k € Dy for k =141,...,%m, J1,--+, Jn-

CafeOBJ[4] (see www.1dl.jaist.ac.jp/cafeobj/) is an algebraic specifica-
tion language/system mainly based on order-sorted algebras[6] and hidden-
sorted algebras[5,9]. Abstract machines as well as abstract data types can be
specified in CafeOBJ, which has two kinds of sorts: visible and hidden sorts
denoting abstract data types and the state spaces of abstract machines, and
two kinds of operators wrt hidden sorts: action and observation operators
that denote state transitions of abstract machines and let us know the state
of abstract machines. Both an action operator and an observation operator
take a state of an abstract machine and zero or more data, an action oper-
ator returns the successor state and an observation operator returns a value
that characterizes the state of an abstract machine. The syntax of operator
declarations is

[blop OpName : Sort* -> Sort

bop is used for action and observation operators, while op for others. Opera-
tors are defined with equations. The syntax of equation declarations is

[cleq Term = Term [if Term)]

ceq is used for conditional equations, while eq for non-conditional ones. The
CafeOBJ system uses equations as rewrite rules and rewrites terms. CafeOBJ
is also based on rewriting logic. The syntax of rewriting rules is

trans Term => Term

In Buffet, rewriting rules are used to instruct Buffet to generate proof scores.

Basic units of CafeOBJ specifications are modules. The CafeOBJ system
provides built-in modules where basic data types such as truth values are
specified. The module of truth values is BOOL. Since truth values are indis-
pensable for conditional equations, BOOL is automatically imported by almost
every module unless otherwise stated. The import of BOOL lets us use visible
sort Bool denoting truth values, constants true and false denoting true and
false, and operators denoting some basic logical operators. Among the oper-
ators are not_, _and_, _or_, _xor_, _implies_ and _iff_ denoting negation
(=), conjunction (A), disjunction (V), exclusive disjunction (xor), implication
(=) and logical equivalence (<), respectively. The conditional choice oper-
ator if_then_else_fi is also available. An underscore _ indicates the place
where an argument is put. BOOL plays an essential role in verification with
the CafeOBJ system. If the equations available in the module are regarded
as rewrite rules, they are complete wrt propositional logic. Therefore, any
term denoting a propositional formula that is always true (or false) surely
reduces to true (or false). Generally, a term of Bool reduces to an exclusive
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disjunction of conjunctions.

S is written in CafeOBJ. T is denoted by a hidden sort, say H, Oy ooy,
by a CafeOBJ observation operator, say o, and Tdj, oodi, by a CafeOBJ action
operator, say a; o and a are declared as

bopo:HV;, ...V, >V, bopa:Hle...an—>H

Vi is a visible sort corresponding to Dy for k = 41,...,%m, %, J1, - -, Jn. Any
state in Z, i.e. any initial state, is denoted by a constant, say init declared as
op init: -> H

We suppose that the initial value of each o;, ;. is f(i1,...,%y). The initial
value of each o;, ;. is specified with the equation

eq o(init, X;,,..., X;, ) = (X, ., X,,) -

Xy is a CafeOBJ variable of sort Vi, for k =iy,... i, and (X;,,...,X;,,) is a
CafeOBJ term denoting f(i1,...,in). Each 7;, ;. may change the value of
each o;, ;.. if it is applied in a state v such that Cri, i holds, which can be
written as

ceq O(&(S, le, .. ,Xjn), Xi17 - ,Xim

if c-a(S, le, .. ,X]’n) .

S is a CafeOBJ variable of H and each X is a CafeOBJ variable of V.
a(S, Xj,, ..., X,,) denotes the successor state of S wrt 7;, ;.. e-a(S, Xj,,...,

m

) = e—a(S,le,...,Xjn,Xil,...,Xim)

n

X, Xiyy -+, Xi,,) denotes the value of o;, _; in the successor state. c-a(S,
Xjy,---,Xj,) denotes ¢, . . 7y _j changes nothing if it is applied in a state

v such that ¢;; . does not hold, which can be written as

ceq a(S, Xj,,...,X;,) =S if not c-a(S, X}, ..., Xj,) -
If the value of 0;, .. ;.. is not affected by applying 7;, ... ;, in any state (regardless

.....

eq o(a(S, le, ‘e ann)aXiu “e aX’im) = O(S,Xil, e ,Xim) .
3 Proof Scores
We describe proof scores showing that a predicate p; is invariant wrt S, which

are written in CafeOBJ. We often need other predicates, say ps,...,p,, for
the verification, although such predicates should be found during the verifi-

cation. Let x;1,...,ZTin;, whose types are D;1,..., D;y,, be all free variables
in p; except v, whose type is T, for 4 = 1,...,n. p; may be written as
pi(U,$i1, ceey xzml)

Although some invariant properties may be proved by rewriting and case
analysis only with other proved invariant properties, we often need induction,
especially simultaneous induction[15] on the number of transitions applied.

We first declare the operators denoting py, ..., p, and the equations defin-
ing the operators. The operators and equations are declared in a module, say
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INV (which imports the module where S is written), as

op inv; : H V... Viy, => Bool

eq I.HVZ'(S, Xﬂ, PP ,szl) = pi(S’ Xﬂ, PP ,szl) .

fori=1,...,n. Vjis a visible sort denoting D, and X} is a CafeOBJ variable
of Vi for k =141,... im;. p;(S, Xi1, ..., Xim;) is a CafeOBJ term denoting p;.
In module INV, we also declare a constant x; denoting an arbitrary value of
Vefork=1,...,n.

We then declare the operators denoting basic formulas to show in the
inductive cases and the equations defining the operators. The operators and
equations are declared in a module, say ISTEP (which imports INV), as follows:
op istep; : Vi1 ... Viy, —=> Bool
eq I'Stepi(Xil, e >Ximi) = iI]VZ'(S, Xit, .. aXimi) implies inVZ'(SJ, Xi1, ... >Ximi) .
fori=1,...,n. sand ¢, which are declared in module ISTEP, are constants
of H; s denotes an arbitrary state and ' a successor state of the state.

For the base case, we write

open INV
red fHVi(init, Xilyeo- ,Ximi) .
close
for s = 1,...,n. CafeOBJ command open makes a temporary module that

imports a module given as an argument and CafeOBJ command close de-
stroys the temporary module. Parts enclosed with open and close are basic
units of proof scores, which are called proof passages in the OTS/CafeOBlJ
method.

For the induction case showing that each 7;, ;. (denoted by action op-
erator a) preserves each p;, we often need case analysis. We suppose that the
state space is split into [ sub-spaces for the induction case, although such case
analysis should be done during the verification. Each of the [ subcases is sup-
posed to be characterized by a predicate case;, for k = 1,...,1; the predicates
should satisfy (case;, V...V case;;) < true. For the induction case, we then
write

open ISTEP
—-- arbitrary objects
op ¥1,,, : ~> Vi, - -+ op_yﬁ%_:—> V@mj.
-- assumptions
Declaration of equations denoting case;, .
—-- successor state

eq s :a(s,yjl,...,yjmj) )

-— check
red SIH; implies istep;(X;i,. .., Xim,;) -
close
forv = 1,...,n and £ = 1,...,l. A comment starts with -- and ter-

minates at the end of the line. SIH; is used to strengthen the induction
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Fig. 1. An overview of the Buffet toolkit.
hypothesis inv;(s, X;1, - - ., Xim;) and is the form inv, (s, t,1,...) and ... and
inv, (8, t,.1,---), where 1 < ¢q,...,1, < n and each t; is a term of sort V.

4 Buffet: A Toolkit for the OTS/CafeOBJ Method

Buffet is a toolkit for generating and displaying proof scores. An overview of
Buffet is shown in Fig. 1. Buffet consists of the Buffet server, Gateau (a Buffet
client), PSP (Proof Score Presenter) and the CafeOBJ system. Gateau takes
three kinds of files: spec.mod in which an OTS § is specified in CafeOBJ,
inv.mod in which modules INV and ISTEP are declared, and script.mod in
which a script to instruct Gateau to generate a proof score is written. Gateau
communicates with the CafeOBJ system via the Buffet server using the HT'TP
protocol and an inter-process communication (IPC) method. Given spec.mod,
wmv.mod and script.mod, then Gateau feeds them into the CafeOBJ system,
generates a proof score based on some information extracted from the three
files and passes the proof score into the CafeOBJ system. Gateau then receives
the results of rewriting the proof score from the CafeOBJ system, generates
a file proof.xml in XML from the proof score and the results, and passes the
file to PSP. PSP then generates a file proof.html in HTML from proof.zml to
display the proof score and the results on a web browser. In the rest of the
section, we describe the Buffet server, Gateau and PSP.

4.1 The Buffet Server

The Buffet server provides the five services: 1) to create a new session, 2) to
have the CafeOBJ system load files, 3) to obtain a module information from
the CafeOBJ system, reconstruct the module as an XML document and pass
it to a client, 4) to have the CafeOBJ system reduce a term under a module
and pass the result reconstructed as an XML document to a client, and 5) to
finish the current session.

We describe the five services in turn. When requested by a client, the
Buffet server creates a new session for the client, starting the CafeOBJ system
as its child process and establishing an IPC connection between the server
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process and the child process. After that, the client can communicate with
the CafeOBJ system via the Buffet server. CafeOBJ command in is used
to load files into the CafeOBJ system. The Buffet server has the CafeOBJ
system load a file by sending command in and the file name to the CafeOBJ
system. CafeOBJ command show is used to parse modules and use the results
of parsing them, provided that switch tree print is set to on. The Buffet
server has the CafeOBJ system parse a module by sending command show and
the module name to the CafeOBJ system, reconstructs the module as an XML
document based on the result of parsing the module and passes it to a client.
The Buffet server has the CafeOBJ system reduce a term under a module by
sending command red, the term and the module name, reconstructs the result
term as an XML document and passes it to a client. At the end of a session,
the Buffet server finishes the session by stopping the CafeOBJ system.

The current implementation of the Buffet server is written in Perl and
consists of about 1,200 lines.

4.2 Gateau

Gateau has the five commands new, input, parse, verify and quit. Com-
mands new and quit correspond to the first and fifth services provided by the
Buffet server. Command input takes a file name as its argument and uploads
the file to the Buffet server, which does the second service. Command parse
takes the name of a module in which an OTS § is supposed to be specified and
passes it to the Buffet server, which does the third service; Gateau extracts
the action operators denoting the transitions of S and their (effective) condi-
tions from the module (which is an XML document) returned by the Buffet
server. The action operators and their conditions are used to generate proof
scores showing that predicates are invariant wrt S. Command verify takes
the name of a module in which a proof script is supposed to be written for the
proof that a predicate is invariant wrt S and passes it to the Buffet server,
which does the third service; Gateau generates a proof score based on the
module (which is an XML document) returned by the Buffet server and the
information obtained by command parse. For each proof passage of the proof
score, Gateau makes a module corresponding to the proof passage (excluding
the statement containing CafeOBJ command red), uploads the module to the
Buffet server so as to have the CafeOBJ system load the module, asks the
Buffet server to has the CafeOBJ system reduce the term (appearing in the
proof passage and denoting the formula to be proved) under the module, and
receives the result (which is an XML document) from the CafeOBJ system
via the Buffet server. Based on the results and the proof score, Gateau makes
an XML document of them, saves it as a file and passes the file name to PSP.

The current implementation of Gateau is written in Perl and consists of
about 1,400 lines. In the rest of this subsection, we describe proof scripts and
how to generate proof scores based on proof scripts.

7
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4.2.1 Proof Scripts

For each predicate p; (denoted by operator inv;) to be verified, we write
a proof script from which a proof score of p; is generated. In a proof
script of p;, for each action operator a denoting transition Tjteeimys WO

give predicates such as ¢;,,...,¢;, that are used to split cases and formu-
las such as inv,, (s, t,;1,--.),... inv, (s, t, 1,-..) that are used to strengthen
the induction hypothesis inv;(s,x;,...,X;,,) for the induction case that
Tjt,vonijm,; PTESETVES Pj. Such predicates and formulas are given in the form
of rewriting rules. The rewriting rules for predicates ¢;,, . .., ¢;, and formulas
inv, (s, ty1,---),-.. inv, (s, t,.1,-..) look like

trans predicates(a(S, Yj,,..., Y., ) => ¢y -

trans predicates(a(S, Yj,,..., Y, ) =>ci,, -

trans lemmas(a(S, Yj,,..., ijj)) => inv,, (S, t,;1,.--) -

trans lemmas(a(S, Yj,,..., ijj)) => inv, (s, t,.1,---) -

Operators predicates and lemmas are used as keywords to write such predi-
cates and formulas. The reason why such predicates and formulas are given in
the form of rewriting rules is that we can use the CafeOBJ systems to parse
rewriting rules and do not have to implement another parser for such predi-
cates and formulas. Proof scores are generated based on such predicates and
formulas, which is next described.

4.2.2 How to Generate Proof Scores

Given predicate p; (denoted by operator inv;) to be verified, predicates ¢;,,
.-+ Ci,, used to split cases and formulas inv,, (Sy tyy1ye-e)ye .- 0V, (S, to1y .- 2)
used to strengthen the induction hypothesis inv;(s, X1, - . ., Xim, ), then a proof
score of p; is generated and checked as follows:

(i) Base case: Gateau has the CafeOBJ system reduce term inv;(init, x;1,
.+« Xim;) under module INV and generates an XML document of the
proof passage and the result.

(ii) Induction cases: For each action operator a denoting transition LT
for each proof passage to be checked a temporary module PROOF_TMP is
generated and a term denoting a formula to be proved is reduced under
k := 1; stack := empty; push(stack, {c;, }); push(stack, {—c;,});
while stack # empty do

Cs := pop(stack); (* let Cs be {c},...,c,}. *)
Make the module
mod PROOF_TMP {

pr (ISTEP)
OP Y1, P ™> Vi, - -+ OP Vjm; * > ijj .
Declaration of equations denoting c},...,cl, .

8



LIV, YA ALA AL AV AL UL

eqs = a(s,yjl,...,yjmj) .
s
Let T be istep; (Xz'la e ,Ximi);
Have the CafeOBJ system reduce T' under PROOF_TMP;
if the result is true then
(* The proof succeeds in the case Cs. *)
Generate an XML document of the proof passage and the result;
else if the result is false then
Let T be SIH; implies istep;(x;1, - . ., Xim,;);
Have the CafeOBJ system reduce T' under PROOF_TMP;
Generate an XML document of the proof passage and the result;
(* If the result is true, the proof succeeds in the case Cs. *)
(* If not, other lemmas may be needed. *)
else if k£ <i,, then
push(stack, Cs U {c }); push(stack, Cs U {—ck}); k :== k + 1;
else
Let T be SIH; implies istep;(xi1,- . ., Xim;);
Have the CafeOBJ system reduce T' under PROOF_TMP;
Generate an XML document of the proof passage and the result;
(* If the result is true, the proof succeeds in the case Cs. *)
(* If not, further case analysis and/or other lemmas may be needed. *)
fi fi fi;
od

k is an integer variable and stack is a stack of predicate sets. push and pop
are usual operators of stacks. mod is the keyword for declaring modules
and pr is the keyword for importing modules.

Each predicate ¢, is the form Iy A ...Ly or =(ly A ...ln;c,), where
each [, is a literal, namely the form «, or —a,, and «, is an atomic
formula. In the case that ¢, is the form =(lyA. . .1, ), we declare equation
¢y = false. In the case that ¢}, is the form I} A ...ln;,, we declare an
equation for each [,. In the case that [, is the form —cq,, we declare
equation I, = false. In the case that [, is the form «,, if o, is the form
left = right, we declare equation left = right, and otherwise we declare
equation I, = true.

4.3 PSP

Given an XML document of a proof score and the results of reducing the
proof passages in the proof score, PSP generates an HTML document. When
an HTML document generated by PSP is first displayed on a web browser,
proof passages for which results are not true and their results are shown, and
other proof passages (for which the proof has succeeded) are hidden. Proof
passages are hierarchically shown according to the predicates used to split
cases and each proof passage is clickable, allowing the proof passage to appear
and disappear. The current implementation of PSP is written in XSLT (XSL
Transformations; see www.w3.org/TR/xslt) and consists of about 600 lines.

9
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5 A Case Study: A Mutual Exclusion Protocol

We describe a case study that Buffet has been applied to the verification that
a simple mutual exclusion protocol has the mutual exclusion property. The
protocol repeatedly executed by multiple processes can be written as

11: Remainder Section
12: repeat until ~fetch&store(lock, true)

Critical Section
cs: lock := false
lock is a boolean variable and is initially set to false. fetch&store(z,v) atom-
ically exchanges the value of variable z with value v and returns the original
value of z. Each process is initially at location 11.

5.1 Modeling and Specification of the Mutual Exclusion Protocol

Let B, P and L be types of boolean values, process IDs and locations (l1,
12 and cs). The mutual exclusion protocol is modeled as the OTS Sy x such
that 1) Ouyx consists of lock : T — B and loc; : Y — L for i € P, 2)
Tux is {v € YT |=lock(v) AVi € P.(loc;(v) = 11)}, and 3) Tyx consists of
try; : T — Y, enter; : T — Y and leave; : Y — T, for i € P, whose effective
conditions are ¢y, (v) = (loc;(v) = 11), Center;(v) = (loc; =12 A =lock(v)) and
Cleave; (V) = (loc; = cs) and whose definitions are:
(i) Let v’ be try;(v). If ¢4y, (v) holds, then lock(v') = lock(v) and loc;(v') =
(if ¢ = j then 12 else loc;(v)). Otherwise, nothing changes.
(ii) Let v be enter;(v). If center; (v) holds, then lock(v'") = true and loc;(v') =
(if ¢ = j then cs else locj(v)). Otherwise, nothing changes.
(iii) Let v’ be leave;(v). If Cieqne; (v) holds, then lock(v') = false and loc;(v') =
(if ¢ = j then 11 else loc;(v)). Otherwise, nothing changes.

Sux is written in CafeOBJ. The signature of the CafeOBJ specification of
SMX is

-- any initial state

op init : -> Sys

-- observation operators

bop lock : Sys -> Bool bop loc : Sys Pid -> Loc
—— action operators

bop try : Sys Pid -> Sys bop enter : Sys Pid -> Sys

bop leave : Sys Pid -> Sys

Sys is the hidden sort denoting Y, Pid is the visible sort denoting P and
Loc is the visible sort denoting L. Constant init denotes any initial state.
Observation operators lock and loc denote observers lock and loc;, and action
operators try, enter and leave denote transitions ¢ry;, enter; and leave;. The
three action operators are defined in equations as

—-— try
10
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v action: enter
case splitting: c-enter(s, pid1)
v case: true

?E)e?I.STE? v obijects: e ID: enter.ll

op pidi

-> Pid .
-~ assumptions:
eq (loc(s,pidl)) = (12) .
eq (leck(s)) = (false) .
eq (s8') = (enter(s,pidl)) .

-- reduce the following term:

red istepl(i, j) .

close
result: if pidl = i then es else loc(s,i) = cs fi and if pidl = j then cs else loc(s,j)
= ¢s fi and loc(s,i) = cs and loc(s,j) = cs xor if pidl = i then cs else loc(s,i) =
cs fi and if pidl = j then c¢s else loc(s,j} = cs fi and loc(s,i) = cs and loc(s,j) =
cs and 1 = j xor if pidl = i then cs else loc(s,i) = cs fi and if pidl = j then cs
else loc(s,j) = cs fi xor if pidl = i then cs else loc(s,i) = c¢s and if pidl = j then
cs else loc(s,j) = cs fi and 1 = j xor true

» case: false

Fig. 2. Excerpts from the proof score and the results displayed by Buffet (1).

lock(S)

(if I = J then 12 else loc(S,J) fi)
if c-try(S,I)

if not (c-try(S,I))

eq lock(try(Ss,I))
ceq loc(try(S,I),J)

1]
w0

ceq try(S,I)

-—- enter

ceq lock(enter(S,I))
ceq loc(enter(S,I),J)

true if c-enter(S,I)

(if I J then cs else loc(S,J) fi)
if c-enter(S,I)

if not(c-enter(S,I))

1]
w2

ceq enter(S,I)

-- leave

ceq lock(leave(S,I))
ceq loc(leave(S,I),D)

false if c-leave(S,I)

(if I = J then 11 else loc(S,J) fi)
if c-leave(S,I)

ceq leave(S,I) =S if not (c-leave(S,I))

Operators c-try, c-enter and c-leave denote Ciy,, Center; aNd Cieqye;, Which
are defined as

eq c-try(S,I) = (Loc(S,I) = 11)

eq c-enter(S,I) = (loc(5,I) = 12 and not lock(S))
eq c-leave(S,I) (loc(S,I) = cs)

5.2 Verification of the Mutual Ezxclusion Protocol

We describe the verification that Syx has the mutual exclusion property. For
the verification, all we have to do is to prove predicate (loc;(v) = csAloc;(v) =
cs) = (i = j) invariant wrt Syx. The predicate is denoted by operator invi
defined as

eq inv1(5,I,J) = (loc(8,I) = cs and loc(S,J) = cs implies I = J)

The operator is declared and defined in module INV. In the module, constants
i and j denoting arbitrary values of sort Pid are also declared. The operator

11
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v action: enter
case splitting: c-enter(s, pid1)
¥ case: true
case splitting: i = pid1
¥ case: frue
case splitting: ] = pid1
b case: true
v case: false
case splitting: loc(s, i) = cs
¥ case: true
case splitting: loc(s, ]) = cs
¥ case: frue

s gt o case ID: enter-1-1-2-1-1
== Arpltrary objects:

—-— assumptions:
eq (loc(s,pidl)) = (12) .
eq (leck(s)) = (false) .
eg (i) = (pidl) .
eqg (j = pidl) (false) .
eq (loc(s,i)) (es) .
eq (loc(s,j)) = (cs) .
eq (s8') = (enter(s,pidl)) .
-- reduce the following term:
red istepl(i, j) .
close

result: false

» case: false

Fig. 3. Excerpts from the proof score and the results displayed by Buffet (2).

denoting the basic formula to be shown in each induction case is denoted by
operator istepl defined as

eq istepl(I,J) = invi(s,I,J) implies invi(s’,I,J)

The operator is declared and defined in module ISTEP. In the module, con-
stants s and s’ are also declared.

First of all we do not use any predicates to split cases and any formulas
to strengthen the induction hypothesis and have Buffet generate and check
a proof score of invi(s,i,j) and display the proof score and the results.
Buffet reports that seven cases have been checked and the proof has succeeded
in three out of the seven cases. We show in Fig.2 part of the proof score
and the results displayed by Buffet. Small triangles are clickable buttons.
An upside down triangle means that its contents are shown, and a triangle
rotated clockwise by 90 degrees means that its contents are hidden. The
first button from top in Fig.2 corresponds to the induction case of enter;
denoted by enter. There are two proof passages in the induction case. One
corresponding to the second button is shown and the other corresponding to
the last button is hidden. The proof succeeds in the second proof passage but
for the first proof passage we need case analysis.

Next we use predicates to split cases and the predicates are given as

-- for try
trans predicates(try(S,P)) => (i = pidl)
trans predicates(try(S,P)) => (j = pidl)

12
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—-— for enter
trans predicates(enter(S,P)) => (i = pidl)

trans predicates(enter(S,P)) => (j = pidl)

trans predicates(enter(S,P)) => (loc(s,i) = cs) .
trans predicates(enter(S,P)) => (loc(s,j) = cs)
-— for leave

trans predicates(leave(S,P)) => (i
trans predicates(leave(S,P)) => (j

pid1)
pid1)

But we do not use any formulas to strengthen the induction hypothesis. In
this case Buffet reports that 18 cases have been checked and the proof has
succeeded in 15 out of the 18 cases. We show in Fig. 3 part of the proof score
and the results displayed by Buffet.

Looking at the proof passage in Fig. 3, we notice that process j is at loca-
tion cs and lock(s) is false in state s, which seems contradiction. Therefore
we conjecture that predicate (loc;(v) = cs) = lock(v) is also invariant. The
predicate is denoted by operator inv2 defined (in module INV) as

eq inv2(S,I) = (loc(S,I) = cs implies lock(S))

We also declare and define operator istep2 denoting the basic formula to be
shown in each induction case as istepl in module ISTEP.

In addition to the predicates to split cases, we also use formulas to
strengthen the induction hypothesis inv1(s,i, j) and the formulas are given
as

trans lemmas (enter(S,P)) => inv2(s,i) .
trans lemmas (enter(S,P)) => inv2(s,j) .

In this case Buffet reports that the proof has succeeded in all 18 cases.
For the verification of inv2(s,1i), we use the predicates to split cases and
the formulas to strengthen the induction hypothesis:

-— for try

trans predicates(try(S,P)) => (pidl = i)
trans predicates(try(S,P)) => (loc(s,i) = cs)
trans predicates(try(S,P)) => lock(s)
trans predicates(try(S,P)) => (loc(s,i)
—— for leave

trans predicates(leave(S,P)) => (pidl = i)

trans predicates(leave(S,P)) => (loc(s,i) = cs) .
trans predicates(leave(S,P)) => lock(s)

trans lemmas(leave(S,P)) => invi(s,i,pidl) .

11)

Buffet reports that 15 cases have been checked and the proof has succeeded
in all the cases.

Note that the predicate denoted by inv2 is needed to strengthen the induc-
tion hypothesis for the invariant proof of the predicate denoted by inv1l and
vice versa, which means that if each of the proof scores is written individually,
then simultaneous induction[15] is needed.

13
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6 Related Work

BOBJ[8] is an algebraic specification language based on order-sorted and
hidden-sorted algebras, which is a sibling language of CafeOBJ. BOBJ im-
plements conditional circular coinductive rewriting with case analysis (c4rw).
Given equations (which are used to split cases) and lemmas, cdrw automat-
ically generates proof scores and checks the proof scores. BOBJ allows us
to specify how to split cases in more detail than Buffet, but users who give
equations used to split cases are responsible for whether the whole cases are
covered by the equations. As shown in [8], some problems can be verified well
with c4rw, but it seems that further research should be done to make it clear
that BOBJ can be appropriately applied to what types of problems. BOBJ is
part of the Tatami system[7]. The Tatami system provides facilities for dis-
playing proofs so as to make them preferably attractive to software engineers
based on algebraic semiotics (which combines algebraic specification with so-
cial semiotics). The basic idea behind the facilities may be used to improve
our way of displaying proof scores.

Several proof assistants have been proposed. Among them are Coq[1] and
Isabell/HOL[12]. They provide some automatic proof mechanisms to some
extent, but basically help users construct their proofs. Users feed commands
called tactics into a proof assistant to make progress on their proofs. Tactics
usually reduce a proof goal into zero or more proof sub-goals, which are hope-
fully simpler. But users should select appropriate tactics in order to succeed
in their proofs. This means that users are basically required to have knowl-
edge and experience to complete their proofs on their own without any proof
assistants, although proof assistants prevent users from making mistakes.

Among the existing tools supporting verification of (distributed) systems
with algebraic specification languages are Larch Prover (LP)[10] and Maude
Inductive Theorem Prover (Maude ITP)[3]. The design policy of LP is to
make proof assistants easier-to-use especially for engineers, but users of LP
are basically required to have similar skills as those needed to use other proof
assistants. Maude ITP assists verification of abstract data types written
in Maude[2], an algebraic specification and programming language based on
membership equational logic and rewriting logic, but does not assist verifica-
tion of abstract machines.

7 Conclusion

We have described Buffet for generating and displaying proof scores in the
OTS/CafeOBJ method and reported on the case study on the verification of
a simple mutual exclusion protocol. In addition to the mutual exclusion pro-
tocol, Buffet has been successfully applied to the verification that the NSLPK
authentication protocol[11] and the Otway-Rees authentication protocol[16]
have the secrecy property.
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